SECTION INDEX 2 - CPR RANGES

A comprehensive range of boxed reed relays in only two case sizes. In addition to the standard Form A, B and C dry reed relays, mercury wetted Form A and C types are also available. Most recent additions include latching and current operated types.

Types Available

Page 8 CPR1/A to CPR4/D Form A, dry reed relays Coloured range, economy type. Contact arrangement 1 to 4 pole. Coil voltages from 6 to 30Vdc

Page 9 CPR1/E to CPR4/H, CPR1/J Form A, dry reed relays

Grey range, high grade type. Contact arrangements 1 to 4 pole. Coil voltages from 5 to 30Vdc

Page 10 CPR1/K to CPR4/N Form A, mercury wetted relays

Contact arrangements 1 to 4 pole. Coil voltages 6 to 30Vdc

Page 11

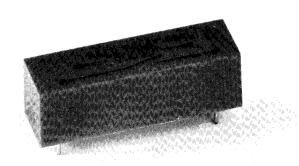
Dimensions and base connections for above relays

Page 12 CCPR1/E to CCPR1/J Form C, dry reed relays

Single pole only. Coil voltages from 5 to 30Vdc

Page 13 CCPR1/K to CCPR1/N Form C, mercury wetted relays

Single pole only. Coil voltages from 6 to 30Vdc


Page 14 CPR1/O to CPR1/Q Form B, dry reed relays

Single pole only. Coil voltages from 6 to 30Vdc

Page 15 CRM/E to CRM/J Latching relay, dry reed relays

Single pole Form A only. Coil voltages from 6 to 30Vdc

CPR (COLOURED RANGE)

Form A, Dry Reed Relays

An inexpensive range of Reed Relays with versatile contact arrangements but employing only two sizes of case. The relays are housed in epoxy filled nylon cases. The relay type and pin connections are moulded on the top of the relay case and all connections are brought out to solder coated pins for printed circuit mounting.

Contact Data

Switching Power max. Switching Current max. Switching Voltage max.

5W 0.2A ★50Vdc 2000 Breakdown Voltage min. Contact Capacitance max. Initial Contact Resistance max. 150 m Ohms

Life Dry Switching 5×10^7 operations. Switching 100mA at $50V - 5 \times 10^6$ operations

Additional Data

Operate Time max.

1.0 m Secs

Release Time max.

0.5 m Secs Coil to Contact min.

10¹⁰ Ohms

Insulation Resistance Insulation Resistance

Contact to Contact min.

10¹⁰ Ohms

Coil to Contact min.

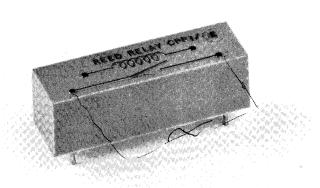
2kV

Dielectric Strength Dielectric Strength

Contact to Contact min.

500V

Climatic Epoxy filled for operation over the temperature range 0°C to 70°C at the rated voltages


Coil Data

Туре	Body Colour	Coil Volts	Coil Power (mW)	Coil Resistance (±10%)	Maximum must operate voltage	Minimum must release voltage
CPR1/A CPR1/B CPR1/C CPR1/D CPR2/A CPR2/B CPR2/C CPR2/D CPR3/A CPR3/B CPR3/C CPR3/D CPR3/D CPR4/A CPR4/B CPR4/B CPR4/D	Red White Blue Green Red White Blue Green Red White Blue Green Blue Green	18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9	110 to 300 85 to 190 80 to 145 50 to 115 220 to 600 144 to 325 230 to 410 144 to 325 295 to 820 240 to 540 325 to 575 240 to 540 360 to 1000 410 to 925 325 to 575 240 to 540	$\begin{array}{c} 3.0k\Omega\\ 1.7k\Omega\\ 1.0k\Omega\\ 700\Omega\\ 1.5k\Omega\\ 1k\Omega\\ 350\Omega\\ 250\Omega\\ 1.1k\Omega\\ 600\Omega\\ 250\Omega\\ 150\Omega\\ 900\Omega\\ 350\Omega\\ 250\Omega\\ 150\Omega\\ \end{array}$	14 10 7 4.7 14 10 7 4.7 14 10 7 4.7	3.5 2.0 1.5 1.0 3.5 2.0 1.5 1.0 3.5 2.0 1.5 1.0 3.5 2.0

Slide on shields (magnetic screens) are available for all types in the CPR range, add suffix "M" to type number, e.g. CPR1/D/M.

103-592

CPR (GREY RANGE)

Form A, Dry Reed Relays

These relays are of identical construction to the coloured range shown on page 8, but feature reed switches of a higher grade providing both greater switching power and longer life.

Contact Data

Switching Power max. Switching Current max. Switching Voltage max. 10W 0.5A 200Vdc Breakdown Voltage min. Contact Capacitance max. Initial Contact Resistance max.

250Vdc 2.0pF 150 m Ohms

Life D

Dry Switching 1 \times 10° operations. Switching 100mA at 50V -1×10^8 operations

Additional Data

Operate Time max. Release Time max. 1.0 m Secs 0.5 m Secs

Insulation Resistance Insulation Resistance

Coil to Contact min.
Contact to Contact min.

 1×10^{10} Ohms 1×10^{10} Ohms

Dielectric Strength

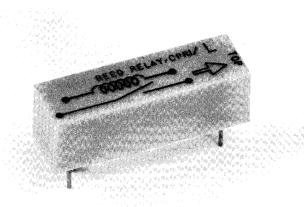
Coil to Contact min.

2000/

Dielectric Strength Contact to Contact min.

2000V 500V

Climatic Epoxy filled for operation over the temperature range 0°C to 70°C at the rated voltages


Coil Data

Туре	Body Colour	Coil Volts	Coil Power (mW)	Coil Resistance (±10%)	Maximum must operate voltage	Minimum must release voltage
CPR1/E CPR1/F CPR1/G CPR1/J ★ CPR2/E CPR2/F CPR2/G CPR2/H CPR3/E CPR3/F CPR3/F CPR3/H	Grey Grey Grey Black Grey Grey Grey Grey Grey Grey	18 to 30 12 to 18 9 to 12 6 to 9 5 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9	(mW) 110 to 300 85 to 190 80 to 145 50 to 115 25 220 to 600 144 to 325 230 to 410 144 to 325 295 to 820 240 to 540 325 to 575 240 to 540	$\begin{array}{c} (\pm 10\%) \\ 3.0 k \Omega \\ 1.7 k \Omega \\ 1.0 k \Omega \\ 700 \Omega \\ 1 k \Omega \\ 1.5 k \Omega \\ 18 \Omega \\ 250 \Omega \\ 250 \Omega \\ 1.1 k \Omega \\ 600 \Omega \\ 250 \Omega \\ 150 \Omega \end{array}$	voltage 14 10 7 4.7 3.7 14 10 7 4.7 14 10 7 4.7	voltage 3.5 2.0 1.5 1.0 0.5 3.5 2.0 1.5 1.0 3.5 1.0 3.5 1.0
CPR3/H CPR4/E CPR4/F CPR4/G CPR4/H	Grey Grey Grey Grey	18 to 30 12 to 18 9 to 12 6 to 9	360 to 1000 410 to 925 325 to 575 240 to 540	900Ω 350Ω 250Ω 150Ω	4.7 14 10 7 4.7	1.0 3.5 2.0 1.5 1.0

Slide on shields (magnetic screens) are available for all types in the CPR range, add suffix "M" to type number, e.g. CPR1/F/M.

★ For 5V logic circuit applications.

CPR

Form A, Mercury Wetted Reed Relays

These relays with mercury wetted contacts have a low and stable contact resistance (approximately 70 m Ohms); They can switch higher power and current than dry contacts and have freedom from contact bounce. The relays are housed in epoxy filled nylon cases.

Contact Data

Switching Power max. 50W
Switching Current max. 2.0A
Switching Voltage max. 500Vdc
Breakdown Voltage min. 1000Vdc

Contact Capacitance max. 2.0pF
Initial Contact Resistance max. 70 m Ohms

Life Better than 1×10^8 operations

Additional Data

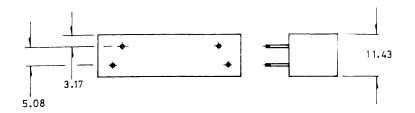
Operate Time max. 3.0 m Secs Release Time max. 2.5 m Secs

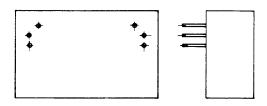
Insulation ResistanceCoil to Contact min. 1×10^9 OhmsInsulation ResistanceContact to Contact min. 1×10^9 OhmsDielectric StrengthCoil to Contact min.2000V

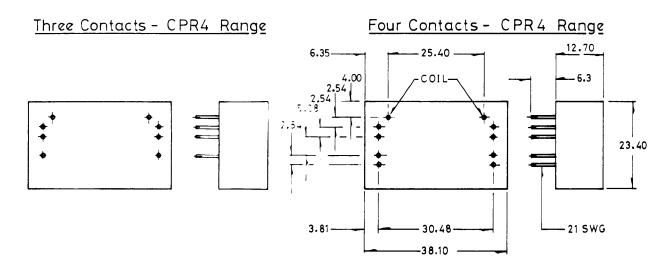
Dielectric Strength Coil to Contact min. 2000 Dielectric Strength Contact to Contact min. 500V

Climatic Epoxy filled for operation over the temperature range 0°C to 70°C at the rated coil voltages

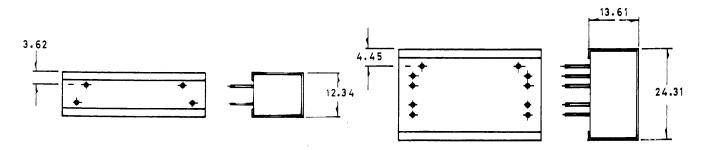
Coil Data

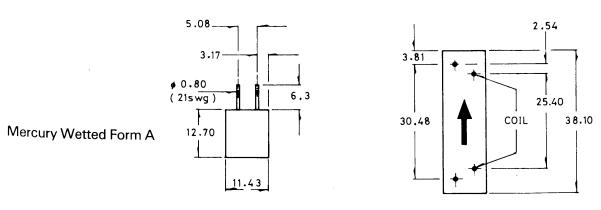

Туре	Body Colour	Coil Volts	Coil Resistance (±10%)	Coil Power (mW)	Maximum must operate voltage	Minimum must release voltage
CPR1/K CPR1/L CPR1/M CPR2/K CPR2/K CPR2/M CPR2/M CPR3/K CPR3/K CPR3/L CPR3/M CPR3/N CPR4/K CPR4/L	Yellow	18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9 18 to 30 12 to 18 9 to 12 6 to 9	$\begin{array}{c} \textbf{1.7k}\Omega\\ \textbf{1.0k}\Omega\\ \textbf{650}\Omega\\ \textbf{250}\Omega\\ \textbf{1.0k}\Omega\\ \textbf{350}\Omega\\ \textbf{250}\Omega\\ \textbf{150}\Omega\\ \textbf{600}\Omega\\ \textbf{250}\Omega\\ \textbf{150}\Omega\\ \textbf{350}\Omega\\ \textbf{250}\Omega\\ \textbf{150}\Omega\\ \textbf{75}\Omega\\ \textbf{350}\Omega\\ \textbf{250}\Omega\\ \textbf{75}\Omega\\ 75$	190 to 530 144 to 324 116 to 205 144 to 324 324 to 900 410 to 930 324 to 576 240 to 540 540 to 1500 576 to 1300 540 to 960 480 to 1080 925 to 2540 576 to 1300 540 to 960 480 to 1080	14 10 7 4.7 14 10 7 4.7 14 10 7 4.7 14	3.5 2.0 1.5 1.0 3.5 2.0 1.5 1.0 3.5 2.0 1.5 1.0 3.5 1.0
CPR4/N	Yellow	6 to 9	7 5 52	400 10 1000	4.7	1.0

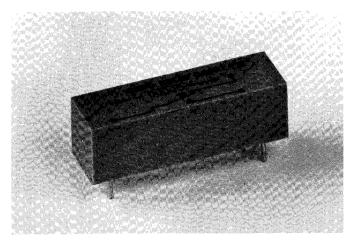

NOTE Relays must be mounted within 30° of the vertical, arrow (↑) upwards.


DIMENSIONS AND BASE CONNECTIONS

One Contact - CPR1 Range


Two Contacts - CPR 2 Range




ALL ABOVE DIMENSIONS AS CPR4 RANGE EXCEPT WHERE SHOWN

ABOVE DIMENSIONS OF MAGNETICALLY SCREENED RELAYS SUFFIX M

CCPR1

Form C, Dry Reed Relays

The CCPR1 has a single pole Form C Reed Switch and is available in four basic coil voltages. In addition there is a low coil power version suitable for operation direct from logic. The relays are housed in epoxy filled nylon cases.

Contact Data

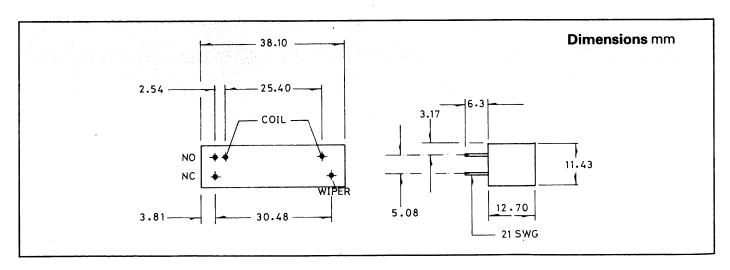
3W
0.25A
200Vdc
200Vdc

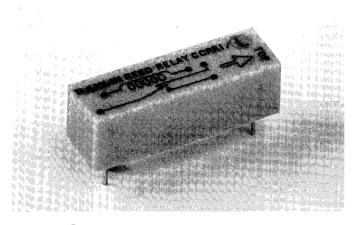
Contact Capacitance max. 1.0pF
Initial Contact Resistance max. 150 m Ohms
Life Average 10⁶ operations

Additional Data

Operate Time max. 1.0 m Secs Release Time max. 0.5 m Secs

Insulation Resistance Coil to Contact min. 1×10^9 Ohms


Dielectric Strength Coil to Contact min. 2000V


Climatic Epoxy filled for operation over the temperature range 0°C to 70°C at the rated coil voltages

Coil Data

Type	Voltage range	Coil power mW	Coil resistance (±10%)	Maximum must operate voltage	Minimum must release voltage
CCPR1/E	18 to 30	110 to 300	3kΩ	14	3.5
CCPR1/F	12 to 18	85 to 190	1.7kΩ	10	2.0
CCPR1/G	9 to 12	80 to 144	1kΩ	7	1.5
CCPR1/H	6 to 9	50 to 115	700kΩ	4.7	1.0
CCPR1/J	5	25	1kΩ	3.7	0.5

Slide-on shields are available: add "/M" to the type number.

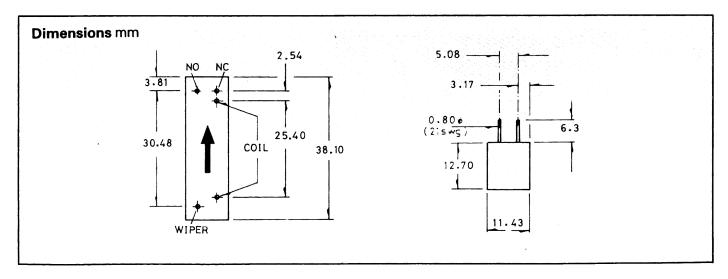
Form C, Mercury Wetted Reed Relays

This Form C Reed Relay in the CPR range uses a single pole mercury wetted reed switch that has a low stable contact resistance. The relay can switch higher power and current than one with a dry contact and is free of contact bounce. The relays are housed in epoxy resin filled nylon cases.

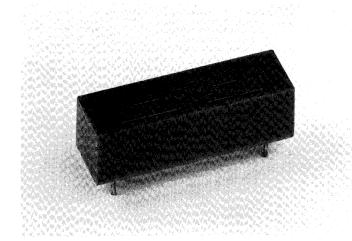
Contact Data

Switching Power max.	28W	Breakdown Voltage min.	1000Vdc
Switching Current max.	1.0A	Contact Capacitance max.	1pF
Switching Voltage max.	200Vdc	Initial Contact Resistance max.	70 m Ohms

Additional Data


2 m Secs	
1.5 m Secs	
Coil to Contact min.	1×10^{9} Ohms
Contact to Contact min.	1×10^8 Ohms
Coil to Contact min.	2000V
	1.5 m SecsCoil to Contact min.Contact to Contact min.

Climatic Sealed for operation over the temperature range 0°C to 70°C at the rated coil voltages


Coil Data

Туре	Voltage range	Coil power mW	Coil resistance (±10%)	Maximum must operate voltage	Minimum must release voltage
CCPR1/K	18 to 30	231 to 643	1400Ω	14	3.5
CCPR1/L	12 to 18	205 to 463	700Ω	10	2.0
CCPR1/M	9 to 12	331 to 411	350Ω	7	1.5
CCPR1/N	6 to 9	240 to 560	150Ω	4.7	1.0

Slide-on shields are available: add "/M" to the type number.

CPR1

Form B, Dry Reed Relays

This range is limited to single pole contacts and is available in four basic coil voltages. The reed is held closed by means of a magnet and energising the coil cancels out the effect of the magnet, allowing the reed to open. As this configuration would be susceptible to external magnetic fields, the relay is magnetically screened internally as standard

Contact Data

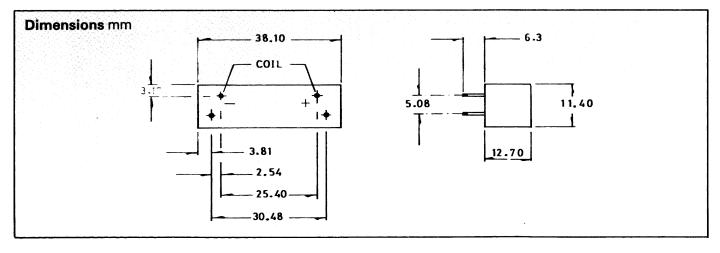
Switching Power max.	10W
Switching Current max.	0.5A
Switching Voltage max.	100 Vdc
Breakdown Voltage min.	150 Vdc

Contact Capacitance max. 2.0pF Initial Contact Resistance max. 200 m Ohms

Life Better than 1×10^8 operations

Additional Data

Operate Time max. 1.0 m Secs Release Time max. 0.5 m Secs


Insulation Resistance Coil to Contact min. 1×10^{10} Ohms

Dielectric Strength Coil to Contact min. 500V

Climatic Epoxy filled for operation over the temperature range 0°C to 70°C at the rated coil voltages

Coil Data

Туре	Voltage Range	Coil power mW	Coil resistance (±10%)	Maximum must operate voltage
CPR1/O	18 to 30	110 to 300	3kΩ	14
CPR1/P	12 to 18	85 to 190	1.7kΩ	10
CPR1/Q	9 to 12	80 to 145	1kΩ	7
CPR1/R	6 to 9	50 to 115	700Ω	4.7

