1.0 OBJECTIVE

This specification defines the performance, test, quality and reliability of a family of modular telephone connectors.

2.0 SCOPE

This specification defines requirements for Receptacles of Modular Telephone connectors intended for use in private and public network installations and equipment. The receptacles specified herein can comprise single or multiport configurations (GangJacks), shielded and unshielded designs, filtered and unfiltered. Receptacles supplied according to this specification can be classified as category 3, 4 and 5 assemblies. This specification also covers the Modular Jacks and GangJacks that do not require category classification. The mating plug is described in this specification only to the extent necessary to define performance of the mated connector parts: to this extent the quality of a mating plug shall conform to this document.

3.0 GENERAL TABLE OF CONTENTS

1.0 Objective
2.0 Scope
3.0 General
4.0 Applicable Documents
5.0 Requirements
 5.1 Qualification
 5.2 Materials
 5.2.1 Housing
 5.2.2 Contact Materials
 5.2.3 Shield Materials
 5.2.4 Filter Inductor Material
 5.3 Finish
 5.4 Design and Construction
 5.4.1 Dielectric Distances
 5.4.2 Contact Spring Alignment
 5.4.3 Workmanship
 5.5 Mating Plugs
 5.5.1 Surface Finish and Lubrication
 5.5.2 Plating Finish
 5.5.3 Plug Configuration
6.0 **Electrical Characteristics**

6.1 Low Level Circuit Resistance

6.2 Insulation Resistance

6.3 Dielectric Withstand Voltage
 - 6.3.1 Between Contacts and Contact and Shield

6.4 Shielding Effectiveness

6.5 Capacitance

6.6 Filtered Jacks. Impedance Test

6.7 Connector Category Requirements
 - 6.7.1 Attenuation
 - 6.7.2 NEXT Loss
 - 6.7.3 Return Loss
 - 6.7.4 DC Resistance

6.8 Current Ratings

7.0 **Mechanical Characteristics**

7.1 Total Mating Force
 - 7.1.1 Shielded Connector Jack Combination

7.2 Spring Form and Shield Tabs

7.3 Retention
 - 7.3.1 Effectiveness of Connector Coupling Device
 - 7.3.2 Retention. Plug to JACK
 - 7.3.3 Overall Assembly
 - 7.3.4 Jack to Board

7.4 Vibration and Mechanical Shock
 - 7.4.1 Vibration
 - 7.4.2 Mechanical Shock

8.0 **Environmental Conditions**

8.1 Thermal Shock

8.2 Humidity, Steady State

8.3 High Temperature Life

8.4 Hydrogen Sulfide Exposure

8.5 Resistance to Solvents

8.6 Durability

8.7 Solderability

8.8 Resistance to Soldering Heat
9.0 Quality Assurance Provisions

9.1 Equipment Calibration
9.2 Inspection Conditions
9.3 Samples Quality and Description
9.4 Qualification Acceptance
9.5 Qualification Testing
9.6 Requalification Testing

10.0 Notes

4.0 APPLICABLE DOCUMENTS

4.1 Engineering Documents

4.2 Military Specifications

MIL-F-55110 Printed wiring boards
MIL-G-45204 Gold plating (electro depositied)

4.3 Military Standards

MIL-STD-1344 Test Methods for Electrical Connectors
MIL-STD-202 Test Methods for Electronic & Electrical Component Parts
MIL-STD-2166

4.4 Federal Standards

FCC Part 68F Registration of Telephone Equipment
FED STD 595 Colors
QQ-N-290 Nickel Plating

4.5 Industry Standards

ANSI-J-002 Joint Industry Standard, Solderability test for component leads
ASTM B-103 Phosphor bronze wire
ASTM B-159 Phosphor Bronze plate, sheet strip, and rolled bar
ASTM D 4566 DC Resistance Measurement
EIA/TIA 568A,B Commercial Building Communications Cabling Standard
EIA-364 Series Electrical Connector Test Procedures Incl., Environmental Classif.
IEC-512-5 Impact Tests, Static Load Tests, Endurance & Overload Tests
IEC-603-7 Connectors for Frequencies below 3 mhz for use with circuit boards
ISO 10012-1 Quality Assurance Requirements for Measuring Equipment
ISO 9000 Quality System Requirements
UL94 Test for Flammability of Plastic Materials
4.6 FCI Specifications
BUS-02-043 Plating Documentation Standards
BUS-02-057 Plating Selection Guidelines
BUS-03-107 Shielding Effectiveness
BUS-03-114 Capacitance Measurement
BUS-03-302 Sulfide Vapor Test
BUS-03-404 Normal Force Measurement
BUS-03-405 Insertion/Withdrawal force Measurement
BUS-03-601 Current Rating/30°C Temperature Rise

4.7 Conflicting documents and detailed customer specifications
In the event of any conflict between this specification and any other applicable document, this specification shall take precedence. If differences exist between this specification and detailed customer specification it is allowed to furnish products that are covered only in part by this specification.

5.0 REQUIREMENTS

5.1 Qualification
Connectors furnished under this specification shall be capable of meeting the qualification test requirements specified herein.

5.2 Materials

5.2.1 Housing
The housing shall be a flame retardant thermoplastic material with flammability grade UL 94 V-0. Allowable materials include PCT, polyamide 4/6, polyamide 6/6, polyester, LCP. The exact material shall be specified on the detailed drawings.

5.2.2 Contact Materials
Contacts shall be made of high performance phosphor bronze alloy 510 in accordance to ASTM B-103 or ASTM B-159.

Plating requirements in a contact area shall conform to one of the listed below:

A. 0.000075mm min. gold flash (3 microinches)
 0.00076mm palladium nickel over (30 microinches)
 0.00254mm nickel minimum (100 microinches)

B. 0.00076mm gold finish over (30 microinches)
 0.00127mm min. nickel underplate minimum (50 microinches)

C. 0.00127mm gold finish over (50 microinches)
 0.00127mm nickel underplate minimum (50 microinches)
In the solder tail area, it is allowed to have one of the platings A, B, or C listed above or 0.00254mm (100 microinches) of tin-lead solder with composition of 90% tin and 10% lead.

Lubrication requirements shall be specified on the detailed drawings.

5.2.3 Shielded Materials

Shields shall be made of copper alloy. Allowable materials include Cartridge brass alloy C260, yellow brass C260 and phosphor bronze alloy C510. Shield thickness and material temper shall be specified in detailed drawings.

Plating Finish: 0.00254mm min. of bright tin
Underplate: 0.00051mm min. nickel or 0.001 min. copper

5.2.4 Filter Inductor Material

Filter-inductor shall be made of ferrite ceramics with Curie temperature above 250 degrees Celsius. Unless otherwise specified in the detailed drawings, the initial permeability shall be above 800 and saturation flux density from 1800 to 3600 gauss.

5.3 Finish

The finish for applicable components shall be as specified herein or equivalent. Reference BUS-02-057.

5.4 Design and Construction

Connectors shall be of the design, construction, and physical dimensions specified on the applicable product drawing.

Insulation co-ordination is not required for these connectors.

5.4.1

<table>
<thead>
<tr>
<th>Minimum Distance Between Contact and Shield</th>
<th>Minimum Distance Between Adjacent Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creepage Clearance</td>
<td>Creepage Clearance</td>
</tr>
<tr>
<td>mm</td>
<td>in</td>
</tr>
<tr>
<td>1.40</td>
<td>0.055</td>
</tr>
</tbody>
</table>

5.4.2 Contact Spring Alignment

Individual contact springs in the unmated jack shall neither touch or cross the plane of adjacent springs when viewed from the front of the jack.

5.4.3 Workmanship

Modular Jacks shall be uniform in quality and shall be free from burrs, scratches, cracks, voids, chips, blisters, pin holes, sharp edges, and other defects that will adversely affect life or serviceability.
5.5 Mating Plugs

5.5.1 Surface Finish

Electropolished plugs are required for qualification testing. The plug contacts shall be smooth and free of burrs.

5.5.2 Plating Finish

The mating plug finish shall be 0.00127mm (30 microinches) minimum of hard gold in accordance with MIL-G-45204, Type II, Grade C in contact area.

5.5.3 Plug Configuration

Plug to be used to mate for testing of unshielded connectors (where required) shall conform to dimensions of Figure 1.

Two types of plugs required to mate with receptacles as per Table 1 and conform to the dimensions in Figures 1 and 2.

Table 5.5.3 Mating Plug Outside Dimensional Requirements

<table>
<thead>
<tr>
<th>#</th>
<th>Modular Jack</th>
<th>Test Type</th>
<th>Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shielded</td>
<td>All except 6.1.2, 6.4, 7.1.1, 8.6.1 and mated 8.0</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>2</td>
<td>Shielded</td>
<td>6.1.2, 6.4, 7.1.1, mated 8.0, 8.6.1</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>3</td>
<td>Keyed</td>
<td>Unshielded plug</td>
<td>Fig. 3</td>
</tr>
<tr>
<td>TYPE</td>
<td>POS.</td>
<td>DIM A</td>
<td>DIM B</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TYPE 616</td>
<td>4</td>
<td>7.62± .01</td>
<td>4.93± 0.1</td>
</tr>
<tr>
<td>TYPE 623</td>
<td>6</td>
<td>9.65± 0.1</td>
<td>6.05± 0.1</td>
</tr>
<tr>
<td>TYPE 645</td>
<td>8</td>
<td>11.68± 0.1</td>
<td>6.1± 0.1</td>
</tr>
</tbody>
</table>

NOTES:
1. AWG 24 SOLID WIRE COMMONLY CONNECTED TO EACH TERMINAL.
2. 0.25 MAXIMUM MISMATCH ALLOWED ON THIS SURFACE.
3. MATERIAL COMPATIBLE WITH REQUIREMENTS OF THIS SPECIFICATION.

FIGURE 1 - UNSHIELDED MATING PLUG
FIGURE 2 - SHIELDED MATING PLUG
FIGURE 3 - 8 POSITION KEYED PLUG, MECHANICAL SPECIFICATION

6.0 ELECTRICAL CHARACTERISTICS
6.1 Contact Resistance, Low Level (LLCR) - The low level contact resistance shall not exceed 20 milliohms (40 milliohms after environmental exposure) when measured in accordance with EIA 364-23. The following details shall apply:

a. Method of Connection: Attach current and voltage leads as shown in Figure 4.
b. Test Voltage: 20 millivolts DC maximum open circuit
c. Test Current: Not to exceed 1.0 milliamperes
d. Measure LLCR between (non-gold plated) shield and shielded portion of plug.

The LLCR, between the shield tabs and the plug, shall not exceed 80 milliohms after environmental exposure.

![Contact Resistance Connections and Test Procedure](image)

FIGURE 4 - CONTACT RESISTANCE CONNECTIONS AND TEST PROCEDURE

Test Procedure:

1. Determine the bulk resistance of the fixed connector between points A and B of Figure 4 by calculation or by measurement.
2. Determine the bulk resistance of the free connector between points B and C of Figure 4 by calculation or by measurement.
3. Measure the total mated connector resistance between points A and C.
4. Calculate the contact resistance by subtracting the sum of the bulk resistances of the fixed and free connectors from the total mated connector resistance.

Contact resistance = \(R_{AC} - (R_{AB1} + R_{BC1}) \) where I indicates initial value.

6.2 Insulation Resistance - The insulation resistance of mated connectors shall not be less than 500 megohms (200 megohms after environmental exposure) when measured in accordance with EIA 364-21. The following details shall apply:
a. Test Voltage: 100 volts D.C.
b. Electrification Time: 2 minutes, unless otherwise specified
c. Points of Measurement: between adjacent contacts

6.3 Dielectric Withstanding Voltage - There shall be no evidence of arc-over, insulation breakdown, or excessive leakage current (> 1 milliampere) when mated connectors are testing in accordance with EIA 364-20. The following details shall apply:

- a. Test Voltage: 1000 volts (DC RMS or AC, 60 Hz)
- b. Test Duration: 60 seconds
- c. Test Condition: 1 Atmosphere (760 Torr - sea level)
- d. Points of Measurement: between adjacent contacts

6.3.1 Dielectric Withstanding Voltage - There shall be no evidence of arc-over, insulation breakdown, or excessive leakage current (> 1 milliampere) when mated connectors are tested in accordance with EIA 364-20. The following details shall apply:

- a. Test Voltage: 1,500 volts (DC RMS or AC, 60 Hz)
- b. Test Duration: 60 seconds
- c. Test Condition: 1 Atmosphere (760 Torr - sea level)
- d. Points of Measurement: between all contacts connected together and shield

6.4 Shielding System Effectiveness - The specification requirement shall be satisfied when evaluated in accordance with FCI Test Specification BUS-03-107 and the following details:

The following requirements are applicable to products with full shield. Every port should have at least three grounding pegs. In lieu of grounding pegs, a copper tape can be used.

No shield effectiveness test required for products with partial shield.

Shielding effectiveness, dB

<table>
<thead>
<tr>
<th>FREQUENCY, kHz</th>
<th>25</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB, Minimum</td>
<td>40</td>
<td>30</td>
<td>28</td>
<td>25</td>
<td>22</td>
</tr>
</tbody>
</table>

6.5 Capacitance - The specification requirement shall be satisfied when evaluated in accordance with FCI Test Specification BUS-03-114 and the following details:

- a. Specification requirement <10 pF
- b. Sample documentation (Define applications and provide drawings)
- c. Sample test conditions
 - Frequency: 1 KHz
 - Amplitude: 1 volt
6.6 Impedance - Only filtered modjacks with inductive filters shall be tested.

The exact requirements shall be listed in appropriate customer specification or supply agreement. Since a very large number of possible filters may be designed to satisfy a large number of applications, the below listed table applies only to inductive filters furnished under part-numbers 95110-001, -002, and -004. Deviations of + or -20% from the nominal values listed in Table 6.6 are acceptable.

TABLE 6.6 IMPEDANCE FROM 1 Mhz to 100 Mhz

<table>
<thead>
<tr>
<th>Frequency Mhz</th>
<th>Impedance Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>70</td>
<td>135</td>
</tr>
<tr>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>90</td>
<td>145</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>155</td>
</tr>
<tr>
<td>400</td>
<td>170</td>
</tr>
<tr>
<td>800</td>
<td>180</td>
</tr>
<tr>
<td>1000</td>
<td>180</td>
</tr>
</tbody>
</table>

6.7 Connector Category Requirements - Connector categories are defined in EIA/TIA 568A specification.

6.7.1 Attenuation

Worst case attenuation of any pair within a connector shall not exceed the values listed in Table 6.7.1 at each specified frequency for a given performance category.

TABLE 6.7.1 Attenuation of Connecting Hardware used for 100 Ω UTP Cable

<table>
<thead>
<tr>
<th>Frequency (Mhz)</th>
<th>Category 3 (dB)</th>
<th>Category 4 (dB)</th>
<th>Category 5 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4.0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>8.0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>10.0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>16.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>20.0</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>25.0</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>31.25</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>62.5</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>
6.7.2 NEXT Loss

NEXT loss is a measure of signal coupling from one circuit within a connector and is derived from swept frequency voltage measurements on short lengths of 100 Ω twisted-pair test leads terminated to the connector under test. A balanced input signal is applied to a disturbing pair of the connector while the induced signal on the disturbed pair is measured at the near-end of the test leads.

TABLE 6.7.2

<table>
<thead>
<tr>
<th>Frequency (Mhz)</th>
<th>Category 3 (dB)</th>
<th>Category 4 (dB)</th>
<th>Category 5 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>58</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>4.0</td>
<td>46</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>8.0</td>
<td>40</td>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>10.0</td>
<td>38</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>16.0</td>
<td>34</td>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>20.0</td>
<td>-</td>
<td>44</td>
<td>54</td>
</tr>
<tr>
<td>25.0</td>
<td>-</td>
<td>-</td>
<td>52</td>
</tr>
<tr>
<td>31.25</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>62.5</td>
<td>-</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
</tbody>
</table>

6.7.3 Return Loss

Connector return loss is a measure of the degree of impedance matching between the cable and connector and is derived from swept frequency voltage measurements on short lengths of 100 Ω twisted-pair test leads before and after inserting the connector under test. A balanced input signal is applied to a connector pair while signals that are reflected back due to impedance discontinuities are measured at the same port from which the signal is applied. The same set-up that is used for NEXT loss measurements is also used for return loss, except that only a single connection is made to the network analyzer.

Because the return loss characteristics of category 3 connector hardware are not considered to have a significant effect on the link performance of category 3 UTP cabling, return loss requirements are not specified for category 3 connectors.

For category 4 and 5 connectors, the minimum return loss shall be 23 dB or greater for frequencies between 1 and 20 Mhz. For frequencies from 20 to 100 Mhz, category 5 connectors shall exhibit a minimum return loss of 14 dB or greater. These return loss values are chosen to limit peak reflected voltage to 7% or less up to 20 Mhz and to 20% or less from 20 to 100 Mhz.
6.7.4 DC Resistance

The DC resistance between the input and output connections of the connecting hardware (not including the cable stub, if any) used for 100 Ω cabling shall not exceed 0.3 Ω when tested in accordance with ASTM D 4566.

NOTE: DC resistance is a separate measurement from the contact resistance measurements required in normative Annex A. Whereas DC resistance is measured to determine the connector’s ability to transmit direct current and low frequency signals, contact resistance measurements are used to determine the reliability and stability of individual electrical connections.

6.8 Current Rating and Current Carry Capacity - The temperature rise above ambient shall not exceed 30 degrees C at any point in the system when all contacts connected in series are powered a 1 ampere(s). The following details shall apply:

a) Ambient Conditions - still air at 25 degrees C
b) Reference - BUS-03-601
c) Connector derating curve shall be as shown in Figure 5

![FIGURE 5 - CURRENT CARRYING CAPACITY](image)

7.0 MECHANICAL CHARACTERISTICS

7.1 Mating and Unmating Forces. Both forces measured with latch depressed or removed shall not exceed the following:

- Unshielded connectors - 20 N
- Category 3 and 4 shielded connectors - 28 N
- Category 5 shielded and unshielded - 35 N

a) Cross head speed 10mm/s (0.4 in/s) Max, 0.2mm/s (0.008 in/s) Min.
b) Lubrication is required on jacks and plugs
c) Only free floating fixtures are allowed for use
7.2 The spring form and shield tabs.

7.2.1 The spring contact ends shall be located in the individual slots.

7.2.2 Shield tabs intended for contact with PWB (bottom) or panel cut-out shall withstand 3 insertions in the designated panel cut-out or manual depression. The spring form, measured as maximum dimension from a shield shall not change its position by more than 0.254mm (0.010").

7.2.3 Shield tabs intended for contact with shielded plug shall meet test conditions specified in paragraph 8.6 of this specification.

7.3 Retention

7.3.1 Effectiveness of connector coupling device. Latch integrity measured with a designated plug or fixture shall not be less than 50 N for 60 seconds.

7.3.2 Retention Plug to Jack. There shall be no evidence of mechanical damage to the jack, plug or latching mechanism, nor separation of the plug from the jack when a static load of 5.0 pounds is applied between the jack and plug in the direction of normal removal.

7.3.3 Overall Assembly After Soldering. There shall be no evidence of mechanical damage to the jack, plug or latching mechanisms, nor separation of the plug from the jack or jack from the printed wiring board when a static load of 5.0 pounds is applied between the plug and the board in the direction of normal plug removal.

7.3.4 Jack to Board. Prior to soldering, the jack shall withstand a force applied between the jack and board in a direction normal to the plane of the board as follows:

 Snap-in pegs - 14.N
 Diamond pegs (3.38mm in 3.20mm holes - 5.0N

7.4 Vibration and Mechanical Shock

7.4.1 Part shall be mounted onto PWB or fixtures. Vibration test shall be perform in accordance to EIA 364-TP28B, test condition II (10 g sinusoidal excitation). Test duration shall be 2 hours on each of three mutually perpendicular axes. An event detector shall monitor continuity during vibration testing for events of at least 50 ohm lasting 1.0 microsecond or longer.

7.4.2 Mechanical shock test shall be perform in accordance to EIA-364-TP27, test condition H (11 ms, 30g Half-sine excitation). Samples shall be subjected to three shocks in each direction along each of the three mutually perpendicular axes of the samples, for a total of 18 shock impulses. An event detector shall monitor continuity during mechanical shock testing for events of at least 50 ohm lasting 1.0 microsecond or longer.
8.0 ENVIRONMENTAL CONDITIONS

After exposure to the following environmental conditions in accordance with the specified test procedure and/or details, the product shall show no physical damage and shall meet the electrical and mechanical requirements per paragraphs 6.0 and 7.0 as specified in the Table 1 test sequence. Unless specified otherwise, assemblies shall be mated during exposure.

8.1 Thermal Shock - EIA 364-32 (Tested Unmated)
 a) Number of Cycles: 5
 b) Temperature Range: between -40 and +70 degrees C
 c) Time at Each Temperature: 30 minutes
 d) Transfer Time: 5 minutes, maximum

8.2 Humidity, Steady State - EIA 364-31, Method II
 a) Relative Humidity: 95%
 b) Temperatures: +40 degrees C
 c) Test Condition: A (96 hours)

8.3 High Temperature Life - EIA 364-17
 a) Test Temperature: 70 degrees C
 b) Test Duration: 500 hours

8.4 Hydrogen Sulfide (H2S) - BUS-03-302 (Mated)
 a) Duration: 48 hours
 b) Temperature: 40 degrees C
 c) Test Vessel: 9000 milliliter glass desiccator

8.5 Resistance to Solvents. The housing shall exhibit no deterioration after exposure to various solvents commonly used in past-soldering cleaning procedures. The test shall be in accordance with EIA 364-11 at room temperature.
8.6 Durability. The following durability levels are specified:

- Level 1 - 250 cycles
- Level 2 - 500 cycles
- Level 3 - 750 cycles
- Level 4 - 1000 cycles
- Level 5 - 2500 cycles

After the durability testing, the spring form shall remain as specified in paragraph 7.2. The contact resistance shall not exceed 40 milliohms for signal lines and/or 80 milliohms for shield tabs. Test method per IEC 512-5, Test 9a.

For durability levels 2 thru 5, perform half of the cycles, then mixed flowing gas followed by the remaining half of the durability cycles. LLCR (per Para. 6.1) readings to be taken as shown in the table.

