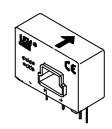


Current Transducer LA 125-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Primary nominal r.m.s. current 125 Α I_{PN} Primary current, measuring range 0 .. ± 200 Α R_{M} Measuring resistance @ $T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}C$ @ ± 125 A _{max} with ± 12 V 52 14 50 Ω @ ± 200 A _{max} 5 20 14 18 Ω $@ \pm 125 A_{max}$ 25 74 40 72 Ω with ± 15 V $@ \pm 200 A_{max}$ 25 34 $40^{1)}~40^{1)}~\Omega$ Secondary nominal r.m.s. current 125 mΑ 1:1000 Conversion ratio Supply voltage (± 5 %) ± 12 .. 15 Current consumption 16(@ ±15 V)+I_s m A R.m.s. voltage for AC isolation test, 50 Hz, 1 mn k۷ Accuracy - Dynamic performance data


Accuracy Bynamic performance data								
X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$	@ ± 15 V (± 5 %)	± 0.60		%			
		@ ± 12 15 V (± 5 %)	± 0.80		%			
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity		< 0.15		%			
			Тур	Max				
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			Max ± 0.40	m A			
I _{OM}	Residual current ² @ $I_p = 0$, after an overload of $3 \times I_{pN}$			± 0.50	m A			
I _{OT}	Thermal drift of I o	0°C + 70°C	± 0.15	± 0.50	m A			
	, and the second	- 40°C + 85°C	± 0.30	± 0.95	m A			
t _{ra}	Reaction time @ 10 % of Ip	N	< 500		ns			
t,	Response time 3) 4) @ 90 %	of I _{PN}	< 1		μs			
di/dt	di/dt accurately followed 4)		> 200		Aμs			
f	Frequency bandwidth 4) (- 1	dB)	DC 1	100	kHz			

ī	Frequency bandwidth 7 (- 1 db)		DC 100	KΠZ
G	eneral data			
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 40 + 85	°C
T s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	32	Ω
-		$T_A = 85^{\circ}C$	33.5	Ω
m	Mass		40	g
	Standards 5)		EN 50178	

Notes: 1) Measuring range limited to ± 180 A_{max}

- 2) The result of the coercive field of the magnetic circuit.
- 3) With a di/dt of 100 A/µs
- ⁴⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.
- ⁵⁾ A list of corresponding tests is available.

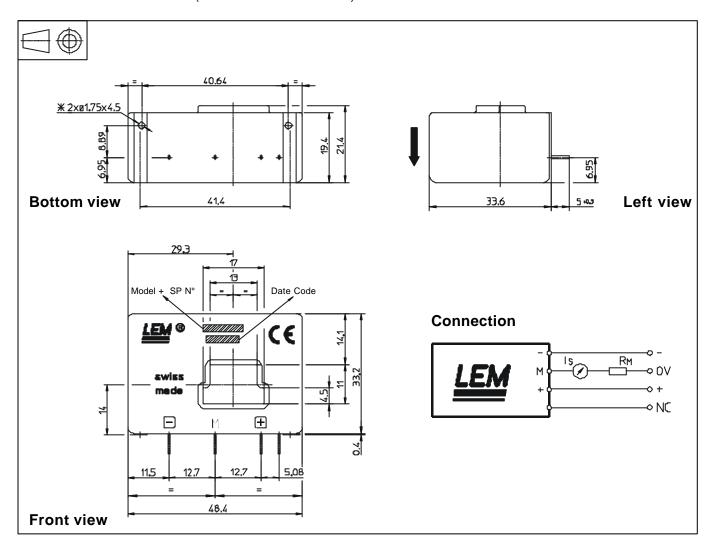
 $I_{DN} = 125 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

021210/9

Dimensions LA 125-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.2 mm
Primary through-hole 17 x 11 mm
Fastening & connection of secondary 4 pins 0.63 x 0.56 mm

Recommended PCB hole 0.9 m

 Supplementary fastening Recommended PCB hole Recommended screws Fastening torque, max. 0.9 mm 2 holes Ø 1.75 mm 2.4 mm PT KA 22 x 6 0.5 Nm or .37 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.