## Selection guide

## Applications

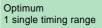
Electronic timers enable simple automation cycles to be set up using wired logic. They can also be used to complement the functions of PLCs.

**Timers with solid state output** reduce the amount of wiring required (wired in series). The durability of these timers is independent of the number of operating cycles.





| Enclosure type                              | Modular 17.5 mm                                              | DIN, width 22.5 mm                                                |                   |
|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|-------------------|
| Timing range<br>Number of ranges            | 1                                                            | 1                                                                 | 2                 |
| Extreme values                              | Depending on model:<br>0.13 s<br>130 s<br>10300 s<br>260 min | Depending on model:<br>0.110 s<br>0.330 s<br>3300 s<br>40 s60 min | 0.110 s<br>3300 s |
| Output circuit                              | <del></del>                                                  |                                                                   |                   |
| Control circuit voltage, depending on model | == 24240 V<br>∼ 24240 V                                      | = 24240 V<br>∼ 24240 V                                            |                   |
| Туре                                        | RE1                                                          | RE9                                                               |                   |
|                                             |                                                              |                                                                   |                   |


2/8 and 2/9

2/5

**Pages** 

**Relay outputs** provide complete isolation between the supply circuit and the output. It is possible to have several output circuits.

Universal: multi-voltage, multifunction, 7 or 10 timing ranges







10

1

0.05...1 s 0.15...3 s 0.5...10 s 1.5...30 s 5...100 s 15...300 s 1.5...10 min

7

0.05...1 s 0.15...3 s 0.5...10 s 1.5...30 s 5...100 s 15...30 min 15...300 min 15...300 h

Depending on model: 0.05...0.5 s 0.05...15 s 0.1...3 s 0.1...10 s 0.3...30 s 3...300 s 20 s...30 min

or L

\_\_\_ or \_\_\_ +

= or  $\sim$  24 V, 42...48 V, 24...240 V  $\sim$  110...240 V

= 24 V  $\sim$  24 V, 110...130 V, 220...240 V, 380...415 V

RE7

RE8

2/8 and 2/9

### Functions and selection

#### **Functions**

Diagram

Operating principle

#### On-delay

Control or supply C/O contact



Timing starts when the relay is energised. When the set time delay (t) has elapsed, the output contact closes. When the relay is de-energised, the contact returns to its initial position. The output contact does not close if the duration of the control instruction is less than the set time delay.

Timing can also be started by opening of a control contact (models with external control).

### Off-delay

Control or supply
C/O contact



Energisation of the relay or closing of the control contact (models with external control) causes the output relay to close instantaneously. Timing starts when the relay is de-energised or when the control contact opens. When the set time delay (t) has elapsed, the contact returns to its initial position. If the energisation time or closing time of the control contact is less than the minimum time specified, the timing period does not start.

### On and Off-delay



This function is a combination of the On and Off delay functions. The timing cycle must be controlled by an external contact.

### Symmetrical

The On and Off delays are equal.

#### Asymmetrica

The On and Off delays are adjusted by 2 different potentiometers.

### Timing relay with pulse on energisation

Supply C/O contact



Energisation of the relay causes the output contact to close instantaneously and start the timing period. The contact returns to its initial position when the set time delay (t) has elapsed or if the supply is cut off before the end of the timing period.

### Timing relay with pulse on de-energisation or on opening of a external control contact

Control or supply
C/O contact



De-energisation of the relay or opening of the external control contact (depending on model) causes the output contact to close instantaneously and start the timing period. When the set time delay (t) has elapsed, the contact returns to its initial position.

## Flashing relay

Supply C/O contact



Energisation of the relay starts the flashing period and causes the output relay to start the flashing cycle. When the relay is de-energised, the contact returns to its initial position.

### Symmetrical flashing relay

The On and Off flashing phases are identical.

### Asymmetrical flashing relay

The On and Off flashing phases are adjusted by 2 different potentiometers (ta and tr).

### Time delay relays for star-delta starters

Supply Star Delta



Energisation of the relay causes the star contactor to close instantaneously and starts the timing period. When the set time delay (t) has elapsed, the star contactor returns to its initial position and the delta contactor closes, after a breaking time sufficient for the changeover.

### Multifunction relays

On-delay - Pulse on energisation contact - Symmetrical flasher

Same functions as above +

Off-delay - Pulse on energisation contact with externally controlled start - Symmetrical flasher

Same functions as above +

Star Delta starting (External control of start of the timing period is not possible for the star delta starting function).

External control of starting: opening of an external contact connected to the relay starts the timing period. Closing of this contact resets the timer.

External control of partial stop of time delay: closing of an external contact connected to the relay allows the timing period to be interrupted. The time elapsed is memorised. Timing restarts as soon as the contact opens. This type of control enables the totalising function to be performed.

External adjustment of the time delay: one or more external potentiometers can be used for remote adjustment of the timing period or periods.

|   | Output         | Multifunction relay      | See pages                              |
|---|----------------|--------------------------|----------------------------------------|
|   | 0 11 1 1       | DE0 T4                   | 0/40                                   |
|   | Solid state    | RE9-TA                   | 2/12 and 2/13                          |
|   | 1 C/O          | RE7-TL or RE8-TA         | RE7: 2/20 and 2/21, RE8: 2/38 and 2/39 |
|   | 2 C/O          | RE7-TP                   | 2/20 and 2/21                          |
|   | 1 C/O          | RE7-TM                   | 2/20 and 2/21                          |
|   | 100            | NE7-1111                 | 2/20 and 2/21                          |
|   | Solid state    | RE9-RA                   | 2/12 and 2/13                          |
|   | 1 C/O          | RE7-RB11 or RE8-RB       | RE7: 2/24 and 2/25, RE8: 2/38 and 2/39 |
|   | 2 C/O          | RE7-RL                   | 2/24 and 2/25                          |
|   | 2 C/O          | RE7-RB13                 | 2/24 and 2/25                          |
|   | 1 C/O          | RE8-RA                   | 2/38 and 2/39                          |
|   |                |                          |                                        |
|   | 1 C/O          | RE7-RA and RE7-RM        | 2/24 and 2/25                          |
|   |                |                          |                                        |
|   | 2 C/O          | RE7-MA13                 | 2/22 and 2/23                          |
|   | 1 C/O          | RE7-MA11                 | 2/22 and 2/23                          |
|   |                |                          |                                        |
|   | 1 C/O          | RE7-MV                   | 2/22 and 2/23                          |
|   | 1 0/0          | IXET -IVI V              | LILL ANU LILU                          |
|   |                |                          |                                        |
|   | 1 C/O          | RE7-PE or RE8-PE         | RE7: 2/26 and 2/27, RE8: 2/40 to 2/41  |
|   | 2 C/O          | RE7-PP                   | 2/26 and 2/27                          |
| _ | 1 C/O          | RE8-PT                   | 2/40 and 2/41                          |
|   |                |                          |                                        |
|   | 2 C/O          | RE7-PD                   | 2/26 and 2/27                          |
|   | 1 C/O          | RE7-PM                   | 2/26 and 2/27                          |
|   | 1 C/O          | RE8-PD                   | 2/40 and 2/41                          |
|   |                |                          |                                        |
|   | 1 C/O          | RE7-CL or RE8-CL         | RE7: 2/28 and 2/29, RE8: 2/38 and 2/39 |
|   | 2 C/O          | RE7-CP                   | 2/28 and 2/29                          |
|   | 2 0/0          | RE7-CP                   | 2/28 and 2/29                          |
|   | 1 C/O          | RE7-CV                   | 2/28 and 2/29                          |
|   |                |                          |                                        |
|   |                |                          |                                        |
|   | 1.0/0          | DE0 VC                   | 2/40 and 2/44                          |
|   | 1 C/O          | RE8-YG                   | 2/40 and 2/41                          |
|   | 2 C/O          | RE7-YA and RE7-YR        | 2/30 and 2/31                          |
|   | 1 N/C + N/O    | RE8-YA                   | 2/40 and 2/41                          |
|   |                |                          |                                        |
|   | Output         | Multifunction relay      | See pages                              |
|   | Solid state    | RE9-MS                   | 2/14 and 2/15                          |
|   | 1 C/O          | RE7-ML                   | 2/32 and 2/33                          |
|   | . 3/0          |                          | _, 5_ and _, 60                        |
|   | 2 C/O<br>2 C/O | RE7-MY13MW<br>RE7-MY13BU | 2/32 and 2/33<br>2/32 and 2/33         |
|   |                |                          |                                        |

Relay output, width 22.5 mm, optimum

References: pages 2/38 and 2/40 Dimensions: page 2/42 Schemes, setting-up: pages 2/39, 2/41 and 2/43

### General characteristics

### Presentation



The RE8 range of relays is designed for simple and repetitive applications, providing basic functions.

Each relay comprises:

- a single timing range,a C/O output relay.

These products have a transparent, hinged flap on their front face to prevent any accidental alteration of the settings. This flap can be directly sealed.

## Environment

| Conforming to standards             |                                         |                 | IEC 61812-1, EN 61812-1                                  |
|-------------------------------------|-----------------------------------------|-----------------|----------------------------------------------------------|
| <u> </u>                            |                                         |                 |                                                          |
| Product approvals                   |                                         |                 | CSA, GL pending, UL                                      |
| CE marking                          |                                         |                 | Zelio Time timing relays conform to European regulations |
| •                                   |                                         |                 | relating to C€ marking                                   |
| Ambient air temperature             | Storage                                 | °C              | - 40+ 85                                                 |
| around the device                   | Operation                               | °C              | - 20+ 60                                                 |
|                                     |                                         |                 |                                                          |
| Permissible relative humidity range | Conforming to IEC 60721-3-3             |                 | 1585 % Environmental class 3K3                           |
|                                     |                                         |                 |                                                          |
| Vibration resistance                | Conforming to IEC 6068-2-6, 10 to 55 Hz |                 | a = 0.35 ms                                              |
|                                     |                                         |                 |                                                          |
| Shock resistance                    | Conforming to IEC 6068-2-27             |                 | 15 gn - 11 ms                                            |
| Degree of protection                | Casing                                  |                 | IP 50                                                    |
|                                     | Terminals                               |                 | IP 20                                                    |
|                                     |                                         |                 |                                                          |
| Degree of pollution                 | Conforming to IEC 60664-1               |                 | 3                                                        |
|                                     |                                         |                 |                                                          |
| Overvoltage category                | Conforming to IEC 60664-1               |                 |                                                          |
| Rated insulation voltage            | Conforming to IEC                       | V               | 250                                                      |
|                                     | Conforming to CSA                       | ٧               | 300                                                      |
| Test voltage for                    | Dielectric test                         | kV              | 2.5                                                      |
| insulation tests                    | Shock wave                              | kV              | 4.8                                                      |
|                                     |                                         |                 |                                                          |
| Voltage limits                      | Power supply circuit                    |                 | 0.91.1 Uc                                                |
| F                                   | Davis a superfix along it               |                 | 50/00 L 5 0/                                             |
| Frequency limits                    | Power supply circuit                    | Hz              | 50/60 ± 5 %                                              |
| Disconnection value                 | Power supply circuit                    |                 | > 0.1 Uc                                                 |
| Mounting position                   | In relation to normal vertical          |                 | Any position                                             |
| without derating                    | mounting plane                          |                 | Any position                                             |
| Connection                          | Flexible cable without cable end        | mm²             | 2 x 2.5                                                  |
| maximum c.s.a.                      | Flexible cable with cable end           | mm <sup>2</sup> | 2 x 1.5                                                  |
| maximum c.s.a.                      | Flexible cable with cable end           | 111111-         | Z X 1.0                                                  |
| Tightening torque                   |                                         | N.m             | 0.61.1                                                   |
| rigiteining torque                  |                                         | IN./II          | 0.01.1                                                   |

## Immunity to electromagnetic interference (EMC) (Application class 2 conforming to EN 61812-1)

| Electrostatic discharge | Conforming to IEC 61000-4-2 | Level 3 (6 kV contact, 8 kV air) |
|-------------------------|-----------------------------|----------------------------------|
| Electromagnetic fields  | Conforming to IEC 61000-4-3 | Level 3 (10 V/m)                 |
| Fast transients         | Conforming to IEC 61000-4-4 | Level 3 (2 kV)                   |
| Shock waves             | Conforming to IEC 61000-4-5 | Level 3 (2 kV)                   |
| Radiated and            | CISPR11                     | Group 1 class A                  |
| conducted emissions     | CISPR22                     | Class A                          |

## Consumption

| Consumption |                            |    | $\sim$ |       |       |       |       |   | ===  |
|-------------|----------------------------|----|--------|-------|-------|-------|-------|---|------|
|             |                            |    | 24 V   | 110 V | 240 V | 380 V | 415 V |   | 24 V |
|             | RE8-TA, RA, CL, PE, PU, PT | VA | 0.7    | 1.8   | 8.5   | _     | _     | W | 0.5  |
|             | RE8-YG, RB                 | VA | 0.9    | 2.5   | 13    | _     | _     | W | 0.5  |
|             | RE8-YA                     | VA | 0.9    | 2.5   | 13    | 8     | 9     | W | 0.7  |

Relay output, width 22.5 mm, optimum

References: pages 2/38 and 2/40 Dimensions: page 2/42 Schemes, setting-up: pages 2/39, 2/41 and 2/43

General characteristics (continued)

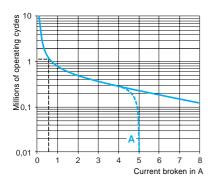
### Time delay characteristics

| -                        |                                 |    |                                |
|--------------------------|---------------------------------|----|--------------------------------|
| Setting accuracy         | As % of the full scale value    |    | ± 20 %                         |
| Repeat accuracy          |                                 |    | < 1 %                          |
| Influence of voltage     | In the voltage range, 0.91.1 Un |    | < 2.5 %                        |
| Influence of temperature |                                 |    | < 0.2 %/°C                     |
| Immunity to              |                                 |    |                                |
| micro-breaks             |                                 | ms | 3                              |
| Minimum control pulse    |                                 | ms | 26 (except <b>RE8-YG</b> : 60) |
| Reset time               |                                 | ms | 50                             |

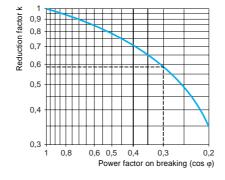
## Output circuit characteristics

| Maximum switching voltage         |                                 | ٧ | ≂ 250               |
|-----------------------------------|---------------------------------|---|---------------------|
| Mechanical durability             | In millions of operating cycles |   | 20                  |
| Current limit Ith                 |                                 | Α | 8                   |
| Rated operational limits at 70 °C |                                 |   | 24 V 115 V 250 V    |
| Conforming to IEC 60947-5-1/1991  | AC-15                           | Α | 3 3 3               |
| and VDE 0660                      | DC-13                           | Α | 2 0.2 0.1           |
| Minimum switching capacity        |                                 |   | 12 V/10 mA          |
| Contact material                  |                                 |   | Nickel Silver 90/10 |

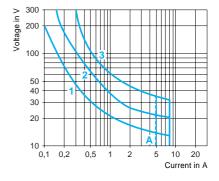
## Remote control input characteristics


# Signal delivered by control input Y1

No galvanic insulation between this input and the power supply


| No-load voltage   |    | Supply voltage                                |
|-------------------|----|-----------------------------------------------|
| Switching current | mA | < 10                                          |
| Maximum distance  | m  | 50                                            |
| Compatibility     |    | == 2-wire sensors with leakage current < 1 mA |
|                   |    |                                               |

#### a.c. load Curve 1


Electrical durability of contacts on resistive load in millions of operating cycles



Curve 2
Reduction factor k for inductive loads (applies to values taken from the durability curve opposite)



#### d.c. load Load limit curve



## A RE8-RB●●BUTQ

### Example:

An LC1-F185 contactor supplied with 115 V/50 Hz for a consumption of 55 VA or a current consumption equal to 0.1 A and cos  $\phi=0.3$ 

For 0.1 A, curve 1 indicates a durability of approximately 1.5 million operating cycles. As the load is inductive, it is necessary to apply a reduction coefficient k to this number of cycles, as indicated by curve 2.

For  $\cos \varphi = 0.3$ : k = 0.6

The electrical durability therefore becomes:

1.5 10<sup>6</sup> operating cycles x 0.6 = 900 000 operating cycles

## A RE8-RB●●BUTQ

- 1 L/R = 20 ms
- 2 L/R with load protection diode
- 3 Resistive load



Relay output, width 22.5 mm, optimum On-delay, Off-delay, flashing relays

Functions, references

Characteristics: pages 2/36 and 2/37 Dimensions: page 2/42 Schemes, setting-up: pages 2/39 and 2/43

de-energised

de-energised

energised open

closed t: adjustable Off-delay

energised open

closed t: adjustable On-delay On-delay relays ⊠

On-delay relay Start on energisation RE8-TA



| Composition | Supply<br>voltages | Quantity<br>per pack | range (1)   | Reference        | Weight<br>kg |
|-------------|--------------------|----------------------|-------------|------------------|--------------|
| 1 C/O       | pprox 24 V         | 10                   | 0.1 s3 s    | RE8-TA61BUTQ     | 0.110        |
|             | $\sim$ 110240 V    |                      | 0.1 s10 s   | RE8-TA11BUTQ (2) | 0.110        |
|             |                    |                      | 0.3 s30 s   | RE8-TA31BUTQ (2) | 0.110        |
|             |                    |                      | 3 s300 s    | RE8-TA21BUTQ (2) | 0.110        |
|             |                    |                      | 20 s30 min. | RE8-TA41BUTQ     | 0.110        |

## Off-delay relays

Off-delay relay With control contact RE8-RA

Self-powered RE8-RB

Supply Start

Supply C/O

Timing

Reference

Weight

Quantity

| 0/0  |           |          | 1 |
|------|-----------|----------|---|
| C/O  | 15/18     |          | ł |
|      | 15/16     |          | • |
|      |           |          |   |
|      |           |          |   |
| Com  | oosition  | Supply   |   |
|      |           | voltages |   |
|      |           |          |   |
| Cont | rol conta | ct       |   |

|            | voltages        | per pack | range (1)   |                  | kg    |
|------------|-----------------|----------|-------------|------------------|-------|
| Control co | ontact          |          |             |                  |       |
| 1 C/O      | $\approx$ 24 V  | 10       | 0.1 s10 s   | RE8-RA11BTQ (2)  | 0.110 |
|            |                 |          | 0.3 s30 s   | RE8-RA31BTQ      | 0.110 |
|            |                 |          | 3 s300 s    | RE8-RA21BTQ (2)  | 0.110 |
|            | $\sim$ 110240 V | 10       | 0.1 s10 s   | RE8-RA11FUTQ (2) | 0.110 |
|            |                 |          | 0.3 s30 s   | RE8-RA31FUTQ     | 0.110 |
|            |                 |          | 3 s300 s    | RE8-RA21FUTQ (2) | 0.110 |
|            |                 |          | 20 s30 min. | RE8-RA41FUTQ     | 0.110 |
| Self-powe  | red             |          |             |                  |       |
| 1 C/O      | ≂ 24 V          | 10       | 0.05 s0.5 s | RE8-RB51BUTQ     | 0.110 |
|            | $\sim$ 110240 V |          | 0.1 s10 s   | RE8-RB11BUTQ     | 0.110 |
|            |                 |          | 0.3 s30 s   | RE8-RB31BUTQ     | 0.110 |
|            |                 |          |             |                  |       |

## Flashing relays 」 [ |

Symmetrical RE8-CL

| Composition | Supply voltages       | Quantity<br>per pack | Timing range (1) | Reference    | Weight<br>kg |
|-------------|-----------------------|----------------------|------------------|--------------|--------------|
| 1 C/O       | ≂ 24 V<br>∼ 110 240 V | 10                   | 0.1 s10 s        | RE8-CL11BUTQ | 0.110        |

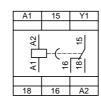
<sup>(1)</sup> For easier adjustment, it is preferable to set the time delay between the maximum value in the range and one tenth of this value.
Example: RE8-TA11BUTQ timing range 0.1 s...10 e 1 s...10 s.

(2) Also available in pack of one; delete TQ from the

ce. Example: RE8-TA11BU.

Relay output, width 22.5 mm, optimum On-delay, Off-delay, flashing relays

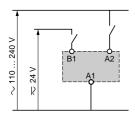
e 2/38 Schemes, setting-up


Characteristics: pages 2/36 and 2/37 References: page 2/38 Dimensions: page 2/42

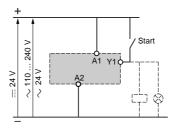
### **Schemes**

### Terminal blocks RE8-TA, CL

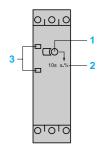


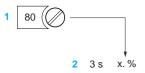

### RE8-RA




### RE8-RB




## Recommended application schemes RE8-TA, RB, CL




### RE8-RA



## Setting-up





- 1 Potentiometer for fine adjustment of the time delay, graduated in % of range max. setting 2.
- 2 Marking of maximum time delay value.
- 3 LEDs, depending on the models :
- Yellow LED: illuminates when the output relay is energised,
- Green LED: illuminates when the RE8 is energised.

### Adjustment of the time delay

- The maximum value of the timing range is printed on the product,  $\ensuremath{\textbf{2}}.$ 

Example: RE8-TA61BUTQ; maximum time delay: 3 s.

- Time required 2.4 s; using potentiometer 1 set the value of the time delay required as a % of value 2:

value 
$$1 = \frac{t \times 100}{2} = \frac{2.4 \times 100}{3} = 80$$

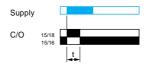
de-energised

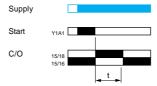
energised

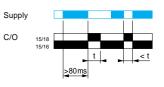
open closed

t: pulse time

Relay output, width 22.5 mm Pulse on energisation relays, relays for star-delta starters


Available 2nd Quarter 2001


Functions, references


## Pulse on energisation relays 1

Start on Start energisation exter RE8-PE RE8-

Start on opening of external control contact RE8-PD Start on de-energisation RE8-PT







| п | **       |
|---|----------|
| в | ***      |
|   |          |
|   | 1 Second |
|   |          |
|   | 200      |
| u | -        |
| V |          |

RE8-PE

| Composition | Supply   | Quantity | Timing    | Reference | Weight |
|-------------|----------|----------|-----------|-----------|--------|
|             | voltages | per pack | range (1) |           | kg     |
|             |          |          |           |           |        |

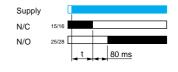
### On energisation

| 1 C/O | $\approx$ 24 V 10 | 0.1 s10 s | RE8-PE11BUTQ | 0.110 |
|-------|-------------------|-----------|--------------|-------|
|       | $\sim$ 110240 V   | 0.3 s30 s | RE8-PE31BUTQ | 0.110 |
|       |                   | 3 s300 s  | RE8-PE21BUTQ | 0.110 |

### By control contact

| 1 C/O | $\approx$ 24 V  | 10 | 0.1 s10 s | RE8-PD11BTQ  | 0.110 |
|-------|-----------------|----|-----------|--------------|-------|
|       |                 |    | 0.3 s30 s | RE8-PD31BTQ  | 0.110 |
|       |                 |    | 3 s300 s  | RE8-PD21BTQ  | 0.110 |
|       |                 |    |           |              |       |
|       | $\sim$ 110240 V | 10 | 0.1 s10 s | RE8-PD11FUTQ | 0.110 |
|       |                 |    | 0.3 s30 s | RE8-PD31FUTQ | 0.110 |
|       |                 |    | 3 s300 s  | RE8-PD21FUTQ | 0.110 |
|       |                 |    |           |              |       |

### On de-energisation


| 1 C/O | ightharpoons 24 V | 10 | 0.05 s1 s | RE8-PT01BUTQ | 0.110 |
|-------|-------------------|----|-----------|--------------|-------|
|       | $\sim$ 110240 V   |    |           |              |       |

## Timing relays for star-delta starters 📐 🖂

Timing relays for star-delta starters With contact for switching to star connection RE8-YG (2)

With double On-delay period RE8-YA





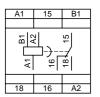
| Composition | Supply voltages                | Quantity<br>per pack | Timing range (1)                   | Reference                                    | Weight                  |
|-------------|--------------------------------|----------------------|------------------------------------|----------------------------------------------|-------------------------|
| 1 C/O       | $\gtrsim$ 24 V $\sim$ 110240 V | 10                   | 0.1 s10 s<br>0.3 s30 s<br>3 s300 s | RE8-YG11BUTQ<br>RE8-YG31BUTQ<br>RE8-YG21BUTQ | 0.110<br>0.110<br>0.110 |
| _           | ≂ 24 V                         | 10                   | 0.3 s30 s                          | RE8-YA32BTQ                                  | 0.110                   |
|             | $\sim$ 110240 V                | 10                   | 0.3 s30 s                          | RE8-YA32FUTQ                                 | 0.110                   |
|             | $\sim$ 380415 V                | 10                   | 0.3 s30 s                          | RE8-YA32QTQ                                  | 0.110                   |

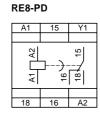
<sup>(1)</sup> For easier adjustment, it is preferable to set the time delay between the maximum value in the range and one tenth of this value.

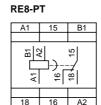


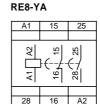
Example: RE8-PE11BUTQ timing range 0.1 s...10 s, recommended use 1 s...10 s.

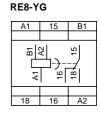
<sup>(2)</sup> Correct operation of the star-delta starter is only possible if the wiring scheme on page 2/41 is strictly complied with.


Relay output, width 22.5 mm, optimum Pulse on energisation relays, relays for star-delta starters


Characteristics: pages 2/36 and 2/37 References: page 2/40 Dimensions: page 2/42


Schemes, setting-up


### **Schemes**


Terminal blocks RE8-PE





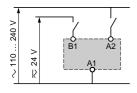


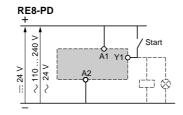




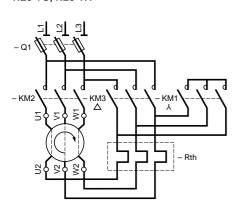
- KM2

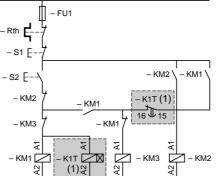
K1T

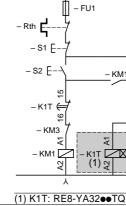

A2


KM3

– KM1


A2


Recommended application schemes Pulse on energisation relays RE8-PE, PT

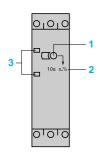





Timing relays for star-delta starters RE8-YG, RE8-YA








RE8-YA

(1) K1T: RE8-YG•1••TQ Note: Correct operation of the star-delta starter associated with the RE8-YG is only possible if the wiring scheme is strictly complied with

RE8-YG

## Setting-up



2 10 s x. %

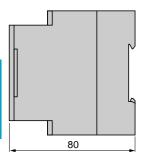
- 1 Potentiometer for fine adjustment of the time delay, graduated in % of range max. setting 2.
- 2 Marking of maximum time delay value.
- 3 LEDs, depending on the models:
  - Yellow LED: illuminates when the output relay is energised,
  - Green LED: illuminates when the RE8 is energised.

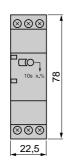
### Adjustment of the time delay

- The maximum value of the timing range is printed on the product 2.

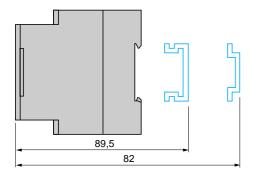
Example: RE8-PE11BUTQ; maximum time delay: 10 s.

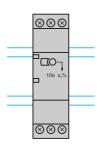
- Time required 2.4 s; using potentiometer 1 set the value of the time delay required as a % of value 2:


value 
$$1 = \frac{\text{t x } 100}{2} = \frac{2.4 \text{ x } 100}{10} = 24$$

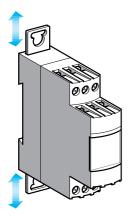

Relay output, width 22.5 mm, optimum

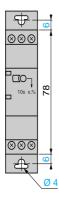
Characteristics:
pages 2/36 and 2/37
References:
pages 2/38 and 2/40
Schemes, setting-up:
pages 2/39, 2/41 and 2/43


Dimensions, mounting


#### RE8 Dimensions





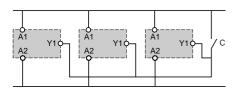


### Rail mounting





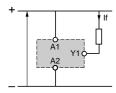
## Screw fixing






Characteristics:
pages 2/36 and 2/37
References:
pages 2/38 and 2/40
Dimensions:
page 2/42
Setting-up:
pages 2/39 and 2/41

Relay output, width 22.5 mm, optimum


**Schemes** 

## Control of several relays with a single external control contact



The external control contact C may be an electronic control device, for example a 2-wire sensor. In this case A1-A2 = \_\_\_ 24 V and the control device can only control up to a maximum of 4 relays.

## Connection of a \_\_\_ 2-wire sensor



Leakage current (open state) If < 1 mA.