TSU112IY

Datasheet

Automotive grade, nanopower (920 nA), high accuracy (150 μ V) 5 V CMOS operational amplifier

TSU112IYQ3T DFN8 (2x2 mm WF)

Product status link							
TSU112IY							
Related products							
See TSU101, TSU102 and TSU104	For further power savings						
See TSZ121, TSZ122 and TSZ124	For increased accuracy						

Features

- AEC-Q101 qualified
- Sub-micro ampere current consumption: I_{cc} = 920 nA typ. at 25 °C
- Low offset voltage: 150 μV max. at 25 °C, 400 μV max. over full temperature range (-40 to 125 °C)
- Low noise over 0.1 to 10 Hz bandwidth: 4.6 µVpp
- Low supply voltage: 1.5 V to 5.5 V
- Rail-to-rail input and output
- Gain bandwidth product: 9 kHz typ.
- Low input bias current: 10 pA max. at 25 °C
- High tolerance to ESD: 4 kV HBM
- More than 25 years of typical equivalent lifetime supplied by a 220 mA.h CR2032 coin type Lithium battery
- High accuracy without calibration
- Tolerance to power supply transient drops

Applications

- Battery management system: ultra-low power op-amp detects when battery is charging/discharging and wakes up CPU
- On-board chargers
- Signal conditioning for energy harvesting
- Wireless chargers

Description

The TSU112IY operational amplifier (op-amp) offers an ultra low-power consumption per channel of 920 nA typical and 1.3 μ A maximum when supplied by 3.3 V. Combined with a supply voltage range of 1.5 V to 5.5 V, these features allow the TSU112IY to be efficiently supplied by a coin type Lithium battery or a regulated voltage in low-power applications.

The high accuracy of 150 μ V max. and 9 kHz gain bandwidth make the TSU112IY ideal for sensor signal conditioning, battery management system, on-board (OBC) and wireless chargers.

1 Package pin connections

57

1. The exposed pad of the DFN8 2x2 can be connected to $V_{\text{CC-}}$ or left floating.

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit		
V _{CC}	Supply voltage (1)	6			
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V		
Vin	Input voltage (3)	$(V_{CC}) - 0.2$ to $(V_{CC}) + 0.2$			
l _{in}	Input current (4)	10	mA		
T _{stg}	Storage temperature	-65 to 150	•0		
Тј	Maximum junction temperature		150	L L	
D	Thermal resistance junction-to-ambient ^{(5) (6)} DFN8 2x2 MiniSO8		57	°C 141	
^r thja			190	C/W	
	HBM: human body model (7)		4000	V	
ESD	CDM: charged device model ⁽⁸⁾	1500	v		
	Latch-up immunity ⁽⁹⁾	200	mA		

1. All voltage values, except the differential voltage, are with respect to the network ground terminal.

2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

3. $(V_{CC+}) - V_{in}$ must not exceed 6 V, $V_{in} - (V_{CC-})$ must not exceed 6 V.

4. The input current must be limited by a resistor in-series with the inputs.

5. R_{th} are typical values.

6. Short-circuits can cause excessive heating and destructive dissipation.

7. HBM test according to the standard AEC-Q100-002 and related to ESDA/JEDEC JS-001-2017.

8. The test CDM is performed in accordance with the standard AEC-Q100-011 and related to ESDA/JEDEC JS-002-2018.

9. Related to JEDEC JESD78E Apr. 2016.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common-mode input voltage range	(V _{CC-}) - 0.1 to (V _{CC+}) + 0.1	V
T _{oper}	Operating free-air temperature range	-40 to 125	°C

