
All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

EZ-USB Advanced Development Kit Users
Guide version 1.1
© 2003 Cypress Semiconductor

Table of Contents

Part I Introduction 3

... 31 Cypress USB Studio

.. 3Cypress Generic USB Driver

.. 3Cypress USB Class Library API

.. 4Cypress USB Console

.. 4Cypress GPIF Designer

Part II Development Kit Contents 4

... 41 Bin

... 52 Doc

... 53 Drivers

... 64 Examples

... 75 Hardware

... 86 Help

... 87 Target

... 88 Util

... 89 Windows

Part III EZ-USB Firmware Frameworks 9

... 91 FrameWorks Overview

... 122 Building the FrameWorks

... 123 Function Hooks

.. 13Task Dispatcher Functions

... 13TD_Init()

... 13TD_Poll()

... 13TD_Suspend()

... 13TD_Resume()

.. 13Device Request Functions

... 13DR_GetDescriptor()

... 13DR_GetInterface()

... 14DR_SetInterface()

... 14DR_GetConfiguration()

... 14DR_SetConfiguration()

... 14DR_GetStatus()

... 14DR_ClearFeature()

... 14DR_SetFeature()

... 14DR_VendorCmnd()

.. 15ISR Functions

... 15ISR_Sudav()

... 15ISR_Sof()

... 15ISR_Ures()

... 15ISR_Susp()

EZ-USB Advanced Development Kit Users Guide version 1.1I

© 2003 Cypress Semiconductor

... 15ISR_Highspeed()

... 164 EZ-USB Library

.. 16Building the Library

.. 16Library Functions

... 17EZUSB_Delay()

... 17EZUSB_Discon()

... 17EZUSB_GetStringDscr()

... 17EZUSB_Susp()

... 17EZUSB_Resume()

... 17I2C Routines

Part IV Firmware Download Drivers 18

... 191 Customizing For Your Device

Part V Tutorials 20

... 211 Verifying Correct Operation - Get Descriptor

... 222 Running the dev_io example

... 253 Debug the dev_io example

... 304 Rebuild dev_io example

... 325 Setting a debug breakpoint

... 356 Running the bulkloop example

IIContents

II

© 2003 Cypress Semiconductor

EZ-USB Advanced Development Kit Users Guide version 1.13

© 2003 Cypress Semiconductor

1 Introduction

Welcome to the EZ-USB Advanced Development Kit (DVK). This guide is a good place to get started
with the DVK. Included are details of the DVK software contents and a tutorial to get you on the way in
developing your EZ-USB based peripheral.

For those of you familiar with previous EZ-USB DVKs, this one should be quite familiar. It shares the
same design philosophy and directory structure as previous DVKs. However, it has some new
features that will allow for more easy and robust designs. Specifically, this DVK includes components
from the new Cypress USB Studio.

The EZ-USB Advanced DVK is designed to work only with the EZ-USB FX2LP and FX1 chips. The
DVK does not support older Cypress EZ-USB chips such as the EZ-USB AN21xx, FX, and FX2.

Section Description

Development Kit Contents Describes the directories and files that are installed on your system
after running the DVK Setup program

EZ-USB Firmware Frameworks The Firmware FrameWorks is template 8051 source code that can
be customized for your device

Firmware Download Driver Devices that use ReNumeration require a special driver to perform
firmware download. This section describes the example download
driver that is part of the DVK and has instructions for customizing the
driver for your device.

Tutorials This section contains step by step tutorials that demonstrate
common development tasks

1.1 Cypress USB Studio

The EZ-USB DVK includes the Cypress USB Studio. Cypress USB Studio is a collection of
components that enable rapid and robust development of a USB peripheral and associated host
software and device drivers. The following sections describe the components that comprise the
Cypress USB Studio.

1.1.1 Cypress Generic USB Driver

The Cypress Generic USB Driver is a robust high-performance Windows driver used for all device
interaction in the DVK. You may also distribute the driver with your EZ-USB based device.
Documentation for the driver is installed as part of the DVK and is available from the Windows Start
menu under Cypress Help.

The driver is distributed in binary form only. Contact Cypress for information on source code licensing.

1.1.2 Cypress USB Class Library API

The Cypress USB Class Library API (Application Programming Interface) or CyApi is a C++ class
library that simplifies access to your device via the Cypress Generic USB Driver. The DVK installation
includes Microsoft and Borland versions of the library. Documentation for CyApi is installed as part of
the DVK and is available from the Windows Start menu under Cypress Help.

The source code for the CyBulk and CyDesc examples located in the \cypress\usb\util directory
demonstrate use of CyApi.

Introduction 4

© 2003 Cypress Semiconductor

1.1.3 Cypress USB Console

The Cypress USB Console (CyConsole) is a Windows Application that you can use to exercise your
device via the Cypress Generic USB Driver. CyConsole provides a generic USB interface as well as a
special interface option for accessing features unique to EZ-USB. Documentation for CyConsole is
accessible from the application itself or from the Windows Start menu under Cypress Help. Also, the
Tutorials section at the end of this guide demonstrates some of the CyConsole features.

1.1.4 Cypress GPIF Designer

Cypress GPIF Designer allows a USB developer to easily create and modify the waveforms
descriptors required to configure the GPIF. The GPIF (General Programmable InterFace) is a feature
of EZ-USB that provides a highly configurable and flexible glueless peripheral interface allowing the
highest possible bandwidth to be achieved over the physical layer.

GPIF Designer is an optional part of the EZ-USB DVK installation and is included in a separate folder
on the distribution CD and can also be downloaded from the Cypress website. You can access it from
the Start menu under Cypress.

2 Development Kit Contents

This section provides a detailed description and explanation of the structure and content of the EZ-
USB Development Kit as it exists on the users PC after the installation from the EZ-USB DVK CD.

The following image shows the root level tree that is on the user system after DVK installation. This
assumes that the user chose to install all DVK components (default). Subsequent sections will detail
the contents of each sub-directory.

The DVK installer also installs several development board driver related files in the Windows directory
tree. These files are discussed in the Windows section below.

2.1 Bin

This directory contains utility programs utilized within the EZ-USB Development Kit. Note that copies of
these programs may exist in other directories within the users PC.

Files in the Bin directory:

EZ-USB Advanced Development Kit Users Guide version 1.15

© 2003 Cypress Semiconductor

cyconsole.exe Cypress USB Console. The main GUI in the DVK. Cyconsole
accesses devices bound to the Cypress Generic Driver.

cyconsole.chm Help file for CyConsole

cyscript.exe Utility for converting a firmware .HEX file into a download script file.

hex2bix.exe This file converts the .hex output file to a .bix file that can be
downloaded directly into target memory. It also converts the .hex
output to a .iic file that can be directly loaded into an EEPROM.

setenv.bat This batch file sets the environment for the command-line Keil Tools.

cybulk.exe This is a bulk loopback test application that exercises the EZ-USB
bulk endpoints. This test consists of a windows application that may
be used to loop data to and from any device using the Cypress
Generic Driver, and supporting bulk endpoints.

2.2 Doc

This directory contains the sub-directories and support files for the documentation of the EZ-USB
Advanced Development Kit.

FX2LP Contains the Technical Reference Manual, Datasheet, Errata, and
other documentation specific to the EZ-USB FX2LP chip. The
Technical Reference Manual is common to both FX2LP and FX1.

FX1 Contains the Datasheet, Errata, and other documentation specific to
the EZ-USB FX1 chip.

General Contains general DVK documentation - such as this guide. Printable
PDF versions of the various help files in the kit are also located here.

2.3 Drivers

This directory tree contains the Cypress Generic USB Driver (CyUsb), the CyApi Class Library (CyApi),
and the firmware download driver example (CyLoad).

Drivers\CYAPI Contains documentation, library files (both Microsoft and Borland),
and header files for the Cypress Generic USB Driver Class Library

Drivers\CYUSB Contains documentation, driver binaries, .INF files, and scripts
associated with the Cypress Generic USB Driver

Drivers\CyLoad Contains an example for building a custom firmware download
driver. See the section "Firmware Download Drivers" for more
information.

Files in Drivers\cyusb:

Development Kit Contents 6

© 2003 Cypress Semiconductor

cymon.inf.bak .INF file for the Development Board. This .INF matches the VID/PID
of the development board to the CYUSB driver and automatically
downloads the Keil monitor. [note1]

cyusb.chm Help file for the Cypress Generic USB Driver. Contains details of the
low level driver interface.

cyusb.inf.bak .INF file for the generic FX2LP VID/PID and many of the firmware
examples. [note1]

cyusb.sys The Windows XP/2000 driver binary for the Cypress Generic USB
Driver.

cyusbme.sys The Windows ME driver binary for the Cypress Generic USB Driver.

mon.spt Script file for downloading the Keil monitor to the Development
Board.

inc\cyioctl.h defines IOCTLs and structures for non-Class Library access to the
Generic USB Driver

[note1] The .INF files stored in this directory are provided for the purpose of installing the Cypress
Generic USB driver on a system that the DVK software has not been installed on. The DVK installer
automatically pre-copies .INF and .SYS files for the EZ-USB development board to the \windows\inf
and \windows\system32\drivers directories. To avoid user user interaction, the pre-copied versions of
the .INF files do not contain a CopyFiles directive. The .INF files in this directory do contain a
CopyFiles directive and are appropriate for plug-and-play installation of the driver files from floppy or
cd-rom. The files have been renamed with a .BAK extension to prevent the Add New Hardware
WIzard from attempting to use these .INF files on systems where the DVK software has been installed.
For more information on the .INF file format, consult the Microsoft Windows DDK documentation.

2.4 Examples

This directory contain example 8051 Code for the EZ-USB FX2LP and FX1. See the readme.txt file in
each directory for more detailed information on the example. The FX2LP tree is shown here. A
separate FX1 directory contains the same examples for FX1. The firmware in the FX2LP and FX1
directories is for the most part identical, since the two chips are code and binary compatible.

EZ-USB Advanced Development Kit Users Guide version 1.17

© 2003 Cypress Semiconductor

a3load Contains firmware that handles vendor specific SETUP command
(0xA3). This command performs a download to external RAM.

bulkext Contains a bulk loopback test that exercises the EZ-USB bulk
endpoints. Use the windows application cybulk.exe to drive the
firmware. The loopback is performed using the external auto pointer.
Data is copied from the OUT endpoint buffer to external RAM and
then to the IN endpoint buffer. It loops back EP2OUT to EP6IN and
EP4OUT to EP8IN

bulkloop Contains a bulk loopback test that exercises the EZ-USB bulk
endpoints. Use the windows application ..\CYPRESS\USB\Bin\
cybulk.exe to drive the firmware. It loops back
EP2OUT to EP6IN and EP4OUT to EP8IN.

bulksrc Contains bulk endpoint endless source/sink firmware. It may be
driven using the CyConsole or CyBulk.
EP2OUT will always accept a bulk OUT
EP4OUT will always accept a bulk OUT
EP6IN will always return a 512 byte packet, 64 bytes at full-speed.
Two different packets are
returned: All 0x02's and all 0x03's
EP8IN will continuously return the packet most recently written to
EP4OUT

dev_io Contains the source files to build simple development board I/O
sample. The purpose of this software is to demonstrate how to use
the buttons and LED on the EZ-USB developer's kit. See the
readme.txt file located within the directory for details on running the
test.

EEPROM IMAGES Contains the default values for EEPROM for the Dev Kit board.

EP_Interrupts Bulk loopback firmware that demonstrates use of endpoint interrupts.

extr_intr Firmware that demonstrates external interrupt handling.

hid_kb Example firmware that emulates a HID-class keyboard using the
buttons and seven-segment display on the DVK board.

ibn Contains firmware to perform bulk loopback of EP2OUT to EP6IN
and
EP4OUT to EP8IN using the IBN (In Bulk Nak) interrupt to initiate the
transfer. See the readme.txt file located within the directory for
details on running the test.

LEDCycle Simple firmware example to demonstrate use of the general purpose
indicator LEDs (D2,D3,D4,D5) on the Development Kit board.

pingnak Contains firmware to perform bulk loopback of EP2OUT to EP6IN
and
EP4OUT to EP8IN using the PING NAK interrupt to initiate the
transfer. Use the windows application cybulk.exe to drive the
firmware.

vend_ax Contains the source files to build a vendor specific command
sample. The purpose of this software is to demonstrate how to
implement vendor specific commands. See the readme.txt file for
details.

memtest Memory test firmware example. Tests on-chip and external RAM.

