

ELVR - Analog and Digital Low Pressure Sensors Series

Table of Contents

Features & Applications	2
Standard Pressure Ranges	2
Pressure Sensor Maximum Ratings	2
Environmental Specifications	2
Analog Output (5V) Specifications	3
Analog Output (3V) Specifications	4
Digital Output (5V) Specifications	5
Digital Output (3V) Specifications	6
Device Option Descriptions	7
<u>I²C Interface</u>	8-9
SPI Interface	-11
How to Order Guide	11
Product Identification Guide	12
Dimensional Package Drawings	
Non-Barbed SIL, DIP, and SMT	-16
Barbed SIL, SIP, and SMT17	-20
Product Labeling	21
Suggested Pad Layouts	21

Introduction

The ELVR Series Mini Analog and Digital Output Sensor is based on All Sensors' CoBeam^{2 TM} Technology. This reduces package stress susceptibility, resulting in improved overall long term stability. The superior dual-die technology also vastly improves position sensitivity compared to single die devices. This technology breakthrough advances the state of the art for piezoresistive pressure sensors beyond what has been achieved for low pressure sensing using silicon based strain technology.

The ELVR sensors can communicate directly with microcontrollers, eliminating the need for additional A/D converters. ELVR series pressure sensors are available at 3V and 5V supply voltage. The ELVR series provides a rapid update rate at multiple resolutions. A wide range of miniature SIP and DIP package options allows for flexible and space-saving PCB-mounting. These calibrated and compensated sensors provide accurate, stable output over a wide temperature range. This series is intended for use with non-corrosive, non-ionic working fluids such as air and dry gases. A protective parylene coating is optionally available for moisture/ harsh media protection for pressure ranges 10 inH2O and above.

https://www.allsensors.com/products/elvr-series

SENSORS

ALL

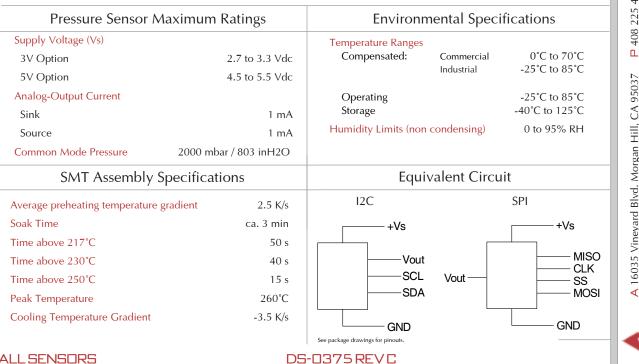
ALL SENSORS

DS-0375 Rev C

Features

- Pressure Ranges from 1 to 30 inH2O to
- 2.5 to 75 mbar

ALL SENSORS


- Precision ASIC Conditioning
- Analog Output with Digital I2C and SPI Interface
- 3V and 5V Supply Voltage

Applications

- Medical
- Industrial

		Standard Pres	sure Range	S	Standard Pressure Ranges												
Device	Operating	Range ^A	Differ Proof P		Differ Burst Pi												
	inH2O	mbar	inH2O	mbar	inH2O	mbar											
ELVR-L01D	± 1	± 2.5	100	250	301	750											
ELVR-L05D	± 5	± 12.5	201	500	301	750											
ELVR-L10D	± 10	± 25	201	500	301	750											
ELVR-L20D	± 20	± 50	201	500	502	1250											
ELVR-L30D	± 30	± 75	201	500	803	2000											
ELVR-L01G	1	2.5	100	250	301	750											
ELVR-L05G	5	12.5	201	500	301	750											
ELVR-L10G	10	25	201	500	301	750											
ELVR-L20G	20	50	201	500	502	1250											
ELVR-L30G	30	75	201	500	803	2000											

Note A: Operating range in mbar is expressed as an approximate value.

ALL SENSORS E www.allsensors.com

408 225 2079 Ŀ. 408 225 4314 ۰ 16035 Vineyard Blvd. Morgan Hill, CA 95037

All parameters are measured at **5.0 volt** excitation and 25°C unless otherwise specified. Pressure measurements are with positive pressure applied to PORT B

