Highlights

• USB Type-C™ (1) Power Delivery (PD) Solution for
 - Source-only applications (UPD301B)
 - Sink-only, Dual Role Power, and Dual Role Data applications (UPD301C)
• Companion device for USB PD Software Framework (PSF) open source firmware stack
• Fully Customizable software
• Standard Power Delivery power profiles (15/27/45/60/100W) supported with no software modification
• USB Power Delivery 3.0 compliant MAC
• USB Type-C™ connector support with connection detection and control
• Integrated Analog Discrete Components Reduce Bill of Materials and Design Footprint
• Easily Supports up to 3 additional Power Delivery ports Port via UPD350 Add-on
• Commercial, Industrial, and Automotive Temperature Support

Target Applications

• Point-of-Sale Terminals
• Charging Lockers
• IoT Products and Sensors
• Smart Speakers and Monitors
• Conference Systems
• Power Tools
• Multi-port Charging Docks
• Automotive Rear Seat Charging Ports

Key Benefits

• Fully Customizable Power Delivery Firmware
 - Industry standard MPLABX development and programming environment
 - Supports all Standard Power Delivery profiles (15/27/45/60/100W) and custom profiles
 - Supports Dual Role Port (DRP) operation (UPD301C only)
 - Supports Alternate Mode operation
 - PSF software framework enables customized PD applications
• 32-bit ARM Cortex-M0+ CPU
 - 64KB Flash, 8KB RAM
• Optional Two, Three, or Four Port Solution via External UPD350
• SPI for External UPD350 Communication
• Power Delivery Firmware Controls All Ports
• Integrated Analog Discrete Components
 - VCONN FETs with Rp/Rd Switching
 - Dead Battery Rd termination (UPD301C only)
 - Programmable Current Sense for Overcurrent Conditions
 - Voltage Sense for Overvoltage Conditions
• USB Power Delivery MAC
 - Compliant with USB Power Delivery Specification Revision 3.0
 - Power Delivery Packet Framing
 - CRC Checking/Generation
 - 4B/5B Encoding/Decoding
 - BMC Encoding/Decoding
 - EOP/SOP Generation for PD Frames
 - SOP Detection and SOP Header Processing
 - Separate RX/TX FIFOs
 - Automatic GoodCRC Message Generation
 - Automatic Retry Generation
 - Error Handling
 - Low Standby Power Support
• USB Type-C Cable Detect Logic
 - Auto Cable Attach & Orientation Detection
 - Routes Baseband Communication to Respective CC Pin per Detected Orientation
 - VCONN Supply Control for Active Cable
 - Charging Current Capability Detection
• Power and I/Os
 - Integrated 1.8V Voltage Regulator
 - 10 Configurable General Purpose I/O Pins
• Package
 - 40-VQFN (6.0mm x 6.0mm)
• Environmental
 - Commercial Temperature Range (0°C to +70°C)
 - Industrial / AEC-Q100 Automotive Grade 3 Temperature Range (-40°C to +85°C)

I. USB Type-C™ and USB-C™ are trademarks of USB Implementers Forum.
TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Documentation

To obtain the most up-to-date version of this documentation, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
Table of Contents

1.0 Preface .. 4
2.0 Introduction ... 6
3.0 Pin Descriptions and Configuration ... 13
4.0 Functional Descriptions ... 18
5.0 Operational Characteristics ... 30
6.0 Package Information ... 37
Appendix A: Data Sheet Revision History ... 41
The Microchip Web Site .. 42
Customer Change Notification Service ... 42
Customer Support ... 42
Product Identification System ... 43
1.0 PREFACE

1.1 Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCI</td>
<td>Baseband CC Interface</td>
</tr>
<tr>
<td>Billboard</td>
<td>USB Billboard Device. A required USB device class for UFPs which support Alternate Modes in order to provide product information to the USB Host.</td>
</tr>
<tr>
<td>BIST</td>
<td>Built-In Self Test</td>
</tr>
<tr>
<td>BMC</td>
<td>Bi-phase Mark Coding</td>
</tr>
<tr>
<td>Byte</td>
<td>8-bits</td>
</tr>
<tr>
<td>CC</td>
<td>Generic reference to USB Type-C™ Cable / Connector CC1/CC2 pins</td>
</tr>
<tr>
<td>CSR</td>
<td>Control and Status Register</td>
</tr>
<tr>
<td>DFP</td>
<td>Downstream Facing Port (USB Type-C™ Specification definition)</td>
</tr>
<tr>
<td>DP</td>
<td>DisplayPort (a VESA standard interface)</td>
</tr>
<tr>
<td>DRP</td>
<td>Dual-Role Power</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro-Static Discharge</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out buffer</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input/Output</td>
</tr>
<tr>
<td>Host</td>
<td>External system (Includes processor, application software, etc.)</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model (Simulates ESD from humans)</td>
</tr>
<tr>
<td>HS</td>
<td>High-Speed</td>
</tr>
<tr>
<td>LDO</td>
<td>Linear Drop-Out regulator</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Controller</td>
</tr>
<tr>
<td>Microchip</td>
<td>Microchip Technology Incorporated</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NC</td>
<td>No Connect (pin)</td>
</tr>
<tr>
<td>OCS</td>
<td>Over-Current Sense</td>
</tr>
<tr>
<td>PD / UPD</td>
<td>USB Power Delivery</td>
</tr>
<tr>
<td>PDO</td>
<td>Power Delivery Object (USB PD Specification definition)</td>
</tr>
<tr>
<td></td>
<td>PDOs enable the port to indicate its Port Partner supported combinations of Voltage/Current or Power as well as the type of supply (Fixed, Variable, Battery) in Source Role or Sink Role.</td>
</tr>
<tr>
<td>PIO</td>
<td>General Purpose I/O</td>
</tr>
<tr>
<td>POR</td>
<td>Power-On Reset</td>
</tr>
<tr>
<td>Port Partner</td>
<td>Remote port which is connected to the UPD301B/C’s local port</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo Random Binary Sequence</td>
</tr>
<tr>
<td>Source Role</td>
<td>USB Type-C port is sinking power from its Port Partner</td>
</tr>
<tr>
<td>Source-only Operation</td>
<td>Operation exclusively in USB Type-C / Power Delivery Source Role as defined in the USB Type-C and Power-Delivery specifications. In this mode of operation, USB Type-C Dual-Role Power Operation is not supported and there is no support for USB Power Role Swap.</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>SS</td>
<td>SuperSpeed</td>
</tr>
<tr>
<td>Stand-alone Mode</td>
<td>Chip operation without the control or configuration by an external MCU. Policy is defined locally by the UPD301B/C firmware. Configuration is achieved by use of configuration straps.</td>
</tr>
<tr>
<td>UFP</td>
<td>Upstream Facing Port (USB Type-C™ Specification definition)</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>
1.2 Buffer Types

TABLE 1-2: BUFFER TYPES

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Input</td>
</tr>
<tr>
<td>IS</td>
<td>Schmitt-triggered input</td>
</tr>
<tr>
<td>O2</td>
<td>Output with 2 mA sink and 2 mA source</td>
</tr>
<tr>
<td>OD2</td>
<td>Open-drain output with 2 mA sink and 2 mA source</td>
</tr>
<tr>
<td>O8</td>
<td>Output with 8 mA sink and 8 mA source</td>
</tr>
<tr>
<td>PD</td>
<td>200kΩ (typical) internal pull-down. Note: Internal pull-down resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled low, an external resistor must be added.</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input</td>
</tr>
<tr>
<td>AO</td>
<td>Analog output</td>
</tr>
<tr>
<td>AIO</td>
<td>Analog bidirectional</td>
</tr>
<tr>
<td>P</td>
<td>Power pin</td>
</tr>
</tbody>
</table>

Note: Refer to Section 5.5, "DC Characteristics," on page 33 for the electrical characteristics of the various buffers.

1.3 References

2.0 INTRODUCTION

2.1 General Description

The UPD301B/C is a stand-alone, small form factor USB Type-C™ Power Delivery (PD) Port Controller designed to adhere to the USB Type-C™ Cable and Connector Specification and USB Power Delivery 3.0 Specification. The UPD301B/C provides stand-alone operation for a wide range of PD applications, enabling cable plug orientation and detection for a USB Type-C receptacle, and implementing baseband communication with a partner USB Type-C device via the integrated USB Power Delivery 3.0 MAC.

The UPD301B/C is an integrated PD solution with SAMD20 (32-bit ARM Cortex-M0+) microcontroller and UPD350 PD MAC/PHY functionality. The embedded 32-bit ARM Cortex-M0+ can execute the USB Power Delivery Framework (PSF) Power Delivery stack. Optionally, a second, third, or fourth PD port is supported via SPI connection of additional external Microchip UPD350 devices. The UPD301B/C devices are shipped blank and require programming with compiled application specific code before operation.

Additionally, the UPD301B/C integrates many of the analog discrete components required for USB Type-C PD applications, including two VCONN FETs with Rp/Rd switching and current/voltage sense circuitry for over-voltage/current detection. By integrating the PD firmware and many of the analog discrete components required for USB Type-C PD applications, the UPD301B/C provides a low cost, stand-alone, fast time-to-market solution for consumer, industrial, and automotive applications.

