

HIGH VOLTAGE POWER SCHOTTKY RECTIFIER

MAIN PRODUCT CHARACTERISTICS

lF(AV)	2 x 40A		
VRRM	100V		
VF (typ)	0.63V		

FEATURES AND BENEFITS

- NEGLIGIBLE SWITCHING LOSSES
- LOW FORWARD VOLTAGE DROP
- LOW CAPACITANCE
- HIGH REVERSE AVALANCHE SURGE CAPABILITY
- LOW INDUCTANCE PACKAGE

DESCRIPTION

High voltage dual Schottky rectifier suited for switchmode power supplies and other power converters.

Packaged in ISOTOPTM, this device is intended for use in medium voltage operation, and particularly, in high frequency circuitries where low switching losses and low noise are required.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Value	Unit
VRRM	Repetitive peak reverse voltage			100	V
IF(RMS)	RMS forward current	Per diode	125	A	
lF(AV)	Average forward current	Tc=90°C V _R = 60V δ = 0.5	Per diode	40	A
IFSM	Surge non repetitive forward current	tp=10ms sinusoidal	Per diode	700	A
IRRM	Repetitive Peak reverse current	tp=2µs F=1KHz	Per diode	2	A
IRSM	Non repetitive peak reverse current	tp=100μs	Per diode	2	A
Tstg	Junction temperature range			- 65 to + 150	°C
Tj	Max. Junction temperature			125	°C
dV/dt	Critical rate of rise of reverse voltage			1000	V/μs

TM : ISOTOP is a trademark of SGS-THOMSON Microelectronics.

May 1993 Ed : 2A

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
Rth (j-c)	Junction to case	Per diode	0.9	°C/W
		Total	0.5	
Rth (c)	Coupling		0.1	°C/W

When the diodes 1 and 2 are used simultaneously :

Tj-Tc(diode 1)=P(diode1) x Rth(j-c)(Per diode) + P(diode 2) x Rth(c)

ELECTRICAL CHARACTERISTICS (Per diode) STATIC CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	V _R = V _{RRM}	T _j = 25°C			400	μΑ
			T _j = 100°C			70	mA
VF **	Forward voltage drop	IF = 80 A	T _j = 100°C			0.90	V
		IF = 40 A	Tj = 100°C		0.63	0.80	
		IF = 80 A	Tj = 25°C			0.99	

Pulse test : * tp = 5 ms, duty cycle < 2 %

** tp = 380 $\mu s,$ duty cycle < 2 %

To evaluate the conduction losses use the following equation : P = 0.7 x $I_{F(AV)}$ + 0.0025 x $I_{F}^{2}(RMS)$

Fig. 1 : Average forward power dissipation versus average forward current. (Per diode)

Fig. 2 : Average current versus ambient temperature. (duty cycle : 0.5) (Per diode)

Fig. 3 : Non repetitive surge peak forward current versus overload duration. (Maximum values) (Per diode)

Fig. 5 : Reverse leakage current versus reverse voltage applied. (Typical values) (Per diode)

Fig. 7 : Forward voltage drop versus forward current. (Maximum values) (Per diode)

Fig. 4 : Relative variation of thermal transient impedance junction to case versus pulse duration.

Fig. 6 : Junction capacitance versus reverse voltage applied. (Typical values) (Per diode)

PACKAGE DATA (millimeter) **ISOTOP** (Plastic)

Cooling method : C Marking : Type number Weight : 28 g. (without screws) Electrical isolation : 2500V_(RMS) Capacitance : < 45 pF Inductance : < 5 nH

- Recommended torque value : 1.3 N.m (MAX 1.5 N.m) for the 6 x M4 screws. (2 x M4 screws recommended for mounting the package on the heatsink and the 4 screws given with the screw version).

- The screws supplied with the package are adapted for mounting on a board (or other types of terminals) with a thickness of 0.6 mm min and 2.2 mm max.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