2.5 Hardware

The subdirectories located within this directory contain schematics, GAL code, and design files for the
Development Board.

Development Kit Contents 8

© 2003 Cypress Semiconductor

2.6 Help

Contains Windows Help files for various DVK components. These files may be duplicated elsewhere
in the installation. There are also links to the help files under Cypress in the Windows Start Menu.

2.7 Target

The following subdirectories located within this directory contain files and utilities for building the EZ-
USB Firmware FrameWorks. These files are described in detail in the section EZ-
USB Firmware FrameWorks.

Fw Firmware FrameWorks 8051 source code. Copy these files to a new
directory to begin your device firmware.

Inc C and assembly header files for EZ-USB. These files contain
register declarations, macros, and function prototypes for the
Firmware FrameWorks.

Lib Contains the compiled EZ-USB Library and source code.

Monitor Contains alternate versions of the Keil debug monitor to use either
serial port for debug.

2.8 Util

This directory contains the Windows source files for various utilities that are part of the DVK
installation. To compile these applications you will need Microsoft Developers Studio 6.0 or later.

2.9 Windows

In order to simplify first-time plug-in of the development board hardware, the DVK installer pre-copies
several files to the Windows directory tree. Depending on the version of Windows installed on your
system, the actual name of the root Windows directory may be different (e.g. \Windows, \WinMe,
\WinNt, etc.). In the following descriptions the Windows folder will be referred to generically as
\Windows.

When Windows encounters a USB device for the first time, it must identify the device and determine

EZ-USB Advanced Development Kit Users Guide version 1.19

© 2003 Cypress Semiconductor

the appropriate driver to load for that device. Devices are identified by an INF file that will tell Windows
which driver to install. Upon first time device plug-in, Windows will invoke the "Add New Hardware
Wizard". If the device has built in support within Windows, user interaction is not required. This would
occur for a device in a Windows supported device class (such as a HID-class mouse) or with a custom
device that Microsoft has chosen to support in the Windows distribution. All other device plug-ins will
usually result in user interaction to point Windows to the location where the INF and driver files for the
device are located. This could be at some location on the hard drive or on removable media such as a
CD.

The DVK installer pre-copies the INF and driver files to avoid user interaction with the "Add New
Hardware Wizard". Without this pre-copy, you would need to direct Windows to the appropriate
directory in the DVK installation tree: c:\cypress\usb\driver\cyusb by default. In order to avoid all user
interaction, the INF files that are pre-copied are slightly different than the standard plug-and-play INF
file that would be distributed on removable media. Specifically, the "copyfiles" section of the INF files
have been removed, since the necessary files have already been pre-copied. The special versions of
the INF files are identical to the same files in the DVK driver directory, except that the "copyfiles"
section has been commented out, and "pre" has been appended to the filename.

Be aware that pre-copy of driver files needs to be handled differently for end-user devices. Microsoft
provides an API for correctly pre-copying driver files. The DVK installer does not use these APIs.
Consult the Windows DDK documentation for more information on driver distribution and Setup APIs.

Files pre-copied to the Windows tree:

\windows\inf\cyusbpre.inf INF file for the default FX2LP and FX1 VID/PID. Also for the
VID/PID of the example firmware included in the DVK.

\windows\inf\cymonpre.inf INF file for the FX2LP and FX1 Development Boards. This
INF file automatically loads the Keil debug monitor using the
driver script feature.

\windows\system32\drivers\cyusb.sysThe Cypress Generic USB Device Driver binary

\windows\system32\cymon\mon.spt The monitor script file used by cymonpre.inf. This file
contains the script to download the Keil debug monitor to the
development board.

3 EZ-USB Firmware Frameworks

The Firmware FrameWorks simplifies and accelerates USB peripheral development using the EZ-USB
chip. The FrameWorks implements 8051 code for EZ-USB chip initialization, USB standard device
request handling, and USB suspend power management services for the user. The user simply
provides a USB descriptor table, and code to implement the peripheral function to complete a fully
compliant USB device. The FrameWorks provides function hooks and example code to help with this
process. The FrameWorks uses the EZ-USB Library to carry out common functions and for EZ-USB
register definitions. The Library is also documented in this section.

Most of the firmware examples in the EZ-USB DVK are based on the FrameWorks.

3.1 FrameWorks Overview

The FrameWorks implements the basic functionality required of a USB compliant peripheral device. By
linking a minimal descriptor table, it is possible to build a fully compliant Device Framework (USB spec
Chapter 9) device without writing a line of code. By linking code associated with the provided hooks, it
is possible to incrementally build a fully functional device.

EZ-USB Firmware Frameworks 10

© 2003 Cypress Semiconductor

The FrameWorks implements a simple co-operative tasking executive (See figure below). At start-up,
the FrameWorks first initializes all of its internal state variables. It then calls the user initialization
function TD_Init(). Upon return, the FrameWorks initializes the USB interface to the unconfigured
state and enables interrupts. The firmware then ReNumerates and starts the cooperative task
dispatcher. The task dispatcher repeatedly performs the following tasks in the given order.

1. Calls user function TD_Poll().
2. Determines if a standard device request is pending. If so, it parses the received command and

responds accordingly. The FrameWorks automatically handles the standard USB requests but
allows the user to override the default behavior for all requests.

3. Determines if the USB core has reported a USB suspend event. If so, it calls the user function
TD_Suspend().

EZ-USB USB interrupts are handled by the FrameWorks. It provides hooks for user code notification of
USB events.

EZ-USB Advanced Development Kit Users Guide version 1.111

© 2003 Cypress Semiconductor

Call TD_Poll()

Parse and
implement Device

Request
Has a Setup
Packet been
received ?

SetupCommand()

Call

FALSE

Is the USB Bus
Idle flag set ?

Suspend
ProcessorTD_Suspend ()

Yes TRUE

Yes

No

Yes

No

TD_Resume()

Power on Reset

Initialize State
Variables

Call TD_Init()

Enable Interrupts

EZ-USB Firmware Frameworks 12

© 2003 Cypress Semiconductor

3.2 Building the FrameWorks

The FrameWorks was written using the Keil uVision2 Compiler. It has been tested only with these
tools. The source uses several Keil C extensions, so compatibility with other compilers is not
guaranteed.