/	og Performance Cha	(Charification
Parameter	Minimum	Nominal	Maximum	Units	Specification Notes
Full Scale Span (FSS)	3.9	4.0	4.1	V	5
Full Scale Output (FSO)					-
Min Pressure		0.25		V	
Max Pressure		4.25		V	
Span Temperature Shift					
L01x	-	-	± 2	%FSS	2
L05x though L30x	-	-	±1	%FSS	2
Offset Voltage @ zero differential pressure					
LxxD	2.15	2.25	2.35	V	-
LxxG	0.15	0.25	0.35	V	-
Offset Temperature Shift					
L01x	-	-	±1.5	%FSS	2
L05x	-	-	±1	%FSS	2
L10x through L30x	-	-	±0.5	%FSS	2
Offset Warm-up Shift					
L01x	-	±10	-	mV	3
L05x thorugh L30x	-	±5	-	mV	3
Offset Position Sensitivity					
L01x	-	±15	-	mV	-
L05x thorugh L30x	-	±5	-	mV	-
Offset Long Term Drift (one year)					
L01x	-	±15	-	mV	-
L05x thorugh L30x	-	±5	-	mV	-
Linearity, Hysteresis error (all products)	-	±0.05	±0.25	%FSS	4
Response Delay					
"F" Option	-	0.5	-	ms	1
"H" Option	-	1.0	-	ms	1
D/A Resolution	-	11	-	bit	-
Current Consumption (no load)	-	5.0	-	mA	6
Startup Time (power-on to first reading)	-	21.0	25	msec	-

All parameters are measured at 3.0 volt excitation and 25° C unless otherwise specified. Pressure measurements are with positive pressure applied to PORT B

Minimum 1.9	Nominal 2.0 0.25 2.25	Maximum 2.10	Units V V V	Specification Notes 5
:	0.25 2.25		V	5
-	2.25			-
-	2.25			
-			V	
-	-			
-	-			
-	-	±2	%FSS	2
		±1	%FSS	2
1.15	1.25	1.35	V	-
0.15	0.25	0.35	V	-
-	-	±1.5	%FSS	2
-	-	±1	%FSS	2
-	-	±0.5	%FSS	2
-	±10	-	mV	3
-	±5	-	mV	3
-	±10	-	mV	-
-	±5	-	mV	-
-	±10	-	mV	-
-	±5	-	mV	-
-	±0.05	±0.25	%FSS	4
-	0.5	-	ms	1
-	1.0	-	ms	1
-	-	11	bit	-
-	4.0	-	mA	6
	-	$\begin{array}{ccc} & \pm 5 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

All parameters are measured at **5.0 volt** excitation and 25°C unless otherwise specified. Pressure measurements are with positive pressure applied to PORT B

Parameter	Minimum	Nominal	Maximum	Units	Specificatior
Parameter	Minimum	Nominal	Maximum	Units	Notes
Full Scale Span (FSS)	25,558	26,214	26,869	Decimal	2
Full Scale Output (FSO)					
Min Pressure		1638		Decimal	5
Max Pressure		27852		Decimal	5
Span Temperature Shift					
L01x	-	-	±2	%FSS	2
L05x though L30x	-	-	±1	%FSS	2
Offset Output @ zero differential pressure					
LxxD	14090	14745	15400	Decimal	-
LxxG	983	1638	2294	Decimal	-
Offset Temperature Shift					
L01x	-	-	±1.5	%FSS	2
L05x	-	-	±1	%FSS	2
L10x through L30x	-	-	±0.5	%FSS	2
Offset Warm-up Shift					
L01x	-	66	-	Decimal	3
L05x thorugh L30x	-	33	-	Decimal	3
Offset Position Sensitivity (±1 g)					
L01x	-	99	-	Decimal	-
L05x thorugh L30x	-	33	-	Decimal	-
Offset Long Term Drift (one year)					
L01x	-	66	-	Decimal	-
L05x thorugh L30x	-	33	-	Decimal	-
Linearity, Hysteresis error (all products)	-	±0.05	±0.25	%FSS	4
Response Delay					
"F" Option	-	0.5	-	ms	1
"H" Option	-	1.0	-	ms	Z
A/D Resolution	-	12 or 14	-	bit	-
Current Consumption	-	5.0	-	mA	6
Startup Time (power-on to first reading)	-	21	25	msec	-

All parameters are measured at **3.0 volt** excitation and 25°C unless otherwise specified. Pressure measurements are with positive pressure applied to PORT B

Digital Po	erformance Chara	acteristics in	Decimal		
Parameter	Minimum	Nominal	Maximum	Units	Specification
					Notes
Full Scale Span (FSS)	21,299	21,845	22,391	Decimal	2
Full Scale Output (FSO)					
Min Pressure	-	2731	-	Decimal	5
Max Pressure	-	24576	-	Decimal	5
Span Temperature Shift					
L01x	-	-	±2	%FSS	2
L05x though L30x	-	-	±1	%FSS	2
Offset Output @ zero differential pressure					
LxxD	12561	13653	14745	Decimal	-
LxxG	1638	2731	3823	Decimal	-
Offset Temperature Shift					
L01x	-	-	±1.5	%FSS	2
L05x	-	-	±1	%FSS	2
L10x through L30x	-	-	±0.5	%FSS	2
Offset Warm-up Shift					
L01x	-	66	-	Decimal	3
L05x thorugh L30x	-	33	-	Decimal	3
Offset Position Sensitivity (±1 g)					
L01x	-	99	-	Decimal	-
L05x thorugh L30x	-	33	-	Decimal	-
Offset Long Term Drift (one year)					
L01x	-	66	-	Decimal	-
L05x thorugh L30x	-	33	-	Decimal	-
Linearity, Hysteresis error (all products)	-	±0.05	±0.25	%FSS	4
Response Delay					
"F" Option	-	0.5	-	ms	1
"H" Option	-	1.0	-	ms	1
A/D Resolution	-	12 or 14	-	bit	-
Current Consumption	-	4.0	-	mA	6
Startup Time (power-on to first reading)	-	21	25	msec	-

Specification Notes

Note 1: For any pressure applied the output response time to reach 90% of pressure applied. **Note 2**: Shift is relative to 25°C between standard or industrial compensated temperature range endpoints.

Note 3: Shift is within the first hour of excitation applied to the device.

Note 4: Measured at one-half full scale rated pressure using best straight line curve fit.

Note 5: The span is the algebraic difference between full scale output voltage and the offset voltage.

Note 6: Parameter is characterized and not 100% tested.

Note 7: Provide a 10nF capacitor on the analog output for improved stability and reduced noise.

ALL SENSORS

Device Options

The following is a list of factory programmable options. Consult the factory to learn more about the options.

Interface

I2C and SPI interfaces are available with eight (8) lead packages only.

Supply Voltage

Devices are characterized at either 3.0V or 5.0V depending on the options selected. It is suggested to select the option that most closely matches the application supply voltage for best possible performance.

Speed/Resolution

There are two options of Speed/Resolution. These are Fast(F) and High Resolution(H).

<u>Fast Mode(F)</u> Is the fastest operating mode where the device operates with continuous sampling at the fastest internal speed 12 bit resolution, 0.5ms update rate.

<u>High Resolution(H)</u>: Also operates with continuous samples however the ADC is set for longer duration to achieve 14 bits internal resolution. The conversion times are therefore longer than the Fast(F) mode with 1 ms update rate.

Coating

Parylene Coating: Parylene coating provides a moisture barrier and protection form some harsh media. Consult factory for applicability of Parylene for the target application and sensor type. This option is not available for pressure ranges below 10 inH2O or for J-LEAD or L-LEAD SMT configurations.

I2C Interface

Introduction

The ELVR is capable of producing a digital output signal. The device runs a cyclic program, which will store a corrected pressure value about every 0.5 ms (F Option) or 1 ms (H Option) within the output registers of the internal ASIC. In order to use the sensor for digital signal reaoudt, it should be connected to a bidirectional 12C-bus.

According to the I2C-bus specification, the bus is controlled by a master device, which generates the clock signal, controls the bus access and generates START and STOP conditions. The ELVR is designed to work as a slave, hence it will only respond to requests from a master device.

Digital I2C interface

The ELVR complies with the following protocol in Figure 1.

- **Bus not busy**: During idle periods both data line (SDA) and clock line (SCL) remain HIGH.
- **START condition (S)** : HIGH to LOW transition of SDA line while clock (SCL) is HIGH is interpreted as START condition. START conditions are always generated by the master. Each initial request for a pressure value has to begin with a START condition.
- **STOP condition (P)** : LOW to HIGH transition of SDA line while clock (SCL) is HIGH determines STOP condition. STOP conditions are always generated by the master. More than one request for the current pressure value can be transmitted without generation of intermediate STOP condition.

- DATA valid (D): State of data line represents valid data when, after START condition, data line is stable for duration of HIGH period of clock signal. Data on line must be changed during LOW period of clock signal. There is one clock pulse per bit of data.
- Acknowledge (A): Data is transferred in pieces of 8 bits (1 byte) on serial bus, MSB first. After each byte the receiving device – whether master or slave – is obliged to pull data line LOW as acknowledge for reception of data. Master must generate an extra clock pulse for this purpose. When acknowledge is missed, slave transmitter becomes inactive. Master must then either send last command again or generate STOP condition in that case.

Slave address: The I2C-bus master-slave concept requires a unique address for each device. The ELVR has a preconfigured slave address, see table 2. The sensor will then listen to both slave addresses. After generating a START condition the master sends the address byte containing a 7 bit address followed by a data direction bit (R/W). A "0" indicates a transmission from master to slave (WRITE), a "1" indicates a data request (READ).

DATA operation : The sensor starts to send 2 data bytes containing the current pressure value as a 15 bit value placed in the output registers.

