SPECIFICATIONS

PXIe-6341

PXIe, 16 AI (16-Bit, 500 kS/s), 2 AO, 24 DIO, PXI Multifunction I/O Module

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Typical* unless otherwise noted.

Conditions

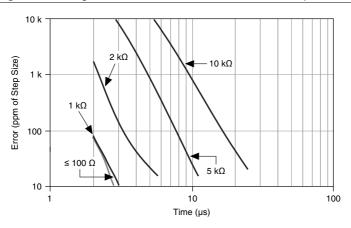
Specifications are valid at 25 °C unless otherwise noted.

Analog Input

Number of channels	16 single ended or 8 differential
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to AI Absolute Accuracy.

Sample rate

1	
Single channel maximum	500 kSample/s
Multichannel maximum (aggregate)	500 kSample/s
Minimum	No minimum
Timing resolution	10 ns
Timing accuracy	50 ppm of sample rate
Input coupling	DC
Input range	$\pm 0.2 \text{ V}, \pm 1 \text{ V}, \pm 5 \text{ V}, \pm 10 \text{ V}$
Maximum working voltage for analog inputs (signal + common mode)	±11 V of AI GND
CMRR (DC to 60 Hz)	100 dB
Input impedance	
Device on	
AI+ to AI GND	$>$ 10 G Ω in parallel with 100 pF
AI- to AI GND	$>$ 10 G Ω in parallel with 100 pF
Device off	
AI+ to AI GND	1,200 Ω
AI- to AI GND	1,200 Ω
Input bias current	±100 pA
Crosstalk (at 100 kHz)	
Adjacent channels	-75 dB
Non-adjacent channels	-90 dB
Small signal bandwidth (-3 dB)	1.2 MHz
Input FIFO size	2,047 samples
Scan list memory	4,095 entries
Data transfers	DMA (scatter-gather), programmed I/O
Overvoltage protection for all analog input ar	nd sense channels
Device on	±25 V for up to two AI pins
Device off	±15 V for up to two AI pins
Input current during overvoltage condition	±20 mA maximum/AI pin


Settling Time for Multichannel Measurements

Settling time for multichannel measurements, accuracy, full-scale step, all ranges

±90 ppm of step (±6 LSB)	2 μs convert interval
±30 ppm of step (±2 LSB)	3 μs convert interval
±15 ppm of step (±1 LSB)	5 μs convert interval

Typical Performance Graph

Figure 1. Settling Error versus Time for Different Source Impedances

Al Absolute Accuracy (Warranted)

Table 1. Al Absolute Accuracy

Nominal Range Positive Full Scale (V)	Nominal Range Negative Full Scale (V)	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)
10	-10	65	13	23	270	2,190
5	-5	72	13	23	135	1,130

Table 1. Al Absolute Accuracy (Continued)

Nominal Range Positive Full Scale (V)	Nominal Range Negative Full Scale (V)	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)
1	-1	78	17	26	28	240
0.2	-0.2	105	27	39	9	60

Note Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- $number\ of\ readings = 10,000$
- $CoverageFactor = 3 \sigma$

For more information about absolute accuracy at full scale, refer to the *AI Absolute Accuracy Example* section.

Note Accuracies listed are valid for up to two years from the device external calibration

Gain tempco	7.3 ppm/°C
Reference tempco	5 ppm/°C
INL error	60 ppm of range

Al Absolute Accuracy Equation

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainity GainError = ResidualGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal) OffsetError = ResidualOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INLError NoiseUncertainty = $\frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}}$ for a coverage factor of 3 σ and averaging 10,000 points.

Al Absolute Accuracy Example

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

GainError: 65 ppm + 7.3 ppm
$$\cdot$$
 1 + 5 ppm \cdot 10 = 122 ppm
OffsetError: 13 ppm + 23 ppm \cdot 1 + 60 ppm = 96 ppm

NoiseUncertainty:
$$\frac{270~\mu V ~\cdot~3}{\sqrt{10,000}} = 8.1~\mu V$$

 $\textit{AbsoluteAccuracy}: 10 \text{ V} \cdot (\textit{GainError}) + 10 \text{ V} \cdot (\textit{OffsetError}) + \textit{NoiseUncertainty} =$ $2{,}190~\mu V$

Analog Output

Number of channels	2
DAC resolution	16 bits
DNL	±1 LSB
Monotonicity	16 bit guaranteed
Maximum update rate (simultaneous)	
1 channel	900 kSample/s
2 channels	840 kSample/s per channel
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns
Output range	±10 V
Output coupling	DC
Output impedance	0.2 Ω
Output current drive	±5 mA
Overdrive protection	±15 V
Overdrive current	15 mA
Power-on state	±20 mV
Power-on/off glitch	2 V for 500 ms
Output FIFO size	8,191 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update
Settling time, full-scale step, 15 ppm (1 LSB)	6 μs
Slew rate	15 V/μs
Glitch energy	
Magnitude	100 mV
Duration	2.6 μs

AO Absolute Accuracy

Table 2. AO Absolute Accuracy

Nominal Range Positive Full Scale (V)	Nominal Range Negative Full Scale (V)	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco (ppm/°C)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	INL Error (ppm of Range)	Absolute Accuracy at Full Scale (µV)	
10	-10	80	11.3	5	53	4.8	128	3,271	

Note Absolute Accuracy at Full Scale numbers are valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

 $AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)$

 $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) +$ ReferenceTempco · (TempChangeFromLastExternalCal)

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal)$ + INLError

Digital I/O/PFI

Static Characteristics

Number of channels	24 total, 8 (P0.<07>), 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	$50 \text{ k}\Omega$ typical, $20 \text{ k}\Omega$ minimum
Input voltage protection	±20 V on up to two pins

Caution Stresses beyond those listed under the *Input voltage protection* specification may cause permanent damage to the device.

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<07>)
Port/sample size	Up to 8 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DO or DI Sample Clock frequency	0 to 1 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), programmed I/O
Digital line filter settings	160 ns, 10.24 μs, 5.12 ms, disable

PFI/Port 1/Port 2 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 µs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Recommended Operating Conditions

Input high voltage (VIH)	
Minimum	2.2 V
Maximum	5.25 V
Input low voltage (V _{IL})	
Minimum	0 V
Maximum	0.8 V
Output high current (I _{OH})	
P0.<07>	-24 mA maximum
PFI <015>/P1/P2	-16 mA maximum
Output low current (I _{OL})	
P0.<07>	24 mA maximum
PFI <015>/P1/P2	16 mA maximum

Digital I/O Characteristics

Positive-going threshold (VT+)	2.2 V maximum
Negative-going threshold (VT-)	0.8 V minimum

Delta VT hysteresis (VT+ - VT-)	0.2 V minimum
I_{IL} input low current ($V_{IN} = 0 \text{ V}$)	-10 μA maximum
I_{IH} input high current ($V_{IN} = 5 \text{ V}$)	250 μA maximum

Figure 2. P0.<0..7>: I_{OH} versus V_{OH}

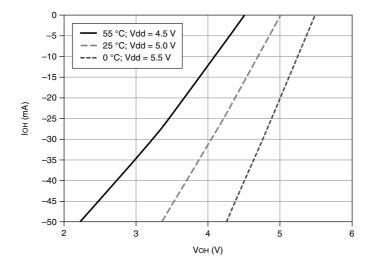
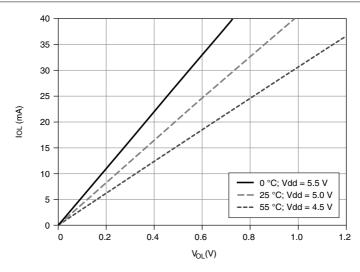



Figure 3. P0.<0..7>: I_{OL} versus V_{OL}

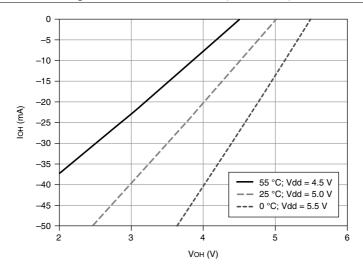
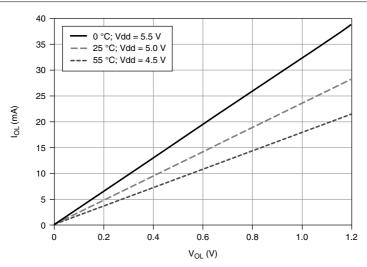



Figure 5. PFI <0..15>/P1/P2: I_{OL} versus V_{OL}

General-Purpose Counters

Number of counter/timers	4
Resolution	32 bits

Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR <a,b></a,b>
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, many internal signals</a,b>
FIFO	127 samples per counter
Data transfers	Dedicated scatter-gather DMA controller for each counter/timer, programmed I/O

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any PFI or RTSI terminal.

Phase-Locked Loop (PLL)

Number of PLLs	1
Reference clock locking frequency	
PXIe_DSTAR <a,b></a,b>	10 MHz, 20 MHz, 100 MHz
PXI_STAR	10 MHz, 20 MHz
PXIe_CLK100	100 MHz

PXI_TRIG <07>	10 MHz, 20 MHz
PFI <015>	10 MHz, 20 MHz
Output of PLL	100 MHz Timebase; other signals derived from
	100 MHz Timebase including 20 MHz and
	100 kHz Timebases

External Digital Triggers

Source	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Digital waveform generation (DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition (DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

Input source	PXI_TRIG <07>, PXI_STAR, PXIe_DSTAR <a,b></a,b>
Output destination	PXI_TRIG <07>, PXIe_DSTARC
Output selections	10 MHz Clock; frequency generator output; many internal signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

Power Requirements

Caution The protection provided by the device can be impaired if the device is used in a manner not described in the *X Series User Manual*.

+3.3 V	1.6 W
+12 V	19.8 W

Current Limits

Caution Exceeding the current limits may cause unpredictable device behavior.

+5 V terminal (connector 0)	1 A maximum ¹
+5 V terminal (connector 1)	1 A maximum ¹
P0/PFI/P1/P2 and +5 V terminals combined	2 A maximum

Physical Characteristics

Printed circuit board dimensions	Standard 3U PXI
Weight	157 g (5.5 oz)

¹ Has self-resetting fuse that opens when current exceeds this specification.

I/O connectors

Module connector	68-Pos Right Angle Dual Stack PCB-Mount VHDCI (Receptacle)
Cable connector	68-Pos Offset IDC Cable Connector (Plug) (SHC68-*)

Note For more information about the connectors used for DAQ devices, refer to the document, NI DAQ Device Custom Cables, Replacement Connectors, and Screws, by going to *ni.com/info* and entering the Info Code rdspmb.

Calibration

Recommended warm-up time	15 minutes
Calibration interval	2 years

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth 11 V, Measurement Category I

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated lowvoltage sources, and electronics.

Caution Do not connect the system to signals or use for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse
	(Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with
	MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, $0.3 g_{rms}$
Nonoperating	5 to 500 Hz, 2.4 g _{rms}
	(Tested in accordance with IEC 60068-2-64.
	Nonoperating test profile exceeds the
	requirements of MIL-PRF-28800F, Class 3.)

Environmental

Temperature	
Operating	0 °C to 55 °C
Storage	-40 °C to 71 °C
Humidity	
Operating	10% to 90% RH, noncondensing
Storage	5% to 95% RH, noncondensing
ollution Degree	2
Maximum altitude	2,000 m

Indoor use only.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the Product Certifications and Declarations section.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Notice For EMC declarations and certifications, and additional information, refer to the Product Certifications and Declarations section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document

Waste Electrical and Electronic Equipment (WEEE)

X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

SPECIFICATIONS

PXIe-1090

This document contains specifications for the PXIe-1090 chassis.

Note You will impair the protection the PXIe-1090 provides if you use it in a manner not described in this document.

Electrical

The following section provides information about the PXIe-1090 AC input and DC output.

AC Input

Input rating	100 VAC to 240 VAC, 50 Hz/60 Hz, 3 A to 1.5 A
Operating voltage range ¹	90 VAC to 264 VAC
Nominal input frequency	50 Hz/60 Hz
Operating frequency range ¹	47 Hz to 63 Hz
Efficiency	93.5% typical
Over-current protection	Internal fuse in line
Main power disconnect	The AC power cable provides main power disconnect. Do not position the equipment so that it is difficult to disconnect the power cord. The front-panel power switch causes the internal chassis power supply to provide DC power to the PXI Express backplane.

Caution Disconnect power cord to completely remove power.

DC Output

DC output characteristics of the PXIe-1090.

¹ The operating range is guaranteed by design.

Voltage Rail	Maximum Current	Load Regulation	Maximum Ripple and Noise (20 MHz BW)
+5V_AUX	0.5 A	±5%	50 mVpp
+12 V	8.0 A	±5%	120 mVpp
+5 V	2.5 A	±5%	50 mVpp
+3.3 V	6.0 A	±5%	50 mVpp
-12 V	0.25 A	±5%	120 mVpp

Maximum total available card-cage power for the PXIe-1090 is 116 W.

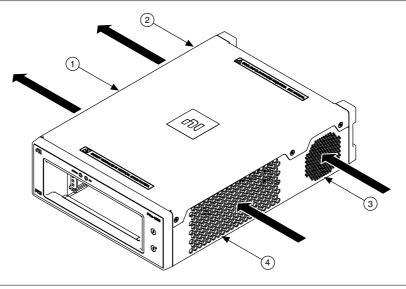
The maximum power available for each Thunderbolt port is 15 W (5 V/3 A).

Table 1. Backplane Slot Current Capacity

Slot	+5 V	V (I/O)	+3.3 V	+12 V	-12 V	5 V _{AUX}
Hybrid Peripheral Slot with PXI-5 Peripheral	_	_	3 A	6 A	_	1 A
Hybrid Peripheral Slot with PXI-1 Peripheral	2.5 A	2.5 A	6 A	1 A	1 A	_

Note PCI V(I/O) pins in Hybrid Peripheral Slots are connected to +5 V.

Note The maximum power dissipated in a peripheral slot should not exceed 58 W. Refer to the *Operating Environment* section for ambient temperature considerations at 58 W.


Over-current protection	All outputs are protected from short circuit and overload. They recover and return to regulation when the overload is removed and the power is cycled.
Over-voltage protection	+3.3 V clamped at 3.7 V to 4.3 V, +5 V clamped at 5.7 V to 6.5 V, +12 V clamped at 13.4 V to 15.6 V

Chassis Cooling

Module cooling	Forced air circulation (positive pressurization) through two 42 CFM fans
Module slot airflow direction	Bottom of module to top of module

Module intake	Right side or bottom ² of chassis	
Module exhaust	Left side or top ² of chassis	
Slot cooling capacity	58 W	
Power supply cooling	Forced air circulation (positive pressurization) through one 17 CFM fan	
Power supply intake	Right side or bottom ² of chassis	
Power supply exhaust	Left side or top ² of chassis	
Minimum chassis cooling clearances		
Intake	44.5 mm (1.75 in.)	
Exhaust	44.5 mm (1.75 in.)	

Figure 1. PXIe-1090 Cooling Air Flow

- 1. Module Exhaust
- 2. Power Supply Exhaust

- 3. Power Supply Intake
- 4. Module Intake

² Optional cooling direction applies when using the PXIe-1090 in a vertical orientation.

Environmental

Maximum altitude	2,000 m (6,560 ft.), 800 mbar (at 25 °C ambient, high fan mode)
Pollution Degree	2
Indoor use only.	

Operating Environment

Ambient temperature range	
When all peripheral modules require ≤38 W cooling capacity per slot	0 °C to 50 °C
When any peripheral module requires >38 W to 58 W cooling capacity per slot	0 °C to 40 °C
Relative humidity range	20% to 80%, noncondensing

Ambient temperature range	$-40~^{\circ}\mathrm{C}$ to $71~^{\circ}\mathrm{C}$
Relative humidity range	10% to 95%, noncondensing

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse
Operational random vibration	5 to 500 Hz, 0.3 g _{rms}
Non-operating vibration	5 to 500 Hz, 2.4 g _{rms}

Acoustic Emissions

Sound Pressure Level (at Operator Position)

38 W Profile		
Auto fan (up to 30 °C ambient)	32.3 dBA	
High fan	44.3 dBA	
58 W Profile		
Auto fan (up to 30 °C ambient)	48.9 dBA	
High fan	51.4 dBA	
Sound Power Level		
38 W Profile		

38 W Profile	
Auto fan (up to 30 °C ambient)	39.4 dBA
High fan	51.9 dBA
58 W Profile	
Auto fan (up to 30 °C ambient)	58.5 dBA
High fan	60.5 dBA

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the *Product* Certifications and Declarations section.

EMC Guidelines

This product was tested and complies with the regulatory requirements and limits for electromagnetic compatibility (EMC) stated in the product specifications. These requirements and limits provide reasonable protection against harmful interference when the product is operated in the intended operational electromagnetic environment.

This product is intended for use in industrial locations. However, harmful interference may occur in some installations, when the product is connected to a peripheral device or test object, or if the product is used in residential areas. To minimize interference with radio and television reception and prevent unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by NI could void your authority to operate it under your local regulatory rules.

EMC Notices

Refer to the following notices for cables, accessories, and prevention measures necessary to ensure the specified EMC performance.

Notice

For EMC declarations and certifications, and additional information, refer to the *Product Certifications and Declarations* section.

Notice Changes or modifications to the product not expressly approved by NI could void your authority to operate the product under your local regulatory rules.

Notice Operate this product only with shielded cables and accessories.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In Europe, Canada, Australia, and New Zealand (per CISPR 11) Class A equipment is intended for use in nonresidential locations.

CE Compliance (E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/ *product-certifications*, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Commitment to the Environment web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

♠ ♠ № NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)

Backplane

Size	3U-sized; 2 peripheral slots. Compliant with IEEE 1101.10 mechanical packaging. PXI Express Specification compliant. Accepts both PXI Express and CompactPCI (PICMG 2.0 R 3.0) 3U modules.
Backplane bare-board material	UL 94 V-0 Recognized
Backplane connectors	Conforms to IEC 917 and IEC 1076-4-101, UL 94 V-0 rated

System Synchronization Clocks

10 MHz System Reference Clock: PXI_CLK10

Maximum slot-to-slot skew	250 ps
Accuracy	± 25 ppm max (guaranteed over the operating temperature range)
Maximum jitter	5 ps RMS phase-jitter (10 Hz–1 MHz range)
Duty-factor	45% to 55%
Unloaded signal swing	3.3 V ±0.3 V

Note For other specifications, refer to the *PXI-1 Hardware Specification*.

100 MHz System Reference Clock: PXIe_CLK100 and PXIe SYNC100

Maximum slot-to-slot skew	100 ps
Accuracy	±25 ppm max (guaranteed over the operating temperature range)
Maximum jitter	3 ps RMS phase-jitter (10 Hz to 12 kHz range), 2 ps RMS phase-jitter (12 kHz to 20 MHz range)
Duty-factor for PXIe_CLK100	45% to 55%
Absolute differential voltage (When terminated with a 50 Ω load to 1.30 V or Thévenin equivalent)	400 mV to 1000 mV

Note For other specifications, refer to the PXI-5 PXI Express Hardware Specification

Mechanical

Dimensions (with removeable f	eet)
Height	80 mm (3.2 in.)
Width	190 mm (7.5 in.)
Depth	272 mm (10.7 in.)

Dimensions (without removeable feet)

67 mm (2.6 in.)
190 mm (7.5 in.)
272 mm (10.7 in.)
3.24 kg (7.15 lb)
Extruded Aluminum (6063-T5, 6060-T6), Cold Rolled Steel/Stainless Steel, Santoprene, Urethane Foam, PC-ABS, PC, Polyethylene
Conductive Clear Iridite on Aluminum, Electroplated Zinc on Cold Rolled Steel

The following figure shows the PXIe-1090 chassis dimensions. You can remove the rubber feet with a Philips screwdriver. This exposes screw threads in the exterior of the product chassis, which you can use with a mounting accessory. Consult the PXIe-1090 Dimensional Drawings for more detailed dimensional information.

190 mm (7.5 in.) --00-3 67 mm 80 mm (2.6 in.) (3.2 in.) **©**" 13 mm (0.6 in.) 272 mm (10.7 in.)

Figure 2. PXIe-1090 Dimensions

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help.Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.