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INTRODUCTION 
Digital quadrature modulators appear in a number of commu-
nications and signal processing ICs. This application note 
explains the basic building blocks of a digital quadrature 
modulator, along with an analysis of the gain through the 
modulator for three types of input signals. 

The generic digital modulator consists of a pair of digital 
multipliers and a digital adder, configured as shown in Figure 1. 
Generally, the binary numbers associated with the data paths all 
have the same numeric range, namely ±1. This applies to the 
input (I, Q, and carrier), output (Y), and intermediate data 
paths. An N-bit bus width is shown in the diagram for the sake 
of generality, where the N bits represent fractional numeric 
values between ±1. Of the four inputs, two are dedicated to 
processing the digital carrier signal, which is an N-bit quantized 
representation of the sine and cosine waves that constitute a 
quadrature carrier. By definition, the carrier has separate cosine 
and sine components, both of which oscillate (numerically) at 
radian frequency, ωC (where ωC equates to 2πfC, with fC denoting 
the more familiar units of sinusoidal frequency). The other two 
inputs (I and Q) are used for processing a digital, N-bit quantized, 
baseband signal. The I and Q labels are shorthand notation for 
the in-phase and quadrature components, respectively, of the 
baseband signal. The output, Y, is an N-bit quantized digital 
representation of the baseband signal upconverted to the carrier 
frequency (fC).  
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Figure 1. Digital Quadrature Modulator Functional Diagram 

The relationship between the input and output signals may be 
expressed as a function of time, as shown in Equation 1. 
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The carrier signal is time dependent by definition as indicated 
by the t term in the arguments of the sine and cosine functions. 
The Y, I, and Q terms have been assigned t arguments as well, 
indicating that their values can also be time dependent. The 
scale factor of ½ is a consequence of using the same number of 
bits at both the input and output of the adder. Note that the sum 
of the two N-bit multiplier outputs actually requires N + 1 bits 
to represent the full range of the summed results. However, the 
act of constraining the output of the adder to only N bits means 
that the least significant bit of the N + 1 bit result must be 
discarded. The act of truncating the sum to N bits results in an 
intrinsic 50% loss through the adder, hence the scale factor of ½ 
that appears in Equation 1. 

An analysis of the output signal, Y(t), for three different types of 
I and Q input signals follows. The input signal types under 
consideration are: 

1. A static input signal 

2. A nonquadrature sinusoidal input signal 

3. A quadrature sinusoidal input signal 

The following analysis is aided by the trigonometric identities 
given by Equation 2 and Equation 3. In addition, the formula 
given in Equation 4 is useful for quadrature signal analysis. It 
relates a quadrature expression (the left side) to a cosine func-
tion (the right side). Of particular interest is the application of 
Equation 4 to Equation 1, which produces an alternate form for 
Y(t), as shown in Equation 5. 
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STATIC INPUT SIGNAL ANALYSIS:  
I(t) = D AND Q(t) = E 
In this case, the I and Q input signals are not time dependent, 
but are the static numeric values given by D and E, respectively. 
D and E are assumed to be fractional values between 0 and 1, 
inclusive, implying that they represent a fractional portion of 
the maximum possible peak input value. Based on Equation 5, 
Y(t) is expressed as: 
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Note that argument of the cosine function that appears in Y(t) 
in Equation 6 contains only a single frequency component (ωC). 
This implies that the output signal is a single tone with the same 
frequency as the carrier signal. The phase of the output signal, 
however, is advanced by the radian angle, arctan(E/D), relative 
to the phase of the cosine component of the quadrature carrier 
input signal. Furthermore, the amplitude of the output signal is 
dependent on the vector sum of D and E. For the unique case in 
which D and E are the same numeric value (that is, D = E = k, 
where 0 ≤ k ≤ 1), then Y(t) reduces to: 
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It is instructive to consider the specific case of k = 1; that is, the 
I and Q inputs are static full-scale values. When k = 1, the peak 
value of Y(t) is √2/2. This represents a gain of −3 dB relative to 
the maximum possible peak value of 1. The normalized output 
power is (√2/2)2 = ½, or −3 dB relative to the maximum 
possible output power of (1)2 = 1. 

NONQUADRATURE SINUSOIDAL INPUT SIGNAL 
ANALYSIS: I(t) = Q(t) = K cos(ωBt) 
In this case, the I and Q input signals are identical sinusoids 
scaled by the constant K (0 ≤ K ≤ 1) and possessing some 
arbitrary baseband radian frequency, ωB. Based on Equation 5, 
the output signal is expressed as: 
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This readily simplifies to:  
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Application of Equation 2 to the form of Y(t) in Equation 9 
leads to: 
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Notice that Y(t) consists of two cosine functions. One of the 
cosine functions contains the radian frequency term, ωC + ωB, 
while the other contains the radian frequency term, ωC − ωB. 

This means that Y(t) is composed of two tones that are each 
offset from the carrier frequency (fC) by the baseband frequency 
(fB). Each tone is scaled in amplitude by the factor, √2K/4. In 
addition, the two tones are offset by a constant phase angle as 
indicated by the π/4 term that appears in the argument of each 
cosine function. 

Again, it is instructive to consider the case of K = 1; that is, the I 
and Q signals have peak values that span the full-scale input 
range. When K = 1, the peak value of each output tone is √2/4. 
This represents a gain of −9 dB relative to the maximum 
possible peak value of 1. However, the fact that the two tones 
are at different frequencies and offset in phase by a constant π/2 
radians means that their combined amplitude can reach a peak 
value as high as twice that of either tone considered separately. 
Therefore, the peak amplitude of Y(t) is 2(√2/4) = √2/2. This 
represents a gain of −3 dB relative to the maximum possible 
peak value of 1. 

The normalized power in each tone is (√2/4)2 =1/8. Since the 
total power is the sum of the power in each tone, then the total 
power is ¼. Hence, Y(t) exhibits a power loss of 6 dB relative to 
the maximum possible output power of (1)2 = 1 (the power of a 
single sinusoid with a peak value of 1). 

Note that if the input signal had taken the form K sin(ωBt), 
instead of K cos(ωBt), the results would be the same as those 
obtained previously, except that Y(t) would consist of sine 
waves instead of cosine waves. 

QUADRATURE SINUSOIDAL INPUT SIGNAL 
ANALYSIS: I(t) = A cos(ωBt) AND Q(t) = B sin(ωBt) 
In this case, the I and Q input signals constitute a quadrature 
tone of radian frequency, ωB. Each input is independently scaled 
by A and B, respectively, both of which represent fractional values 
between 0 and 1. Based on Equation 1, Y(t) is expressed as: 
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Application of Equation 2 and Equation 3 to the above form of 
Y(t) and simplifying leads to: 
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Notice that Y(t) only contains a single cosine term, implying 
that Y(t) consists of a single tone. Its radian frequency is the 
sum of the baseband radian frequency (ωB) and the carrier 
radian frequency (ωC) with the amplitude of the tone scaled  
by ½AB. 

Once again, it is instructive to consider the case of A = B = 1; 
that is, the I and Q signals have peak values that span the full-
scale input range. In this case, Y(t) takes the form: 
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Note that the peak amplitude of the single tone output is ½. 
This represents a gain of −6 dB relative to the maximum 
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The power loss (Figure 2) related to the different input signal 
types is apparent when the modulator drives a DAC and a 
spectrum analyzer is connected to the DAC output to measure 
signal power. Since the modulator has an N-bit output, the 
reference power is that of an N-bit quantized sinusoidal tone. 
The power level of such a tone as measured by the spectrum 
analyzer is the reference level for the following discussion and is 
denoted as 0 dBr. 

possible peak value of 1. The normalized output power is  
(½)2 = ¼, which represents a power loss of 6 dB relative to the 
maximum possible output power of (1)2 = 1. 

INTRINSIC ATTENUATION 
It was shown in the previous sections that an N-bit digital 
quadrature modulator exhibits an intrinsic attenuation and that 
the attenuation is dependent on the type of signal applied at the 
I and Q inputs. The attenuation factors for the three input signal 
types are summarized in the following list: 
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• Static: −3 dB 

• Nonquadrature tone: −3 dB composite (−9 dB each tone) 

• Quadrature tone: −6 dB 

The intrinsic attenuation imposed by a digital quadrature 
modulator can be overcome by including a digital multiplier at 
the modulator output. The multiplier serves as an amplifier to 
offset the modulator’s intrinsic attenuation. The amount of 
amplification that can be tolerated without numeric overflow 
depends on the amplitude of the I and Q input signals. However, 
for full-scale I and Q input signals, an upper bound must be 
imposed on the amplification factor in order to prevent numeric 
overflow. When the input signal is a quadrature tone, the ampli-
fication factor must be limited to 2.0 (+6 dB). When the input 
signal is either a nonquadrature tone or a static value, the 
amplification factor must be limited to 1.414 (+3 dB). 

Figure 2. Relative Power Spectrum 

With an N-bit digital modulator (as shown in Figure 1) driving 
an N-bit DAC, the output power is dependent on the type of 
signal applied at the I and Q inputs. Specifically, when the I and 
Q inputs of the modulator are driven by a full-scale static input 
signal, the output of the DAC is a single tone at the carrier 
frequency (fC) with an output power level of −3 dBr. When the I 
and Q inputs of the modulator are driven by a full-scale quadrature 
tone, the output of the DAC is a single tone at a frequency of fC 
+ fB with an output power level of −6 dBr. When the I and Q 
inputs of the modulator are driven by a full-scale nonquadrature 
tone, the output of the DAC consists of two frequencies (fC ± fB) 
with an output power level of −9 dBr for each tone. The 
composite signal power (both tones combined) is −6 dBr, which 
is twice the power in either one of the output tones. 

INTRINSIC POWER LOSS 
The intrinsic attenuation imposed by an N-bit digital 
quadrature modulator leads to a loss of signal power relative to 
the power of a full scale, N-bit, sinusoidal tone. The degree of 
power loss is dependent on the type of signal applied at the I 
and Q inputs. The relative output power for the three input 
signal types is summarized in the following list: 

• Static: −3 dB 

• Nonquadrature tone: −6 dB composite (−9 dB each tone) 

• Quadrature tone: −6 dB 
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NOTES 
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