Test procedures for durability levels 1 thru 5:

<table>
<thead>
<tr>
<th>Level 1</th>
<th>250 cycles</th>
<th>LLCR</th>
<th>Mixed flowing gas Per IEC 603-7 Annex D</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2</td>
<td>250 cycles</td>
<td>LLCR</td>
<td>Mixed flowing gas Per IEC 603-7 Annex D</td>
<td>LLCR</td>
<td>250 cycles</td>
</tr>
<tr>
<td>Level 3</td>
<td>375 cycles</td>
<td>LLCR</td>
<td>Mixed flowing gas Per IEC 603-7 Annex D</td>
<td>LLCR</td>
<td>375 cycles</td>
</tr>
<tr>
<td>Level 4</td>
<td>500 cycles</td>
<td>LLCR</td>
<td>Mixed flowing gas Per IEC 603-7 Annex D</td>
<td>LLCR</td>
<td>500 cycles</td>
</tr>
<tr>
<td>Level 5</td>
<td>1250 cycles</td>
<td>LLCR</td>
<td>Mixed flowing gas Per IEC 603-7 Annex D</td>
<td>LLCR</td>
<td>1250 cycles</td>
</tr>
</tbody>
</table>

8.7 Solderability - ANSI-J-002, Test Condition A

a) Steam aging: 1 hour
b) Contact areas evaluated shall meet the ANSI-J-002 requirements.
8.8 Resistance to Soldering Heat. The housing shall withstand the high temperatures encountered during soldering of the jack to the printed wiring board without any functional deterioration. The test shall be in accordance with MIL-STD-202, Method 210, Test Condition E. The following details shall apply:

a) Solder Temperature: 260 degrees C
b) Immersion Duration: 5 seconds

8.9 Six position plug stress test

8.9.1 Eight position, non-keyed jacks with stamped leadframe style terminals shall be capable of withstanding mating with a six position FCC approved plug and not suffer overstress damage to pins #1 and #8. After plugging ten times with a six position plug, pins 1 and 8 shall maintain 100 grams minimum normal force when measured with an FCC minimum sized plug.

9.0 QUALITY ASSURANCE PROVISIONS

9.1 Equipment Calibration. All test equipment and inspection facilities used in the performance of any test shall be maintained in a calibration system in accordance with MIL-C-45662 and ISO 9000.

9.2 Inspection Conditions. Unless otherwise specified herein, all inspections shall be performed under the following ambient conditions:

a) Temperature: 25 +/- 5 degrees C
b) Relative Humidity: 30% to 60%
c) Barometric Pressure: Local ambient

9.3 Sample Quantify and Description. Unless specified otherwise, the sample quantity for each Test Group in Table 1 shall consist of a minimum of thirty (30) contacts. The 30 contacts shall be selected from a minimum of three (3) connectors. In connector families where conditions such as size, type, plating, material type, etc. would be expected to affect test results, samples should be included to evaluate those conditions in the affected Test Groups of Table 1.

9.3.1 Results obtained from testing multiport assemblies are applicable to similar products of other number of ports. Multiport assemblies of representative size (typically 4, 6, 8, or 12 ports) shall be used for mechanical and environmental tests assigned to Group 1. Other test groups can utilize single or multiport assemblies as practical.

9.4 Acceptance

9.4.1 Electrical and mechanical requirements placed on test samples as indicated in paragraphs 6.0 and 7.0 shall be established from test data using appropriate statistical techniques or shall otherwise be customer specified, and all samples tested in accordance with this product specification shall meet the stated requirements.
9.4.2 Failures attributed to equipment, test set-up, or operator error shall not disqualify the product. If product failure occurs, corrective action shall be taken and samples resubmitted for qualification.

9.5 Qualification Testing

Qualification testing shall be performed on sample units produced with equipment and procedures normally used in production. The test sequence shall be as shown in Table 1.

9.6 Requalification Testing

If any of the following conditions occur, the responsible product engineer shall initiate requalification testing consisting of all applicable parts of the qualification test matrix, Table 1.

a) A significant design change is made to the existing product, which impacts the product form, fit or function. Examples of significant changes shall include, but not be limited to, changes in the plating material composition or thickness, contact force, contact surface geometry, insulator design, contact base material, or contact lubrication requirements.

b) A significant change is made to the manufacturing process, which impacts the product form, fit or function.

c) A significant event occurs during production or end use requiring corrective action to be taken relative to the product design or manufacturing process.
Test Group

<table>
<thead>
<tr>
<th>Test</th>
<th>Para.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of Product</td>
<td>5.4</td>
<td>1,15</td>
<td>1,11</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,4</td>
<td>1</td>
<td>1,9</td>
<td>1</td>
<td>1</td>
<td>1,9</td>
</tr>
<tr>
<td>Mating Plugs Selection</td>
<td>5.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Contact Resistance</td>
<td>6.1</td>
<td>3,5,7,9,11</td>
<td>3,6,9</td>
<td>4,6</td>
<td></td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
<td>3,6,8</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>6.2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage</td>
<td>6.3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Rating</td>
<td>6.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Shielding System Effectiveness</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Resistance</td>
<td>6.7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuation</td>
<td>6.7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Loss</td>
<td>6.7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Impedance</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT Loss</td>
<td>6.7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>6.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mating/Unmating force</td>
<td>7.1</td>
<td>4,12</td>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>7.3</td>
<td>13</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>7.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>7.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Form and Shield Tabs</td>
<td>7.2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>8.1</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity, Steady State</td>
<td>8.2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi Temperature Life</td>
<td>8.3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide/Mixed Gas</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td>8.6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Solderability</td>
<td>8.7</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Resistance to Soldering Heat</td>
<td>8.8</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Resistance to Solvents</td>
<td>8.5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6 Position Plug Stress Test</td>
<td>8.9</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

10.0 NOTES AND DEFINITIONS

Maximum thickness of nickel underplate shall not exceed 0.038mm (150 microinches).

11.0 REFERENCE DOCUMENTS

See Section 4.0 (Applicable Documents).
PRODUCT SPECIFICATION

TITLE
Single and Multi-Port Modular Jack Assemblies

NUMBER
GES-12-083

AUTHORIZE BY
B. Marshall

DATE
10/08/99

REVISION RECORD

<table>
<thead>
<tr>
<th>REV</th>
<th>PAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All</td>
<td>Release</td>
</tr>
<tr>
<td>B</td>
<td>3 to 10, 14, 16, 19, 20</td>
<td>Revised Applicable Document Listing, Added Lubrication requirement to para 5.2.2. Removed lubrication requirement in para. 5.2.2. Redrew Figure 1,2,3,4 for clarity. Added Max/Min to para. 7.1a. Remove lubrication requirement in para. 8.6. Correct para. Numbers and test sequence numbers. Remove para. 10.2 Durability lubrication requirement. Moved Reference Documents to Section 4.0</td>
</tr>
<tr>
<td>C</td>
<td>All</td>
<td>Change guardian name. Change all Berg to FCI. Added Vibration, Para. 7.4</td>
</tr>
<tr>
<td>D</td>
<td>17, 20</td>
<td>Add Test procedures levels to 8.6. Remove 7,9,6,4,8 from Test Group 10.</td>
</tr>
</tbody>
</table>

ECR# | DATE
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V61436</td>
<td>10/01/96</td>
</tr>
<tr>
<td>V70731</td>
<td>11/19/97</td>
</tr>
<tr>
<td>V91307</td>
<td>08/05/99</td>
</tr>
<tr>
<td>V92010</td>
<td>10/08/99</td>
</tr>
</tbody>
</table>

NOTE: THIS DOCUMENT IS THE PROPERTY OF AND EMBODIES PROPRIETARY INFORMATION OF THE FCI ELECTRONICS COMPANY. NO PART OF THE INFORMATION SHOWN ON THIS DOCUMENT MAY BE USED IN ANY WAY WITHOUT THE WRITTEN CONSENT OF FCI ELECTRONICS.