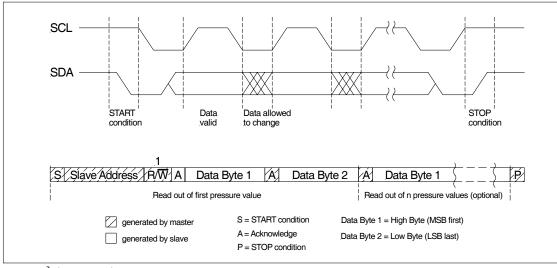


Figure 1: I²C bus protocol

ALL SENSORS

I²C BUS INTERFACE (Cont'd)

I²C Interface Parameters

Parameter	Symbol	Minimum	Nominal	Maximum	Unit	Specification Notes
Input High Level	-	90	-	100	% of Vs	6
Input Low Level	-	0	-	10	% of Vs	6
Output Low Level	-	-	-	10	% of Vs	6
Pull-Up Resistor	-	500	-	-	Ω	6
Load Capacitance @ SDA	C_{SDA}	-	-	400	pF	6
Input Capacitance @ SDA/SCL	C_{I2C_IN}	-	-	10	pF	6
Signal Clock Frequency	F _{SCL}	100*	-	400	kHZ	6
Bus Free Time Between STOP and START Condition	t _{BUF}	1.3	-	-	μs	6
Hold Time (Repeated) START Condition, to First Clock Pulse	t _{HD.STA}	0.8	-	-	μs	6
Low Period of SCL	t_{Low}	1.3	-	-	μs	6
High Period of SCL	t _{High}	0.6	-	-	μs	6
Setup Time Repeated START Condition	t _{SU.STA}	1	-	-	μs	6
Data Hold Time	t _{HD.DAT}	0	-	-	μs	6

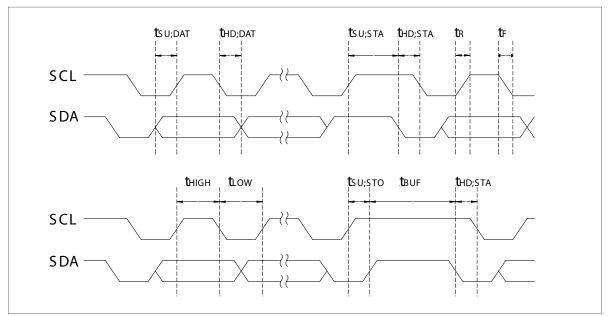


Figure 2. Timing Characteristics

SPI - SERIAL PERIPHERAL INTERFACE

Introduction

The ELVR series is capable of producing a digital output signal. The device runs a cyclic program, which will store a corrected sensor value about every 0.5 ms (F Option) or 1 ms (H Option) within the output registers of the internal ASIC. This cyclic program runs independent from the bus communication. In order to use the pressure sensor for digital signal readout, it should be connected to a SPI Master device.

SPI specifies four signals: The clock (CLK) is generated by the master and input to all slaves. MOSI carries data from master to slave. MISO carries data from slave back to master. A slave select line (SS) allows individual selection of a slave device.

SPI Modes

A pair of parameters called clock polarity (CPOL) and clock phase (CPHA) determine the edges of the clock signal on which the data are driven and sampled. Each of the two parameters has two possible states, which allows for four possible combinations, all of which are incompatible with one another. The ELVR series supports clock phase (CPHA)=0 and polarity (CPOL)=0. CPOL, which means that data trasmission starts with the rising first clock edge (see Figure 3).

Slave select

The falling edge of the SS line indicates the beginning of the transfer. Additionally the SS line must not be negated and reasserted between the three bytes to be transmitted.

Data operation

The MOSI line should always be set to high level, so there is no data transmission from master to slave. Because of internal configuration the slave will answer the first byte with an FFxh. The second and third byte contain the 15 bit pressure information (see Figure 4).

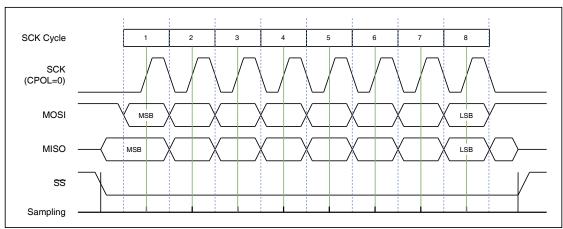


Figure 3: Example of a standard 1 byte SPI data transfer for CPHA=0 and CPOL=0

MOSI 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	-	_		Da	ta I	Byte	e 1		•	-	-	Da	ta I	Byte	e 2		-	-		Da	ta I	Byte	e 3		•
MISO X X X X X X X X P15P14P12P11P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P											1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MISO X	x	Х	Х	Х	Х	Х	Х	Х	Х	P15	P14	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0

Figure 4: 3 byte data stream between ELVR sensor and master containing the pressure value as a 15 bit value.