For your custom device firmware, you can either start with one of the firmware examples or start with
the "clean" FrameWorks code. This code is located under the c:\cypress\usb\target\fw directory. The
sub-directory is chip dependent. For FX2LP and FX1, the firmware is located in the "LP" sub-directory.
Before editing the firmware, you should create a new directory for your project and copy the various
FrameWorks source files into it.

The Keil tools include both DOS command line tools and a development IDE. You can compile your
code using either an MS-DOS batch file or a uVision2 Project. The DVK includes examples of both
methods. The tutorial section of this guide demonstrates building a project using the uVision2 IDE. If
you plan to use the command line tools to build firmware, you must set up a few environment variables
and add the Keil tools to your path. After starting the Windows Command Prompt, run setenv.bat
(located in the bin directory) to setup the build environment. This batch file assumes that you have
installed the DVK and Keil tools in the default directories.

The following table lists and describes the main files in the FrameWorks:

FW.C This is the main FrameWorks source file. It contains main(), the task
dispatcher, and the SETUP command handler. For most firmware
projects, there is no need to modify this file

PERIPH.C This source file contains initialization and task dispatch functions that
are called from fw.c. This is where you will customize the
FrameWorks for your specific device. This file also contains stub
interrupt service routine (ISRs) functions for all of the USB (INT2)
and GPIF (INT4) interrupts

DSCR.A51 Assembly file that contains your device's custom descriptors

FX2.H Head file containing common EZ-USB constants, macros, data
types, and library function prototypes

FX2REGS.H EZ-USB register declarations and bit mask constants

SYNCDLY.H Contains the synchronization delay macro.

EZUSB.LIB EZ-USB Library object code. See the EZ-USB Library section for
more details

USBJMPTB.OBJ Object code that contains the ISR jump table for USB and GPIF
interrupts

BUILD.BAT Batch file for compiling/linking the firmware using the Keil command-
line tools

FW.UV2 Keil uVision2 project file for compiling/linking the firmware

3.3 Function Hooks

The FrameWorks provides function hooks to simplify the addition of user code. The functions are
divided into three categories: those called by the task dispatcher, the standard device request parser,
and the USB interrupt handler. Each section following contains a complete list of functions and their
descriptions.

EZ-USB Advanced Development Kit Users Guide version 1.113

© 2003 Cypress Semiconductor

3.3.1 Task Dispatcher Functions

The following functions are called by the task dispatcher located in main().

3.3.1.1 TD_Init()

void TD_Init()

This function is called once during the initialization of the FrameWorks. It is called prior to
ReNumeration and the Task Dispatcher starting. It is intended for user global state variable and device
initialization.

3.3.1.2 TD_Poll()

void TD_Poll()

This function is called repeatedly during device operation. It should contain a state machine that
implements the user's peripheral function. High priority tasks may be completed prior to returning from
this function. However, failure to return from this function will prevent FrameWorks from responding to
device requests and USB suspend events. If a large amount of processing time is required, it must be
split up to execute in multiple calls to TD_Poll().

3.3.1.3 TD_Suspend()

BOOL TD_Suspend()

This function is called prior to the FrameWorks entering suspend mode. This function should contain
code that places the device in a low power state and returns TRUE. However, the user code may
prevent the FrameWorks from entering suspend mode by returning FALSE.

3.3.1.4 TD_Resume()

void TD_Resume()

This function is called after the FrameWorks has resumed the processor in response to an external
resume event. At this point, the device may resume full power operation.

3.3.2 Device Request Functions

These are helper functions that the device request handler (SetupCommand() in FW.C) calls. These
are mainly used to override or augment the default device request handler.

3.3.2.1 DR_GetDescriptor()

BOOL DR_GetDescriptor()

Description: This function is called prior to the FrameWorks decoding and implementing the
GetDescriptor device request. The register array SETUPDAT contains the current eight byte setup
command. It may be parsed by the user's code to determine which Get Descriptor command was
issued. If TRUE is returned, the FrameWorks will parse and implement the command. If FALSE is
returned, it will do nothing.

3.3.2.2 DR_GetInterface()

BOOL DR_GetInterface()

Description: This function is called prior to the FrameWorks implementing the Get Interface device
request. The register array SETUPDAT contains the current eight byte setup command. If TRUE is

EZ-USB Firmware Frameworks 14

© 2003 Cypress Semiconductor

returned, the FrameWorks will implement the command. If FALSE is returned, it will do nothing.

3.3.2.3 DR_SetInterface()

BOOL DR_SetInterface()

Description: This function is called prior to the FrameWorks implementing the Set Interface device
request. The register array SETUPDAT contains the current eight byte setup command. It is the
responsibility of this routine to save the new interface setting and to do any necessary device
configuration. If TRUE is returned, the FrameWorks will implement the command. If FALSE is
returned, it will do nothing.

3.3.2.4 DR_GetConfiguration()

BOOL DR_GetConfiguration()

Description: This function is called prior to the FrameWorks implementing the Get Configuration device
request. The register array SETUPDAT contains the current eight byte setup command. If TRUE is
returned, the FrameWorks will implement the command. If FALSE is returned, it will do nothing.

3.3.2.5 DR_SetConfiguration()

BOOL DR_SetConfiguration()

Description: This function is called prior to the FrameWorks implementing the Set Configuration device
request. The register array SETUPDAT contains the current eight byte setup command. By default, the
FrameWorks parses the descriptor table to determine the new configuration interface and its endpoints
(See the section on FrameWorks optimization for more details). It then configures the EZ-USB control
registers to reflect these new endpoints. If the configuration is set to 0 then the FrameWorks will
invalidate all of the endpoints. If TRUE is returned, the FrameWorks will implement the command. If
FALSE is returned, it will do nothing.

3.3.2.6 DR_GetStatus()

BOOL DR_GetStatus()

Description: This function is called prior to the FrameWorks implementing the Get Status device
request. The register array SETUPDAT contains the current eight byte setup command. If TRUE is
returned, the FrameWorks will implement the command. If FALSE is returned, it will do nothing.

3.3.2.7 DR_ClearFeature()

BOOL DR_ClearFeature()

Description: This function is called prior to the FrameWorks implementing the Clear Feature device
request. The register array SETUPDAT contains the current eight byte setup command. If TRUE is
returned, the FrameWorks will implement the command. If FALSE is returned, it will do nothing.

3.3.2.8 DR_SetFeature()

BOOL DR_SetFeature()

Description: This function is called prior to the FrameWorks implementing the Set Feature device
request. The register array SETUPDAT contains the current eight byte setup command. If TRUE is
returned, the FrameWorks will implement the command. If FALSE is returned, it will do nothing.

3.3.2.9 DR_VendorCmnd()

void DR_VendorCmnd()

Description: This function is called when the FrameWorks determines a vendor specific command has

EZ-USB Advanced Development Kit Users Guide version 1.115

© 2003 Cypress Semiconductor

been issued. The register array SETUPDAT contains the current eight byte setup command. This
function has no return value. The FrameWorks does not implement any vendor specific commands.
However, the EZ-USB serial interface engine (SIE) uses vendor specific command 0xA0 to implement
software uploads and downloads. Therefore, command 0xA0 will not be passed to the user's code.

3.3.3 ISR Functions

There are over 40 different USB and GPIF auto-vectored interrupts available. PERIPH.C contains stub
ISR functions for all of these interrupts. This section documents the ISRs that require special handling
by device firmware. For more information, consult the Interrupts chapter in the EZ-USB Technical
Reference Manual.

3.3.3.1 ISR_Sudav()

void ISR_Sudav(void) interrupt 0

Description: This function is called upon reception of the Setup Data Available interrupt. This function
needs to set GotSUD to TRUE so that the device request handler can process the SETUP command.

3.3.3.2 ISR_Sof()

void ISR_Sof(void) interrupt 0

Description: This function is called upon reception of the Start of Frame interrupt. It gets called every
1ms at full-speed and every 125uS at high-speed. The only action for this interrupt in the default
FrameWorks code is to clear the interrupt.

3.3.3.3 ISR_Ures()

void ISR_Ures(void) interrupt 0

Description: This function is called upon reception of the USB Reset interrupt. In your custom code,
you should place any housekeeping that must be done in response to a USB bus reset in this routine.

The default FrameWorks code updates the configuration descriptor pointers in response to this
interrupt. When a USB Reset occurs, the device is always operating in full-speed (until high-speed
chirp completes). Therefore, it must return its full-speed configuration descriptor in response to a get
configuration descriptor request and must return its high-speed configuration descriptor in response to
a get other-speed descriptor request.

3.3.3.4 ISR_Susp()

void ISR_Susp(void) interrupt 0

Description: This function is called upon reception of the USB Suspend interrupt. The default
FrameWorks code sets the global variable Sleep to TRUE in this routine. This is required for the Task
Dispatcher to detect and handle the suspend event.

3.3.3.5 ISR_Highspeed()

void ISR_Highspeed(void) interrupt 0

Description: This function is called upon reception of the USB HISPEED interrupt. In your custom
code, you should place any housekeeping that must be done in response to a transition to high-speed
mode in this routine.

The default FrameWorks code updates the configuration descriptor pointers in response to this
interrupt. When the device switches to high-speed mode, it must return its high-speed configuration
descriptor in response to a get configuration descriptor request and must return its full-speed

EZ-USB Firmware Frameworks 16

© 2003 Cypress Semiconductor

configuration descriptor in response to a get other-speed descriptor request.

3.4 EZ-USB Library

The EZ-USB Library is an 8051 .LIB file that implements functions that are common to many firmware
projects. Typically, there is no reason to modify these functions so they are provided in library form.
However, the kit includes the source code for the library in the event that you need to modify a function
or if you just want to know how something is done.

In addition to providing common functions, the Library also creates register definitions for all of the EZ-
USB registers.

The source code and the compiled .LIB file are located in the \cypress\usb\target\lib\lp directory.

3.4.1 Building the Library

There is usually no need to modify or rebuild the EZ-USB Library, however, this section documents the
build process if you should choose to do so.

Only the full retail version of the Keil tools can build library files. The evaluation version will not build
this library.

You must build the library using the command-line version of the Keil tools. Before building the library
you must set up a few environment variables and add the Keil tools to your path. After starting the
Windows Command Prompt, run setenv.bat (located in the bin directory) to setup the build
environment. This batch file assumes that you have installed the DVK and Keil tools in the default
directories. To build the library simply run the build.bat file from the command prompt.

Build.bat also assembles the file usbjmptb.a51 to create usbjmptb.obj. This file contains the jump
table for the USB (INT2) and GPIF (INT4) autovectored interrupts. See the EZ-USB Manual for more
information on autovector interrupts.

3.4.2 Library Functions

EZ-USB Advanced Development Kit Users Guide version 1.117

© 2003 Cypress Semiconductor

3.4.2.1 EZUSB_Delay()

void EZUSB_Delay(WORD ms)

Description: This function performs a busy wait for a given number of milliseconds. The parameter ms
determines the length of the busy wait. Upon completion of the delay the function returns.

3.4.2.2 EZUSB_Discon()

void EZUSB_Discon(BOOL renum)

Description: This function performs a USB disconnect/reconnect. It disconnects the device, delays for
1500ms, clears any pending USB interrupts (INT2), reconnects, and then returns. The parameter
renum determines if the EZ-USB renumerate bit is set in the USB control register. If renum is TRUE,
the renumerate bit is set and following a return from this function the 8051 will be responsible for
handling all USB device requests on endpoint 0. If renum is FALSE, the renumerate bit is not modified.
If the renumerate bit is clear then the EZ-USB serial interface engine handles most of the USB device
requests on endpoint 0.

3.4.2.3 EZUSB_GetStringDscr()

STRINGDSCR xdata * EZUSB_GetStringDscr(BYTE StrIdx)

Description: This function returns a pointer to instance StrIdx of a string descriptor in the descriptor
table. The instance is determined by the StrIdx parameter. If the descriptor table does not contain the
given number of instances then the function returns a NULL pointer.

3.4.2.4 EZUSB_Susp()

void EZUSB_Susp(void)

Description: This function suspends the processor in response to a USB suspend event. This function
will not return until the suspend has been cleared by a USB bus resume or a wake-up event on the EZ-
USB wake-up pin. If a suspend event is not pending, this function will return immediately.

3.4.2.5 EZUSB_Resume()

void EZUSB_Resume(void)

Description: This function generates the K-state on the USB bus required for a USB device remote
wake-up. This function should be called following a USB suspend. It automatically determines if the
wake-up was result of a USB resume or a remote wake-up, and generates the K-state accordingly.

3.4.2.6 I2C Routines

void EZUSB_InitI2C(void);
BOOL EZUSB_WriteI2C_(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_ReadI2C_(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_WriteI2C(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_ReadI2C(BYTE addr, BYTE length, BYTE xdata *dat);
void EZUSB_WaitForEEPROMWrite(BYTE addr);

These functions automate access to I2C devices such as the EEPROM, seven-segment display and
buttons on the DVK board. See the vend_ax and dev_io firmware examples for usage of these
functions.

Firmware Download Drivers 18

© 2003 Cypress Semiconductor

4 Firmware Download Drivers

A unique feature of the EZ-USB family is the ability to dynamically change device personality through
firmware download and ReNumeration. An EZ-USB based device that uses this feature uses a small
I2C EEPROM to store a unique Vendor ID (VID) and Product ID (PID). This VID/PID combination is
bound to a specific device driver on the host system whose only function is to download firmware to the
device. This section describes such a driver.

The Cypress Generic USB Driver has the ability to playback a script of USB commands upon device
startup. This feature is used to automate the firmware download. The .INF file for a device specifies
the filename and location of a file that contains a download script for the device firmware. The DVK
includes a tool called CyScript that will convert a firmware .HEX file into a download script file.

A sample firmware download driver is located in the \cypress\usb\drivers\cyload directory. In
general, the user will make a copy of this directory and then customize it for their device.

Files in the CyLoad sample:

cyload.inf .INF file that automates the firmware download

cyload.sys The download device driver for Windows XP/2000. This is just the
Cypress Generic USB Driver renamed.

cyloadme.sys The download device driver fow Windows ME. This is just the
Cypress Generic USB Driver renamed.

cyload.spt The download script file. This file was generated by CyScript and is
the bulkloop example firmware

cyload.iic EEPROM image that contains the VID/PID bound to the CyLoad
example

The sample .INF file is bound to VID=0x04B4 and PID=0x0084. If you want to experiment with the
CyLoad example you will need to reprogram the EEPROM on your Development Board with
cyload.iic. Use the S EEPROM button on the Cypress USB Console EZ-USB interface to program
your EEPROM. To return your EEPROM to its default value, repeat the process using fx2lp_c0.iic
located in \cypress\usb\examples\fx2lp\EEPROM IMAGES.

It is important that you completely customize your firmware download driver package to prevent
conflicts with the EZ-USB DVK and EZ-USB based devices from other vendors that may be installed
on a system. This means that all files in the driver package must be renamed to something unique.
Incorporating your company name or an abbreviation of your company name in the filenames is a good
way to do this. Also, the VID/PID you use for your device and the Device GUID in your .INF file should
also be unique. You should never use the Cypress VID in a distributed product. You can obtain a
unique VID for your company from the USB-IF (www.usb.org).

NOTE: It is strongly recommended that you test and debug driver loading on a "clean" system that can
be easily restored. Editing of INF files is notoriously difficult and error prone. A single formatting error
can prevent the .INF file from working correctly. Further, once an error has occurred it may prevent
subsequent installations from working, even after you correct the error. Do a clean installation of the
target operating system and then use partition cloning software such as Norton Ghost (from Symantec)
to create a backup copy of your "clean" system. Cypress support will find it difficult, if not impossible,
to aid in debugging driver installation problems on "dirty" systems.

1. Develop and debug your firmware
2. Convert your firmware hex file to a Cypress USB Script file
3. Test your script using the script playback button on the Cypress USB Console
4. Copy the entire contents of cyload to another directory
5. Pick a name. In the example, the name is cyload. The name can be anything, but should say

EZ-USB Advanced Development Kit Users Guide version 1.119

© 2003 Cypress Semiconductor

something about your product. For example, if this is the firmware download for a gizmo, you
could choose gizmoload.

6. Rename all of the files in your copy of the cyload directory, replacing cyload with whatever name
you have chosen.

7. Edit gizmoload.inf and do a search and replace. Replace all instances of cyload with gizmoload.
8. Generate a new GUID using guidgen. Replace the GUID that is in the [Strings] section of the .INF

file with this GUID. Guidgen is a Microsoft application that will generate a guaranteed unique
identifier. It ships with Microsoft Developers Studio and with the Microsoft Platform SDK.

9. Customize other strings in the INF file

This tutorial does not attempt to explain the intricacies of INF file formatting. For more information on
INF files, consult the Windows DDK Documentation or any of the many books available on WDM
programming.

note: It is strongly recommended that you test and debug driver loading on a clean machine that can
be easily restored. Editing of INF files is notoriously difficult. A single formatting error can prevent the
INF file from working correctly. Further, once an error has occurred it may prevent subsequent
installations from working, even after you correct the error. Use partition cloning software such as
Norton Ghost (from Symantec) to create a backup copy of your "clean" system.

4.1 Customizing For Your Device

This section will guide you step-by-step in creating a custom firmware download driver package for
your device. This tutorial does not attempt to explain the intricacies of .INF file formatting. For more
information on .INF files, consult the Windows DDK Documentation or any of the many books available
on WDM programming.

1. Develop and debug your firmware (This is the hard part!)

This firmware must ReNumerate. The VID/PID stored in the firmware descriptor must be
unique and may not be the same as the VID/PID of the pre-ReNumerated device. The pre-
ReNumerated VID/PID is stored on the I2C EEPROM.

2. Convert your firmware .HEX file to a Cypress USB Script file

The DVK installation includes a Windows application called CyScript that makes this step
simple. CyScript is located in the \cypress\usb\bin directory and in the Windows Start menu
under Cypress. By default, this tool will create a script file in the same directory as the selected
.HEX file. The script file will have the same filename but with a .SPT extension.

3. Test your script using the Play Script button on the Cypress USB Console

The Load Script and Play Script buttons are located on the CyConsole toolbar. The result of
playing your script back should be the same as if you were to download your .HEX file using the
CyConsole EZ-USB interface.

4. Copy the entire contents of cyload to another directory

You are about to make changes to the files and you don't want to mess up the originals.

5. Pick a name

In the example, the name is cyload. The name you choose will serve as the prefix for many of
the changes to follow. The name can be anything, but should say something about your
product. The name should not contain spaces or non alpha-numeric characters. Finally,

Firmware Download Drivers 20

© 2003 Cypress Semiconductor

although there is no practical limit on the length of the name you should try to keep it to 8
characters or less. As an example, if this is the firmware download driver for a widget device,
you could choose wdgtld (for widget load).

6. Rename all of the files in your directory, replacing cyload with the name
you have chosen

As an example, cyload.inf becomes wdgtld.inf and so on.

7. Update the labels in your .INF file

The cyload example .INF was created to simplify the customization process. A simple search-
and-replace will convert for your device. Sticking with the widget example, load wdgtld.inf into
your text editor. Perform a search-and-replace of the entire file, replacing the string cyload with
wdgtld.

At this time, you should also perform a search-and-replace for the string yourcompany.
Replace all instances of this string with your company name. Once again, alpha-numeric only
and no spaces.

8. Generate a custom GUID using guidgen

GUID stands for Globally Unique Identifier. Microsoft provides a tool called guidgen that will
generate a GUID for you. Guidgen ships with Microsoft Developers Studio and the Microsoft
Platform SDK. Generate a GUID and replace the GUID that is in the [Strings] section of your
.INF file with this GUID. Windows uses the GUID to identify and track your device. Failure to
use a truly unique GUID for each of your devices can lead to many conflicts. This includes your
pre- and post-ReNumerated device which may not share the same GUID.

9. Customize other strings in the INF file

There are some additional strings located in the [Strings] section of your .INF file that you should
customize for your device. These strings may display during first-time enumeration. You should
replace them with strings that describe your device. Like the GUID, the SvcDesc string you
choose must be unique. Failure to use a unique SvcDesc can result in conflicts.

This tutorial was designed to simplify the process of creating the download driver package. There are
other advanced methods, such as sharing the same driver for both your pre- and post-ReNumerated
device, that are beyond the scope of this tutorial and require a thorough knowledge of INF files. This
tutorial does not attempt to explain the intricacies of .INF file formatting. For more information on INF
files, consult the Windows DDK Documentation or any of the many books available on WDM
programming.

5 Tutorials

EZ-USB Advanced Development Kit Users Guide version 1.121

© 2003 Cypress Semiconductor

5.1 Verifying Correct Operation - Get Descriptor

Verifying correct operation of the board by doing a "Get Device Descriptor"

1. Plug the EZ-USB Development board into the PC using a USB cable.
2. Start the Cypress USB Console EZ-USB Interface

3. Send a "Get Device Descriptor" operation by pressing the "Get Dev" button. You
should get Device Descriptor information back as shown below. Note: the idProduct
shown below is for the FX2LP Development Board.

Tutorials 22

© 2003 Cypress Semiconductor

5.2 Running the dev_io example

Running the dev_io example program by loading it from the Cypress USB Console.

1. Select the "Download…" button to prepare to download a file.

2. Using the Download file selection box, select the dev_io.hex file to download.

EZ-USB Advanced Development Kit Users Guide version 1.123

© 2003 Cypress Semiconductor

Tutorials 24

© 2003 Cypress Semiconductor

3. You should see the download indication as shown below.

4. At the same time, the seven segment LED should light up on the development board.

EZ-USB Advanced Development Kit Users Guide version 1.125

© 2003 Cypress Semiconductor

5. The F2, F3 keys, when pressed, will count down, and up, respectively. This indicates
that the dev_io.hex file is running correctly on the development board.

5.3 Debug the dev_io example

Run the dev_io example program by loading it from the Keil debugger.

In the previous example, we used the Cypress USB Console (CyConsole) to load our 8051 program
code. This time we will use the Keil debugger to load our 8051 program. This is the Keil debug monitor
that was customized to run on the EZ-USB development board. This is necessary if we wish to debug
the 8051 code using single step, start, stop, etc. The debug monitor is now automatically loaded into
the development board when it is plugged in. It is also possible to use CyConsole to load the monitor.
For now, simply unplug and re-plug the USB cable, or press the reset button on the Development
Board to reload the monitor.

NOTE: pressing the reset button does not re-initialize the LED, so the LED will stay lit when you press
the reset button. Unplugging the board and plugging it back in will reset the LED.

1. You should see that the monitor is loaded by verifying that the green BKPT/Monitor
light is lit on the development board. Once the monitor has started, start the Keil uV2
IDE by selecting "Start\Programs\Keil uVision2"

Tutorials 26

© 2003 Cypress Semiconductor

2. Now, with Keil uV2 running, we will want to establish a serial port connection from the
Keil debugger to the EZ-USB Development board. Use a standard serial cable to
connect your PC to the development board. At this time, there are two serial ports on
the development board, labeled "SIO-0", and "SIO-1" You should connect the serial
cable to the "SIO-1" port.

IMPORTANT NOTE: To establish a connection to the debugger, use the "SIO-1" port.

3. Open the dev_io project file as shown below.

4. Make sure you are using the correct serial port. Make sure baud rate is set correctly.
To do this, select "Project\Options for Target 'Target 1'\Debug\Settings".

EZ-USB Advanced Development Kit Users Guide version 1.127

© 2003 Cypress Semiconductor

Tutorials 28

© 2003 Cypress Semiconductor

IMPORTANT NOTE: Your PC may have a single serial port. In this case, you would use COM 1
instead of COM2 as shown in the picture above. Check the box labeled "Serial Interrupt"

5. Click OK to close "Options for Target "Target 1" window.

6. Select the "Debug" button on the Keil IDE.

7. You should see the IDE switch to Debug mode, with a yellow arrow indicating the
Program Counter location.

8. You can use the "Step Over" button to step through the code by selecting View\Debug
Toolbar.

9. Next select the "Step Over" button.

EZ-USB Advanced Development Kit Users Guide version 1.129

© 2003 Cypress Semiconductor

10. View the output window to verify that you are connected to the monitor and that your
program has loaded (i.e. it will say something like: Connected to Monitor-51 V3.0).

11. Click on the stop button on the debugger (so you can halt the 8051), be sure to check
(enable) "Serial interrupt" in the "Target Setup" as indicated above.

PLEASE NOTE: Since the dev_io program uses the iic bus to write to the LED, it uses interrupts.
Randomly stopping execution of the 8051 while interrupts are enabled may cause you to stop while
servicing an interrupt. If this happens, you will not be able to hit the "Go" button to continue execution;
you will have to reset the development board and reload your application.

12. To run the code, press the "Run" button.

13. The dev_io code should now be running on the Development board evidenced by the
seven segment LED lighting up on the development board.

Tutorials 30

© 2003 Cypress Semiconductor

14. Click on the "Stop" button to stop the program.

15. Close the Keil IDE.

5.4 Rebuild dev_io example

Removing the dev_io target file and rebuilding it using the Keil IDE.

As an exercise, we will now remove the dev_io.hex file and rebuild it using the Keil IDE.

1. Disconnect and reconnect the A – B USB Cable on the development board to clear the
memory.

2. Remove (or rename) the dev_io.hex file from the
"..\Cypress\USB\Examples\FX2LP\dev_io" directory.

3. Now, to build it using the IDE, run "Start\Programs\Keil uVision2".

EZ-USB Advanced Development Kit Users Guide version 1.131

© 2003 Cypress Semiconductor

4. Select "Project\Open Project".

5. Open Project dev_io.Uv2.

6. Select "Rebuild all Project Files" button.

Tutorials 32

© 2003 Cypress Semiconductor

7. The project should complete the make successfully

5.5 Setting a debug breakpoint

Running the dev_io target under the debugger and using the debugging capabilities of the IDE.

1. Run the newly built dev_io file from the Keil debugger. The LED should be lit after
downloading and hitting "Run" (indicating that the application is running).

NOTE: You may have left the Keil debugger running from before.

2. Now stop execution of the program using the "Halt" button in the Keil debugger. The
"Halt" button appears in the "Debug window" as shown below.

3. Set a breakpoint by selecting the first line in the "case KEY_F2" section (which is in file
dev_io.c).

EZ-USB Advanced Development Kit Users Guide version 1.133

© 2003 Cypress Semiconductor

4. Then click on the "Insert/Remove Breakpoint" button.

5. Or you may insert a breakpoint by right-clicking and selecting "Insert\Remove
Breakpoint" on the first line in the "case KEY_F2" section (which is in file dev_io.c).

Tutorials 34

© 2003 Cypress Semiconductor

NOTE: You may also set or remove a breakpoint by double-clicking the line.

6. You should see a red breakpoint indication in the margin next to the new breakpoint.

7. Then hit "Run".

EZ-USB Advanced Development Kit Users Guide version 1.135

© 2003 Cypress Semiconductor

8. Now press "F3" on the development board (the "KEY_F2" label equates to the F3
Button). You should see execution of the program halt in the Keil IDE. The LED will not
increment as it does normally since program execution has been halted

9. Now press "Step Over".

10. Then press "Run" key on the debugger.

11. Execution will proceed normally until you press the F3 key (On the development
board) again. When you are finished, hit the "Stop Debugging" key and exit the Keil
debugger.

5.6 Running the bulkloop example

Running bulkloop using CyConsole

The bulkloop example demonstrates bulk transfers to and from the 8051 target device. It loops back
bulk endpoint packets from EP2OUT to EP6IN and from EP4OUT to EP8IN. The readme.txt file in the
sample directory describes its usage as does the readme.txt for all the other example programs.

1. Start the Cypress USB Console

Tutorials 36

© 2003 Cypress Semiconductor

2. Select the "Download…" button.

3. Select the bulkloop example.

EZ-USB Advanced Development Kit Users Guide version 1.137

© 2003 Cypress Semiconductor

Note: You may select bulkloop.hex (as shown) and then press "Open", or you may simply double-click
on the bulkloop.hex icon.

4. After bulkloop is loaded, do a "Get Pipes".

5. Verify the pipes as shown below.

Tutorials 38

© 2003 Cypress Semiconductor

6. Send data out the OUT pipe. Do this by selecting the "Out" endpoint from the pull
down menu on the "Bulk Trans" bar (it should have defaulted to this selection).

7. Pressing the "Bulk Trans" button will initiate the bulk transfer out.

8. You should now see the following data in the Control Panel window.

EZ-USB Advanced Development Kit Users Guide version 1.139

© 2003 Cypress Semiconductor

9. Read the data back into the IN pipe. Do this by selecting the "In" endpoint from the pull
down menu on the "Bulk Trans" bar.

10. Pressing the "Bulk Trans" button will initiate the bulk transfer in.

11. Note that the same data came back in, as was sent out.

Tutorials 40

© 2003 Cypress Semiconductor

NOTE: If you modify the data in the "Hex Bytes" field to send out different data, that data will be sent
out and be available to read back in.

	Introduction
	Cypress USB Studio
	Cypress Generic USB Driver
	Cypress USB Class Library API
	Cypress USB Console
	Cypress GPIF Designer

	Development Kit Contents
	Bin
	Doc
	Drivers
	Examples
	Hardware
	Help
	Target
	Util
	Windows

	EZ-USB Firmware Frameworks
	FrameWorks Overview
	Building the FrameWorks
	Function Hooks
	Task Dispatcher Functions
	TD_Init()
	TD_Poll()
	TD_Suspend()
	TD_Resume()

	Device Request Functions
	DR_GetDescriptor()
	DR_GetInterface()
	DR_SetInterface()
	DR_GetConfiguration()
	DR_SetConfiguration()
	DR_GetStatus()
	DR_ClearFeature()
	DR_SetFeature()
	DR_VendorCmnd()

	ISR Functions
	ISR_Sudav()
	ISR_Sof()
	ISR_Ures()
	ISR_Susp()
	ISR_Highspeed()

	EZ-USB Library
	Building the Library
	Library Functions
	EZUSB_Delay()
	EZUSB_Discon()
	EZUSB_GetStringDscr()
	EZUSB_Susp()
	EZUSB_Resume()
	I2C Routines

	Firmware Download Drivers
	Customizing For Your Device

	Tutorials
	Verifying Correct Operation - Get Descriptor
	Running the dev_io example
	Debug the dev_io example
	Rebuild dev_io example
	Setting a debug breakpoint
	Running the bulkloop example