The Microchip UPD301B/C family includes the following devices:

- UPD301B
- UPD301C

The UPD301B/C is available in commercial (0°C to +70°C) and industrial/automotive grade 3 (-40°C to +85°C) temperature ranges. The UPD301B/C is available with dead battery support enabled or disabled in hardware. Device specific features that do not pertain to the entire UPD301B/C family are called out independently throughout this document. Table 2-1 provides a summary of the feature differences between family members. For ordering information, refer to the Product Identification System on page 43.

TABLE 2-1: UPD301B/C FAMILY FEATURE MATRIX

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Dead Battery Rd Terminations</th>
<th>DRP & Sink-Only Application Support</th>
<th>Source-Only Application Support</th>
<th>Customizable PD Software</th>
<th>32-bit ARM Cortex-M0+ CPU</th>
<th>USB Power Delivery MAC</th>
<th>USB Type-C Cable Detect Logic</th>
<th>Commercial</th>
<th>AEC-Q100</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPD301B</td>
<td>40-VQFN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0°C To +70°C</td>
<td>-40°C To +85°C</td>
</tr>
<tr>
<td>UPD301C</td>
<td>40-VQFN</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

2.2 USB Power Delivery Software Framework

The PSF firmware stack allows for a wide range of USB Power Delivery applications, including but not limited to: Single or Multi-Port source Only applications, Bus-Powered Sink applications, Battery-Powered Sink applications, and Dual Role Data / Dual Role Power applications such as PD-based docking stations or PD-based dongles.

The PSF firmware stack is continuously deployed. Not all features that are able to be supported by the UPD301B/C device are necessarily supported by PSF. The supported features may be expanded over time. The PSF firmware stack can be downloaded from the UPD301B/C product page. Refer to the UPD301B/C product page and PSF Online code repository for details on the currently supported feature set and future development road-map. Additional feature development may be requested through Microchip support channels.
2.3 Example Applications

The UPD301B/C has been designed for multiple applications, including:

- **UPD301B**
 - Source-Only Applications (E.G., Charging Ports) (UPD301B Only)
 - Two-Port, Three-Port, and Four-Port Source-Only Applications (E.G., Automotive Rear Seat Charging) (UPD301B Only)

- **UPD301C**
 - Bus-Powered or Battery Powered Sink-Only Applications (UPD301C Only)
 - Dual Role Power/Data Application (5V Source, High Voltage Sink) (UPD301C Only)
 - Dual Role Power/Data Application (High Voltage Source, 5V @ 0A Sink) (UPD301C Only)
 - 2-Port Dual Role Power/Data Application ‘Charge-Through Adapter’ (UPD301C Only)

Note: Single-Port Source, Single-Port Sink, and Dual-Port Source modes are the only supported modes of operation. Dual-Port Sink and Source + Sink modes are not supported without custom firmware.

2.3.1 SOURCE-ONLY APPLICATIONS (E.G., CHARGING PORTS) (UPD301B ONLY)

The simplest UPD301B application is a power source (Source-Only), as shown in Figure 2-1. The UPD301B control I/O configures the DC-DC converter, selecting the output voltage, and controls the load switch to regulate and protect the output voltage. The load switch can also be replaced by discrete FETs and over-current / over-voltage protection circuits.

Additional notes on Source-Only Charging Port Applications:

- Supporting USB data is not required for a Charging Port.
- A Power Source Load Switch is optional for Source-Only ports. Source-Only ports are permitted to maintain a large bulk capacitance on VBUS at all times, even when the port is in the detached state.
- USB3 operation is optional for PD docking ports.

FIGURE 2-1: SYSTEM BLOCK DIAGRAM - SOURCE-ONLY APPLICATION
2.3.2 TWO-PORT, THREE-PORT, AND FOUR-PORT SOURCE-ONLY APPLICATIONS (E.G., AUTOMOTIVE REAR SEAT CHARGING) (UPD301B ONLY)

Some applications, such as an automotive rear seat charging port, may need multiple USB Type-C™ power delivery ports. These ports can be implemented by connecting a UPD301B and a UPD350 via the SPI interface, as shown in Figure 2-2. The UPD301B will execute the stack for the UPD350. The two-port implementation supports dynamic power allocation (e.g., go-to power min based on an external input).

FIGURE 2-2: SYSTEM BLOCK DIAGRAM - TWO-PORT APPLICATION
2.3.3 BUS-POWERED OR BATTERY POWERED SINK-ONLY APPLICATIONS (UPD301C ONLY)

An example of a bus powered power sink (Sink-Only) application is shown in Figure 2-3. A bus powered Sink-Only application derives all power from the upstream VBUS connection and does not have any other power source. The UPD301C device with dead battery support should be selected for all Sink-Only devices. The dead battery Rp terminations allow the Sink-Only device to be detected and powered from an attached DFP port when connected in an unpowered state.

Additional notes on Bus-Power or Battery Powered Sink-Only Applications:
- USB data support is optional.
- If USB3 data is supported, a 2:1 multiplexer may be required to handle Type-C cable insertion reversibility. Device controllers and hubs specifically designed to support USB Type-C may also integrate the reversibility functionality.
- USB Alternate Modes may also be supported in Sink-Only applications.
- DisplayPort support is optional for mobile device ports.
- USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the USB2 signal layout is carefully managed to keep branches at a minimum.

FIGURE 2-3: SYSTEM BLOCK DIAGRAM - SINK-ONLY APPLICATION

![System Block Diagram - Sink-Only Application](image-url)
2.3.4 DUAL ROLE POWER/DATA APPLICATION (5V SOURCE, HIGH VOLTAGE SINK) (UPD301C ONLY)

An example of a mobile device port is shown in Figure 2-4. In this example a mobile device, such as a notebook, smartphone, or tablet, is capable of operating as a USB host (and device if the processor is capable of OTG operation), receiving a charge, and driving an external video display through a single Type-C connection. A cross-bar switch is shown for routing DisplayPort Alternate Mode and USB3 data to the connector, allowing port expansion and video display.

Additional notes on Dual Role Power/Data (5V Source, High Voltage Sink) Applications:

- A typical mobile device will limit the power sourcing capability to 5V only in order to preserve battery life. This is not explicitly required and a mobile device may optionally provide up to the maximum 100W capability if the system supports it.
- When the port is operating as a power sink/data UFP, the USB Host / Hub Downstream Port block is not required to support USB Device / Hub Upstream Port operation.
- A 5V Source Load Switch device must be tolerant of the maximum supported sinking voltage.
- USB3 operation is optional for mobile device ports.
- DisplayPort support is optional for mobile device ports.
- If both USB3 and DisplayPort operation are omitted, the crossbar data switch is not necessary.
- USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the USB2 signal layout is carefully managed to keep branches to a minimum.

FIGURE 2-4: SYSTEM BLOCK DIAGRAM - DUAL ROLE POWER/DATA APPLICATION (5V SOURCE, HIGH VOLTAGE SINK)
2.3.5 DUAL ROLE POWER/DATA APPLICATION (HIGH VOLTAGE SOURCE, 5V @ 0A SINK) (UPD301C ONLY)

An example of a PD docking port is shown in Figure 2-5. In this example a battery powered mobile device, such as a notebook, smart-phone, or tablet may connect to the docking PD port and receive a charge, access the USB device tree, and drive an external video display through a single Type-C connection. A cross-bar switch is shown for routing DisplayPort Alternate Mode and USB3 data to the connector, allowing port expansion and video display.

Additional notes on Dual Role Power/Data (High Voltage Source, 5V @ 0A Sink) Applications:

- While a PD docking port may technically resolve into a power sink role, a typical PD dock will not attempt to sink any power while operating as a power sink. This type of operation may be referred to as “5V @ 0A Sink”.
- When the port is operating as a power sink/data UFP, the USB Device/Hub Upstream Port block is not required to support USB Host/Hub Downstream Port operation.
- A Power Source Load Switch device is necessary, as the DC-DC converters bulk capacitance must be isolated from VBUS when the port is operating as a 5V @ 0A Sink.
- USB3 operation is optional for PD docking ports.
- DisplayPort support is optional for PD docking ports.
- If an Alternate Mode such as DisplayPort is supported, a Billboard device must also be included within the system and be exposed following an Alternate Mode negotiation failure (A Billboard device may optionally be connected at all times and communicate a successful Alternate Mode connection, but this is optional).
- If both USB3 and DisplayPort operation are omitted, the crossbar data switch is not necessary.
- USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the USB2 signal layout is carefully managed to keep branches to a minimum.

FIGURE 2-5: SYSTEM BLOCK DIAGRAM - DUAL ROLE POWER/DATA APPLICATION (HIGH VOLTAGE SOURCE, 5V @ 0A SINK)
2.3.6 2-PORT DUAL ROLE POWER/DATA APPLICATION ‘CHARGE-THROUGH ADAPTER’ (UPD301C ONLY)

An example of a charge through adapter/mobile dock device is shown in Figure 2-6. In this example, the ‘Charger Input Port’ may pass a high voltage power profile through the system to an attached mobile device. If a charger is not inserted into the ‘Charger Input Port’, then the mobile device may power the adapter with 5V power.

A cross-bar switch is shown for routing DisplayPort Alternate Mode and USB3 data to the connector, allowing port expansion and video display.

An LDO is shown connected to a power OR circuit to ensure power to the system is available regardless of which Type-C port is supplying power to the system. The LDO should be selected to operate at the maximum supported charge-through voltage.

FIGURE 2-6: SYSTEM BLOCK DIAGRAM - 2-PORT DUAL ROLE POWER/DATA APPLICATION ‘CHARGE-THROUGH ADAPTER’
3.0 PIN DESCRIPTIONS AND CONFIGURATION

3.1 Pin Assignments

The device pin diagram for the UPD301B/C can be seen in Figure 3-1. Table 3-1 provides a UPD301B/C pin assignment table. The internal bonding diagram (simplified) is shown in Figure 3-2. Pin descriptions are provided in Section 3.2, "Pin Descriptions".

FIGURE 3-1: UPD301B/C PIN ASSIGNMENTS (TOP VIEW)

Note: Exposed pad (VSS) on bottom of package must be connected to ground.
FIGURE 3-2: SIMPLIFIED INTERNAL BONDING DIAGRAM
TABLE 3-1: UPD301B/C PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Bond to SAMD20E</th>
<th>Bond to UPD350-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PA28</td>
<td>PA28</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CC2</td>
<td>-</td>
<td>CC2</td>
</tr>
<tr>
<td>3</td>
<td>VCONN_IN</td>
<td>-</td>
<td>VS</td>
</tr>
<tr>
<td>4</td>
<td>CC1</td>
<td>-</td>
<td>CC1</td>
</tr>
<tr>
<td>5</td>
<td>VDD12_CORE_OUT</td>
<td>VDDCORE</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>VDD33_REG_IN</td>
<td>VDDIN</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>SWCLK (PA30)</td>
<td>PA30</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>SWDIO (PA31)</td>
<td>PA31</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>VBUS_DET_IN</td>
<td>-</td>
<td>VBUS_DET</td>
</tr>
<tr>
<td>10</td>
<td>PA00</td>
<td>PA00</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>PA01</td>
<td>PA01</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>PA02</td>
<td>PA02</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>PA03</td>
<td>PA03</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>VDD33_ALW_IN</td>
<td>-</td>
<td>3V3_ALW & VSW</td>
</tr>
<tr>
<td>15</td>
<td>VDD18_CORE_OUT</td>
<td>-</td>
<td>VDD18_CAP</td>
</tr>
<tr>
<td>16</td>
<td>VDD33_IO_IN</td>
<td>-</td>
<td>VDD33IO</td>
</tr>
<tr>
<td>17</td>
<td>PA04</td>
<td>PA04</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>PA05</td>
<td>PA05</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>PA06</td>
<td>PA06</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>SPI_MOSI_SI (PA07)</td>
<td>PA07</td>
<td>SPI_DI</td>
</tr>
<tr>
<td>21</td>
<td>VDD33_ANA_IN</td>
<td>VDDANA</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>SPI_MISO (PA08)</td>
<td>PA08</td>
<td>SPI_DO</td>
</tr>
<tr>
<td>23</td>
<td>SPI_CLK(PA09)</td>
<td>PA09</td>
<td>SPI_CLK</td>
</tr>
<tr>
<td>24</td>
<td>SPI_SSO(PA10)</td>
<td>PA10</td>
<td>SPI_CS_N</td>
</tr>
<tr>
<td>25</td>
<td>SPI_MOSI (PA11)</td>
<td>PA11</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>GPIO2</td>
<td>-</td>
<td>GPIO2</td>
</tr>
<tr>
<td>27</td>
<td>GPIO3</td>
<td>-</td>
<td>GPIO3</td>
</tr>
<tr>
<td>28</td>
<td>VPP18</td>
<td>-</td>
<td>VDD18</td>
</tr>
<tr>
<td>29</td>
<td>SPI_IRQ_N0 (PA14)</td>
<td>PA14</td>
<td>IRQ_N</td>
</tr>
<tr>
<td>30</td>
<td>PA15</td>
<td>PA15</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>PA16</td>
<td>PA16</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>PA17</td>
<td>PA17</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>RESET_N_COM</td>
<td>-</td>
<td>RESET_N</td>
</tr>
<tr>
<td>34</td>
<td>PA18/GPO4 (Note 1)</td>
<td>PA18</td>
<td>GPO4</td>
</tr>
<tr>
<td>35</td>
<td>PA19/GPIO5 (Note 1)</td>
<td>PA19</td>
<td>GPO5</td>
</tr>
<tr>
<td>36</td>
<td>PA22/GPIO6 (Note 1)</td>
<td>PA22</td>
<td>GPO6</td>
</tr>
<tr>
<td>37</td>
<td>PA23/GPIO7 (Note 1)</td>
<td>PA23</td>
<td>GPO7</td>
</tr>
<tr>
<td>38</td>
<td>GPIO8</td>
<td>-</td>
<td>GPIO8</td>
</tr>
<tr>
<td>39</td>
<td>PA27/GPIO9 (Note 1)</td>
<td>PA27</td>
<td>GPIO9</td>
</tr>
<tr>
<td>40</td>
<td>RESET_N_IN</td>
<td>RESET</td>
<td>-</td>
</tr>
</tbody>
</table>

Exposed Pad (VSS) must be connected to ground.

Note 1: This pin is double bonded to the internal SAMD20E and UPD301B/C and should not be simultaneously driven by both sources under normal use cases.
3.2 Pin Descriptions

This section details the functions of the various device signals.

TABLE 3-2: PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Type-C™</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Channel 1</td>
<td>CC1</td>
<td>AIO</td>
<td>Configuration Channel (CC) used in the discovery, configuration and management of connections across a USB Type-C cable. (CC1 in UPD350)</td>
</tr>
<tr>
<td>Configuration Channel 2</td>
<td>CC2</td>
<td>AIO</td>
<td>Configuration Channel (CC) used in the discovery, configuration and management of connections across a USB Type-C cable. (CC2 in UPD350)</td>
</tr>
<tr>
<td>VBUS Detection</td>
<td>VBUS_DET_IN</td>
<td>AIO</td>
<td>Scaled down version of VBUS input used for VBUS detection. Tie this signal to VBUS via a resistor divider. (VBUS_DET in UPD350)</td>
</tr>
<tr>
<td>SPI Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI Clock</td>
<td>SPI_CLK</td>
<td>IS</td>
<td>SPI clock. The maximum supported SPI clock frequency is 8 MHz. (SPI_CLK in UPD350 and PA09 in SAMD20)</td>
</tr>
<tr>
<td>SPI Data Master In / Slave Out</td>
<td>SPI_MISO</td>
<td>I/O</td>
<td>SPI data master in, slave out. (SPI_DO in UPD350 and PA08 in SAMD20)</td>
</tr>
<tr>
<td>SPI Data Master Out / Slave In</td>
<td>SPI_MOSI</td>
<td>O2</td>
<td>SPI data master out / slave in. This pin must be connected to SPI_MOSI_SI for proper operation. (PA11 in SAMD20)</td>
</tr>
<tr>
<td>SPI Data Slave In</td>
<td>SPI_MOSI_SI</td>
<td>IS</td>
<td>SPI data slave in. This pin must be connected to SPI_MOSI for proper operation. (SPI_DI in UPD350 and PA07 in SAMD20)</td>
</tr>
<tr>
<td>SPI Chip Enable 0</td>
<td>SPI_SS0</td>
<td>IS</td>
<td>Active low SPI chip enable input for UPD301B/C. (SPI_CS_N in UPD350 and PA10 in SAMD20)</td>
</tr>
<tr>
<td>SPI Interrupt 0</td>
<td>SPI_IRQ_N0</td>
<td>I</td>
<td>SPI interrupt indicating request for service from optional external UPD350. (IRQ_N in UPD350 and PA14 in SAMD20)</td>
</tr>
<tr>
<td>Serial Wire Debug Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Wire Debug Clock</td>
<td>SWCLK</td>
<td>IS</td>
<td>Serial wire debug clock. (PA30 in SAMD20)</td>
</tr>
<tr>
<td>Serial Wire Debug Data</td>
<td>SWDIO</td>
<td>I/O</td>
<td>Serial wire debug bidirectional data. (PA31 in SAMD20)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Reset Input</td>
<td>RESET_N_IN</td>
<td>I</td>
<td>Active low SAMD20 system reset input. This reset is used for reset of the SAMD20 portion of the UPD301B/C by a companion MCU. (RESET in SAMD20)</td>
</tr>
<tr>
<td>System Reset Common</td>
<td>RESET_N_COM</td>
<td>IS</td>
<td>Active low UPD350 system reset input. This reset is used for reset of the UPD350 portion of the UPD301B/C by a companion MCU. (RESET_N in UPD350)</td>
</tr>
<tr>
<td>General Purpose I/Os</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc. SAMD20E I/O</td>
<td>PA00, PA01, PA02, PA03, PA04, PA05, PA06, PA15, PA16, PA17, PA18, PA19, PA22, PA23, PA27, PA28</td>
<td>I/O</td>
<td>Refer to SAMD20E Datasheet for pin function, peripheral detail, and characteristics. (PAxx in SAMD20)</td>
</tr>
</tbody>
</table>

Note: PA18, PA19, PA22, PA23, and PA27 are multiplexed with UPD350 GPIOs. Refer to Table 3-1 for more information.
TABLE 3-2: PIN DESCRIPTIONS (CONTINUED)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPD350 GPIO</td>
<td>GPIO2, GPIO3, GPO4, GPIO5, GPIO6, GPIO7, GPIO8, GPIO9</td>
<td>I/O</td>
<td>Refer to UPD350 Datasheet for pin function, peripheral detail, and characteristics. (GPIOx, GPO4 in UPD350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: GPO4, GPIO5, GPIO6, GPIO7, and GPIO9 are multiplexed with SAMD20 GPIOs. Refer to Table 3-1 for more information.</td>
</tr>
<tr>
<td>Power/Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5V Port Power Switch Input</td>
<td>VCONN_IN</td>
<td>P</td>
<td>+5V VCONN FET power source. (VS in UPD350)</td>
</tr>
<tr>
<td>+3.3V I/O Power Supply Input</td>
<td>VDD33_IO_IN</td>
<td>P</td>
<td>+3.3V I/O power supply input. (VDD33IO in UPD350)</td>
</tr>
<tr>
<td>+3.3V Analog Power Supply Input</td>
<td>VDD33_ANA_IN</td>
<td>P</td>
<td>+3.3V analog power supply input. (VDDANA in SAMD20)</td>
</tr>
<tr>
<td>+3.3V Always Supply Input</td>
<td>VDD33_ALW_IN</td>
<td>P</td>
<td>+3.3V always supply input. (3V3_ALW & VSW in UPD350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: This pin must be connect to a 2.2 uF capacitor to ground.</td>
</tr>
<tr>
<td>+3.3V Regulator Power Supply Input</td>
<td>VDD33_REG_IN</td>
<td>P</td>
<td>+3.3V regulator power supply input. (VDDIN in SAMD20)</td>
</tr>
<tr>
<td>+1.8V Core Voltage Power Supply Input</td>
<td>VPP18</td>
<td>P</td>
<td>+1.8V core voltage power supply input. (VDD18 in UPD350)</td>
</tr>
<tr>
<td>+1.8V Digital Core Power Supply Output</td>
<td>VDD18_CORE_OUT</td>
<td>P</td>
<td>+1.8V digital core power supply output. This signal must be connected to a 1uF capacitor to ground for proper operation. (VDD18_CAP in UPD350)</td>
</tr>
<tr>
<td>+1.2V Core Power Supply Output</td>
<td>VDD12_CORE_OUT</td>
<td>P</td>
<td>+1.2V core power supply output. This signal must be connected to a 1uF capacitor to ground for proper operation. (VDDCORE in SAMD20)</td>
</tr>
<tr>
<td>Ground</td>
<td>VSS</td>
<td>P</td>
<td>Ground pins.</td>
</tr>
</tbody>
</table>
4.0 FUNCTIONAL DESCRIPTIONS

This section provides functional descriptions of the following:
- Serial Peripheral Interface (SPI)
- Power States
- Cable Plug Orientation and Detection
- Baseband CC Interface (BCI)
- Power Delivery MAC
- Supported Power Delivery (PD) Functionality

4.1 Serial Peripheral Interface (SPI)

The UPD301B/C integrates a SPI master/slave controller which includes the following features:
- Full-duplex, four-wire interface (SPI_MISO, SPI_MOSI, SPI_SCK, SPI_SS)
- Single-buffered transmitter, double-buffered receiver
- Supports all four SPI modes of operation
- Single data direction operation allows alternate function on SPI_MISO or SPI_MOSI pin
- Selectable LSB- or MSB-first data transfer
- Master operation:
 - Serial clock speed, fSCK=1/tSCK (Note 4-1)
 - 8-bit clock generator
- Slave operation:
 - Serial clock speed, fSCK=1/tSSCK (Note 4-1)
 - Optional 8-bit address match operation
 - Operation in all sleep modes

Note 4-1 For tSCK and tSSCK values, refer to Section 5.6.2, "SPI Timing"

The SPI is a high-speed synchronous data transfer interface which allows high-speed communication between the device and peripheral devices. The SPI can operate as a master or slave. As a master, the SPI initiates and controls all data transactions. The SPI is single buffered for transmitting and double buffered for receiving.

When transmitting data, a Data register is loaded with the next character to be transmitted during the current transmission. When receiving, the data is transferred to the two-level receive buffer, and the receiver is ready for a new character. The SPI transaction format is shown in Figure 4-1. Each transaction can contain one or more characters. The character size is configurable, and can be either 8 or 9 bits.

FIGURE 4-1: SPI TRANSACTION FORMAT

The SPI master pulls the slave select line (SPI_SS) of the desired slave low to initiate a transaction. The master and slave prepare data to send via their respective shift registers, and the master generates the serial clock on the SPI_SCK line.

Data is always shifted from master to slave on the Master Output Slave Input line (SPI_MOSI); data is shifted from slave to master on the Master Input Slave Output line (SPI_MISO).

Each time character is shifted out from the master, a character will be shifted out from the slave simultaneously. To signal the end of a transaction, the master will pull the SPI_SS line high.
4.2 Power States

The device supports the following power states, as defined in their respective sub-sections:

- **SLEEP**
- **HIBERNATE**
- **STANDBY**
- **ATTACHED IDLE (FRS Enabled)**
- **ATTACHED IDLE (FRS Disabled)**
- **ACTIVE**

4.2.1 SLEEP

This is the lowest power state of the device. The SLEEP state is entered via assertion of the PWR_DN pin. Virtually all of the device is powered off in this mode with minimal circuitry in the 3.3V domain to detect deassertion of PWR_DN. This mode is intended to minimize power consumption when the device is not being used in battery powered applications. In these applications, a wake up event such as a button press, can cause the host CPU to deassert PWR_DN.

4.2.2 HIBERNATE

In this state, the port is disabled by the USB PD firmware and the PWR_DN pin is low. Attach detection is disabled due to CC terminations in the high-impedance state.

4.2.3 STANDBY

STANDBY is the lowest power functional state of the device. The majority of the device is powered off in this state. The internal CC comparator and 20 KHz oscillator are enabled in this state as well as requisite analog components (1.8V LDO, PORs, Biases, etc).

The CC lines are constantly monitored for an attach condition which shall result in an interrupt assertion to the host. If an attachment has been made, this state can detect a change in the partner’s advertisement as well as a detach. STANDBY is the power state that the UPD301B/C device will be in when in USB Type-C™ Unattached.SRC.

4.2.4 ATTACHED IDLE (FRS ENABLED)

In this state, a USB Type-C™ device is connected and the USB PD bus is idle (no USB packets in transit). The CC signals are constantly being monitored for packet transmission and Fast Role Swap (FRS) signal detection is enabled.

4.2.5 ATTACHED IDLE (FRS DISABLED)

In this state, a USB Type-C™ device is connected and the USB PD bus is idle (no USB packets in transit). The CC signals are constantly being monitored for packet transmission and Fast Role Swap (FRS) signal detection is disabled.

4.2.6 ACTIVE

This state defines the condition of the device after an attachment occurred. In this state, Power Delivery communication is supported. This state is also used for any condition in which the 48 MHz Relaxation Oscillator must be enabled, such as when it is desired to debounce a GPIO within the micro-second range.

When transmitting a Power Delivery packet, an additional 5 mA may be consumed. Additional power consumption results from enabling the OCS comparator, VBUS comparator and other modules. When VCONN FETs are enabled, there is an additional 70 mW of power consumption.

This section details the functions that control and monitor the CC pins, monitor the VBUS_DET pin, control the VCONN FETs, and sample the CFG_SEL pin.
4.3 Cable Plug Orientation and Detection

4.3.1 CC COMPARATOR

The device integrates a comparator and DAC circuit to implement Type-C attach and detach functions. It supports up to eight programmable thresholds for attach detection between UFP and DFP. When operating as a UFP, the device supports detecting changes in the DFP’s advertised thresholds to determine current sourcing capability. The default nominal values for the thresholds detected by the CC comparators are:

- 0.20 V
- 0.40 V
- 0.66 V
- 0.80 V
- 1.23 V
- 1.60 V
- 2.60 V
- 3.0 V Proprietary Mode

TABLE 4-1: CABLE DETECT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold CSR</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFP_ACT_DEF</td>
<td>CC_THR0</td>
<td>Detecting an active cable when configured as DFP and advertising default USB current.</td>
<td>0.20 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFP_DFP_DEF</td>
<td>CC_THR0</td>
<td>Detecting DFP attach when configured as UFP and DFP is advertising default USB current.</td>
<td>0.20 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFP_ACT_1A5</td>
<td>CC_THR1</td>
<td>Detecting an active cable when configured as DFP and advertising 1.5A.</td>
<td>0.40 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFP_DFP_1A5</td>
<td>CC_THR2</td>
<td>Detecting DFP attach when configured as UFP and DFP is advertising 1.5A.</td>
<td>0.66 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFP_ACT_3A0</td>
<td>CC_THR3</td>
<td>Detecting an active cable when configured as DFP and advertising 3.0A.</td>
<td>0.80 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFP_DFP_3A0</td>
<td>CC_THR4</td>
<td>Detecting DFP attach when configured as UFP and DFP is advertising 3.0A.</td>
<td>1.23 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFP_UFP_DEF</td>
<td>CC_THR5</td>
<td>Detecting UFP attach when configured as DFP advertising default USB current.</td>
<td>1.60 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFP_UFP_1A5</td>
<td>CC_THR5</td>
<td>Detecting UFP attach when configured as DFP advertising 1.5A.</td>
<td>1.60 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFP_UFP_3A0</td>
<td>CC_THR6</td>
<td>Detecting UFP attach when configured as DFP advertising 3.0A.</td>
<td>2.60 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following tables summarize the expected thresholds to be matched for various configurations.

TABLE 4-2: DFP CC MATCH SUMMARY

<table>
<thead>
<tr>
<th>CC State</th>
<th>CC THR0</th>
<th>CC THR1</th>
<th>CC THR2</th>
<th>CC THR3</th>
<th>CC THR4</th>
<th>CC THR5</th>
<th>CC THR6</th>
<th>CC THR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertise Default USB Current and connected to powered cable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 1.5 A and connected to powered cable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 3.0 A and connected to powered cable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise Default USB Current and connected to UFP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 1.5 A and connected to UFP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 3.0 A and connected to UFP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise Default USB Current and no connect (vOpen)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 1.5 A and no connect (vOpen)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Advertise 3.0 A and no connect (vOpen)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Proprietary Mode and no connect (vOpen)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 4-3: UFP CC MATCH SUMMARY

<table>
<thead>
<tr>
<th>CC State</th>
<th>CC THR0</th>
<th>CC THR1</th>
<th>CC THR2</th>
<th>CC THR3</th>
<th>CC THR4</th>
<th>CC THR5</th>
<th>CC THR6</th>
<th>CC THR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered cable detected.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No Connect (SNK.Open)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFP Connected and advertising default USB current</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFP Connected and advertising 1.5 A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFP Connected and advertising 3.0 A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFP Connected and advertising proprietary current</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
4.3.2 DFP OPERATION
The device implements current sources to advertise current charging capabilities on both CC pins when operating as a DFP.

When a UFP connection is established, the current driven across the CC pins creates a voltage across the UFP’s Rd pull-down that can be detected by the integrated CC comparator. The voltages monitored are summarized in Table 4-4. When connected to an active cable, an alternative pull-down (Ra) appears on the CC pin.

The DFP also integrates two 5V FETs for implementing the VCONN function. This is further discussed in Section 4.3.9, “VCONN Operation”.

TABLE 4-4: SOURCE DETECTION

<table>
<thead>
<tr>
<th>CC1</th>
<th>CC2</th>
<th>Connection State</th>
<th>CC Comparator State</th>
<th>VBUS</th>
<th>VCONN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Open</td>
<td>Nothing Attached</td>
<td>Monitor both CC pins for attach</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Rd</td>
<td>Open</td>
<td>UFP Attached</td>
<td>Monitor CC1 for detach</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Open</td>
<td>Rd</td>
<td>UFP Attached</td>
<td>Monitor CC2 for detach</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Ra</td>
<td>Open</td>
<td>Powered Cable, No UFP attached</td>
<td>Monitor CC2 for UFP attach.</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Open</td>
<td>Ra</td>
<td>Powered Cable, No UFP attached</td>
<td>Monitor CC1 for UFP attach.</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Ra</td>
<td>Rd</td>
<td>Powered Cable, UFP attached</td>
<td>Monitor CC1 for UFP detach.</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Rd</td>
<td>Ra</td>
<td>Powered Cable, UFP attached</td>
<td>Monitor CC1 for UFP detach.</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Ra</td>
<td>Ra</td>
<td>Debug accessory mode attached</td>
<td>Monitor both CC pins for detach</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

4.3.3 RP CURRENT SOURCES
In order to advertise the current charging capabilities of the device via the integrated port power controller or external power circuit, Rp current sources are used. The current source can be selected by software. Table 4-5 summarizes the values supported by the current sources in regards to the programmed value.

TABLE 4-5: RP CURRENT SOURCES

<table>
<thead>
<tr>
<th>DFP Advertisement</th>
<th>Current source (1.7V to 5.5V)</th>
<th>RPx Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td></td>
<td>00b</td>
</tr>
<tr>
<td>Default USB Power</td>
<td>80 uA +/-20%</td>
<td>01b</td>
</tr>
<tr>
<td>1.5A @ 5V</td>
<td>180 uA +/-8%</td>
<td>10b</td>
</tr>
<tr>
<td>3.0A @ 5V</td>
<td>330 uA +/-8%</td>
<td>11b</td>
</tr>
</tbody>
</table>

The current source coupled with the CC pins for RP advertisement is also used for sampling the CFG_SEL pin. When the CFG_SEL pin is sampled, current is steered away from the CC pins and no RP value is advertised.

4.3.4 UFP OPERATION
When operating as a UFP, the device applies an Rd pull-down on both CC lines and waits for a DFP connection from the assertion of VBUS. The CC comparator is used to determine the advertised current charger capabilities supported by the DFP.

4.3.5 DRP OPERATION (LEGACY)
In this configuration, software utilizes the device to alternate between a Source and Sink advertisement with an interval of tDRP per the USB Type-C™ Specification.
4.3.6 DRP OFFLOAD

DRP offload enables the device to manage the DRP toggle. This is beneficial as it allows the host CPU to remain in a low power state until a connection is detected.

DRP offload toggles between Source and Sink advertisement by alternating between enabling Rp current sources and Rd pull-downs for a period of tDRP (DRP Time Register). The duty cycle between Source and Sink advertisement is determined by the DRP Duty Cycle Register. The DRP Time Register may be written by firmware or generated automatically via a pseudo random number generator. The latter approach should be used to reduce the probability of collisions when connecting. It is selectable whether the DRP cycle shall first advertise UFP or DFP.

A connection is detected after a successful debounce for a period defined by the Match Debounce Register. VBUS is checked to be below vSafe0v for the DFP case. This results in IRQ_N assertion and automatic disablement of the DRP toggle. Firmware must further debounces for the period tPDDebounce before determining if a valid match is present. If a match has not occurred, firmware will enable DRP again.

A pseudo random number generator, implemented via a LFSR, is utilized to generate the DRP period. The LFSR operates off of the 20 KHz clock and updates every 100 us when enabled.

Hardware limits the total DRP period to be between 50 ms and 100 ms in order to comply with the USB Type-C™ specification.

4.3.7 COLLISION AVOIDANCE

An alternative mode of operation is required to enable the CC detection circuit to facilitate software implementation of collision detection which was incorporated into version 3.0 of the USB PD Specification.

In order to avoid message collisions due to asynchronous Messaging (AMS) sent from the Sink, the Source sets Rp to SinkTxOk (3A@5V) to indicate to the Sink that it is OK to initiate an AMS. When the Source wishes to initiate an AMS it sets Rp to SinkTxNG (1.5A@5V). When the Sink detects that Rp is set to SinkTxOk it may initiate an AMS. When the Sink detects that Rp is set to SinkTxNG it shall not initiate an AMS and shall only send Messages that are part of an AMS the Source has initiated.

When operating as a Sink, a mechanism is required for quickly determining whether the Source is advertising SinkTxNG or SinkTxOK on Rp.

A collision avoidance mechanism exists to enable software to instruct the device to sample only a single threshold on a single CC pin. This results in a cycle through both thresholds taking only 100 us, making it easier for software to meet the timing constraints mandated by SinkTxOk in the specification.

4.3.8 FAST ROLE SWAP (FRS)

This feature is used to detect when a partner source has lost power. Upon detection of FRS signaling, the “Old Sink” transitions to be a Source and begins supplying VBUS.

When operating as a Sink, the FRS mode of operation enables detection of FRS signaling. Detection results in IRQ_N assertion and this event may also be mapped as a PIO override source. When operating as a Source, upon detection of loss of power, the device will transmit FRS signaling. This is initiated by either assertion of a selected PIO or a CSR write.

The following FRS related features are supported:

- Ability to detect reception of FRS signaling
- High bandwidth and current boost mode for CC comparator to increase sampling frequency
- Interrupt, and PIO, assertion upon FRS detection
- PIO override support for FRS detection as a source
- Ability to initiate FRS signaling via GPIO assertion or register write.
- Control 5 Ohm (Rsw) pull-down resistor
4.3.8.1 FRS Sink Operation

When operating as a Sink, the device is configured to detect FRS signaling by setting FRS Detect Enable (FRS_DETECT_EN) in FRS Control Register. The CC detection logic is programmed to detect three thresholds (SinkTxOK, Sink-TXNG, FRSWAP) and samples each threshold in round robin fashion. The sampling rate is determined by CC Sample Clock Register.

When a match is detected on FRSWAP threshold, the CC detection logic will “park” at this threshold and continue monitoring the output of the comparator. While “parked” the output of the CC comparator will be sampled at an increased rate of 12 MHz. This higher sampling rate will prevent PD messages from inadvertently looking like FRS signaling which will happen on occasion when the sampling rate is similar or slower than the ~270 kbps rate of PD messages.

It will continue debouncing for the amount of time specified in FRS CC Debounce Register. The FRSWAP threshold is indicated by FRS Threshold Select Register.

If the debounce is successful, then the FRS_RCV_STS interrupt is asserted and the CC detection logic resumes sampling all enabled thresholds. If the FRS debounce fails, the CC detection logic resumes sampling all enabled thresholds.

In this mode of operation the CC Comparator operates at a faster rate in order to minimize the FRS detection latency. This is enabled by placing this the comparator into a high bandwidth mode.

After detecting the FRS signaling, the “old Sink” must start supplying vSafe5V at USB Type-C™ current VBUS no later than tSrcFRSwap (150 us) after VBUS has dropped below vSafe5V. This must be accomplished via circuitry external to the device.

Note: The upper threshold used for vSafe5V should be used for determining when VBUS has dropped below vSafe5v to help meet tSrcFRSwap requirement.

Note: Matching of a VBUS threshold may be selected as a source to a PIO override. Additionally, VBUS threshold match ANDed with FRS signal detect may also be used as a PIO override source.

4.3.8.2 FRS Source Operation

The initial Source shall signal a FRS request by driving the CC pin to ground with a resistance of less than 5 Ohms for a period defined by FRS Transmission Length Register. The FRS request signaling is initiated by either a CSR write or GPIO assertion.

The former case is implemented by setting the FRS Request (FRS_REQ_EN) bit in FRS Control Register. This bit self clears after the FRS request is transmitted. For the latter case, the PIO is selected by the FRS Request PIO (FRS_REQ_PIO) field in FRS Control Register.

Transmission of FRS signaling will take precedence over PD MAC TX communication. The FRS PD resistor is enabled in tandem on the CC pin determined by FRS CC Select (FRS_CC_SEL) in FRS Control Register. This configuration remains until FRS transmission has completed.

4.3.8.3 Dead Battery (UPD301C Only)

The UPD301C device includes two variations of the Rd resistor implementation: Rd (Dead Battery) and Rd (Trimmed). The CC pins are configured to present either Hi-Z or an untrimmed Rd pull-down resistance when connected to a DFP advertising a pull-up resistance.

Figure 4-2 illustrates the configuration for supporting dead battery cases. The UFP pull-up activates the FET in series with RD_DB and enables the untrimmed dead battery pull-down.
Figure 4-3 illustrates operation after the UFP has been powered over VBUS by the DFP. After the device is powered, EN_RD_DB asserts by default to keep the RD_DB pull-down activated. Upon powering the host CPU, software simultaneously deasserts EN_RD_DB and asserts EN_RD_TRIM. Going forward the device presents RD_TRIM.

The Rd resistor presented, trimmed or untrimmed, is controlled by the CC1 and CC2 Pull-Down Values in the CC Control Register (CC_CTL). These register fields serve the basis for the EN_RD_TRIM and EN_RD_DB_N control signals depicted.
4.3.9 VCONN OPERATION

VCONN is a 5V supply that is used to power circuitry in the USB Type-C™ plug, which is required to implement Electronically Marked Cables. By default, the DFP always sources VCONN when connected to an active cable. However, this may be changed by software.

The VCONN FETs are enabled/disabled by software via the VCONN1 Control and VCONN2 Control control bits in the CC Control Register (CC_CTL).

APPLICATION NOTE: It is not envisioned to ever enable both FETs simultaneously.

VCONN is monitored for an over current condition via an internal monitoring circuit. A VCONN over current condition is recognized when the event persists for a time longer than specified. When an over-current VCONN event is detected, an interrupt asserts. The device may be configured to automatically disable the VCONN FET upon detection of a CC1/CC2 Back-Drive Error or VCONN Discharge Error. In the event of the detection of a debounced over-current VCONN event, the enabled VCONN FET will be disabled.

4.3.10 VBUS DETECTION

The device implements a comparator for determining when VBUS is within a programmed range, vSafe5V, or vSafe0v. VBUS is divided down externally via a 1:9 resistor divider to generate VBUS_DET_IN. VBUS_DET_IN is compared with an 8-bit threshold generated by an integrated DAC. The comparator is also shared by the CFG_SEL pin which is sampled automatically after a system reset.

Figure 4-4 illustrates the VBUS_DET_IN circuit. In a typical use case, VBUS_DET_IN thresholds are programmed to track the following voltage ranges as defined in Table 4-5.

Note: Table 4-5 illustrates the values of VBUS_DET_IN utilizing +/-1% accurate resistors where R1 is 10K Ohms and R2 is 90 kOhms.

FIGURE 4-4: VBUS_DET_IN COMPARATOR

For a DFP, the VBUS comparator is useful to detect when VBUS is within the desired range per PD negotiations. This is the case when VBUS is generated by a source external to the device.

For a UFP, the VBUS comparator is required to determine when a DFP is attached or detached. It may also use the comparator to determine when VBUS is within a new voltage range negotiated via PD.

If supported, the ranges 8V, 12V and 20V may be programmed in VBUS Threshold 2 and VBUS Threshold 3 registers. Likewise 5V range, vSafe5v, can be programmed in VBUS Threshold 0 and VBUS Threshold 1 registers. The threshold for vSafe0V is programmable.

VBUS_DET_IN monitoring logic operates off of the 20 KHz oscillator which cycles through each threshold. Including vSafe0V, a total of five values are compared.
The VBUS Match Register (VBUS_MATCH) indicates when the value on VBUS_DET_IN is higher than the corresponding programmed threshold and can therefore be used to determine if VBUS is in the desired range. A change in the state of the VBUS match may trigger assertion of the IRQ_N pin if appropriately configured.

4.4 Baseband CC Interface (BCI)

The device integrates a Baseband CC Interface (BCI) to facilitate USB Power Delivery communication. This module bridges between the PD MAC/BMC and the analog front end. Baseband communication is initiated by the PD MAC, which interfaces to the BCI. The BCI implements the digital functions required to control TX baseband components.

4.4.1 BASEBAND TX DATA-FLOW

The key responsibility of the BCI is to generate the waveform required for baseband communication. To this end, the BMC has a group of eight registers that define the Lo-Hi and Hi-Lo transitions for the generated BMC signal. When instructed to transition from Lo-Hi, the BCI steps through all BB TX Rise Registers. Likewise when instructed to transition from Hi-Lo, the BCI steps through all BB TX Fall Registers.

APPLICATION NOTE: The user may replicate values if it is desired to use less than twelve unique values for this purpose.

4.4.2 BASEBAND RX DATA-FLOW

Baseband RX data is received by the BCI from the RX analog front end where it is compared to a threshold programmed by software. The CC RX DAC Value defines the trip point used for reception of baseband data. The field shall be programmed to be 175 mV below the RX Eye center, as defined in the PD Specification for the mode in which the device is operating (Sourcing Power, Sinking Power, Power Neutral).

4.5 Power Delivery MAC

The PD MAC implements certain features of the protocol layer and physical layer of the Universal Serial Bus Power Delivery Specification. On one end the PD MAC interfaces to the software implementing the bulk of protocol and higher level layers and on the other end it interfaces to a BMC encoder / decoder module. In addition to the normal TX and RX functions, the PD MAC implements the test mode logic defined in the USB PD specification (BIST).

The PD MAC supports the following features:
- Automatic TX Mode for packet framing and CRC32 insertion.
- Raw TX Mode for bit level packet control.
- Automatic GoodCRC response to received messages.
- Automatic BIST Error Count Message in BIST RX Mode.
- GoodCRCTimer implementation.
- Automatic retries with programmable retry count.
- Redundant receive packets automatically dropped in auto response mode.
- 74 byte TX queue.
- 128 byte RX queue.
- Programmable TX Bit-time. Allows for changing operating frequency.
- Programmable preamble length.
- BIST TX and RX logic.
- Programmable TX and RX queue modes - buffer mode and FIFO mode.
- CRC32 generator for TX.
- CRC32 calculator and comparator for RX.
4.5.1 PD MAC TRANSMITTER
The PD MAC transmitter is comprised of three major blocks:

- **TX Queue:**
 The TX Queue is where software loads the message to be transmitted.

- **TX Control:**
 The TX Control implements the necessary control logic. It is responsible for reading the data from the TX queue and based on the data processing mode (automatic or raw), processing the data to make it suitable (nibbles with control information) for use by the TX Comm. It is also responsible for generating packet framing and terminating the packet in automatic mode, and generating messages for automatic response (GoodCRC and BIST Error Count). TX Control also handles the selection of the SOP type that is to be transmitted.

- **TX Comm:**
 The TX Comm is comprised of a TX CRC generator, a 4b5b encoder, serializer, preamble generator, and TX bit timer. It takes the nibble data, computes and inserts the CRC, 5b encodes, and generates the baseband serial data. Preamble insertion is also performed by this logic.

4.5.2 PD MAC RECEIVER
The PD MAC receiver is comprised of three major blocks:

- **RX Queue:**
 The RX Queue is where software reads the received messages.

- **RX Control:**
 The RX Control implements the necessary control logic. It is responsible for validating the received packet, updating the RX Queue status, and triggering automatic responses, if required.

- **RX Comm:**
 The RX Comm is comprised of the Clock and Data Recovery (CDR), RX DES (de-serializer) (serial-to-parallel converter, 4b5b decoder, and framing detector), RX CRC32 (CRC calculator, receive timer), and other logic to detect valid packet reception.

4.5.3 PD MAC BIST
The PD MAC incorporates BIST functions as defined in the USB PD Specification. It is comprised of a TX and RX block.

The BIST TX block contains a PRBS (Pseudo Random Binary Sequence) generator, BIST pattern generation logic, and its own bit-timing logic. The SOP type used by TX BIST Test Frames is a 20-bit static vector which is created by multiplexing between the five SOP ordered sets based on a register setting. The resultant 20-bit vector is simply bit selected when the packet is transmitted.

The BIST RX block contains a PRBS generator and bit error detection logic. BIST RX is used only during the BIST Receiver Test.

4.6 Supported Power Delivery (PD) Functionality

4.6.1 SUPPORTED PD MESSAGES
The UPD301B/C is capable of supporting the USB PD Control messages defined within the USB Power Delivery 3.0 Specification. The complete list of supported messages depends on the release version of the USB Power Delivery Software Framework (PSF). The minimum set of supported features are:

- GoodCRC
- Accept
- Reject
- Ping
- PS_RDY
- Get_Source_Cap (Sink Role only)
- Get_Sink_Cap (Source Role only)
- VCONN_Swap
- Wait
- Soft_Reset
The following USB PD Data messages are supported:

- Source_Capabilities (Source Role only)
- Request
- BIST
- Sink_Capabilities (Sink Role only)

The following USB PD Extended messages are supported:

- Firmware_Update_Request
- Firmware_Update_Response

The following USB PD Control messages can also be supported UPD301B/C. Check the release notes of the latest PSF release for the most up-to-date list of supported messages. Support to specific messages may also be added by modification of the PDF source code.

- GotoMin
- DR_Swap
- PR_Swap
- Get_Source_Cap_Extended
- Get_Status
- FR_Swap
- Get_PPS_Status
- Get_Country_Codes

The following USB PD Data messages are not supported:

- Battery_Status
- Alert
- Get_Country_Info
- Vendor_DEFINED

The following USB PD Extended messages are not supported:

- Source_Capabilities_Extended
- Status
- Get_Battery_Cap
- Get_Battery_Status
- Battery_Capabilities
- Manufacturer_Info
- Security_Request
- Security_Response
- PPS_Status
- Country_Info
- Country_Codes

4.6.2 SOURCE POWER DELIVERY OBJECTS (PDOS)

The PDOs defined in the USB PD Specification Section 10.2.2 are configurable within the PSF configuration. These are the PDOs returned in the PD Source_Capabilities message and correspond to the capabilities of the Source power supply. Augmented PDOs (APDOs) are also supported for enabling Programmable Power Supply (PPS) operation.

4.6.3 SINK POWER DELIVERY OBJECTS (PDOS)

The PDOs defined in the USB PD Specification Section 10.2.2 are configurable within the PSF configuration. These are the PDOs returned in the PD Sink_Capabilities message and correspond to the requirements of the Sink with respect to Source capabilities. Note that the PDOs defined in the USB Power Delivery Specification Section 10.2.2 are defined for Sources, but correspond to the Source PDOs the Sink is able to operate with.
5.0 OPERATIONAL CHARACTERISTICS

5.1 Absolute Maximum Ratings*

Supply Voltage (VCONN_IN) (Note 5-1) ... -0.3 V to +6.0 V
Supply Voltage (VDD33_ALW_IN, VDD33_IO_IN) (Note 5-1) ... 0 V to +6.0 V
Supply Voltage (VDD33_REG_IN, VDD33_ANA_IN) (Note 5-1) ... 0 V to +3.8 V
Supply Voltage (VPP18) (Note 5-1) ... 0 V to +7.75 V
Pin voltage with respect to ground (Note 5-2) ... VSS-0.6 V to VDD33_REG_IN+0.6 V
Pin voltage with respect to ground (VBUS_DET_IN) ... -0.5 V to +3.96 V
Pin voltage with respect to ground (CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) -0.5 V to +6.0 V

Storage Temperature ... -55°C to +150°C

Lead Temperature Range .. Refer to JEDEC Spec. J-STD-020

HBM ESD Performance .. +/-2 kV

Note 5-1 When powering this device from laboratory or system power supplies, it is important that the absolute maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested to use a clamp circuit.

Note 5-2 This rating does not apply to the following pins: VBUS_DET_IN, CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS

*Stresses exceeding those listed in this section could cause permanent damage to the device. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at any condition exceeding those indicated in Section 5.2, "Operating Conditions"**, Section 5.5, "DC Characteristics*, or any other applicable section of this specification is not implied.

5.2 Operating Conditions**

Supply Voltage (VCONN_IN) ... +4.75 V to +5.25 V
Supply Voltage (VDD33_ALW_IN, VDD33_IO_IN) ... +2.97 V to +3.63 V
Supply Voltage (VDD33_REG_IN, VDD33_ANA_IN) ... +2.97 V to +3.63 V
Supply Voltage (VPP18) ... +1.62 V to +1.98 V
Pin voltage with respect to ground (Note 5-3) ... 0 V to +2.00 V
Positive pin voltage with respect to ground (VBUS_DET_IN) VDD33_IO_IN-0.3 V to VDD33_IO_IN+0.3 V
Negative pin voltage with respect to ground (VBUS_DET_IN) -0.33 V to -0.27 V
Positive pin voltage with respect to ground (CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) +2.97 V to +3.63 V
Negative pin voltage with respect to ground (CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) -0.33 V to -0.27 V

Power Supply Rise Time Max (TRT) (VDD33_IO_IN) (Figure 5-1) 100ms
Power Supply Rise Rate Max (VDD33_ANA_IN, VDD33_REG_IN) 0.1 V/µs

Ambient Operating Temperature in Still Air (TA) .. Note 5-4

Note 5-3 This rating does not apply to the following pins: VBUS_DET_IN, CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS

Note 5-4 0°C to +70°C for commercial version, -40°C to +85°C for industrial version.

**Proper operation of the device is assured only within the ranges specified in this section.
5.3 Package Thermal Specifications

TABLE 5-1: PACKAGE THERMAL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Junction to Ambient (@ 0 air flow)</td>
<td>(\Theta_{JA})</td>
<td>36.6</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Top of Case</td>
<td>(\Theta_{JC})</td>
<td>9.2</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Board</td>
<td>(\Theta_{JB})</td>
<td>15.7</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Bottom of Case (@ 0 air flow)</td>
<td>(\Psi_{JT})</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: Thermal parameters are measured or estimated for devices in a multi-layer 2S2P PCB per JESDN51.

TABLE 5-2: POWER DISSIPATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>(P_{\text{dis}})</td>
<td>214</td>
<td>mW</td>
</tr>
</tbody>
</table>

Note: This is the worst-case power dissipation as a consequence of maximum loading (before current-limiting protections take effect) upon the VCONN power switch, 3.3V power-ORing switch, analog blocks, and core digital logic.
5.4 Current Consumption

TABLE 5-3: TYPICAL DEVICE CURRENT CONSUMPTION

<table>
<thead>
<tr>
<th>Power State</th>
<th>3.3V Supply Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>RESET</td>
<td>1.27</td>
</tr>
<tr>
<td>STANDBY (source)</td>
<td>7.49</td>
</tr>
<tr>
<td>ATTACHED IDLE (source)</td>
<td>11.40</td>
</tr>
<tr>
<td>ACTIVE (with PD packet transmitting)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note 1: This table details the power consumption of the UPD301B/C device as measured during various modes of operation for a single port Source-Only implementation (i.e.: loading a PSF Source-only configuration and programming with default settings). The power consumption may vary significantly depending on the utilization SAMD20 MCU to handle any additional custom system-specific functions. Refer to the respective SAMD20E and UPD350 datasheets for more details on the power consumption of these two devices under certain specific usage scenarios. Also refer to Section 4.2, "Power States" for additional information. Power dissipation is determined by temperature, supply voltage, and external source/sink requirements. Maximum values represent very short bursts of activity over a small amount of time. Typical values represent averaged current consumption over time.

2: STANDBY is equivalent to USB Type-C™ specification’s Unattached.SRC

3: Currents measured with all 3.3V rails tied together.
5.5 DC Characteristics

TABLE 5-4: DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Type Input Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Input Level</td>
<td>(V_{IL})</td>
<td>0.55 (V_{DD33_REG_IN})</td>
<td>-1</td>
<td>±0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Input Level</td>
<td>(V_{IH})</td>
<td>0.3 (V_{DD33_REG_IN})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Leakage</td>
<td>(I_{LEAK})</td>
<td></td>
<td></td>
<td>1</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>IS_1 Type Input Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Input Level</td>
<td>(V_{IL})</td>
<td>0.55 (V_{DD33_REG_IN})</td>
<td>-1</td>
<td>±0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Input Level</td>
<td>(V_{IH})</td>
<td>0.3 (V_{DD33_REG_IN})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Leakage</td>
<td>(I_{IH})</td>
<td></td>
<td></td>
<td>1</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>IS_2 Type Input Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Input Level</td>
<td>(V_{ILI})</td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Input Level</td>
<td>(V_{IHI})</td>
<td>2.0</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative-Going Threshold</td>
<td>(V_{ILT})</td>
<td>1.21</td>
<td>1.33</td>
<td>1.8</td>
<td></td>
<td>Schmitt trigger</td>
</tr>
<tr>
<td>Positive-Going Threshold</td>
<td>(V_{IHT})</td>
<td>1.31</td>
<td>1.58</td>
<td>1.8</td>
<td></td>
<td>Schmitt trigger</td>
</tr>
<tr>
<td>Schmitt Trigger Hysteresis</td>
<td>(V_{HYS})</td>
<td>100</td>
<td>133</td>
<td>200</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input Leakage</td>
<td>(I_{IH})</td>
<td>-10</td>
<td>10</td>
<td></td>
<td></td>
<td>Note 5-5</td>
</tr>
<tr>
<td>((V_{IN} = V_{SS}) or (V_{DD33_IO_IN}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{IN})</td>
<td></td>
<td></td>
<td>3</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>O2 Type Output Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Output Level</td>
<td>(V_{OL})</td>
<td>0.8 (V_{DD33_REG_IN})</td>
<td>0.1 (V_{DD33_REG_IN})</td>
<td>0.2 (V_{DD33_REG_IN})</td>
<td></td>
<td>(I_{OL} = -2 mA)</td>
</tr>
<tr>
<td>High Output Level</td>
<td>(V_{OH})</td>
<td>0.9 (V_{DD33_REG_IN})</td>
<td></td>
<td></td>
<td></td>
<td>(I_{OH} = 2 mA)</td>
</tr>
<tr>
<td>OD2 Type Output Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Output Level</td>
<td>(V_{OL})</td>
<td>0.1 (V_{DD33_REG_IN})</td>
<td>0.2 (V_{DD33_REG_IN})</td>
<td></td>
<td></td>
<td>(I_{OL} = -2 mA)</td>
</tr>
<tr>
<td>O8_1 Type Output Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Output Level</td>
<td>(V_{OL})</td>
<td>0.8 (V_{DD33_REG_IN})</td>
<td>0.1 (V_{DD33_REG_IN})</td>
<td>0.2 (V_{DD33_REG_IN})</td>
<td></td>
<td>(I_{OL} = -8 mA)</td>
</tr>
<tr>
<td>High Output Level</td>
<td>(V_{OH})</td>
<td>0.9 (V_{DD33_REG_IN})</td>
<td></td>
<td></td>
<td></td>
<td>(I_{OH} = 8 mA)</td>
</tr>
<tr>
<td>O8_2 Type Output Buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Output Level</td>
<td>(V_{OL})</td>
<td>V(_{DD33_IO_IN}) - 0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td>(I_{OL} = -8 mA)</td>
</tr>
<tr>
<td>High Output Level</td>
<td>(V_{OH})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(I_{OH} = 8 mA)</td>
</tr>
</tbody>
</table>

Note 5-5 This specification applies to all inputs and tri-stated bi-directional pins. Internal pull-down and pull-up resistors add +/- 50 \(\mu A\) per-pin (typical).
TABLE 5-5: VOLTAGE REGULATOR OPERATING RANGES

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD18_CORE_OUT</td>
<td>DC uncalibrated output voltage</td>
<td>1.62</td>
<td>1.80</td>
<td>1.91</td>
<td>V</td>
</tr>
<tr>
<td>VDD12_CORE_OUT</td>
<td>DC calibrated output voltage</td>
<td>1.10</td>
<td>1.23</td>
<td>1.30</td>
<td>V</td>
</tr>
</tbody>
</table>

TABLE 5-6: VCONN SOURCE DC PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILIM</td>
<td>I_{LIM,VCONN}</td>
<td>600</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>On Resistance</td>
<td>R_{ON,VCONN}</td>
<td>270</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
</tbody>
</table>

TABLE 5-7: RESET_N TIMING VALUES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{rstia}</td>
<td>RESET_N input assertion time</td>
<td>1</td>
<td></td>
<td></td>
<td>μS</td>
</tr>
</tbody>
</table>
5.6.2 SPI TIMING

Figure 5-3 and Figure 5-4 illustrate the SPI master and slave timing requirements, respectively. Refer to Section 4.1, "Serial Peripheral Interface (SPI)" for additional information.

FIGURE 5-3: SPI MASTER TIMING

FIGURE 5-4: SPI SLAVE TIMING
TABLE 5-8: SPI TIMING VALUES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{SCK}</td>
<td>SPI_CLK period (Master)</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{SCKW}</td>
<td>SPI_CLK high/low width (Master)</td>
<td>0.5t_{SCK}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{SCKR}</td>
<td>SPI_CLK rise time (Master)</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SCKF}</td>
<td>SPI_CLK fall time (Master)</td>
<td>9.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MIS}</td>
<td>SPI_MISO setup to SPI_CLK (Master)</td>
<td>29</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MIS}</td>
<td>SPI_MISO hold after SPI_CLK (Master)</td>
<td>8</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MOS}</td>
<td>SPI_MOSI setup to SPI_CLK (Master)</td>
<td>$t_{SCK}/2 - 16$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MOH}</td>
<td>SPI_MOSI hold after SPI_CLK (Master)</td>
<td>16</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SSCK}</td>
<td>SPI_CLK period (Slave)</td>
<td>$1^*t_{CLK_APB}$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SSCKW}</td>
<td>SPI_CLK high/low width (Slave)</td>
<td>0.5t_{SSCK}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SSCKR}</td>
<td>SPI_CLK rise time (Slave)</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SSCKF}</td>
<td>SPI_CLK fall time (Slave)</td>
<td>9.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SIS}</td>
<td>SPI_MOSI setup to SPI_CLK (Slave)</td>
<td>$t_{SSCK}/2-19$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SIH}</td>
<td>SPI_MOSI hold after SPI_CLK (Slave)</td>
<td>$t_{SSCK}/2-5$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SIS}</td>
<td>SPI_SS setup to SPI_CLK (Slave, PRELOADEN=1)</td>
<td>$2^*t_{CLK_APB} + t_{SOS}$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SIS}</td>
<td>SPI_SS setup to SPI_CLK (Slave, PRELOADEN=0)</td>
<td>$t_{SOS}+7$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SSH}</td>
<td>SPI_SS hold after SPI_CLK (Slave)</td>
<td>$t_{SIH}-4$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SS}</td>
<td>SPI_MISO setup to SPI_CLK (Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{SSH}</td>
<td>SPI_MISO setup to SPI_CLK (Slave)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{SOH}</td>
<td>SPI_MISO hold after SPI_CLK (Slave)</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SOS}</td>
<td>SPI_MISO setup after SPI_SS low (Slave)</td>
<td>16</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{SOSH}</td>
<td>SPI_MISO setup after SPI_SS high (Slave)</td>
<td>11</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
6.0 PACKAGE INFORMATION

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

FIGURE 6-1: PACKAGE MARKING INFORMATION

Legend:

- m Device version ("B" or "C")
- i Temperature range designator (Blank = commercial, i = industrial/automotive)
- V Automotive (blank for non-automotive versions)
- R Functional revision
- nnn Internal code
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- e3N Alphanumeric traceability code
- * Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator () can be found on the outer packaging for this package.

FIGURE 6-2: TAPE & REEL DEVICE ORIENTATION

DIRECTION OF UNREELING
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

FIGURE 6-3: 40-VQFN PACKAGE (DRAWING)

40-Lead Very Thin Plastic Quad Flat, No Lead Package (KYX) - 6x6 mm Body [VQFN] With 4.6x4.6 mm Exposed Pad

![Diagram of 40-VQFN Package](image-url)
UPD301B/C

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

FIGURE 6-4: 40-VQFN PACKAGE (DIMENSIONS)

40-Lead Very Thin Plastic Quad Flat, No Lead Package (KYX) - 6x6 mm Body [VQFN]
With 4.6x4.6 mm Exposed Pad

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Terminal Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
FIGURE 6-5: 40-VQFN PACKAGE (LAND PATTERN)

40-Lead Very Thin Plastic Quad Flat, No Lead Package (KYX) - 6x6 mm Body [VQFN] With 4.6x4.6 mm Exposed Pad

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C2</td>
</tr>
<tr>
<td>Contact Pad Width (X40)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X40)</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X40)</td>
<td>G1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X36)</td>
<td>G2</td>
</tr>
<tr>
<td>Thermal Via Diameter</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Via Pitch</td>
<td>EV</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process
APPENDIX A: DATA SHEET REVISION HISTORY

TABLE A-1: REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Section/Figure/Entry</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS00003412A (04-06-20)</td>
<td></td>
<td>Initial Document Release</td>
</tr>
</tbody>
</table>
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>[X]</th>
<th>[X]</th>
<th>/XX</th>
<th>[XXX]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Tape & Reel Option</td>
<td>Temp. Range</td>
<td>Package</td>
<td>Automotive Code</td>
</tr>
<tr>
<td>UPD301B = No dead battery Rd terminations</td>
<td>Blank = Standard packaging (tray)</td>
<td>Blank = 0°C to +70°C (Commercial)</td>
<td>KYX = 40-pin VQFN</td>
<td></td>
</tr>
<tr>
<td>UPD301C = Dead battery Rd terminations</td>
<td>T = Tape and Reel (Note 1)</td>
<td>I = -40°C to +85°C (Industrial/Automotive Grade 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **a)** UPD301B/KYX: No Rd terminations, standard packaging, 0°C to +70°C, 40-pin VQFN package
- **b)** UPD301BT/KYX: No Rd terminations, Tape and Reel, 0°C to +70°C, 40-pin VQFN package
- **c)** UPD301B-I/KYX: No Rd terminations, Standard packaging, -40°C to +85°C, 40-pin VQFN package
- **d)** UPD301BT-I/KYX: No Rd terminations, Tape and Reel, -40°C to +85°C, 40-pin VQFN package
- **e)** UPD301B-I/KYXVAO: No Rd terminations, Standard packaging, -40°C to +85°C, 40-pin VQFN package, Automotive Grade 3
- **f)** UPD301C/KYX: Rd terminations, standard packaging, 0°C to +70°C, 40-pin VQFN package
- **g)** UPD301CT/KYX: Rd terminations, Tape and Reel, 0°C to +70°C, 40-pin VQFN package
- **h)** UPD301C-I/KYX: Rd terminations, Standard packaging, -40°C to +85°C, 40-pin VQFN package
- **i)** UPD301CT-I/KYX: Rd terminations, Tape and Reel, -40°C to +85°C, 40-pin VQFN package
- **j)** UPD301C-I/KYXVAO: Rd terminations, Standard packaging, -40°C to +85°C, 40-pin VQFN package, Automotive Grade 3

Note 1:
Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANcheck, LinkMD, maXStylus, maXTouch, MedialBL, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SynoWorld, Temux, TimeCesium, TimeHub, TimePicta, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTIP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522456933

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-5214

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-7121-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-762586

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-6090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820