MOSFET - N-Channel Shielded Gate PowerTrench®

150 V, 10.9 mΩ, 74.3 A

NTP011N15MC

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 10.9 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 41 \text{ A}$
- 50% Lower Qrr than other MOSFET Suppliers
- Lowers Switching Noise/EMI
- 100% UIL Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

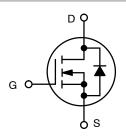
Typical Applications

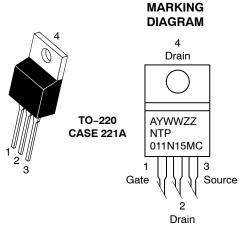
- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	150	٧
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	٧
Continuous Drain Current R _{θJC} (Note 2)	Steady	Steady - area		74.3	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State T _C = 25°C		P _D	136.4	W
Continuous Drain Current R _{0JA} (Notes 1, 2)	Steady State T _A = 25°C		I _D	9.8	Α
Power Dissipation R _{θJA} (Notes 1, 2)	State		P _D	2.4	W
Pulsed Drain Current	T _C = 25°	C, t _p = 100 μs	I _{DM}	374	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy (I _L = 14 A _{pk} , L = 3 mH)			E _{AS}	294	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in2, 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	10.9 m Ω @ 10 V	74.3 A

N-CHANNEL MOSFET

NTP011N15MC = Specific Device Code

A = Assembly Location

Y = Year
WW = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP011N15MC	TO-220 (Pb-Free)	800 / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	1.1	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	62.5	

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		150			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			83		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$: 223 μA	2.5		4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 223 μA, ref	to 25°C		-8.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 41 A		8.7	10.9	mΩ
		V _{GS} = 8 V, I _D	= 20 A		9.3	12.6	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D	= 41 A		85		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE					•	
Input Capacitance	C _{ISS}				2810		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz	z, V _{DS} = 75 V		840		pF
Reverse Transfer Capacitance	C _{RSS}				14		1
Gate-Resistance	R_{G}				0.8	1.6	Ω
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 75 V; I _D = 41 A			37		nC
Threshold Gate Charge	Q _{G(TH)}				9.1		
Gate-to-Source Charge	Q _{GS}				15		
Gate-to-Drain Charge	Q_{GD}				6.5		
Plateau Voltage	V_{GP}				5.4		V
Output Charge	Q _{OSS}	V _{DD} = 75 V, V _{GS} = 0 V			95		nC
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				19		
Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 75 V, I_{D} = 41 A, R_{G} = 4.7 Ω			14		ns
Turn-Off Delay Time	t _{d(OFF)}				28		
Fall Time	t _f				5.1		
DRAIN-SOURCE DIODE CHARACTERISTIC	s						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 41 A	T _J = 25°C		0.92	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD} = 75 V dI _S /dt = 300 A/μs, I _S = 41 A			49		ns
Reverse Recovery Charge	Q _{RR}				210		nC
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, V_{DD} = 75 \text{ V}$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}, I_S = 41 \text{ A}$			36		ns
Reverse Recovery Charge	Q _{RR}				421		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