3 Electrical characteristics

Table 3. Electrical characteristics at (V _{CC+}) = 1.8 V with (V _{CC-}) = 0 V, V _{icm} = V _{CC} /2, T _{amb} = 25 °C, and R _L = 1 M Ω
connected to V _{CC} /2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC performance							
N/.	Input offect veltage	T = 25 °C			150		
v _{io}	input onset voltage	-40 °C < T< 125 °C			400	μν	
$\Delta V_{io} / \Delta T$	Input offset voltage drift	-40 °C < T< 125 °C			2.5	µV/°C	
lia	land offerst surrent (1)	T = 25 °C		1	10		
IIO	input onset current (*)	-40 °C < T< 125 °C			50	n A	
I.,	Input bias surrent (1)	T = 25 °C		1	10	ρA	
di	input bias current (**	-40 °C < T< 125 °C			50		
	Common mode rejection ratio,	T = 25 °C	76	99			
CMR	20 log ($\Delta V_{icm}/\Delta V_{io}$), V _{icm} = 0 to 1.8 V	-40 °C < T< 125 °C	71				
A _{vd}		R _L = 100 kΩ, T = 25 °C	95	120		dВ	
	Large signal voltage gain, $V_{out} = 0.2 V \text{ to } (V_{CC+}) - 0.2 V$	R _L = 100 kΩ,	00			_	
		-40 °C < T< 125 °C	82				
	High-level output voltage, (drop from V _{CC} +)	R _L = 10 kΩ, T = 25 °C		11	25		
V _{OH}		R _L = 10 kΩ,		40			
		-40 °C < T< 125 °C			40	m)/	
	Low-level output voltage	R _L = 10 kΩ, T = 25 °C		9	25	IIIV	
V _{OL}		R _L = 10 kΩ,			40		
		-40 °C < T< 125 °C					
	Output sink current,	T = 25 °C	2.8	5			
1.	$V_{out} = V_{CC}$, $V_{ID} = -200 \text{ mV}$	-40 °C < T< 85 °C	1.5				
out	Output source current,	T = 25 °C	2	4		- IIIA	
	V _{out} = 0 V, V _{ID} = 200 mV	-40 °C < T< 125 °C	1.5				
	Supply current (per channel),	T = 25 °C		840	1300		
Icc	No load, $V_{out} = V_{CC}/2$	-40 °C < T< 125 °C			1580	nA	
		AC performance					
GBP	Gain bandwidth product			9		kH7	
Fu	Unity gain frequency	$R_1 = 1 MO_{c_1} = 60 pF_{c_2}$		5.5		1112	
Φ _m	Phase margin	τις τημ.2, ο <u>ς</u> - ου μι		70		degrees	
G _m	Gain margin			30		dB	
SRp	Slew rate (10 % to 90 %)	$R_L = 1 \text{ M}\Omega, C_L = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC^+}) - 0.3 \text{ V}$	0.8	1.8		V/ms	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
0Dm	Clow rate (10.% to 00.%)	R_L = 1 M Ω , C_L = 60 pF,	1.0	2.0		Marc
SKI	Siew rate (10 % to 90 %)	V_{out} = 0.3 V to (V_{CC+}) - 0.3 V	1.2	3.0		v/ms
e _n	Equivalent input noise voltage	f = 100 Hz		220		nV/√Hz
∫e _n	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		4.6		μV _{pp}
t _{rec} P	Overload recovery time (from positive rail)	100 mV from rail in comparator, R_L = 100 k Ω , V_{ID} = ±1 V, -40 °C < T< 125 °C		220		μs
t _{rec} P	Overload recovery time (from negative rail)	100 mV from rail in comparator, R_L = 100 kΩ, V_{ID} = ±1 V, -40 °C < T< 125 °C		430		μs

1. Guaranteed by design

Table 4. Electrical characteristics at $(V_{CC+}) = 3.3 \text{ V}$ with $(V_{CC-}) = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25 \text{ °C}$, and $R_L = 1 \text{ M}\Omega$ connected to V $_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
Vio	Input offect veltage	T = 25 °C			150	
V IO	input onset voltage	-40 °C < T< 125 °C			400	μν
ΔV _{io} /ΔT	Input offset voltage drift	-40 °C < T< 125 °C			2.5	µV/°C
L	langest offeret express (1)	T = 25 °C		1	10	
l _{io}	input onset current (*)	-40 °C < T< 125 °C			50	54
I.,	Input biog ourrept (1)	T = 25 °C		1	10	– pA
di	input bias current (**	-40 °C < T< 125 °C			50	
	Common mode rejection ratio,	T = 25 °C	81	102		
CMR	20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{icm} = 0$ to 3.3 V	-40 °C < T< 125 °C	76			
	Large signal voltage gain,	R _L = 100 kΩ, T = 25 °C	100	128		uв
A _{vd}	V _{out} = 0.2 V to (V _{CC+}) - 0.2 V	R _L = 100 kΩ, -40 °C < T< 125 °C	88			
M	High-level output voltage, (drop from V _{CC} +)	R _L = 10 kΩ, T = 25 °C		11	25	
VOH		R _L = 10 kΩ, -40 °C < T< 125 °C			40	
V		R _L = 10 kΩ, T = 25 °C		9	25	– mv
VOL	Low-level output voltage	R _L = 10 kΩ, -40 °C < T< 125 °C			40	_
	Output sink current,	T = 25 °C	12	22		
	$V_{out} = V_{CC}$, $V_{ID} = -200 \text{ mV}$	-40 °C < T< 125 °C	6			
out	Output source current,	T = 25 °C	9	17		mA
	V _{out} = 0 V, V _{ID} = 200 mV	-40 °C < T< 125 °C	5			

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Supply current (per channel),	T = 25 °C		920	1300	
ICC	$V_{out} = V_{CC}/2$	-40 °C < T< 125 °C			1650	nA
		AC performance				
GBP	Gain bandwidth product			9		kU-
Fu	Unity gain frequency	$D = 1 M_0 C = 60 pC$		5.5		KIIZ
Φ _m	Phase margin	$R_{L} = 1 M\Omega_{2}, C_{L} = 60 \text{ pr}$		70		degrees
G _m	Gain margin			30		dB
SRp	Slew rate (10 % to 90 %)	$R_L = 1 M\Omega, C_L = 60 pF,$ $V_{out} = 0.3 V to (V_{CC+}) - 0.3 V$	0.9	1.8		V/ms
SRn	Slew rate (10 % to 90 %)	$R_{L} = 1 \text{ M}\Omega, C_{L} = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC+}) - 0.3 \text{ V}$	1.5	3.0		V/ms
e _n	Equivalent input noise voltage	f = 100 Hz		200		nV/√Hz
∫e _n	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		4.6		μV _{pp}
t _{rec} P	Overload recovery time (from positive rail)	100 mV from rail in comparator, R_L = 100 kΩ, V_{ID} = ±1 V, -40 °C < T< 125 °C		420		μs
t _{rec} N	Overload recovery time (from negative rail)	100 mV from rail in comparator, R_L = 100 kΩ, V_{ID} = ±1 V, -40 °C < T< 125 °C		880		μs

1. Guaranteed by design

Table 5. Electrical characteristics at (V_{CC+}) = 5 V with (V_{CC-}) = 0 V, $V_{icm} = V_{CC}/2$, $T_{amb} = 25$ °C, and $R_L = 1 M\Omega$ connected to V _{CC}/2 (unless otherwise specified)

Symbol	Parameter Conditions				Max.	Unit			
DC performance									
V.	Innut offect veltage	T = 25 °C			150				
vio	input onset voltage	-40 °C < T< 125 °C			400	μν			
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T< 125 °C			2.5	µV/°C			
I.	lagest affect ourseat (1)	T = 25 °C		1	10				
lio	input onset current (*)	-40 °C < T< 125 °C			50				
	lanut biog groups (1)	T = 25 °C		1	10	рА			
ⁱ b Input blas cur	input bias current ()	-40 °C < T< 125 °C			50				
CMP	Common mode rejection ratio 20 log (ΔV_{c} / ΔV_{c}) V_{c} = 0 to 5 V	T = 25 °C	85	106					
CIVIR	$\frac{1}{10000000000000000000000000000000000$	-40 °C < T< 125 °C	80						
C) / D	Supply voltage rejection ratio, V_{CC} = 1.5 to 5.5 V,	T = 25 °C	89	107					
SVR	V _{icm} = 0 V	-40 °C < T< 125 °C	84			aв			
•	Large signal voltage gain, V_{out} = 0.2 V to	R₁ = 100 k0 T = 25 °C	105	132					
A _{vd}	(V _{CC+}) - 0.2 V	$N_{\rm L} = 100 M_{22}, 1 = 20 \rm C$							

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
A _{vd}	Large signal voltage gain, V_{out} = 0.2 V to (V _{CC+}) - 0.2 V	R _L = 100 kΩ, -40 °C < T< 125 °C	92			dB
V	High-level output voltage (drop from Voot) $R_L = 10 \text{ k}\Omega, T =$			12	25	
∨он	High-level output voltage, (drop from v_{CC} +)	R _L = 10 kΩ, -40 °C < T< 125 °C			40	
		R _L = 10 kΩ, T = 25°C		10	25	mv
VOL	Low-level output voltage $R_L = 10 \text{ k}\Omega, -40 \text{ °C} < T < 12$				40	
	Output cicle current $V_{1} = V_{1} = V_{2} = 200 \text{ m}V_{1}$	T = 25 °C	30	45		
1.	Output sink current, $v_{out} = v_{CC}$, $v_{ID} = -200 \text{ mV}$	-40 °C < T< 125 °C	15			~
out	Output source current $V_{1} = 0 V_{1} V_{2} = 200 \text{ mV}$	T = 25 °C	9	39		mA
	Suppressive current, $v_{out} = 0$ v, $v_{ID} = 200 \text{ mv}$	-40 °C < T< 125 °C	18			
laa	Supply current (per channel), no load $V_{1/2} = V_{0,0}/2$	T = 25 °C		1000	1400	n A
icc	-40 °C < 1				2000	IIA
	AC performa	nce				
GBP	Gain bandwidth product			9		
Fu	Unity gain frequency	D = 1 M Q Q = 60 m E		6		KLIZ
Φ _m	Phase margin	$R_{L} = 1 M\Omega_{2}, C_{L} = 00 \text{ pr}$		70		degrees
G _m	Gain margin			30		dB
SRp	Slew rate (10 % to 90 %)	$R_L = 1 \text{ M}\Omega, C_L = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC+}) - 0.3 \text{ V}$	0.9	1.9		V/ms
SRn	Slew rate (10 % to 90 %)	$R_{L} = 1 \text{ M}\Omega, C_{L} = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC+}) - 0.3 \text{ V}$	1.5	3.1		V/ms
en	Equivalent input noise voltage	f = 100 Hz		220		nV/√Hz
∫e _n	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		4.6		μV _{pp}
		100 mV from rail in comparator,				
t _{rec} P	Overload recovery time (from positive rail)	R _L = 100 kΩ,		650		μs
		V _{ID} = ±1 V -40 °C < T< 125 °C				
		100 mV from rail in comparator,				
t _{rec} N	Overload recovery time (from negative rail)	R _L = 100 kΩ,		1300		μs
		V _{ID} = ±1 V, -40 °C < T< 125 °C				

1. Guaranteed by design

4 Electrical characteristic curves

57/

57/

Figure 40. Gain bandwidth product vs. input common mode voltage

5 Application information

57/

5.1 Nanopower applications

The TSU112IY can operate from 1.5 V to 5.5 V. The parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed on the industrial temperature range from -40 to 125 °C.

5.1.1 Schematic optimization aiming for nanopower

To benefit from the full performance of the TSU112IY, the impedances must be maximized so that current consumption is not lost where it is not required.

For example, an aluminum electrolytic capacitance can have significantly high leakage. This leakage may be greater than the current consumption of the op-amp. For this reason, ceramic type capacitors are preferred.

For the same reason, big resistor values should be used in the feedback loop. However, there are two main limitations to be considered when choosing a resistor.

- Noise generated: a 100 kΩ resistor generates 40 nV/√Hz, a bigger resistor value generates even more noise.
- 2. Leakage on the PCB: leakage can be generated by moisture. This can be improved by using a specific coating process on the PCB.

5.1.2 PCB layout considerations

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU112IY can be performed with a guarding technique. The technique consists of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the same electrical potential as the high impedance node.

Therefore, even if some parasitic impedance exists between the tracks, no leakage current can flow through them as they are at the same potential (see Figure 1).

Figure 41. Guarding on the PCB

5.2 Rail-to-rail input

The TSU112IY is built with two complementary PMOS and NMOS input differential pairs. Thus, the device has a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V. The TSU112IY has been designed to prevent phase reversal behavior.

5.3 Input offset voltage drift overtemperature

The maximum input voltage drift variation overtemperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25 \,^{\circ}\text{C})}{T - 25 \,^{\circ}\text{C}} \right|$$

Where T = -40 $^{\circ}$ C and 125 $^{\circ}$ C.

The TSU112IY datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.4 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. **Equation 2**

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

V_S is the stress voltage used for the accelerated test

V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. **Equation 3**

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

AFT is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (°K)

T_S is the temperature of the die under temperature stress (°K)

The final acceleration factor, A_F, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months =
$$A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The V_{io} drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).

Equation 6

$$V_{CC} = maxV_{op}$$
 with $V_{icm} = V_{CC} / 2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month s)}}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

5.5 Using the TSU112IY with sensors

The TSU112IY has MOS inputs, thus input bias currents can be guaranteed down to 10 pA maximum at ambient temperature. This is an important parameter when the operational amplifier is used in combination with high impedance sensors.

The TSU112IY is perfectly suited for trans-impedance configuration. This configuration allows a current to be converted into a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical gas sensing or photo/UV sensing applications. The TSU112IY, using trans-impedance configuration, is able to provide a voltage value based on the physical parameter sensed by the sensor.

5.6 Fast desaturation

When the TSU112IY goes into saturation mode, it takes a short period of time to recover, typically 420/880 µs. When recovering after saturation, the TSU112IY does not exhibit any voltage peaks that could generate issues (such as false alarms) in the application (see Figure 14).

We can observe that this circuit still exhibits good gain even close to the rails i.e. A_{vd} greater than 88 dB for V_{cc} = 3.3 V with V_{out} varying from 200 mV up to a supply voltage minus 200 mV. With a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails.

5.7 Using the TSU112IY in comparator mode

The TSU112IY can be used as a comparator. In this case, the output stage of the device always operates in saturation mode. In addition, Figure 3 shows that the current consumption is not higher and even decreases smoothly close to the rails. The TSU112IY is obviously an operational amplifier and is therefore optimized for use in linear mode. We recommend using the TS88 series of nanopower comparators if the primary function is to perform a signal comparison only.

5.8 ESD structure of the TSU112IY

The TSU112IY is protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 1). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (V_{CC+}) or (V_{CC-}).

Figure 42. ESD structure

Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. A serial resistor on the inputs can be used to limit this current.

57

5.9 EMI robustness of nanopower devices

Nanopower devices exhibit higher impedance nodes and consequently they are more sensitive to EMI. To improve the natural robustness of the TSU112IY device, we recommend to add three capacitors of around 22 pF each between the two inputs, and between each input and ground. These capacitors lower the impedance of the input at high frequencies and therefore reduce the impact of the radiation

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 DFN8 2x2 package information

Figure 43. DFN8 2x2 package outline

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
A	0.70	0.75	0.80	0.70	0.75	0.80		
A1		0.10			0.10			
b	0.20	0.25	0.30	0.20	0.25	0.30		
D	1.95	2.00	2.05	1.95	2.00	2.05		
D1	0.80	0.90	1.00	0.80	0.90	1.00		
E	1.95	2.00	2.05	1.95	2.00	2.05		
E1	1.50	1.60	1.70	1.50	1.60	1.70		
е		0.50			0.50			
F		0.05			0.05			
G	0.25	0.30	0.35	0.25	0.30	0.35		
aaa		0.10			010			

Table 6. DFN8 2x2 package mechanical data

The terminal 1 corner must be identified on the top surface by using a laser marking dot.

Figure 44. DFN8 2x2 recommended footprint

MiniSO8 package information 6.2

Figure 45. MiniSO8 package outline

TOP VIEW PIN 1 IDENTIFICATION 8 5 Е 0 H Η е

SIDE VIEW

Dim.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A			1.10			1.10
A1	0		0.15	0.05		0.15
A2	0.75	0.85	0.95	0.75	0.85	0.95
A3	0.30	0.35	0.40	0.30	0.35	0.40
b	0.22		0.40	0.28		0.36
С	0.08		0.23	0.15		0.19
D	2.80	3.00	3.20	2.90	3.00	3.10
Е	4.65	4.90	5.15	4.70	4.90	5.10
E1	2.80	3.00	3.10	2.90	3.00	3.10
е		0.65			0.65	
L	0.40	0.60	0.80	0.40		0.70
L1		0.95			0.95	
k	0		8	0		8
ссс			0.10			0.10

Table 7. MiniSO8 package mechanical data

Note:

TSSOP stands for thin shrink small outline package. Dimensions "D" and "E1" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

Figure 46. MiniSO8 recommended footprint

7 Ordering information

Table 8. Order code

Order code	Temperature range	Package ⁽¹⁾	Marking	
TSU112IYQ3T	40 °C to 1125 °C(2)	DFN8 2x2	K20	
TSU112IYST	-40 C 10 + 125 C	MiniSO8 (3)	130	

1. All devices are delivered in tape and reel packing.

 Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

3. This package is under qualification.

Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Mar-2021	1	Initial release

Contents

1	Pac	Package pin connections		
2	Absolute maximum ratings and operating conditions			3
3	Electrical characteristics			4
4				8
5	Арр	Application information		
	5.1	Nanop	oower applications	
		5.1.1	Schematic optimization aiming for nanopower	
		5.1.2	PCB layout considerations	
	5.2	Rail-to	p-rail input	
	5.3	Input c	offset voltage drift overtemperature	
	5.4	Long to	erm input offset voltage drift	
	5.5	Using	the TSU112IY with sensors	
	5.6	Fast d	esaturation	
	5.7	Using	the TSU112IY in comparator mode	
	5.8	ESD s	tructure of the TSU112IY	
	5.9	EMI ro	bustness of nanopower devices	
6	Package information			
	6.1	DFN8	2x2 package information	
	6.2	MiniSC	D8 package information	
7	Ord	ering in	formation	
Rev	vision	history	·	

