Product Change Notification - SYST-13ROQI436

Date:
14 Jan 2020

Product Category:
Linear Comparators

Affected CPNs:

Notification subject:
Data Sheet - MIC6270 Data Sheet

Notification text:
SYST-13ROQI436
Microchip has released a new Product Documents for the MIC6270 Data Sheet of devices. If you are using one of these devices please read the document located at [MIC6270 Data Sheet].

Notification Status: Final

Description of Change:
1) Micrel document MIC6270 to Microchip data sheet template DS20006294A.
2) Minor text changes throughout

Impacts to Data Sheet: None

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 14 Jan 2020

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachment(s):
MIC6270 Data Sheet

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to receive Microchip PCNs via email please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.
If you wish to change your PCN profile, including opt out, please go to the PCN home page select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.
Affected Catalog Part Numbers (CPN)

MIC6270YM5-TR
Features

• 2V to 36V Supply
• 300 μA Supply Current Independent of Supply
• 25 nA Input Bias Current
• ±5 nA Input Offset Current
• ±3 mV Input Offset Voltage
• Input Common Mode Voltage Range Includes Ground
• Differential Input Voltage Range Equal to the Power Supply Voltage
• 250 mV and 4 mA Output Saturation Voltage
• Output Compatible with TTL, DTL, ECL, MOS, and CMOS Logic

Applications

• Limit Comparators
• A/D Converters
• Pulse, Square-Wave, Time-Delay Generators
• Wide-Range VCO
• MOS Clock Timers
• Multi-Vibrators and High-Voltage Digital Logic Gates

General Description

The MIC6270 is a precision voltage comparator with an offset voltage specification of 5 mV maximum.

The MIC6270 is designed to operate from a single 2V to 36V power supply. Operation from split power supplies is also possible. Its low supply current drain is independent of the magnitude of the supply voltage.

This comparator also features an input common-mode voltage range that includes ground. Inputs are protected against reverse polarity (input voltage less than V–) and ESD.

The MIC6270 has an open-collector output that directly interfaces with TTL, CMOS, and other types of logic. Several MIC6270 outputs can be connected together for wired-OR logic. The output also features an internal pull-up current source that can be used instead of an external load in some applications.

Package Type

![MIC6270 Functional Pinout](image)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V_{+} – $V_{–}$) ... +36V or ±18V
Differential Input Voltage (V_{IN+} – $V_{IN–}$) ... +36V
Input Voltage ..–0.3V to +36V
Input Current ($V_{IN} < –0.3V$) .. 50 mA
Output Short-Circuit to GND, Note 1 .. ∞

Operating Ratings ‡

Supply Voltage .. +2V to +36V

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡ Notice: The device is not guaranteed to function outside the operating ratings.

Note 1: A short-circuit from OUT to $V+$ can cause excessive heating and damage the device. The maximum short-circuit output current (OUT to $V–$) is approximately 20 mA, independent of V_{V+}.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V^+ = 5V; T_A = +25^°C$, unless noted.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>V_{OS}</td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>mV</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V^+ = 5V$; $-40°C ≤ T_A ≤ +85°C$</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_B</td>
<td>—</td>
<td>25</td>
<td>250</td>
<td>nA</td>
<td>$I_{IN(+)}$ or $I_{IN(-)}$ with output in linear range, $V_{CM} = 0V$, Note 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_{IN(+)}$ or $I_{IN(-)}$ with output in linear range, $V_{CM} = 0V$, Note 2, $-40°C ≤ T_A ≤ +85°C$</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td>—</td>
<td>5</td>
<td>50</td>
<td>nA</td>
<td>$I_{IN(+)}$ or $I_{IN(-)}$ $V_{CM} = 0V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0V$, $-40°C ≤ T_A ≤ +85°C$</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V_{CM}</td>
<td>—</td>
<td>—</td>
<td>$V^+ - 1.5$</td>
<td>V</td>
<td>$V^+ = 30V$; Note 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V^+ = 30V$, Note 3, $-40°C ≤ T_A ≤ +85°C$</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_S</td>
<td>—</td>
<td>0.3</td>
<td>0.9</td>
<td>mA</td>
<td>$R_L = \infty$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$R_L = \infty$, $V^+ = 36V$</td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>—</td>
<td>50</td>
<td>200</td>
<td>—</td>
<td>V/mV</td>
<td>$R_L ≥ 15 k\Omega$, $V^+ = 15V$ $V_O = 1V$ to 11V</td>
</tr>
<tr>
<td>Large Signal Response Time</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>ns</td>
<td>$V_{IN} = $ TTL logic swing, $V_{REF} = 1.4V$ $V_{RL} = 5V$, $R_L = 5.1 k\Omega$</td>
</tr>
<tr>
<td>Response Time</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>μs</td>
<td>$V_{RL} = 5V$, $R_L = 5.1 k\Omega$, Note 4</td>
</tr>
<tr>
<td>Output Sink Current</td>
<td>—</td>
<td>10</td>
<td>20</td>
<td>—</td>
<td>mA</td>
<td>$V_{IN(+)} = 1V$, $V_{IN(-)} = 0V$, $V_O ≤ 1.5V$</td>
</tr>
<tr>
<td>Output Pull-Up Current</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>50</td>
<td>μA</td>
<td>—</td>
</tr>
<tr>
<td>Saturation Voltage</td>
<td>—</td>
<td>—</td>
<td>250</td>
<td>400</td>
<td>mV</td>
<td>$V_{IN(-)} = 1V$, $V_{IN(+)} = 0$, $I_{SINK} ≤ 4 mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{IN(-)} = 1V$, $V_{IN(+)} = 0$, $I_{SINK} ≤ 4 mA$, $-40°C ≤ T_A ≤ +85°C$</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>36</td>
<td>V</td>
<td>$V_{IN(+)}$, $V_{IN(-)} ≥ 0V$ (or V_-, if used), Note 5</td>
</tr>
</tbody>
</table>

Note 1: Measured at the output switch point where $V_{OUT} = 1.4V_{DC}$ with $R_S = 0\Omega$, $V^+ = 5V_{DC}$ to $30V_{DC}$, and over the full input common-mode range ($0V_{DC}$ to $V^+ - 1.5V_{DC}$).

Note 2: The direction of input current is out of the device due to its PNP input.

Note 3: The input common-mode voltage, V_{IN+}, or V_{IN-} must not go below $-0.3V$. The upper end of the common-mode voltage range is $V^+ - 1.5V$ at $25°C$, but either or both inputs can go to $+36V_{DC}$ without damage, independent of V_{IN+}.

Note 4: The response time measured using a 100 mV input step with 5 mV overdrive. With greater overdrive, 300 ns can be obtained. See "Typical Performance Curves.”

Note 5: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be below $-0.3V_{DC}$ (or $0.3V_{DC}$ below V_{IN-}).
TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>T_A</td>
<td>–40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>–65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td></td>
<td>—</td>
<td>—</td>
<td>+260</td>
<td>°C</td>
<td>Soldering, 10s</td>
</tr>
<tr>
<td>Package Thermal Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance SOT-23-5</td>
<td>θ_{JA}</td>
<td>—</td>
<td>220</td>
<td>—</td>
<td>°C/W</td>
<td>Mounted to printed circuit board.</td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Figure 2-1: Supply Current vs. Supply Voltage.
Figure 2-2: Input Current vs. Supply Voltage.
Figure 2-3: Output Saturation Voltage.
Figure 2-4: Output Response Time vs. Overdrive (Test Circuit).
Figure 2-5: Output Response Time vs. Overdrive.
Figure 2-6: Output Response Time vs. Overdrive.
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>Comparator output.</td>
</tr>
<tr>
<td>2</td>
<td>V–</td>
<td>Negative Supply: Negative supply for split supply application or ground for single supply application.</td>
</tr>
<tr>
<td>3</td>
<td>IN+</td>
<td>Non-inverting input.</td>
</tr>
<tr>
<td>4</td>
<td>IN–</td>
<td>Inverting input.</td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>Positive supply.</td>
</tr>
</tbody>
</table>
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend:

- **XX...X**: Product code or customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **e³**: Pb-free JEDEC® designator for Matte Tin (Sn)
- *****: This package is Pb-free. The Pb-free JEDEC designator (e³) can be found on the outer packaging for this package.
- **●, ▲, ▼**: Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) and/or Overbar (‾) symbol may not be to scale.
5-Lead SOT23 Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TITLE

5 LEAD SOT23 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>SOT23-5LD-PL-1</th>
<th>UNIT</th>
<th>MM</th>
</tr>
</thead>
</table>

TOP VIEW

SIDE VIEW

DETAIL

END VIEW

RECOMMENDED LAND PATTERN

NOTE:
1. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & BURR.
2. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.
4. FOOT LENGTH MEASUREMENT BASED ON GAUGE PLANE METHOD.
5. DIE FACES UP FOR MOLD, AND FACES DOWN FOR TRIM/FORM.
6. ALL DIMENSIONS ARE IN MILLIMETERS.
APPENDIX A: REVISION HISTORY

Revision A (January 2020)

• Converted Micrel document MIC6270 to Microchip data sheet template DS20006294A.
• Minor text changes throughout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>-XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Type</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: MIC6270: IttyBitty® Comparator

Temperature: Y = −40°C to +85°C

Package: M5 = 5-Lead SOT-23

Media Type: TR = 3,000/Reel

Examples:

a) MIC6270YM5-TR: IttyBitty® Comparator, −40°C to +85°C Junction Temperature Range, 5-Pin SOT-23 Package, 3,000/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BiCloud, chipKIT, chipkitKIT logo, CryptoMemory, CryptoRF, dsPIC, ChipFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANcheck, LinkMD, maxStylus, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, Sensitivity, SpyNic, SST, SST Logo, SuperFlash, Symmcom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AAPT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.
