MOSFET – Power, Single N-Channel, DFNW8

150 V, 4.45 mΩ, 165 A

NVMTS4D3N15MC

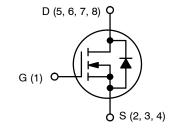
Features

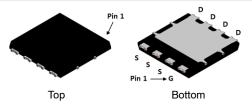
- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			150	V
V _{GS}	Gate-to-Source Voltage			±20	V
I _D	Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 25°C	165	Α
P _D	Power Dissipation $R_{\theta JC}$ (Note 2)			292	W
I _D	Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 100°C	117	Α
P _D	Power Dissipation $R_{\theta JC}$ (Note 2)			146	W
I _D	Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State	T _A = 25°C	21	Α
P _D	Power Dissipation R _{θJA} (Notes 1, 2)			5	W
I _D	Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady T _A = 100°C		15	A
P _D	Power Dissipation $R_{\theta JA}$ (Notes 1, 2)			2.4	W
I _{DM}	Pulsed Drain Current	$T_A = 25^{\circ}C$	C, t _p = 10 μs	900	Α
T _J , T _{stg}	Operating Junction and Storage Temperature Range			-55 to +175	°C
I _S	Source Current (Body Diode)			243	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _L = 14.1 A)			3390	mJ
TL	Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	4.45 m Ω @ 10 V	165 A

N-CHANNEL MOSFET

DFNW8 CASE 507AP

MARKING DIAGRAM

O 4D3N15MC AWLYWW

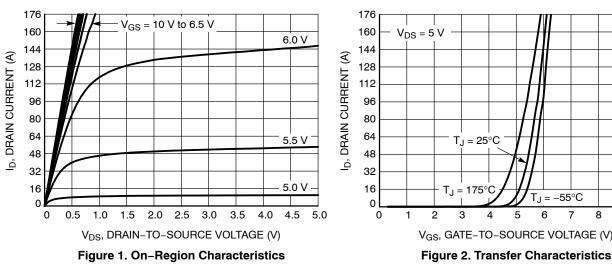
4D3N15MC = Specific Device Code
A = Assembly Location
WL = Wafer Lot Code
Y = Year Code
WW = Work Week Code

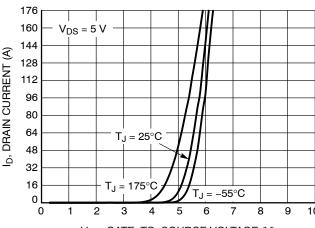
ORDERING INFORMATION

Device	Package	Shipping [†]
NVMTS4D3N15MC	DFNW8 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS


Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 2)	0.5	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 2)	31.4	,


Symbol	Parameter	Test C	ondition	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS	•				1	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		150	_	-	V
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA, ref to 25°C		-	49.84	=	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C	-	_	1	μΑ
			T _J = 125°C	_	_	10	μΑ
I_{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{GS}$	= ±20 V	-	_	±100	nA
ON CHARACTE	ERISTICS (Note 3)						
V _{GS(TH)}	Gate Threshold Voltage	V _{GS} = V _{DS} , I _D =	= 521 μΑ	2.5	3.6	4.5	V
V _{GS(TH)} / T _J	Negative Threshold Temperature Coefficient	I _D = 250 μA, re	f to 25°C	_	-9.93	_	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 95 A		-	3.4	4.45	mΩ
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 95 A		-	177	_	S
R_{G}	Gate-Resistance	T _A = 25°C		_	1.1	_	Ω
CHARGES & C	APACITANCES						
C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75V		_	6514	_	pF
Coss	Output Capacitance			_	1750	-]
C _{RSS}	Reverse Transfer Capacitance			_	12.5	-	1
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V},$ $I_D = 95 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V},$ $I_D = 95 \text{ A}$		_	79	-	nC
Q _{G(TH)}	Threshold Gate Charge			-	21	-	1
Q _{GS}	Gate-to-Source Charge			-	36	-	
Q _{GD}	Gate-to-Drain Charge	_	†		11	-	1
V _{GP}	Plateau Voltage	1		_	5.8	-	1
SWITCHING CH	HARACTERISTICS, V _{GS} = 10 V (Note 3)	•		•	•		•
t _{d(ON)}	Turn-On Delay Time	V _{GS} = 10 V, V _D		-	38	-	ns
t _r	Rise Time	I _D = 95 A, R _G =	$I_D = 95 \text{ A}, R_G = 6 \Omega$		11	_	1
t _{d(OFF)}	Turn-Off Delay Time	-		_	48	-	1
t _f	Fall Time			_	8	_	1
DRAIN-SOUR	CE DIODE CHARACTERISTICS	1					
V _{SD}	Forward Diode Voltage	$V_{GS} = 0 V$,	$T_J = 25^{\circ}C$	_	0.86	1.2	V
-		I _S = 95 A	T _J = 125°C	_	0.80	_	1
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, dI}_{S}$	dt = 100 A/μs,	_	85	_	ns
t _a	Charge Time	- I _S = 95 A		_	58	-	1
t _b	Discharge Time			_	38	_	1
Q _{RR}	Reverse Recovery Charge			_	194	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

VGS, GATE-TO-SOURCE VOLTAGE (V)

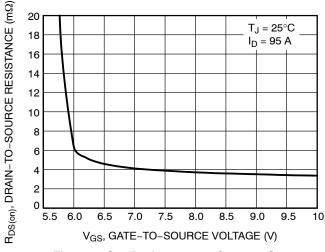


Figure 3. On-Resistance vs. Gate-to-Source Voltage

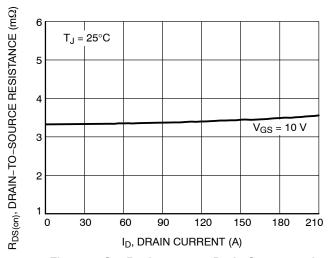


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

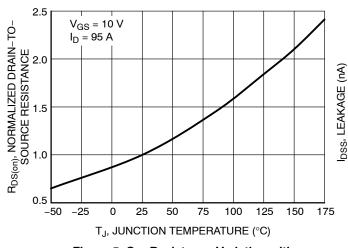


Figure 5. On-Resistance Variation with **Temperature**

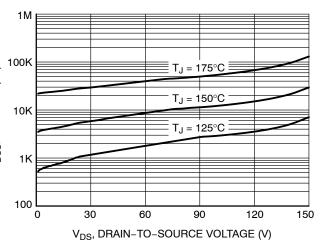
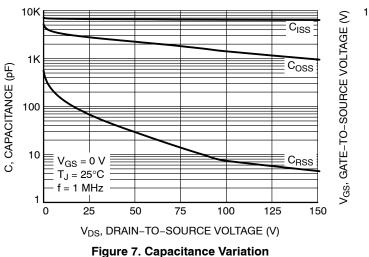



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

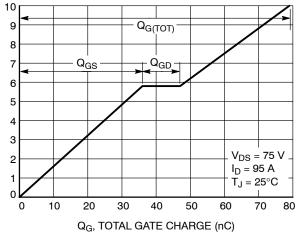


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

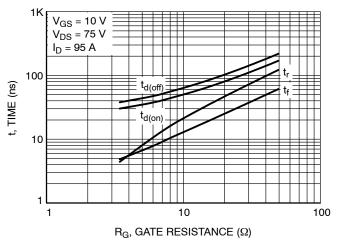


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

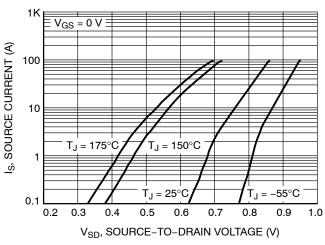


Figure 10. Diode Forward Voltage vs. Current

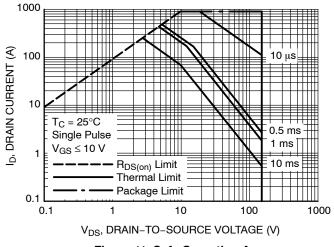


Figure 11. Safe Operating Area

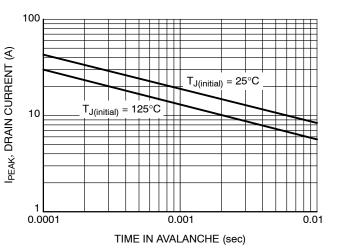


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

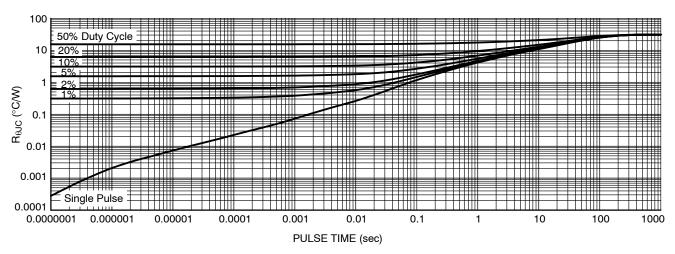
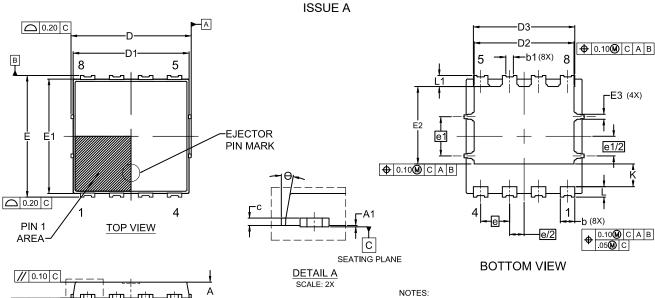
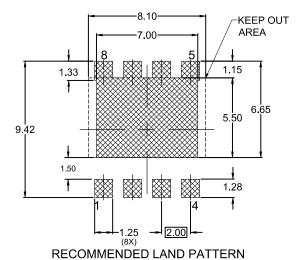



Figure 13. Thermal Characteristics


PACKAGE DIMENSIONS

DFNW8 8.3x8.4, 2P CASE 507AP

FRONT VIEW

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS.
 "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS			
Diw	MIN.	NOM.	MAX.	
Α	1.00	1.10	1.20	
A1	0.00	-	0.05	
b	0.90	1.00	1.10	
b1	0.43	0.53	0.63	
O	0.23	0.28	0.33	
О	8.20	8.30	8.40	
D1	7.90	8.00	8.10	
D2	6.80	6.90	7.00	
D3	6.90	7.00	7.10	
Е	8.30	8.40	8.50	
E1	7.80	7.90	8.00	
E2	5.24	5.34	5.44	
E3	0.25	0.35	0.45	
е	2.00 BSC			
e/2	1.00 BSC			
e1	2.70 BSC			
e1/2	1.35 BSC			
K	1.50	1.57	1.70	
L	0.64	0.74	0.84	
L1	0.67	0.77	0.87	
θ	0°		12°	

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative