Data Sheet

Envisium

Envisium is the premier class of mid-Power LEDs from Avago and Philips Lumileds utilizing the very best solidstate lighting technologies from these two industry leaders. Envisium LEDs offer unparalleled performance, engineering and design flexibility.

Description

The Envisium 0.5W Power PLCC-4 SMT LED is an extension of Envisium Power PLCC-4 SMT LEDs. The package can be driven at high current due to its superior package design. The product is able to dissipate the heat more efficiently compared to the Envisium Power PLCC-4 SMT LEDs. These LEDs produce higher light output with better flux performance compared to the Envisium Power PLCC-4 SMT LED.

The Envisium 0.5W Power PLCC-4 SMT LEDs are designed for higher reliability, better performance, and operate under a wide range of environmental conditions. The performance characteristics of these new mid-power LEDs make them uniquely suitable for use in harsh conditions such as in automotive applications, and in electronics signs and signals.

To facilitate easy pick and place assembly, the LEDs are packed in EIA-compliant tape and reel. Every reel is shipped in single intensity and color bin (except for red), to provide close uniformity. These LEDs are compatible with the IR solder reflow process. Due to the high reliability feature of these products, they also can be mounted using through-the-wave soldering process.

Envisium 0.5W Power PLCC-4 SMT LED is available in red orange \& amber colors.

Features

- Industry Standard PLCC 4 platform ($3.2 \times 2.8 \times 1.9 \mathrm{~mm}$)
- High reliability LED package
- Mid-Power intensity brightness with optimum flux performance using Philips Lumileds TS AllnGaP chip technologies
- Available in Red Orange and Amber colors
- High optical efficiency
- Available in 8 mm carrier tape and 7 inch reel
- Low Thermal Resistance
- Super wide viewing angle at 120°
- Longer life time with minimum degradation due to enhanced silicone resin material
- JEDEC MSL 2a

Applications

1. Exterior automotive

- Turn signals
- Side repeaters
- CHSML
- Rear combination lamp
- Side markers
- Truck clearance lamp

2. Electronic signs and signals

- Channel lettering
- Contour lighting
- Indoor variable message sign

3. Office automation, home appliances, industrial equipment

- Front panel backlighting
- Push button backlighting
- Display backlighting

Component Dimensions

Figure 1. Package Drawing

Table 1. Device Selection Guide

		Luminous Flux, $\phi_{\mathbf{V}}{ }^{[1]}(\mathbf{I m})$								
Color	Part Number	Min. Flux (Im)	Typ. Flux (Im)	Max. Flux (Im)	Test Current (mA)	Dice Technology				
Amber	ASMC-QAB2-TACOE	4.30	6.60	9.00	150	AllnGaP				
Red Orange	ASMC-QHB2-TCDOE	7.00	9.30	11.50	150	AllnGaP				

Notes:

1. ϕ_{v} is the total luminous flux output as measured with an integrating sphere at mono pulse conditions.
2. Tolerance $= \pm 12 \%$

Part Numbering System

ASMC-Q X B $2-T X_{2} X_{3} X_{4} X_{5}$

Table 2. Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameters	ASMC-QxB2-Txxxx
DC Forward Current ${ }^{[1]}$	150 mA
Peak Forward Current ${ }^{[2]}$	300 mA
Power Dissipation	470 mW
Reverse Voltage	5 V
Junction Temperature	$125^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C} \mathrm{to}+100^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Notes:

1. Derate Linearly as shown in Figure 6.
2. Duty Factor $=10 \%$, Frequency $=1 \mathrm{kHz}$

Table 3. Optical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

	Part	Dice	Dominant Wavelength $\lambda_{D}{ }^{[1]}(\mathrm{nm})$	Viewing Angle $2 \theta_{1 / 2}{ }^{[2]}$ (Degrees)	Luminous Efficacy $\eta v^{[3]}$ (Im/W)	Luminous Efficiency $\eta_{e}(\mathrm{Im} / \mathrm{W})$	Luminous Intensity /Total Flux ${ }^{[4,5]}$ $\mathrm{IV}_{\mathrm{V}}(\mathrm{cd}) / \phi_{\mathrm{V}}(\mathrm{Im})$
Color	Number	Technology	Typ.	Typ.	Typ.	Typ.	Typ.
Amber	ASMC-QAB2-Txxxx	Allngap	593.5	120	470	17	0.15
Red Orange	ASMC-QHB2-Txxxx	AllnGaP	619.3	120	240	24	0.20

Notes:

1. The dominant wavelength, λ_{D}, is derived from the CIE Chromaticity diagram and represents the color of the device.
2. $\theta 1 / 2$ is the off-axis angle where the luminous intensity is $1 / 2$ the peak intensity.
3. Radiant intensity, le in watts / steradian, may be calculated from the equation $l_{\mathrm{e}}=I_{V} / \eta_{V}$, where l_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens / watt.
4. $\phi \mathrm{v}$ is the total luminous flux output as measured with an integrating sphere after the device has stabilized.
5. Flux tested at mono pulse conditions.

Table 4. Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Part Number	Forward Voltage$V_{F}\left(V_{0} \text { Its }\right) @ I_{F}=150 \mathrm{~mA}$		Reverse Voltage $V_{R} @ 100 \mu A$	Thermal Resistance $R \theta_{J-p}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
	Typ.	Max.	Min.	
ASMC-QxB2-Txxxx	2.64	3.10	5	60

Figure 2. Relative Intensity Vs. Wavelength

Figure 3. Forward Current Vs. Forward Voltage

[^0]

Figure 4. Relative Intensity Vs. Forward Current

Figure 6a. Maximum Forward Current Vs. Ambient Temperature.
Derated Based on $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}=130^{\circ} \mathrm{C} / \mathrm{W}, 110^{\circ} \mathrm{C} / \mathrm{W}$ and $100^{\circ} \mathrm{C} / \mathrm{W}$

Figure 6b. Maximum Forward Current Vs. Solder Point Temperature. Derated Based on $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{JP}}=60^{\circ} \mathrm{C} / \mathrm{W}$

Figure 7. Dominant Wavelength Vs. Forward Current - AllnGaP Devices

Figure 8. Forward Voltage Shift Vs. Temperature

Figure 9. Radiation Pattern

Note: Diameter "D" should be smaller than 2.2 mm

Figure 10. Recommended Pick and Place Nozzle Size

Figure 12. Recommended Soldering Pad Pattern

Figure 14. Tape Dimensions

Figure 15. Reeling Orientation

Device Color (X_{1})

A	Amber
H	Red Orange

Flux Bin Select ($X_{2} X_{3}$)

Individual reel will contain parts from one bin only

X_{2}	Min Flux Bin
X_{3}	Max Flux Bin

Flux Bin Limits

Bin ID	Min. (Im)	Max. (Im)
A	4.30	5.50
B	5.50	7.00
C	7.00	9.00
D	9.00	11.50
E	11.50	15.00
F	15.00	19.50
G	19.50	25.50
H	25.50	33.00
I	33.00	43.00
J	43.00	56.00
K	56.00	73.00

Tolerance of each bin limit $= \pm 12 \%$

Color Bin Select (X_{4})

Individual reel will contain parts from one full bin only.

X $_{4}$	
0	Full Distribution
A	1 and 2 only
B	2 and 3 only
C	3 and 4 only
D	4 and 5 only
E	5 and 6 only
G	1,2 and 3 only
H	2,3 and 4 only
J	3,4 and 5 only
K	4,5 and 6 only
M	$1,2,3$ and 4 only
N	$2,3,4$ and 5 only
P	$3,4,5$ and 6 only
R	$1,2,3,4$ and 5 only
S	$2,3,4,5$ and 6 only
Z	Special Color Bin

Color Bin Limits

Amber/Yellow	Min. (nm)	Max. (nm)
2	583.0	586.0
3	586.0	589.0
4	589.0	592.0
5	592.0	595.0
6	595.0	598.0

Red Orange	Min. $(\mathbf{n m})$	Max. $\mathbf{n m})$
1	611.0	616.0
2	616.0	620.0
3	620.0	625.0

Tolerance of each bin limit $= \pm 1 \mathrm{~nm}$

Moisture Sensitivity

This product is qualified as Moisture Sensitive Level 2a per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details.

A. Storage before use

- Unopen moisture barrier bag (MBB) can be stored at $<40^{\circ} \mathrm{C} / 90 \% \mathrm{RH}$ for 12 months. If the actual shelf life has exceeded 12 months and the HIC indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating.
- It is not recommended to open the MBB prior to assembly (e.g. for IQC).

B. Control after opening the MBB

- The humidity indicator card (HIC) shall be read immediately upon opening of MBB.
- The LEDs must be kept at $\angle 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$ at all time and all high temperature related process including soldering, curing or rework need to be completed within 672 hours.

C. Control for unfinished reel

- For any unuse LEDs, they need to be stored in sealed MBB with desiccant or desiccator at $<5 \%$ RH.

D. Control of assembled boards

- If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at $<5 \%$ RH to ensure no LEDs have exceeded their floor life of 672 hours.

E. Baking is required if:

- " 10% " or" 15% " HIC indicator turns pink.
- \quad The LEDs are exposed to condition of $>30^{\circ} \mathrm{C} / 60 \% 31 \mathrm{Tf}(\mathrm{D})$ 3tor turns

[^0]: Figure 5. Relative Intensity Vs. Temperature

