Darlington Power Transistor

Description

Complementary silicon power transistor.

The MJ15003 power transistor designed for high power audio, disk head positions and other linear applications.

Features

- High safe operating area (100% tested) 5A at 50V
- · For low distortion complementary designs
- High DC current gain hFE = 25 (minimum) at Ic = 5A DC
- · Pb-free package

Maximum Ratings (Note 1)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	Vceo	140	V DC
Collector-Base Voltage	Vсво	140	
Emitter-Base Voltage	VEBO	5	
Collector Current - Continuous	lc	20	A DC
Base Current - Continuous	Ів	5	
Emitter Current - Continuous	lε	25	
Total Device Dissipation at TC = 25°C Derate above 25°C	Po	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to +200	°C

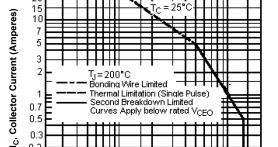
Thermal Characteristics

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C / W
Maximum Lead Temperature for Soldering Purpose 1/6 inches from Case for ≤10 Seconds	TL	265	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

Darlington Power Transistor



Electrical Characteristics (Tc = 25°C unless otherwise noted)

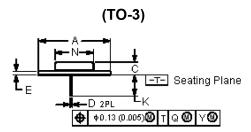
Characteristic	Symbol	Min.	Max.	Unit
Off Characteristics				
Collector-Emitter Sustaining Voltage (Note 1) $(I_C = 200 \text{mA DC}, I_B = 0)$	V _{EO(sus)}	140	-	V DC
Collector Cut off Current $(V_{CE} = 140 \text{V DC}, V_{BE \text{ (off)}} = 1.5 \text{V DC})$ $(V_{CE} = 140 \text{V DC}, V_{BE \text{ (off)}} = 1.5 \text{V DC}, T_{C} = 150 ^{\circ}\text{C})$	I _{CEX}	1	100 2	μA DC mA DC
Collector Cut off Current (V _{CE} = 140V DC, I _B = 0)	I _{CEO}	1	250	μA DC
Emitter Cut off Current (V _{EB} = 5V dc I _C = 0)	I _{EBO}	1	100	
Second Breakdown				
Second Breakdown Collector Current with Base Forward Biased ($V_{CE} = 50V DC$, $t = 1s$ (non repetitive)) ($V_{CE} = 100V DC$, $t = 1s$ (non repetitive))	I _{S/b}	5 1	-	A DC
On Characteristic				
DC Current Gain (I _C = 5A DC, V _{CE} = 2V DC)	hfE	25	150	-
Collector-Emitter Saturation Voltage $(I_C = 5A DC, I_B = 0.5A DC)$	VCE (sat)	-	1	V DC
Base-Emitter On Voltage (I _C = 5A DC, V _{CE} = 2V DC)	VBE (on)	-	2	
Dynamic Characteristics				
Current-Gain - Bandwidth Product ($I_C = 0.5A$ DC, $V_{CE} = 10V$ DC, $f_{test} = 0.5MHz$)	f⊤	2	-	MHz
Output Capacitance $(V_{CB} = 10V DC, I_{E} = 0, f_{test} = 1MHz)$	Cob	-	1,000	pF

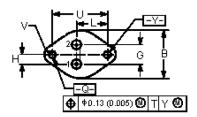
^{1.} Pulse Test : Pulse Width = 300µs, Duty Cycle ≤2%.

Active - Region Safe Operating Area

V_{CE}, Collector-Emitter Voltage (Volts)

There are two limitation on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ic - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than curves indicate. The data is based on TJ (PK) = 200°C; Tc is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values.


Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro



Darlington Power Transistor

Diagram

Style 1: Pin 1. Base 2. Emitter Collector (Case)

Dimensions	Minimum	Maximum	
А	1.55 (39.37) Reference		
В	-	1.05 (26.67)	
С	0.25 (6.35)	0.335 (8.51)	
D	0.038 (0.97)	0.043 (1.09)	
E	0.055 (1.4)	0.07 (1.77)	
G	0.43 (10.92) BSC		
Н	0.215 (5.46) BSC		
K	0.44 (11.18)	0.48 (12.19)	
L	0.665 (16.89) BSC		
N	-	0.83 (21.08)	
Q	0.151 (3.84)	0.165 (4.19)	
U	1.187 (30.15) BSC		
V	0.131 (3.33)	0.188 (4.77)	

Dimensions: Millimetres

Part Number Table

Description	Part Number
Transistor, NPN, TO-3	MJ15003

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro Element14.com/multicomp-pro

