Surface Mount Microwave Schottky Mixer Diodes

Technical Data

Features
- Optimized for use at 10-14 GHz
- Low Capacitance
- Low Conversion Loss
- Low RD
- Low Cost Surface Mount Plastic Package

Description/Applications
These low cost microwave Schottky diodes are specifically designed for use at X/Ku-bands and are ideal for DBS and VSAT downconverter applications. They are available in SOT-23 and SOT-143 standard package configurations.

Absolute Maximum Ratings[^1], \(T_A = +25^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_T)</td>
<td>Total Device Dissipation[^2]</td>
<td>mW</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>(P_{IV})</td>
<td>Peak Inverse Voltage</td>
<td>V</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Junction Temperature</td>
<td>(^\circ C)</td>
<td>—</td>
<td>+150</td>
</tr>
<tr>
<td>(T_{STG}, T_{op})</td>
<td>Storage and Operating Temperature</td>
<td>(^\circ C)</td>
<td>-65</td>
<td>+150</td>
</tr>
</tbody>
</table>

Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to the device.
2. Measured in an infinite heat sink at \(T_{CASE} = 25^\circ C \). Derate linearly to zero at 150\(^\circ C\) per diode.
DC Electrical Specifications, $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BR}</td>
<td>Breakdown Voltage</td>
<td>$I_R = 10 , \mu A$</td>
<td>V</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_T</td>
<td>Total Capacitance</td>
<td>$V_R = 0 , V$, $f = 1 , MHz$</td>
<td>pF</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔC_T</td>
<td>Capacitance Difference</td>
<td>$V_R = 0 , V$, $f = 1 , MHz$</td>
<td>pF</td>
<td>—</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_D</td>
<td>Dynamic Resistance</td>
<td>$I_F = 5 , mA$</td>
<td>Ω</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR_D</td>
<td>Dynamic Resistance Difference</td>
<td>$I_F = 5 , mA$</td>
<td>Ω</td>
<td>—</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>$I_F = 1 , mA$</td>
<td>mV</td>
<td>250</td>
<td>350</td>
<td>250</td>
<td>350</td>
<td>250</td>
<td>350</td>
<td>250</td>
</tr>
<tr>
<td>ΔV_F</td>
<td>Forward Voltage Difference</td>
<td>$I_F = 1 , mA$</td>
<td>mV</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead Code
- R1
- 2R
- R5
- R7

Package Marking Code in White
- HSMS-8101
- HSMS-8202
- HSMS-8205
- HSMS-8207

RF Electrical Parameters, $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Units</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_c</td>
<td>Conversion Loss at 12 GHz</td>
<td>dB</td>
<td>6.3</td>
</tr>
<tr>
<td>Z_{IF}</td>
<td>IF Impedance</td>
<td>Ω</td>
<td>150</td>
</tr>
<tr>
<td>SWR</td>
<td>SWR at 12 GHz</td>
<td>—</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Note:
DC Load Resistance = 0 Ω; LO Power = 1 mW.

SPICE Parameters

<table>
<thead>
<tr>
<th>$I_s = 4.6 \times 10^{-8}$</th>
<th>$E_o = 0.69$</th>
<th>$TT = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_s = 6$</td>
<td>$C_{io} = 0.18 \times 10^{-12}$</td>
<td></td>
</tr>
<tr>
<td>$N = 1.09$</td>
<td>$P_b (V_J) = 0.5$</td>
<td></td>
</tr>
<tr>
<td>$B_v = 7.3$</td>
<td>$M = 0.5$</td>
<td></td>
</tr>
<tr>
<td>$I_{BV} = 10 \times 10^{-5}$</td>
<td>$FC = 0.5$</td>
<td></td>
</tr>
</tbody>
</table>

Linear Equivalent Circuit

```
1.0 nH 1.3 nH 6 $\Omega$ 0.08 pF
```

Self Bias

<table>
<thead>
<tr>
<th>I_{Self}</th>
<th>R_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>263</td>
</tr>
<tr>
<td>2.5 mA</td>
<td>142</td>
</tr>
</tbody>
</table>
Typical Performance, $T_c = 25°C$

![Graphs showing typical forward current vs. forward voltage at three temperatures.](image)

Ordering Information
Specify part number followed by option. For example:

- **HSM - 8101 #L30** = Bulk
- **HSM - 8101 #L31** = 3K pc. Tape and Reel Option

Profile Option Descriptions

- **#L30** = Bulk
- **#L31** = 3K pc. Tape and Reel, Device Orientation Figures 4, 5

Tape and Reeling conforms to Electronic Industries RS-481, “Taping of Surface Mounted Components for Automated Placement.”

Device Orientation

![Diagram showing device orientation](image)

- **USER FEED DIRECTION**
- **CARRIER TAPE**
- **REEL**
- **COVER TAPE**

![Graph showing typical conversion loss vs. local oscillator power.](image)

Figure 3. Typical Conversion Loss vs. Local Oscillator Power.

Figure 1. Typical Forward Current vs. Forward Voltage at Three Temperatures.

Figure 2. Typical VF Match, HSMS-820X Pairs and Quads.

Figure 4. Option L31 for SOT-23 Packages.

Figure 5. Option L31 for SOT-143 Packages.
Package Characteristics
Lead Material .. Alloy 42
Lead Finish .. Tin-Lead 85-15%
Maximum Soldering Temperature 260°C for 5 seconds
Minimum Lead Strength ... 2 pounds pull
Typical Package Inductance .. 2 nH
Typical Package Capacitance 0.08 pF (opposite leads)

Package Dimensions
Outline 23 (SOT-23)

Outline 143 (SOT-143)

For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or 408-654-8675
Far East/Australasia: Call your local HP sales office.
Japan: (81 3) 3335-8152
Europe: Call your local HP sales office.

Data subject to change.
Copyright © 1997 Hewlett-Packard Co.
Obsoletes 5965-8842E
Printed in U.S.A. 5966-0929E (9/97)