∢

SPI - SERIAL PERIPHERAL INTERFACE (Cont'd)

Interface Parameters

Parameter	Symbol	Minimum	Nominal	Maximum	Unit	Specification Notes
Input High Level	-	90	-	100	% of Vs	6
Input Low Level	-	0	-	10	% of Vs	6
Output Low Level	-	-	-	10	% of Vs	6
Pull-Up Resistor	-	500	-	-	Ω	6
Load Capacitance @ MISO	C _{MISO}	-	-	400	pF	6
Input Capacitance @ Each Pin	C _{SPI_IN}	-	-	10	pF	6
Signal Clock Frequency	f _{SCK}	100*	-	640	kHZ	6
MISO Hold Time after SCK Sample Slope	t _{spi_hd_miso}	200	-	-	ns	6
MOSI Setup Time Before SCK Sample Slope	t _{spi_su_mosi}	2/f _{CLK}	-	-	-	6
/SS Setup Time Before SCK Sample Slope	t _{SPI_SU_SS}	10	-	-	ns	6
/SS Hold Time After SCK Sample Slope	t _{SPI_HD_SS}	1/f _{CLK}	-	-	-	6

<u>Note:</u> All Sensors recommends communication speeds of at least 100 kHz (max. 640 kHz). Please contact your nearest All Sensors sales office for further information.

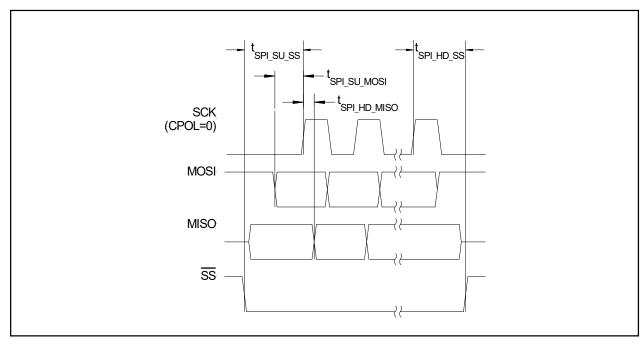


Figure 5: Timing characteristics

How to Order

Refer to Table 1 for configuring a standard base part number which includes the pressure range, package and temperature range. Table 2 shows the available configuring options. The option identifier is required to complete the device part number. Refer to Table 3 for the available device package options.

Example P/N with options: ELVR-L01D-F1RT-C-NI3F

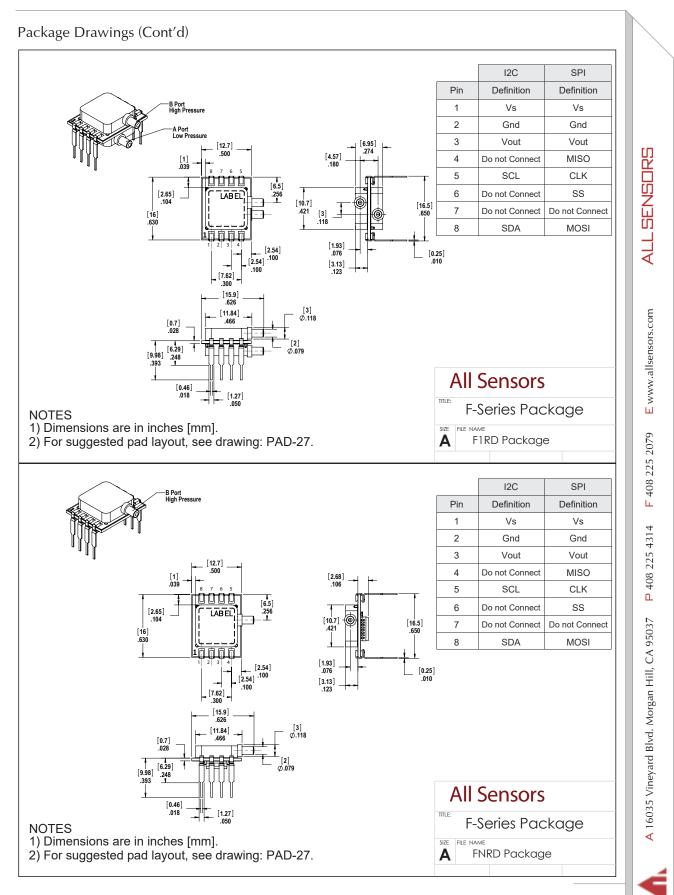
Table 1 - How to configure a base part

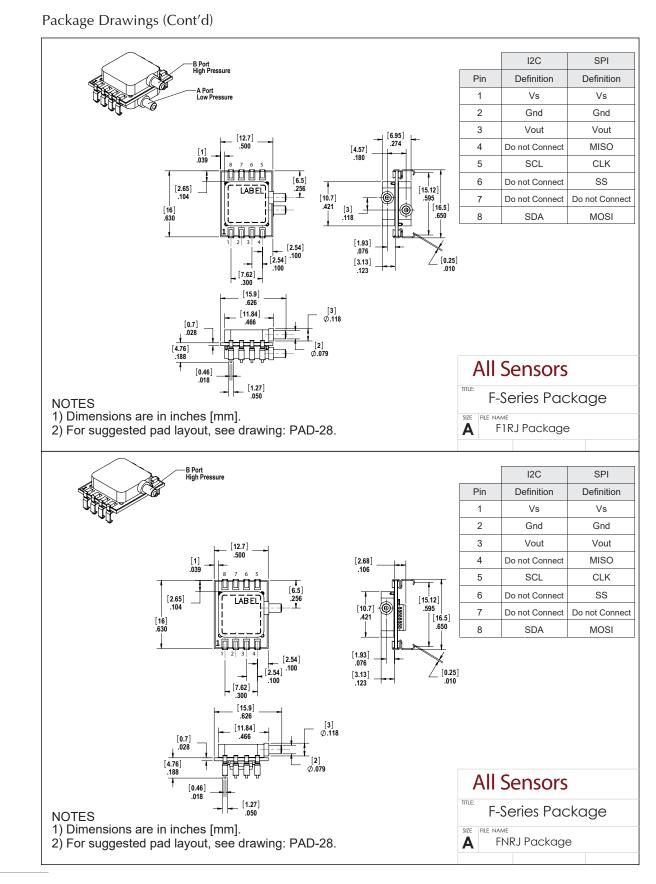
	SERIES		PRESS	URE RANGE	Γ					PACKAGE			IΓ	TEMP	ERATURE RANGE
					Ī	Base		Port Orientation		Lid Style		Lead Type			
	ID		ID	Description	[ID	ID	Description	ID	Description	ID	Description		ID	Description
	ELVR		L01D	±1 inH2O		F	1	Dual Port Same Side	R	Long Non-Barbed	т	SIL ^(see note 7)		С	Commercial
_			L05D	±5 inH2O			Ν	Single Port	S	Long Barbed	D	DIP		1	Industrial
ORDERING INFORMATION			L10D	±10 inH2O							1	J-Lead SMT			
IAT			L20D	±20 inH2O							L	L-Lead SMT			
SR N			L30D	±30 inH2O											
NFO			L01G	0 to 1 inH2O											
5			L05G	0 to 5 inH2O											
RIN N				0 to 10 inH2O											
ÕE				0 to 20 inH2O											
5			L30G	0 to 30 inH2O											
		\vdash			ŀ						_				
Example	ELVR	- L	.01D		-	F	1		R		Т		-	С	

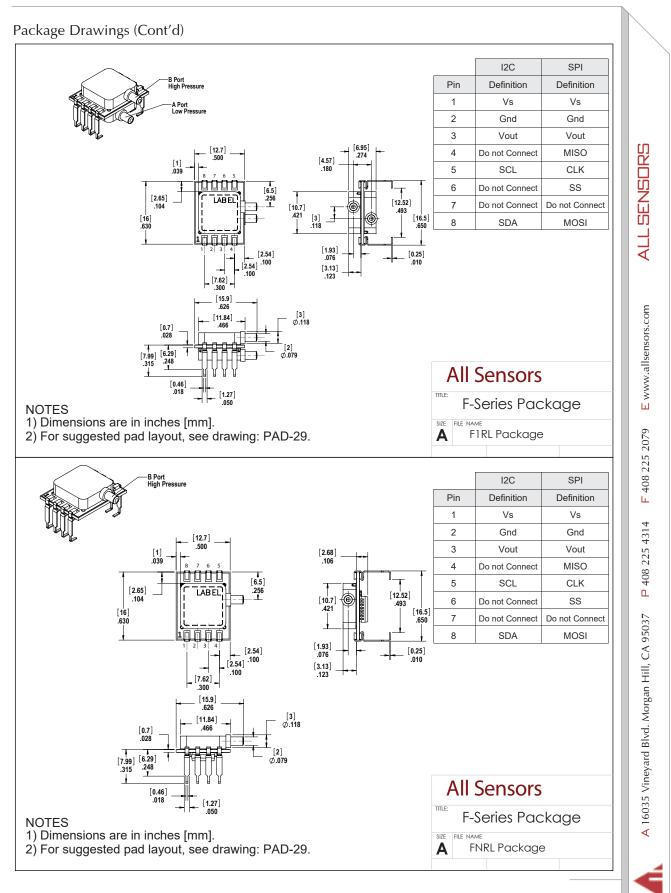
Table 2 - How to configure an option identifier

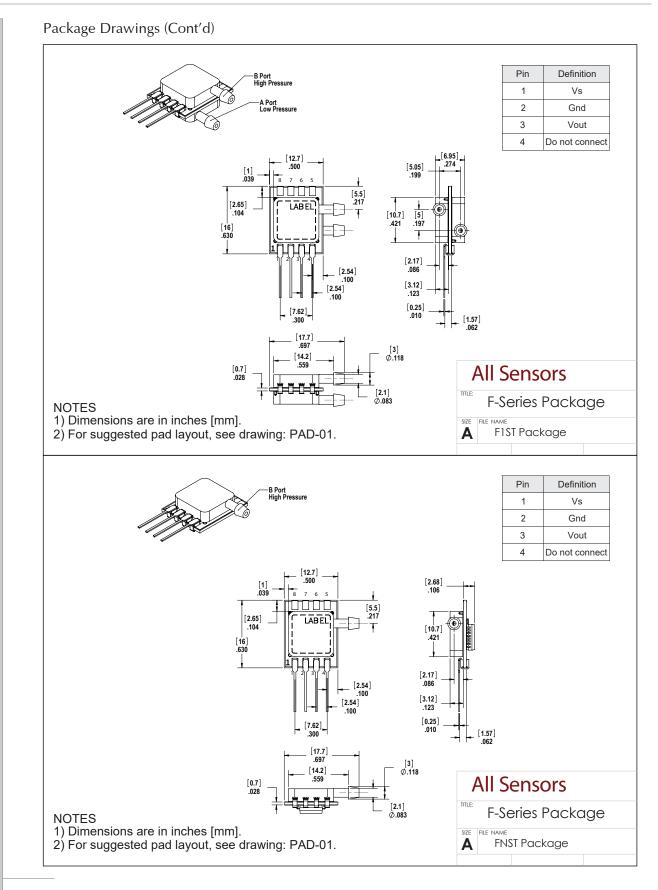
		COATING		INTERFACE		SL	JPPLY VOLTAGE	DIGITAL RESOLUTION UPDATE RATE			
Z	ID	Description	ID	Description	Address	ID	Description	ID	Description		
ORDERING INFORMATION	Ν	No Coating	А	Analog Only (see note 7)	N/A	3	3.0V	F	Fast Mode		
DRM	Р	Parylene Coating ^(see note 8)	Т	I2C & Analog	0x78	5	5.0V		(12bit, 0.5ms)		
NFG			Т	Option- SPI & Analog	N/A						
5			2	Option- I2C & Analog	0x28			н	High Resolution		
RIN			3	Option- I2C & Analog	0x38				(14bit, 1ms)		
DE			4	Option- I2C & Analog	0x48						
9			5	Option- I2C & Analog	0x58						
			6	Option- I2C & Analog	0x68						
Example	Ν		-			3		F			

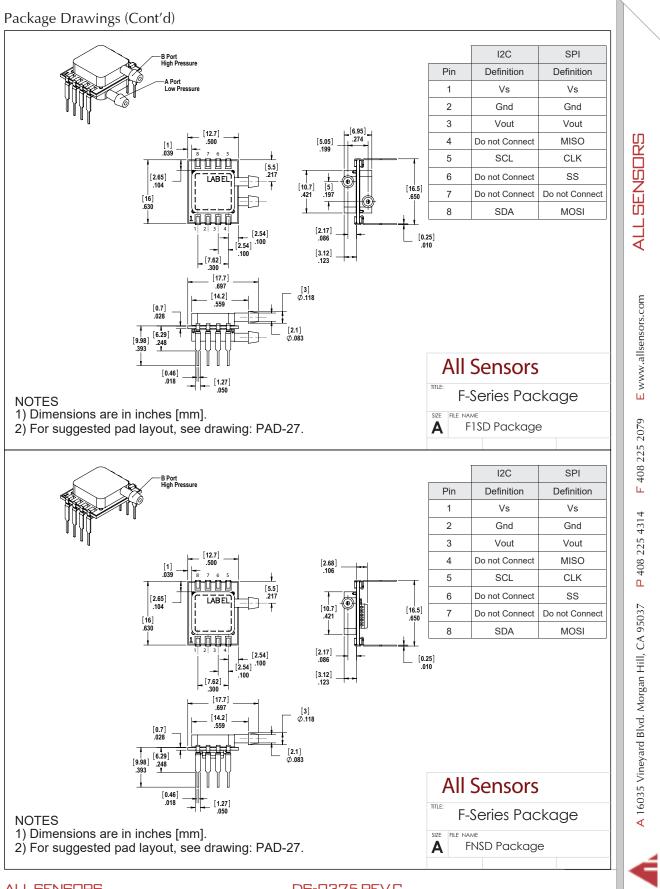
TABLE 3: Available F-Series Package Configura-

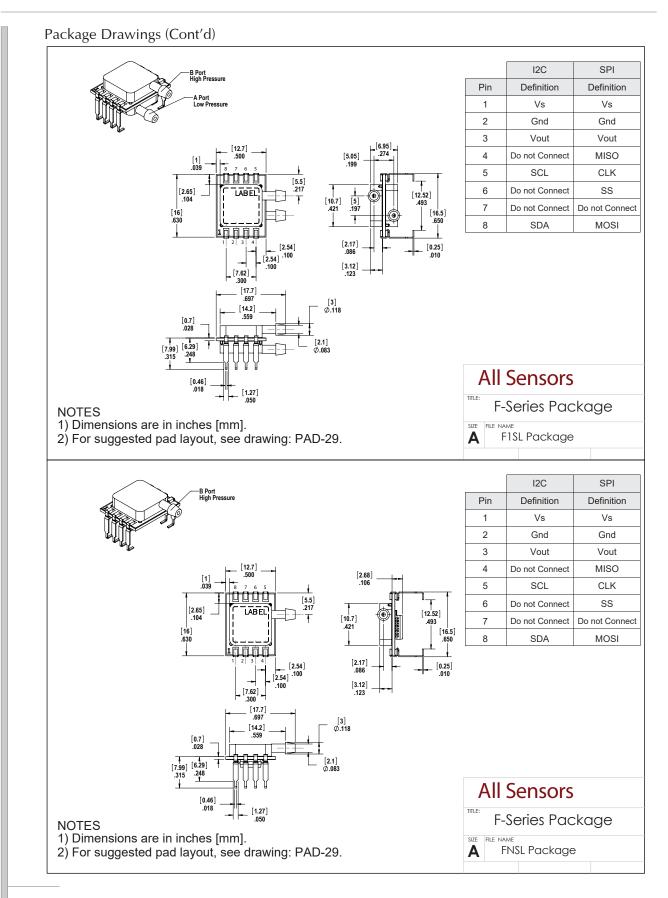

		Non-Ba	rbed Lid			Barb	ed Lid	
Port		Lead	Style			Lead	Style	
Orientation	SIL	DIP	SMT-J	SMT-L	SIL	DIP	SMT-J	SMT-L
Dual Port Same Side			C.		P -			
	F1RT	F1RD	F1RJ	F1RL	F1ST	F1SD	NOT OFFERED	F1SL
Single Port			in the second se					
	FNRT	FNRD	FNRJ	FNRL	FNST	FNSD	FNSJ	FNSL

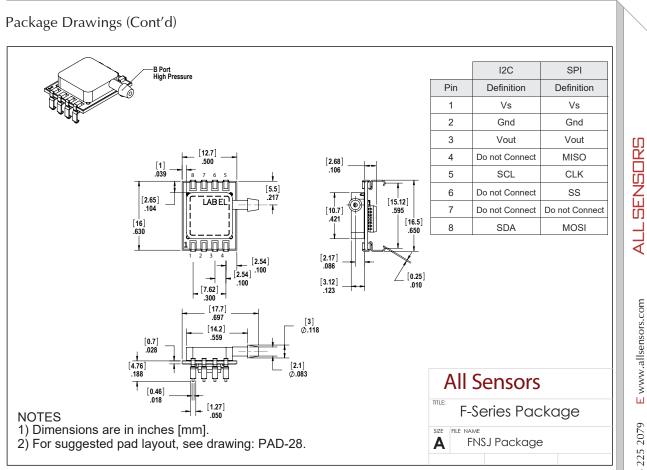

Specification Notes (Cont.)


NOTE 7: LEADFRAME "T" HAS ONLY ANALOG OUTPUT CAPABILITY. ALL LEAD TYPES EXCEPT FOR "T" HAVE SIMULTANEOUS DIGITAL AND ANALOG OUTPUT CAPABILITY.


NOTE 8: PARYLENE COATING NOT OFFERED IN J-LEAD OR L-LEAD SMT CONFIGURATION. PARYLENE COATING IS NOT OFFERED FOR PRES-SURE RANGES BELOW 10 INH2O.

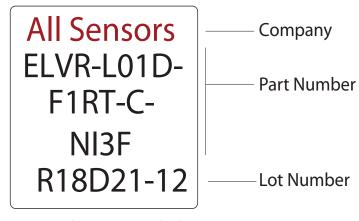




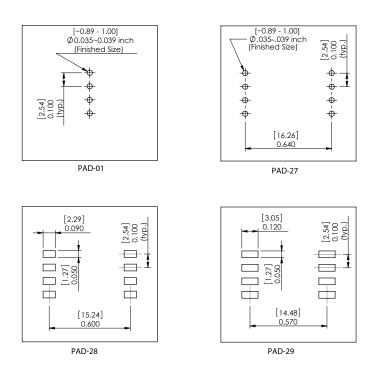


ALL SENSORS

DS-0375 REV C



F 408 225 2079 P 408 225 4314 A 16035 Vineyard Blvd. Morgan Hill, CA 95037


4

Example Device Label

Suggested Pad Layouts

All Sensors reserves the right to make changes to any products herein. All Sensors does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.