List of tables

Table 1.	Absolute maximum ratings (AMR)
Table 2.	Operating conditions
Table 3.	Electrical characteristics at (V _{CC+}) = 1.8 V with (V _{CC-}) = 0 V, V _{icm} = V _{CC} /2, T _{amb} = 25 °C, and R _L = 1 M Ω connected
	to $V_{CC}/2$ (unless otherwise specified)
Table 4.	Electrical characteristics at (V _{CC+}) = 3.3 V with (V _{CC-}) = 0 V, $V_{icm} = V_{CC}/2$, $T_{amb} = 25$ °C, and $R_L = 1 M\Omega$ connected
	to V $_{CC}/2$ (unless otherwise specified)
Table 5.	Electrical characteristics at (V _{CC+}) = 5 V with (V _{CC-}) = 0 V, $V_{icm} = V_{CC}/2$, $T_{amb} = 25$ °C, and $R_L = 1 M\Omega$ connected to
	V _{CC} /2 (unless otherwise specified)
Table 6.	DFN8 2x2 package mechanical data
Table 7.	MiniSO8 package mechanical data
Table 8.	Order code
Table 9.	Document revision history

List of figures

Figure 1.	Pin connections for each package (top view)	. 2
Figure 2.	Supply current vs. supply voltage at low V _{ICM}	. 8
Figure 3.	Supply current vs. supply voltage at high V _{ICM}	. 8
Figure 4.	Supply current vs. supply voltage at mid V _{ICM}	. 8
Figure 5.	Supply current vs. input common-mode voltage	. 8
Figure 6.	Input offset voltage vs. input common-mode voltage	. 9
Figure 7.	Input offset voltage distribution	. 9
Figure 8.	Input offset voltage temperature coefficient distribution from -40 °C to 25 °C	. 9
Figure 9.	Input offset voltage temperature coefficient distribution from 25 °C to 125 °C	. 9
Figure 10.	Input offset voltage vs. temperature at 3.3 V	10
Figure 11.	Input bias current vs. temperature at mid V _{ICM}	10
Figure 12.	High level output voltage (drop from V _{CC} +).	10
Figure 13.	Low level output voltage	10
Figure 14.	Output characteristics at 1.5 V supply voltage.	11
Figure 15.	Output characteristics at 1.8 V supply voltage.	11
Figure 16.	Output characteristics at 3.3 V supply voltage.	11
Figure 17.	Output characteristics at 5 V supply voltage	11
Figure 18.	Output characteristics at 5.5 V supply voltage.	12
Figure 19.	Output saturation with a sinewave on the input	12
Figure 20.	Output saturation with a square wave on the input.	12
Figure 21.	Phase reversal free	12
Figure 22.	Recovery time from negative saturation vs. supply voltage	13
Figure 23.	Recovery time from positive saturation vs. supply voltage	13
Figure 24.	Slew rate vs. supply voltage	13
Figure 25.	Output swing vs. input signal frequency	13
Figure 26.	Triangulation of a sine wave	14
Figure 27.	Large signal response at 3.3 V supply voltage	14
Figure 28.	Small signal response at 3.3 V supply voltage	14
Figure 29.	Overshoot vs. capacitive load at 3.3 V supply voltage	14
Figure 30.	Over/under shoot vs supply voltage	15
Figure 31.	Bode diagram at 1.5 V supply voltage	15
Figure 32.	Bode diagram at 1.8 V supply voltage	15
Figure 33.	Bode diagram at 3.3 V supply voltage	15
Figure 34.	Bode diagram at 5 V supply voltage	15
Figure 35.	Bode diagram at 5.5 V supply voltage	15
Figure 36.		16
Figure 37.		16
Figure 38.	Noise vs. frequency for different common mode input voltages	16
Figure 39.		16
Figure 40.		17
Figure 41.		19
Figure 42.		21
Figure 43.		23
Figure 44.		24
Figure 45.	Minisco package UUIIIIE	20
riyure 40.		∠0

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved