Current Transducer LA 25-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

CE

E	lectrical data				
I _{PN} I _P R _M	Primary nominal r.m.s. Primary current, measu Measuring resistance	25 0±36 R _{M min} R _{M ma}		At At	
IVI	with ± 15 V	@ ± 25 At _{max} @ ± 36 At _{max}	100 100	320 190	Ω Ω
Ι _{SN} Κ _N Γ _C Γ _C Γ _b	Secondary nominal r.m Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC is R.m.s. rated voltage ¹),	25 1-2-3-4-5 : 100 ± 15 10 + I _s 2.5 600 1700		m A 00 M A k V V V	
Α	ccuracy - Dynamic p	performance data			
х е _	Typical accuracy @ I _{PN} Linearity	, T _A = 25°C	± 0.5 < 0.2		% %
I _O I _{OM} I _{OT}	Offset current ²⁾ @ $I_p = 0$ Residual current ³⁾ @ I_p Thermal drift of I_0	0, T _A = 25°C = 0, after an overload of 3 x I _F 0°C + 25°C + 25°C + 70°C	Typ ± 0.05 ± 0.05 ± 0.06 ± 0.10	± 0.15 ± 0.25	m A m A m A m A

Response time⁴⁾ @ 90 % of I_{PN} t, di/dt di/dt accurately followed Frequency bandwidth (- 1 dB)

General data							
T _A	Ambient operating temperature	0 + 70	°C				
Ts	Ambient storage temperature	- 25 + 85	°C				
R _P	Primary resistance per turn @ T _A = 25°C	< 1.25	mΩ				
R _s	Secondary coil resistance @ $T_A = 70^{\circ}C$	110	Ω				
R _{IS}	Isolation resistance @ 500 V, T _A = 25°C	> 1500	MΩ				
m	Mass	22	g				
	Standards 5)	EN 50178(97	EN 50178(97.10.01)				

< 1

> 50

DC .. 150

I_{PN} = 5-6-8-12-25 A

Features

- · Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

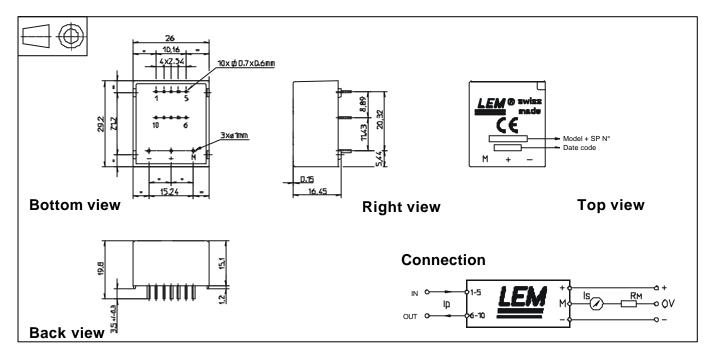
- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications

μs

Alµs

kHz


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Notes : 1) Pollution class 2

f

- ²⁾ Measurement carried out after 15 mn functioning
- ³⁾ The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number ofprimary turns	Primary nominal I _{PN} [A]	current maximum I _₽ [A]	Nominal output current I _{SN} [mA]	Turns ratio K _N	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 0
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mechanical characteristics

- General tolerance
- ± 0.2 mm
- Fastening & connection of primary
- y 10 pins 0.7 x 0.6 mm
- Fastening & connection of secondary
 Recommended PCB hole
 - y 3 pins Ø 1 mm 1.2 mm

Remarks

- + ${\bf I}_{\rm S}$ is positive when ${\bf I}_{\rm p}$ flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.