

## Product Change Notification / SYST-15MAVS007

## Date:

17-Sep-2021

## **Product Category:**

8-bit Microcontrollers

## **PCN Type:**

**Document Change** 

## **Notification Subject:**

ERRATA - ATtiny87/167 Automotive Silicon Errata and Data Sheet Clarifications

## **Affected CPNs:**

SYST-15MAVS007\_Affected\_CPN\_09172021.pdf SYST-15MAVS007\_Affected\_CPN\_09172021.csv

## **Notification Text:**

SYST-15MAVS007

Microchip has released a new Product Documents for the ATtiny87/167 Automotive Silicon Errata and Data Sheet Clarifications of devices. If you are using one of these devices please read the document located at ATtiny87/167 Automotive Silicon Errata and Data Sheet Clarifications.

#### Notification Status: Final

Description of Change: Initial release of this document.

- 1. Errata content moved from the data sheet and restructured to the new document template
- 2. Data sheet clarifications added:
  - 3.1 Errata Section in Data Sheet is no Longer Valid
  - Interrupts: 3.2.1 Interrupt Vectors in ATtiny87/167 Automotive
  - LIN/UART: 3.3.1 Baud Rate Generator
  - Package Marking: 3.4 Package Marking Information

Impacts to Data Sheet: None

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 17 September 2021

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

## Attachments:

ATtiny87/167 Automotive Silicon Errata and Data Sheet Clarifications

Please contact your local Microchip sales office with questions or concerns regarding this notification.

## Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile, including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

Affected Catalog Part Numbers (CPN)

ATTINY87-XU ATTINY87-SU ATTINY87-MU ATTINY87-A15XD ATTINY87-A15MD-VAO ATTINY87-XUR ATTINY87-SUR ATTINY87-MUR ATTINY87-A15XZ ATTINY87-A15SZ ATTINY87-A15MZ ATTINY167-W-NG ATTINY167-XU ATTINY167-SU ATTINY167-MU ATTINY167-MMU ATTINY167-A15XD ATTINY167-A15MD ATTINY167-XUR ATTINY167-SUR ATTINY167-MUR ATTINY167-MMUR ATTINY167-MMURB20 ATTINY167-A15XZ ATTINY167-A15SZ ATTINY167-A15MZ ATTINY167-A15MZ-V01 ATTINY167-A15MZ-V02 ATTINY167-A15MZ-V03



# ATtiny87/167 Automotive

# **Automotive Silicon Errata and Data Sheet Clarifications**

## Introduction

The ATtiny87/167 Automotive devices you have received conform functionally to the current device data sheet (www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en590544), except for the anomalies described in this document. The errata described in this document will likely be addressed in future revisions of the ATtiny87/167 Automotive devices.

Note:

• This document summarizes all the silicon errata issues from all revisions of silicon, previous and current.

# 1. Silicon Issue Summary

## Legend

| - | Erratum | is no | ot appl | icable |
|---|---------|-------|---------|--------|
|   |         |       |         |        |

**X** Erratum is applicable.

### Errata Overview

|                  |                                                            | Valid for Silicon Revision |                     |        |
|------------------|------------------------------------------------------------|----------------------------|---------------------|--------|
| Peripheral       | Short Description                                          | Rev. A                     | Rev. B              | Rev. C |
|                  | ·                                                          | Date Code ><br>1207        | Date Code ><br>1208 |        |
| System Clock and | 2.2.1 Gain Control of the Crystal Oscillator               | X                          | x                   | x      |
| Clock Options    | 2.2.2 "Disable Clock Source"<br>Command Remains Enabled    | X                          | x                   | x      |
| LIN-UART         | 2.3.1 CRC Calculation of<br>Diagnostic Frames in LIN 2.x   | X                          | -                   | -      |
|                  | 2.3.2 LIN Break Delimiter                                  | X                          | X                   | -      |
|                  | 2.4.1 Comparison Between ADC Inputs and Voltage References | X                          | -                   | -      |
|                  | 2.4.2 Register Bits of DIDR1                               | X                          | -                   | -      |

## 2. Silicon Errata Issues

## 2.1 Errata Details

- Erratum is not applicable.
- X Erratum is applicable.

## 2.2 System Clock and Clock Options

## 2.2.1 Gain Control of the Crystal Oscillator

The crystal oscillator ( $0.4 \rightarrow 16 \text{ MHz}$ ) doesn't latch its gain control (CKSEL/CSEL[2..0] bits):

- 1. The 'recover system clock source' command doesn't return CSEL[2..0] bits.
- 2. The gain control can be modified on the fly if CLKSELR changes.

#### Work Around

- 1. No work around.
- 2. As soon as possible, after any CLKSELR modification, re-write the appropriate crystal oscillator setting (CSEL[3]=1 and CSEL[2..0] / CSUT[1..0] bits) in CLKSELR.

Code example:

```
; Select crystal oscillator (16MHz crystal, fast rising power)
           ldi temp1,((0x0F<<CSEL0)|(0x02<<CSUT0))
sts CLKSELR, temp1</pre>
; Enable clock source (crystal oscillator)
            ldi temp2, (1<<CLKCCE)
            Iditemp3,(0x02<<CLKC0)</td>; CSEL = "0010"stsCLKCSR,temp2; Enable CLKCSR register accessstsCLKCSR,temp3; Enable crystal oscillator clock
; Clock source switch

    ldi
    temp3,(0x04<<CLKC0)</td>
    ; CSEL = "0100"

    sts
    CLKCSR,temp2
    ; Enable CLKCSR register access

    sts
    CLKCSR,temp3
    : Clock source switch

            sts
                     CLKCSR, temp3
                                                       ; Clock source switch
; Select watchdog clock (128KHz, fast rising power)
            ldi temp3,((0x03<<CSEL0)|(0x02<<CSUT0))
sts CLKSELR, temp3 ; (*)
; (*) !!! Loose gain control of crystal oscillator !!!
; ==> WORKAROUND ...
           sts CLKSELR, temp1
; ...
```

#### Affected Silicon Revisions

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
| X      | X      | X      |

#### 2.2.2 "Disable Clock Source" Command Remains Enabled

In the dynamic clock switch module, the 'disable clock source' command remains running after disabling the targeted clock source (the clock source is set in the CLKSELR register).

#### Work Around

After a 'disable clock source' command, reset the CLKCSR register by writing 0x80.

#### Code example:

```
; Select crystal oscillator
    ldi temp1,(0x0F<<CSEL0)
    sts CLKSELR, temp1
; Disable clock source (crystal oscillator)
    ldi temp2,(1<CLKCCE)
    ldi temp3,(0x01<<CLKCO) ; CSEL = "0001"
    sts CLKCSR,temp2 ; Enable CLKCSR register access
    sts CLKCSR,temp3 ; (*) Disable crystal oscillator clock
; (*) !!! At this moment, if any other clock source is selected by CLKSELR,
; this clock source will also stop !!!
; ==> WORKAROUND ...
    sts CLKCSR,temp2
```

#### Affected Silicon Revisions

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
| X      | x      | x      |

## 2.3 LIN-UAT

#### 2.3.1 CRC Calculation of Diagnostic Frames in LIN 2.x

Diagnostic frames of LIN 2.x use "classic checksum" calculation. Unfortunately, the setting of the checksum mode is enabled when the HEADER is transmitted/received. Usually, in LIN 2.x, the LIN/UART controller is initialized to process "enhanced checksums". A slave task does not know what kind of frame it will work on before checking the ID.

#### Work Around

This work around is to be implemented only in the case of transmission/reception of diagnostic frames.

- 1. Slave task of master node: Before enabling the HEADER, the master must set the appropriate LIN13 bit value in the LINCR register.
- 2. For slave nodes, the work around is in two parts:
  - a. Before enabling the RESPONSE, use the following function:

```
void lin_wa_head(void) {
unsigned char temp;
temp = LINBTR;
LINCR = 0x00; // It is not a RESET !
LINBTR = (1<<LDISR) | temp;
LINCR = (1<<LDISR) | temp;
LINCR = (1<<LIN13) | (1<<LENA) | (0<<LCMD2) | (0<<LCMD1) | (0<<LCMD0);
LINDLR = 0x88; // If it isn't already done
}</pre>
```

b. Once the RESPONSE is received or sent (having RxOK or TxOK as well as LERR), use the following function:

```
void lin wa_tail(void) {
LINCR = 0x00; // It is not a RESET !
LINBTR = 0x00;
LINCR = (0<<LIN13) | (1<<LENA) | (0<<LCMD2) | (0<<LCMD1) | (0<<LCMD0);
}</pre>
```

The time-out counter is disabled during the RESPONSE when this work around is set.

#### Affected Silicon Revisions

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
|        |        |        |

| x | - | - |
|---|---|---|

#### 2.3.2 LIN Break Delimiter

In SLAVE MODE, a BREAK field detection error can occur under the following conditions.

The problem occurs if two conditions occur simultaneously:

- 1. The DOMINANT part of the BREAK is (N+0.5)\*Tbit long with N=13, 14,15, ...
- 2. The RECESSIVE part of the BREAK (BREAK DELIMITER) is equal to 1\*Tbit. (See the note below).

The BREAK\_high is not detected, and the 2<sup>nd</sup> bit of the SYNC field is interpreted as the BREAK DELIMITER. The error is detected as a framing error on the first bits of the PID or subsequent Data or a Checksum error.

#### There is no error if BREAK\_high is greater than 1 x Tbit + 18%.

#### There is no problem in Master mode.

**Note:** LIN2.1 protocol specification paragraph 2.3.1.1 Break field says (www.microchip.com/mymicrochip/ filehandler.aspx?ddocname=en590544): "A break field is always generated by the master task (in the master node) and it shall be at least 13 nominal bit times of dominant value, followed by a break delimiter, as shown in Figure 2-1. The break delimiter shall be at least one nominal bit time long."

#### Figure 2-1. The Break Field



#### Work Around

None

#### **Affected Silicon Revisions**

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
| X      | X      | -      |

## 2.4 ADC

#### 2.4.1 Comparison Between ADC Inputs and Voltage References

In the analog comparator module, comparing any ADC input (ADC[10..0]) with voltage references (2.56V, 1.28V, 1.10V, 0.64V or 0.32V) fails.

Regardless, AIN1 input can be compared with the voltage references, and any ADC input can be compared with the AIN0 input.

#### Work Around

Do not use this configuration.

#### Affected Silicon Revisions

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
| x      | -      | -      |

### 2.4.2 Register Bits of DIDR1

ADC8D, ADC9D and ADC10D (digital input disable) initially located at bit 4 up to 6 are instead located at bit 0 up to 2. These register bits are also in write-only mode.

#### Work Around

Allow for the change in bit locations and the access mode restriction.

#### Affected Silicon Revisions

| Rev. A | Rev. B | Rev. C |
|--------|--------|--------|
| X      | -      | -      |

## 3. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en590544).

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

## 3.1 Errata Section in Data Sheet is no Longer Valid

A clarification for the Errata section in the device data sheet has been made.

The errata content has been moved to a separate document, *ATtiny87/167 Automotive Silicon Errata and Data Sheet Clarifications* (this document).

For the latest errata, see the Silicon Errata Issues section of this document.

## 3.2 Interrupts

### 3.2.1 Interrupt Vectors in ATtiny87/167 Automotive

A clarification for the source names of the Interrupt vectors has been made to comply with the header file naming convention.

| Table 3-1. | Reset and | Interrupt \ | Vectors in | ATtiny87/167 | Automotive |
|------------|-----------|-------------|------------|--------------|------------|
|            |           | •           |            |              |            |

| Vector Nb. | . Program Address |           | Source       | Interrupt Definition                                                    |
|------------|-------------------|-----------|--------------|-------------------------------------------------------------------------|
|            | ATtiny87          | ATtiny167 |              |                                                                         |
| 1          | 0x0000            | 0x0000    | RESET        | External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset |
| 2          | 0x0001            | 0x0002    | INT0         | External Interrupt Request 0                                            |
| 3          | 0x0002            | 0x0004    | INT1         | External Interrupt Request 1                                            |
| 4          | 0x0003            | 0x0006    | PCINT0       | Pin Change Interrupt Request 0                                          |
| 5          | 0x0004            | 0x0008    | PCINT1       | Pin Change Interrupt Request 1                                          |
| 6          | 0x0005            | 0x000A    | WDT          | Watchdog Time-out Interrupt                                             |
| 7          | 0x0006            | 0x000C    | TIMER1_CAPT  | Timer/Counter1 Capture Event                                            |
| 8          | 0x0007            | 0x000E    | TIMER1_COMPA | Timer/Counter1 Compare Match A                                          |
| 9          | 0x0008            | 0x0010    | TIMER1_COMPB | Timer/Counter1 Compare Match B                                          |
| 10         | 0x0009            | 0x0012    | TIMER1_OVF   | Timer/Counter1 Overflow                                                 |
| 11         | 0x000A            | 0x0014    | TIMER0_COMPA | Timer/Counter0 Compare Match A                                          |
| 12         | 0x000B            | 0x0016    | TIMER0_OVF   | Timer/Counter0 Overflow                                                 |
| 13         | 0x000C            | 0x0018    | LIN_TC       | LIN/UART Transfer Complete                                              |
| 14         | 0x000D            | 0x001A    | LIN_ERR      | LIN/UART Error                                                          |
| 15         | 0x000E            | 0x001C    | SPI_STC      | SPI Serial Transfer Complete                                            |
| 16         | 0x000F            | 0x001E    | ADC          | ADC Conversion Complete                                                 |
| 17         | 0x0010            | 0x0020    | EE_READY     | EEPROM Ready                                                            |
| 18         | 0x0011            | 0x0022    | ANA_COMP     | Analog Comparator                                                       |

# ATtiny87/167 Automotive

## **Data Sheet Clarifications**

| continued  |          |           |           |                               |
|------------|----------|-----------|-----------|-------------------------------|
| Vector Nb. | Program  | Address   | Source    | Interrupt Definition          |
|            | ATtiny87 | ATtiny167 |           |                               |
| 19         | 0x0012   | 0x0024    | USI_START | USI Start Condition Detection |
| 20         | 0x0013   | 0x0026    | USI_OVF   | USI Counter Overflow          |

## 3.3 LIN/UART - Local Interconnect Network Controller or UART

## 3.3.1 Baud Rate Generator

A clarification has been made for the equations in the Baud Rate Generator section.

The baud rate is defined to be the transfer rate in bits per second (bps):

- BAUD: Baud rate (in bps)
- fclk<sub>i/o</sub>: System I/O clock frequency
- LDIV[11..0]: Contents of LINBRRH & LINBRRL registers (0-4095), the pre-scaler receives clk<sub>i/o</sub> as input clock
- LBT[5..0]: Least significant bits of LINBTR register- (0-63) is the number of samplings in a LIN or UART bit (default value 32)

Equation for calculating baud rate: BAUD = fclk<sub>i/o</sub> / (LBT[5..0] x (LDIV[11..0] + 1))

Equation for setting LINDIV value: LDIV[11..0] = (fclk<sub>i/o</sub> / (LBT[5..0] x BAUD)) - 1

Note that in reception, a majority vote on three samplings is made.

## 3.4 Package Marking Information

| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3                                                                                                                                                                      | Customer-specific information or Microchip part number<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC <sup>®</sup> designator for Matte Tin (Sn) |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Note:  | In the event the full Microchip part number cannot be marked on one line, it w<br>be carried over to the next line, thus limiting the number of availab<br>characters for customer-specific information. |                                                                                                                                                                                                                                                                                             |  |  |  |

# ATtiny87/167 Automotive

Example

**A**MEL

**O 2126547** 

2126C TH

TINY87-A15SZ

## **Data Sheet Clarifications**

## 3.4.1 20-Pin SOIC





### 3.4.2 20-Pin TSSOP

General



Example



3.4.3 32-Pin VQFN



Example



# 4. Document Revision History

**Note:** The document revision is independent of the silicon revision.

## 4.1 Revision History

| Doc Rev. | Date    | Comments                                                                                                                                                                                                                                                                                                             |  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A        | 09/2021 | <ul> <li>nitial release of this document</li> <li>Errata content moved from the data sheet and restructured to the new document template</li> </ul>                                                                                                                                                                  |  |
|          |         | <ul> <li>Data sheet clarifications added:         <ul> <li>3.1 Errata Section in Data Sheet is no Longer Valid</li> <li>Interrupts: 3.2.1 Interrupt Vectors in ATtiny87/167 Automotive</li> <li>LIN/UART: 3.3.1 Baud Rate Generator</li> <li>Package Marking: 3.4 Package Marking Information</li> </ul> </li> </ul> |  |

# The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# **Product Change Notification Service**

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

# **Customer Support**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

# Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
  protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
  Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

# Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

# Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

<sup>©</sup> 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-8769-2

# **Quality Management System**

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.



# **Worldwide Sales and Service**

| AMERICAS                               | ASIA/PACIFIC          | ASIA/PACIFIC            | EUROPE                |
|----------------------------------------|-----------------------|-------------------------|-----------------------|
| Corporate Office                       | Australia - Sydney    | India - Bangalore       | Austria - Wels        |
| 2355 West Chandler Blvd.               | Tel: 61-2-9868-6733   | Tel: 91-80-3090-4444    | Tel: 43-7242-2244-39  |
| Chandler, AZ 85224-6199                | China - Beiiing       | India - New Delhi       | Fax: 43-7242-2244-393 |
| Tel: 480-792-7200                      | Tel: 86-10-8569-7000  | Tel: 91-11-4160-8631    | Denmark - Copenhagen  |
| Fax: 480-792-7277                      | China - Chengdu       | India - Pune            | Tel: 45-4485-5910     |
| Technical Support:                     | Tel: 86-28-8665-5511  | Tel: 91-20-4121-0141    | Fax: 45-4485-2829     |
| www.microchip.com/support              | China - Chongging     | Japan - Osaka           | Finland - Espoo       |
| Web Address:                           | Tel: 86-23-8980-9588  | Tel: 81-6-6152-7160     | Tel: 358-9-4520-820   |
| www.microchip.com                      | China - Dongguan      | Japan - Tokvo           | France - Paris        |
| Atlanta                                | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770    | Tel: 33-1-69-53-63-20 |
| Duluth. GA                             | China - Guangzhou     | Korea - Daegu           | Fax: 33-1-69-30-90-79 |
| Tel: 678-957-9614                      | Tel: 86-20-8755-8029  | Tel: 82-53-744-4301     | Germany - Garching    |
| Fax: 678-957-1455                      | China - Hangzhou      | Korea - Seoul           | Tel: 49-8931-9700     |
| Austin, TX                             | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200      | Germany - Haan        |
| Tel: 512-257-3370                      | China - Hong Kong SAR | Malavsia - Kuala Lumpur | Tel: 49-2129-3766400  |
| Boston                                 | Tel: 852-2943-5100    | Tel: 60-3-7651-7906     | Germany - Heilbronn   |
| Westborough MA                         | China - Naniing       | Malaysia - Penang       | Tel: 49-7131-72400    |
| Tel: 774-760-0087                      | Tel: 86-25-8473-2460  | Tel: 60-4-227-8870      | Germany - Karlsruhe   |
| Fax: 774-760-0088                      | China - Qingdao       | Philippines - Manila    | Tel: 49-721-625370    |
| Chicago                                | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065      | Germany - Munich      |
| Itasca II                              | China - Shanghai      | Singapore               | Tel: 49-89-627-144-0  |
| Tel: 630-285-0071                      | Tel: 86-21-3326-8000  | Tel: 65-6334-8870       | Fax: 49-89-627-144-44 |
| Eax: 630-285-0075                      | China - Shenyang      | Taiwan - Hsin Chu       | Germany - Rosenheim   |
| Dallas                                 | Tel: 86-24-2334-2829  | Tel: 886-3-577-8366     | Tel: 49-8031-354-560  |
| Addison TX                             | China - Shenzhen      | Taiwan - Kaobsiung      | Israel - Ra'anana     |
| Tel: 972-818-7423                      | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830     | Tel: 972-9-744-7705   |
| Fax: 972-818-2924                      | China - Suzhou        | Taiwan - Tainei         | Italy - Milan         |
| Detroit                                | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600    | Tel: 39-0331-742611   |
| Novi MI                                | China - Wuhan         | Thailand - Bangkok      | Fax: 39-0331-466781   |
| Tel: 248-848-4000                      | Tel: 86-27-5980-5300  | Tel: 66-2-694-1351      | Italy - Padova        |
| Houston TX                             | China - Xian          | Vietnam - Ho Chi Minh   | Tel: 39-049-7625286   |
| Tel: 281-894-5983                      | Tel: 86-29-8833-7252  | Tel: 84-28-5448-2100    | Netherlands - Drunen  |
| Indiananolis                           | China - Xiamen        | 101. 04 20 0440 2100    | Tel: 31-416-690399    |
| Noblesville IN                         | Tel: 86-592-2388138   |                         | Fax: 31-416-690340    |
| Tel: 317-773-8323                      | China - Zhuhai        |                         | Norway - Trondheim    |
| Eav: 317-773-5453                      | Tel: 86-756-3210040   |                         | Tel: 47-72884388      |
| Tel: 317-536-2380                      | 101. 00-700-02 100-0  |                         | Poland - Warsaw       |
|                                        |                       |                         | Tel: 48-22-3325737    |
| Mission Vielo CA                       |                       |                         | Romania - Bucharest   |
| Tel: 0/0-/62-0523                      |                       |                         | Tel: 40-21-407-87-50  |
| Fax: 949-462-9608                      |                       |                         | Spain - Madrid        |
| Tel: 951-273-7800                      |                       |                         | Tel: 31-91-708-08-90  |
| Raleigh NC                             |                       |                         | Fax: 34-91-708-08-91  |
| Tel: 010-844-7510                      |                       |                         | Sweden - Gothenberg   |
| New York NY                            |                       |                         | Tel: 46-31-704-60-40  |
| Tel: 631-435-6000                      |                       |                         | Sweden - Stockholm    |
| San Jose CA                            |                       |                         | Tel: 46-8-5090-4654   |
| Tel: 408-735-0110                      |                       |                         | IIK - Wokingham       |
| Tel: 408-436-4270                      |                       |                         | Tel: 11-118-021-5800  |
| Canada Taranta                         |                       |                         | Eav: 44 119 001 5000  |
|                                        |                       |                         | Гах. 44-110-921-382U  |
| 101. 303-033-1300<br>East 005 605 2079 |                       |                         |                       |
| 1 an. 303-033-2010                     |                       | [                       |                       |