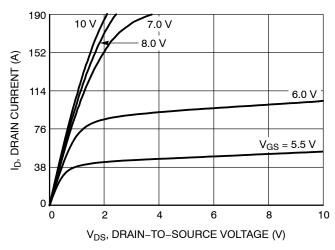


Figure 1. On-Region Characteristics

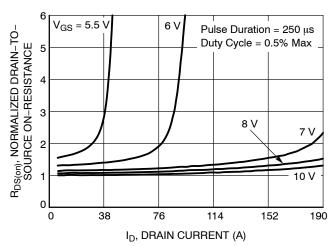


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

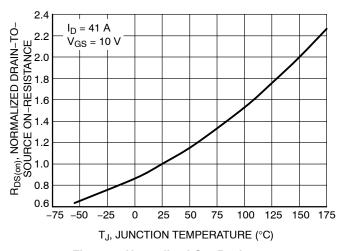


Figure 3. Normalized On–Resistance vs. Junction Temperature

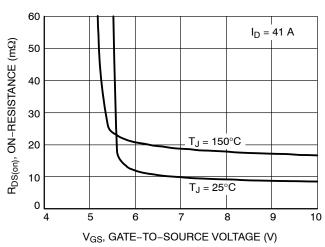


Figure 4. On-Resistance vs. Gate-to-Source Voltage



Figure 5. Transfer Characteristics

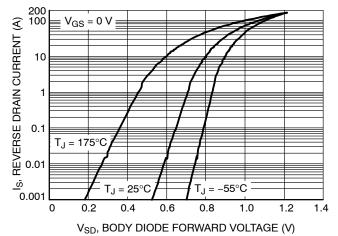


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS

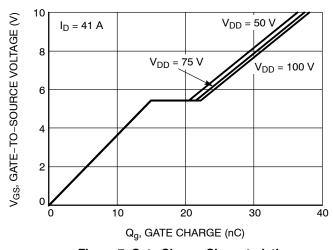


Figure 7. Gate Charge Characteristics

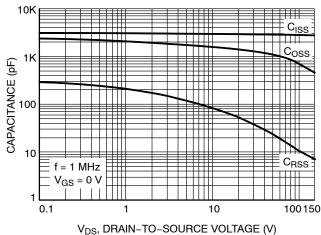


Figure 8. Capacitance vs. Drain-to-Source
Voltage

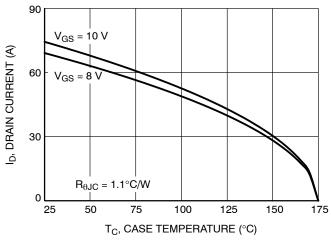


Figure 9. Drain Current vs. Case Temperature

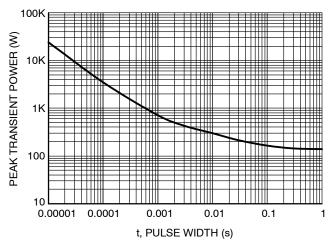


Figure 10. Peak Power

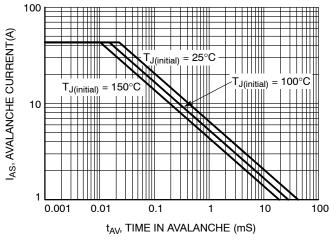


Figure 11. Unclamped Inductive Switching Capability

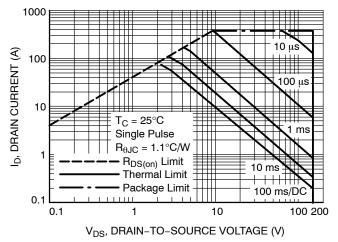


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

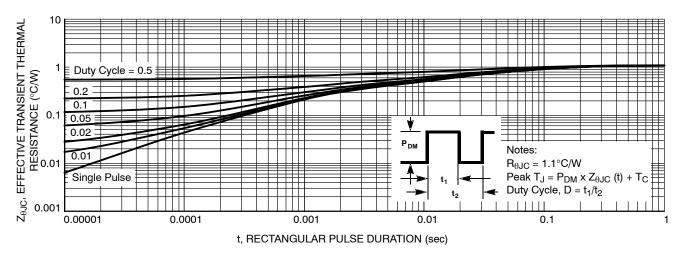
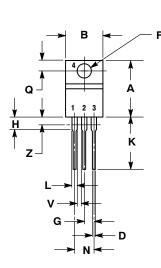
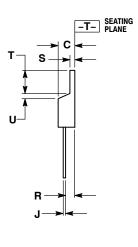




Figure 13. Transient Thermal Impedance

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5:

- PIN 1. GATE
 - 2. DRAIN
 - SOURCE 3. DRAIN

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative