

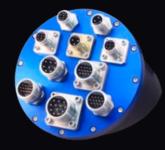
Underwater Connectors

Topside and Subsea Connectors / PBOF Assemblies for High-Pressure Oil & Gas Industry Interconnect Applications

- High-pressure, 10K psi open-face subsea
- Ruggedized serial and high-speed electrical connectors
- Power and fiber optic interconnects
- Hazardous zone ATEx explosion-proof
- Ultra high-density solutions for ROVs

OIL & GAS INDUSTRY INTERCONNECT SOLUTIONS

High-performance, high-pressure interconnect technologies with proven sealing performance in shipboard, downhole and underwater applications


DEEP WATER SUBSEA, HIGH-PRESSURE 10K PSI / 700 BAR / 7000M CONNECTORS

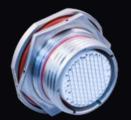
SeaKing[™] 10K PSI subsea connectors and cables: SeaKing 700 · SeaKing Fiber Optic · SeaKing Power

SeaKing Junior high-density small form-factor subsea connector

SuperG55™ dry-mate 10K PSI subsea electrical connectors

PIPELINE INSPECTION / ULTRAMINIATURE SUBSEA

Micro PSI microminiature high-pressure connectors and cables



AguaMouse™ 3500 PSI miniature connectors and overmolded cables

Geo-Marine® 5000 PSI connectors and overmolded cables

DOWNHOLE HIGH-TEMPERATURE / HIGH PRESSURE CONNECTORS

ThermaRex high-temperature connectors

High Temperature/High Pressure (HTHP) penetrators and feedthroughs

Well-Master® high temperature **Micro-D connectors**

CABLE AND PBOF ASSEMBLIES

TOPSIDE OR SHIPBOARD CONNECTORS

SeaCrow Marine Bronze topside power and signal connector

ITS-Ex ATEx-qualified explosive zone connectors

Harsh-environment overmolded cable assemblies

Dry-mate Underwater/Subsea Connector Selection Guide

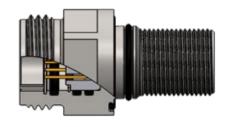
SIZE	CONNECTOR SERIES	RUGGEDNESS LEVEL	OPEN-FACE SEALING	DEPTH RATING
Large	SeaKing POWER	3 Mission-Critical	Yes	10K PSI (700 Bar)
	SeaKing SEVEN HUNDRED	3 Mission-Critical	Yes	10K PSI (700 Bar)
Standard		2 High-Reliability	Yes	10K PSI (700 Bar)
	Geo-Marine°	Geo-Marine® 2 High-Reliability		5K PSI (450 Bar)
ıture	SeaKing Junor	2 High-Reliability	No	10K PSI (700 Bar)
Miniature		1 General Duty Harsh-Environment	No	3.5KPSI (240 Bar)
Micro	Micro-PSI ()	3 Mission-Critical	Yes	10K PSI (700 Bar)

Dry-mate Underwater/Subsea Connector Selection Guide

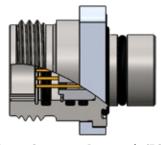
SHELL MATERIALS	ELECTRICAL RATING	SHELL OD RANGE	CABLE / CONTACT TYPES	APPLICATIONS	NOTES
Super Duplex Stainless Steel or Titanium	5kV 350A Max	2.34" to 3.64"	Overmolded Solder	High-Voltage Power	API 16D and 17E-Compliant
Stainless Steel, Titanium, or PEEK	600VDC 3–10A,	1.15" to 2.14"	PBOF, Overmolded Solder	High-Speed Datalink, RF, Fiber Optic, Serial Databus, Low- Voltage Power	Glass-Sealed Contacts Dual O-Ring Sealing
Stainless Steel or PEEK Rubber Keyway	600VDC 5–18A	1.12" to 1.50"	PBOF, Overmolded Crimp, Solder	Serial Databus, Low-Voltage Power	55 Series Intermateable Full-Mate Inspection Port
Stainless Steel	500VDC 5–23A	1.03" to 2.03"	Overmolded Solder	Low-Voltage	
Stainless Steel or Titanium	500VDC 5–23A	.875" to 1.95"	Overmolded Crimp, Solder	High-Speed Datalink, RF, Serial Databus, Low- Voltage Power	High-Density From #12 to #30 AWG Wire Support
Stainless Steel or Marine Bronze	750VDC– 1800VDC 5–23A	.5" to 1.562"	Overmolded Crimp, Solder	High-Speed Datalink, RF, Serial Databus, Low- Voltage Power	From 1 –130 Glass- Sealed Contacts
Stainless Steel or Titanium	300VDC 3A	.25" to .32"	Prewired Pigtails, Cables Solder	High-Speed Datalink, Serial Databus, Low- Voltage Power	Glass- and Piston O-Ring Sealed Ethernet-Ready

10K PSI / 700 Bar / 7000m open-face or mated, dual O-ring equipped, high-density, high-voltage, fiber optic and hybrid electrical/optical subsea connectors

SeaKing is an innovative underwater connector series that eliminates a broad range of mechanical design weaknesses found in many of today's high-pressure subsea connector families. From its double O-ring seals and retractable engaging nut, to its multi-keyed mating interface, the SeaKing underwater connector represents a far more reliable approach to subsea power and signal connectivity.


Ideally suited for deep water offshore oil & gas, military/defense, oceanographic research, and other harsh-environment subsea applications, the dry-mate connector series is built for optimal durability and reliability. Tested to 15,000 PSI (open face and mated), and equipped with integrated dual O-ring seals, marine bronze coupling nuts, corrosionresistant stainless steel shells and high-pressure contact inserts with gold-plated signal contacts, special RF and fiber optic solutions, the Series 700 SeaKing is today's most advanced high-density signal and standard-density power underwater connector.

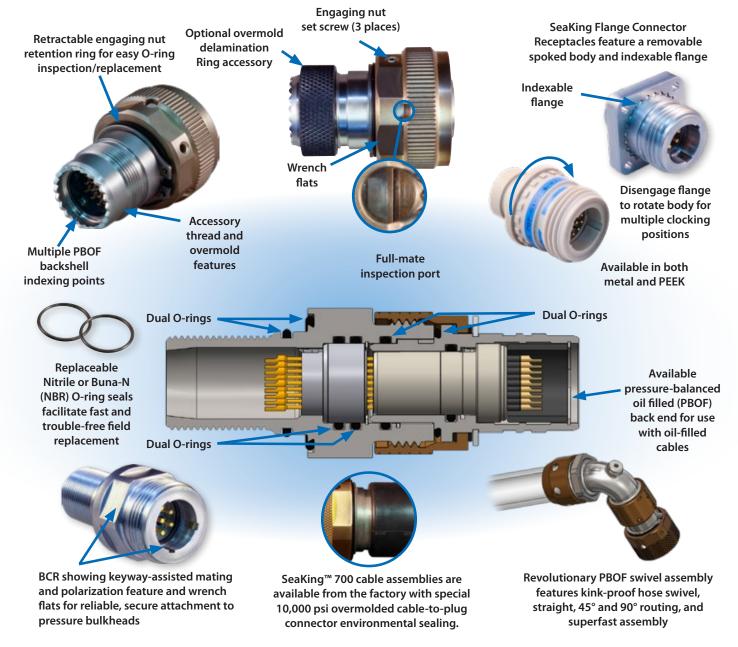
- High density, small formfactor connector
- Dual O-ring seals ensure high-pressure performance for every leak path
- Signal, power, RF and optical insert arrangements
- Stainless steel with anti-galling marine bronze engaging nut, or cathodic delaminationfree PEEK
- Full-mate inspection
- Easy O-ring replacement
- **Key and keyway** polarization


STANDARD CONFIGURATIONS

Cable Connector Plug (CCP)

Bulkhead Connector Receptacle (BCR)

Flange Connector Receptacle (FCR)


Glenair. SeaKing™ High-Pressure Underwater Connectors, Cables, and PBOF Assemblies

Key mechanical and environmental features

Sealing: SeaKing 700 is the best-sealed subsea connector on the market. All critical interfaces, including bulkhead seals, glass-to-metal insert seals, mating interface bore seals, and face seals are fully redundant ensuring 10K PSI protection, even in the event of a single-seal failure.

Mating: SeaKing utilizes a modified UNC (coarse) mating interface with added clearance to reduce bio-fouling and facilitate rapid-advance mating. The marine bronze coupler on the plug is equipped with thread flats as well as knurling and is less susceptible to galling than standard steel engaging nuts. Polarized keys and keyways prevent both thread damage and mismating.

Ease-of-Use: Multiple PBOF backshell indexing points, indexable flange FCRs, full-mate inspection ports, retractable engaging nuts, and other features make SeaKing the most user-friendly subsea connector on the market.

SeaKing™ High-Pressure Underwater Connectors, Cables, and PBOF Assemblies

700 Series connectors CCP, FCR and BCR

700-001 CABLE CONNECTOR PLUG (CCP) WITH SOLDER CUP TERMINATION

700-006 GLASS-TO-METAL SEAL OR 700-026 GLASS REINFORCED EPOXY, FLANGE CONNECTOR RECEPTACLE (FCR) WITH SOLDER CUP TERMINATION

G lenair.

SeaKing - How To Order								
Sample Part Number		700	-001	-K19	- Z 1	S	N	
Product Series	700 =	700 = SeaKing™						
Shell Style		001 = cable connector blug (CCP)						
Shell Size-Insert Arrangement	(see sa	(see sales drawing for details)						
Shell Material		16 stainless tanium	steel					
Contact Style	S = soo	S = socket						
Polarization	А, В, С	A, B, C, N = normal (see sales drawing for details)						

	Sea	King - Ho	w To Or	der			
Sample Part Nu	mber	700	-006	-019	-Z1	P	N
Product Series	700 = 9	SeaKing™					
Shell Style	connec (FCR) 026 = 0	D26 = GRE flange connector receptacle					
Shell Size-Insert Arrangement	(see sal	es drawing	g for de	tails)			
Shell Material	I - .	Z1 = 316 stainless steel TC = titanium					
Contact Style	P = Pin	P = Pin					
Polarization	A, B, C,	N = norma	al (see s	ales dra	wing fo	r detai	ls)

700-007 GLASS-TO-METAL SEAL OR 700-027 GLASS REINFORCED EPOXY, BULKHEAD CONNECTOR RECEPTACLE (BCR) WITH SOLDER CUP TERMINATION

	SeaKing - I	How To	Order				
Sample Part Number	700	-007	-K19	-Z1	P	N	
Product Series	700 = SeaKing™						
Shell Style	connector reception (BCR) 027 = GRE bulk	07 = GTMS bulkhead connector receptacle cCR) 27 = GRE bulkhead connector receptacle					
Shell Size-Insert Arrangement	(see sales draw	ing for c	details)				
Shell Material	Z1 = 316 stainle TC = titanium	Z1 = 316 stainless steel TC = titanium					
Contact Style	P = pin	P = pin					
Polarization	A , B , C , N = nor	mal (see	e sales d	rawing f	or detai	ls)	

700-010 BULKHEAD CONNECTOR FEED-THRU (BCF), INCONEL INSERT, 10K PSI OPEN FACE RATED

SeaKing - How To Order								
Sample Part Number	700-010	-M12	- Z 1	P	N	P	N	-2
Product Series	700-010 = SeaKing™ bulkhead connector feed-thru (BCF)							
Shell Size- Insert Arrangement	(see sales drawii details)	(see sales drawing for details)						
Shell Material	Z1 = 316 stainle TC = titanium	Z1 = 316 stainless steel TC = titanium						
Side A, Contact Type	P = pin S = so	ocket						
Side A, Polarization	A, B, C, N = norr (see polarization		ogs. 6-	7)				
Side B, Contact Type	P = pin S = socket							
Side B, Polarization	A, B, C, N = normal (see sales drawing for details)							
Bulkhead Thickness	1 = 1.00 - 1.50 4 = 2.50 - 3.00							

Glenair. SeaKing™ High-Pressure Underwater Connectors, Cables, and PBOF Assemblies

700 Series, non-metallic PEEK connectors

700-201 CABLE CONNECTOR PLUG (CCP), PEEK

	SeaKing	PEEK - How To Orde	r				
Sample Part Numb	per	700 -201	-1	-M12	-K	S	N
Product Series	700-201 = SeaKing [™] (non-metallic PEEK	0-201 = SeaKing™ CCP, on-metallic PEEK					
Shell Style	001 = cable connector	01 = cable connector plug (CCP)					
Shell Size-Insert Arrangement	(see sales drawing for	(see sales drawing for details)					
Shell Material	K = 30% glass reinforced peek						
Contact Style	S = socket	= socket					
Polarization	A , B , C , N = normal (se	e sales drawing for d	etails)				•

10K PSI available in smaller shell sizes. Contact factory for details.

700-206 GLASS REINFORCED EPOXY OR GLASS HERMETIC SEAL INSERT, FLANGE CONNECTOR **RECEPTACLES (FCR), PEEK**

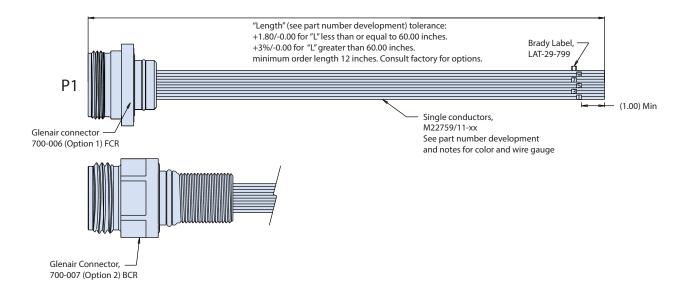
SeaKing PEEK - How To Order							
Sample Part Number		707 -206	-6	-E4	-K	P	N
Product Series	700 = SeaKing™ FCR, non-metallic PEEK						
Shell Style	206 = Glass Hermetic : 226 = Glass Reinforced						
Shell Size-Insert Arrangement	(see sales drawing for	(see sales drawing for details)					
Shell Material	K = 30% glass reinforc	K = 30% glass reinforced peek					
Contact Style	P = pin						
Polarization	A , B , C , N = normal (se	e sales drawing for de	tails)				-

10K PSI available in smaller shell sizes. Contact factory for details.

700-207 GLASS REINFORCED EPOXY OR GLASS-TO-METAL SEAL INSERT, BULKHEAD CONNECTOR **RECEPTACLE (BCR), PEEK**

SeaKing PEEK - How To Order							
Sample Part Number		707	-207	-E4	-K	P	N
Product Series	700 = SeaKing™ BCR, non-metallic PEEK						
Shell Style		107 = Glass Hermetic Seal Insert (GHS) 127 = Glass Reinforced Epoxy Insert (GRE)					
Shell Size-Insert Arrangement	(see sales drawing	(see sales drawing for details)					
Shell Material	K = 30% glass reir	nforced peek			•		
Contact Style	P = pin						
Polarization	A , B , C , N = norma	al (see sales drawing f	for detail	s)			_

10K PSI available in smaller shell sizes. Contact factory for details.

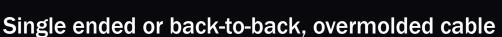


SeaKing™ High-Pressure Underwater Connectors, Cables, and PBOF Assemblies

Single-ended connector receptacle pigtail assembly

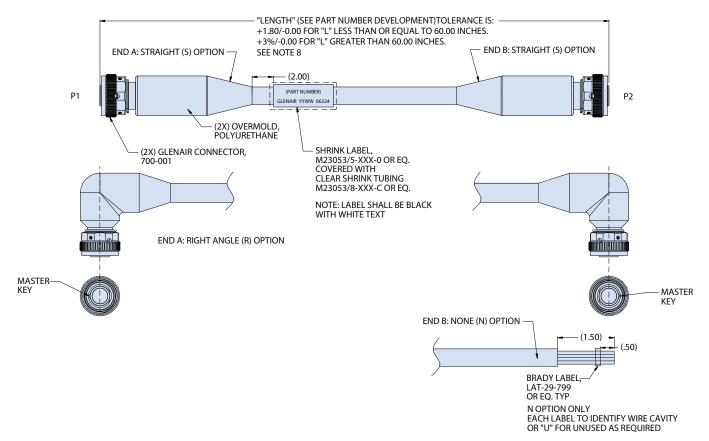
7071-0012 FLANGE OR BULKHEAD CONNECTOR RECEPTACLE PIGTAIL ASSEMBLY

		SeaKing - How To	Order					
Sample Part Number		7071-0012	-1	M12	- Z 1	-12	A	N
Product Series	7071-0012 = SeaKing [™]							
Receptacle Style	1 = 700-006 (GTMS FCR) 3 = 700-026 (GRE FCR)	2 = 700-007 (GTMS BCR) 4 = 700-027 (GRE BCR)	-					
Insert Arrangement	see sales drawing for details)							
Material/Finish	Z1 = 316 stainless steel TC = titanium							
Cable Length	In inches					,		
Wire Coloring	A = all white B = 10 color repeating; IAW MIL-STD-681							
Polarization	A, B, C, N = normal (see sales of	lrawing for details)						-


Alternate	Key Positio	ns
	Key Ro	tation
Key Position	A°	В°
Normal (N)	150°	210°
A	75°	210°
В	95°	230°
С	140°	275°

NOTES

- 1. 100% electrically tested for shorts, dielectric withstanding voltage (500Vac 5 seconds max) and insulation resistance (conductor to conductor and conductor to shell at 500Vdc/200 megohms min. (IAW-STD-202, Method 302)
- Quantity and gauge of conductors determined by insert arrangement. All cavities to be populated with largest gauge wire.
- 3. All solder cup cavities are isolated with M23053/8 heat shrink tubing.

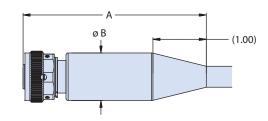

SeaKing™ High-Pressure Underwater Connectors, Cables, and PBOF Assemblies

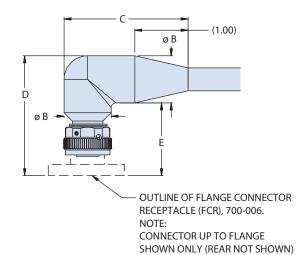
SeaKing - How To Order									
Sample Part Number		7071-0007	-S	R	Z1	-K19	N	-24	11
Series	7071-0007 = SeaKing [™] cable connector plug (CCP) assembly								
P1	R = right angle S = straight								
P2	R = right angle N=none S = straight								
Shell Material/Finish	Z1 = 316 stainless steel TC = titanium								
Insert Arrangement	(see sales drawing for details)					_			
Polarization	A , B , C , N = normal (see sales drawing for \mathbf{c}	details)							
Cable Length	In inches							_	
Cap Options	10 , 11 , 20 , 21 ; omit for none								,

Alternate Key Positions						
Key Rotation						
Key Position	A°	В°				
Normal (N)	150°	210°				
Α	75° 210°					
В	95° 230°					
C 140° 275°						

Cap Options						
Sym Description						
10	Protective cap, no lanyard					
11	Protective cap, with lanyard					
20	Pressure cap, no lanyard					
21	Pressure cap, with lanyard					

Glenair.


Glenair. SeaKing™ High-Pressure Underwater **Connectors, Cables, and PBOF Assemblies**


Single ended or back-to-back, overmolded cable

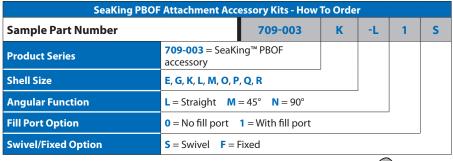
SIZE	Α	В	C	D	E
Е	4.55	0.765	2.88	2.93	2.165
G	4.55	0.875	2.94	3.11	2.235
K	4.55	1.00	3.00	3.16	2.105
L	4.55	1.125	3.00	3.29	2.165
М	5.05	1.250	3.38	3.43	2.18
0	5.05	1.500	3.5	3.55	2.05
Р	5.05	1.625	3.68	3.75	2.125
Q	5.05	1.750	3.88	3.93	2.18
R	5.05	1.875	3.94	3.99	2.115

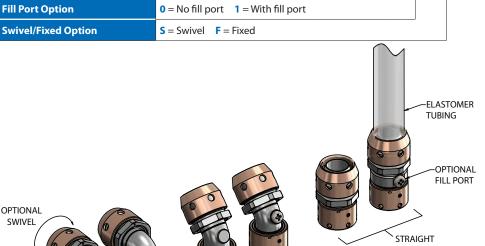
NOTES

- 1. 100% electrically tested for shorts, dielectric withstanding voltage (at 500Vac 5 seconds max) and insulation resistance (conductor to conductor and conductor to shell) at 500Vdc/200 megohms min. IAW MIL-STD-202, Method 302).
- Unit pack: 1 ea. In poly bag, heat-sealed. Include dust cap. Tag and bag per illustration.
- Max pressure rating 10000 psi.
- For connector dimensions, materials, finishes, refer to drawing 700-001.
- For insert arrangements refer to drawing 709-099 contact manufacturer for builds with combo insert arrangements.
- Double ended cordsets are wired one to one (ex. pin 1 to pin 1, 2 to 2 etc).
- Quantity and gauge of conductos determined by insert arrangement. All cavities to be pupulated with largest gauge wire.
- Marker label, M23053/5 or equivalent. Covered with clear tubing M@3053/18 or equivalent tubing shall be white with black text.
- Single conductors shall be identified with cavity indentifier or "U" for unused marker label, M23053/5 or equivalent convered with clear tubing M23053/18 or equivalent tubing shall be white with text.
- Minimum order length is 24.00 inches. Consult fatory for orders longer 1200 inches (100ft)
- All configurations are wired one to one.

Glenair. SeaKing™ High-Pressure Underwater **Connectors, Cables, and PBOF Assemblies**

PBOF assembly fittings and accessories


REVOLUTIONARY PBOF SWIVEL HOSE ATTACHMENT ACCESSORIES


Hose barb fittings for PBOF assemblies are the perennial weak link in subsea oil & gas applications. Kinked and twisted hoses, leaky fittings, corroded hose clamps, and other performance problems characterize most existing solutions. The Glenair PBOF swivel hose attachment for SeaKing[™] connectors solves these problems and more. Designed from the sea floor up to perform flawlessly and reliably, this revolutionary attachment puts an end to the long list of field maintenance problems associated with oil-filled cable applications.

- Straight, 45°, and 90° "full radius" angle and profile hose routing
- Hose angle adjustment feature eliminates risk of oil leakage
- Corrosion-resistant materials used throughout
- Threaded couplers with safety set-screws for fail-safe leak and decoupling protection—no special tools required for assembly
- Compact PBOF compression fitting with 340° swivel action hose for an extra degree freedom of routing in compact situations
- Support for the broad range of hose diameters and wall thicknesses

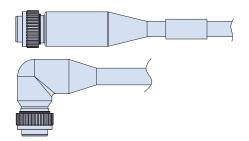
Interlocking teeth on SeaKing™ plug connectors interface with corresponding teeth on the **PBOF** swivel hose attachment to facilitate easy indexing and routing of hose assemblies

90 DEGREE

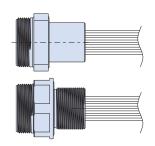
The complete 45 DEGREE range of SeaKing PBOF hose compression fittings includes straight, 45°, and 90° full radius profile versions; with and without integrated oil fill ports

Revolutionary swivel hose barb compression attachment eliminates twisting and damage in **PBOF** assemblies

Threaded PBOF compression nut and connector coupling nut (with additional safety set screw) provide for fast and easy assembly and prevent leaks and assembly decoupling



High-reliability, dry-mate, harsh-environment connectors and cables for intelligent inline inspection PIG applications

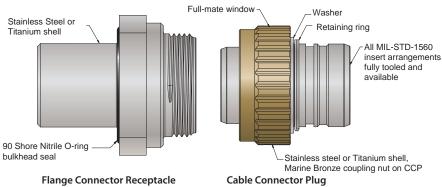

igh-density Series 701 SeaKing Junior connectors are the perfect choice for harsh-environment oil & gas industry equipment. All designs are equipped with piston seal nitrile O-rings to withstand exposure to corrosive chemicals and high-temperature environments. These 10,000 psi pressure rated (mated condition) connectors feature high-density crimp-contact or solder cup inserts, and are significantly smaller than our larger form-factor series 700 SeaKing interconnects. Gold-plated crimp contacts accept #12–30 gage wire. SeaKing Junior connectors are backfilled with epoxy potting compound, ready for easy incorporation into overmolded cables. Crimp-contact versions for field installation and repair are also available. SeaKing Junior is specifically designed for high-pressure, mated condition applications that do not require the extra fail-safe features and cost of an open-face rated solution.

- 10,000 psi (mated condition) pressure rated connector for overmolded (non-PBOF) applications
- High density, small formfactor solution—up to 50% reduction in size and weight compared to industry standard solutions
- Ultraminiature high-density pin configurations: #22D, #20, #20HD, #16, #12, #8 signal, power, fiber optic and high-speed datalink shielded contacts

SEAKING™ JUNIOR OVERMOLDED CABLES AND PIGTAIL ASSEMBLIES

Harsh-environment polyurethane overmolded point-to-point cables with straight or rightangle ends, one-to-one wiring

Pigtail receptacle assemblies, variable cable length, single-conductor M22759/11 wire, environmental back-end potting


All featured insert arrangements tooled and available now including high-density and combo layouts for Coax, Twinax, and El Ochito® octaxial contacts

10K psi high-density overmolded cable connectors

SERIES 701 SEAKING" JUNIOR MECHANICAL FEATURES AND CONFIGURATIONS

Series 701-011 Cable Connector Plug (CCP)

Series 701-016 Flange Connector Receptacle (FCR)

Stainless Steel or Titanium shells, Marine Bronze coupling nuts

Available in nine sizes from 2 to 128 contacts, Series 701 connectors feature stainless steel or marine bronze shells. Nitrile O-rings resist high temperature and corrosive chemicals.

10,000 psi

These connectors withstand up to 10,000 PSI hydrostatic pressure in a mated condition.

Series 701-017 Bulkhead Connector Receptacle (BCR)

SEAKING™ JUNIOR CONTACT SPECIFICATIONS, MATERIALS AND FINISHES, AND CRIMP TOOLS

Service Ratings							
Service	Sea Level DWV	Operational					
Rating	(VAC)	VAC	VDC				
М	1300	433.3	612.8				
N	1000	333.3	471.4				
- 1	1800	600.0	484.5				
II	2300	766.7	1084.2				

Current Rating									
Contact Size	Amps	Wire Size							
#8	46.0	8 AWG							
#10	33.0	10 AWG							
#12	23.0	12-14 AWG							
#16	13.0	16-20 AWG							
#20	7.5	20-24 AWG							
#22D	5.0	22-28 AWG							

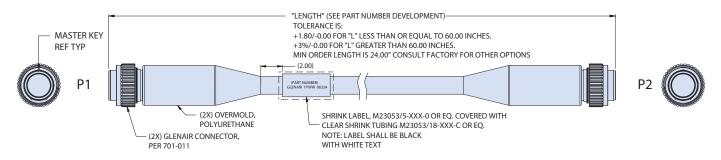
Performance Specifications						
Insulation Resistance	5000 megohms at 500 VDC					
Operating Temperature	-65° C to +175° C					
Hydrostatic Pressure	10,000 PSI mated condition, tested per ISO 13628-6					
Durability	300 mating cycles					

Series 701 Polarization							
Plug	Receptacle	Ke Pota	ey ntion				
MASTER KEY INSULATOR							
		Normal (N)	150°	210°			
		А	75°	210°			
			95°	230°			
		С	140°	275°			

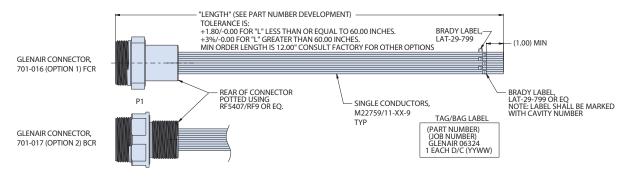
Contact Crimp Tools						
Contact Size	Positioner					
#12	809-136	809-137				
#16	809-136	809-137				
#20	809-136	809-137				
#22D	000 015	K42 Pin				
#22D	809-015	K40 Skt				

Material and Finish					
Shells, Jam Nuts	Stainless steel or Titanium				
CCP Coupling Nuts	Marine bronze, unplated				
Contacts	Copper alloy, gold plated.				
Insulators	Composite thermoplastic				
Retaining ring and hardware	Stainless steel				
Interfacial Seal (pin inserts only) and Grommet	Fluorosilicone				
O-rings and Seals	Nitrile, 90 shore Viton®, 90 shore Viton® O-rings offer wider temperature range				

SERIES 701 SeaKing™ Junior Harsh-Fnvironment


Harsh-Environment Dry-Mate Connectors

Overmolded cables and pigtail assemblies


SEAKING™ JUNIOR POINT-TO-POINT OVERMOLDED CABLE

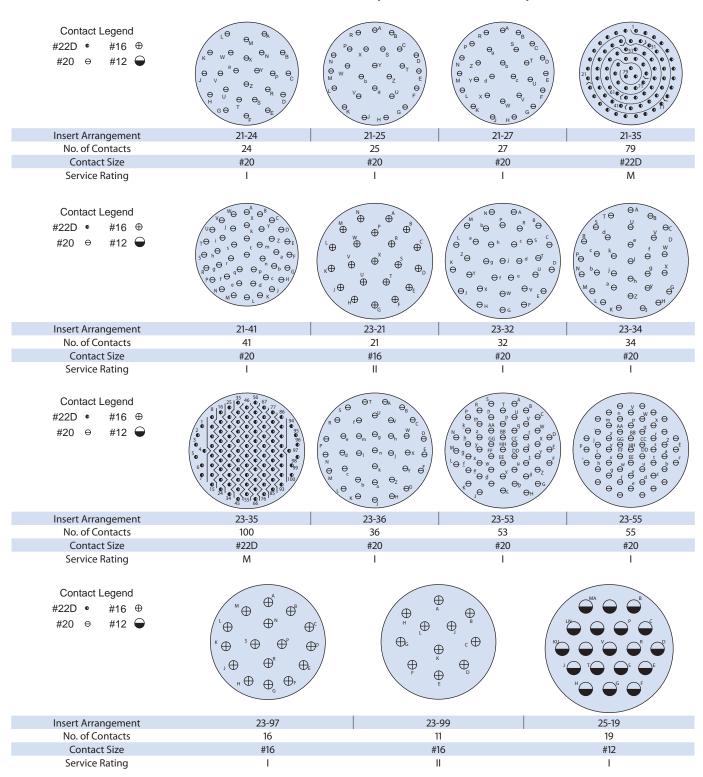
SeaKing Junior - How To Order							
Sample Part Number		7071-0067	9-35	Z1	S	N	36
Series	7071-0067 = SeaKing Junior Cable Assembly						
Insert Arrangement	See contact arrangement table pages 14-19	See contact arrangement table pages 14-19					
Material/Finish Z1 = Stainless Steel Body and Marine Bronze Coupling Nut TC = Titanium							
Contact Style	S = Socket						
Polarization	N = Normal, A, B, C (see Polarization Table, page 14)						
Cable Length	Length = in inches; ie 36 = 36 inches						-

SEAKING™ JUNIOR SINGLE-ENDED RECEPTACLE ASSEMBLY

SeaKing Junior - How To Order								
Sample Part Number	ample Part Number 7071-0068 1 9-35 Z1 P							
Series	7071-0068 = SeaKing Junior Cable Assembly							
Receptacle Style	1 = Flange Connector Receptacle (701-016) 2 = Bulkhead Connector Receptacle (701-017)							
Insert Arrangement	See contact arrangement table pages 14-19							
Material / Finish	Z1 = Stainless Steel Body and Marine Bronze Coupling Nut TC = Titanium							
Contact Style	P = Pin							
Polarization	N = Normal, A, B, C (see Polarization Table, page 14)						-	
Cable Length	Length = in inches; ie 36 = 36 inches							-

Insert arrangements

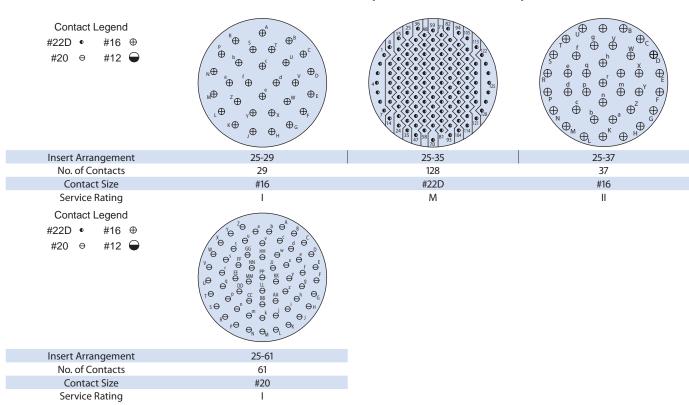
SEAKING™ JUNIOR TOOL	.ED INSERT ARR	ANGEMFI	NTS (STAI	NDARD L	AYOUTS)		
				Ø ^D ^A Θ		10 01	€ ^A
Contact Legend #22D ● #16 ⊕			B A A	(9 0 11 0 3 8 13 0 12 4	E F B
#20 \text{\text{\text{#10}}} \tilde{\text{\tint}\tint{\text{\tin}\text{\texi{\text{\text{\text{\ti}\tilitit{\text{\text{\text{\text{\text{\tin\text{\texi}\tint{\text{\text{\text{\text{\texi}\tint{\text{\tin}\tint{\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texiti}\tittit}\tint{\tii}\tittt{\texittt{\text{\texi{\texi{\texi{\texi}\tii}\texit{\texi{\				Oc BO	$\bigcirc \bigcirc $	7 ● ● 6 ● 5	□ ⊖ ⊖c
	0.35	0.00	11.2	11. 4	11.5	11.25	11.00
Insert Arrangement No. of Contacts	9-35	9-98 3	11-2 2	11-4 4	11-5 5	11-35	11-98 6
Contact Size		#20	#16	#20	#20	#22D	#20
Service Rating	M	1	I	I	I	М	1
J							
Contact Legend	E A	_ A	G. A		⊕ ^A B		
#22D • #16 ⊕		$D \oplus B$		B G B	θ /	210	_ A _ B
#20 \(\theta\) #10 \(\phi\)	DO OC	$\left\langle \begin{array}{c} \Phi_{c} \end{array} \right\rangle$	FO OH G) ($\Theta = \Theta \cap \Theta$		$\oplus \oplus \oplus \oplus$
#20 0 #12		C	$\Theta_{\mathbb{D}}$		€ 8	000	\
Insert Arrangement	11-99	13-4	13-8	1	3-98	13-35	15-5
No. of Contacts	7	4	8		10	22	5
Contact Size	#20	#16	#20		#20	#22D	#16
Service Rating	I	I	1		I	М	II
			_			_	
Contact Legend	L O O N R	0 0 0 P	e e	0 0 0 0	E		\bigoplus^{A}
#22D ● #16 ⊕		M A B C C C C C C C C C C C C C C C C C C	$\begin{pmatrix} \Theta \\ R \end{pmatrix}$	0 0 0 0			G _← ←B
#20 ⊖ #12 -		/10 0 0 0 0 0 0	OE (Φ
	Ge e e e e	\\ H⊖ ⊖ _G €	∋F	0000		F.	
						c /	$\bigoplus_{E} \bigoplus_{D}$
Insert Arrangement	15-18	15-19		15-35	17-6	5	17-8
No. of Contacts	18	19	' I	37	6		8
Contact Size	#20	#20		#22D	#12		#16
Service Rating	I	I		M	1		II
Contact Legend	$P \stackrel{R}{\Theta} \Theta^A \Theta^B$		6 6 6		J A	S	「Θ Θ ^A ο B
#22D ● #16 ⊕				\		\(\begin{align*} `\text{\$\ext{\$\text{\$\text{\$\text{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\exitt{\$\exitt{\$\ext{\$\exitt{\$	
#20 ⊖ #12 🕣				1	Φ /	P⊖ d⊖	, ⊖
		/ 3		\ _@	\oplus \oplus \oplus	/ 100 0	⊕ vx oE/
	KO JO OH OG	4			F _P P ^D	\mathbb{M} ,⊖ a	e ez es
			7240 31 039		\bigoplus_{E}	r, Ke	O O _J O _H S
Insert Arrangement	17-26		17-35		19-11		19-32
No. of Contacts	26		55		11		32
Contact Size	#20		#22D		#16		#20
Service Rating	I		M		II		I
	775 22		25 25			_	
Contact Legend	10 17 0 43 51		0 17 65 6 35 44 52		$_{\rm J}$ $_{\rm A}$	L	\bigoplus^{A}
#22D ● #16 ⊕		1.0		H		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	$\mathbb{A}^{M} \stackrel{B}{\oplus}$
#20 ⊖ #12 🕣		20			к 🕳 🕒	J _⊕ S _⊕	⊕ ⊕ °c
				G G	L		D
		9	9 9 64			/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	⊕ /
	24 3 42 50		24 Q ₃₄ Q ₃ 51	F		_ ⊕	$\bigoplus_{E} \bigoplus_{E}$
	10.05		10. 4=		21.44		
Insert Arrangement No. of Contacts	19-35 66		19-45 67		21-11 11		21-16 16
Contact Size	#22D		#22D		#12		#16
Service Rating	M		M		1		II
J							

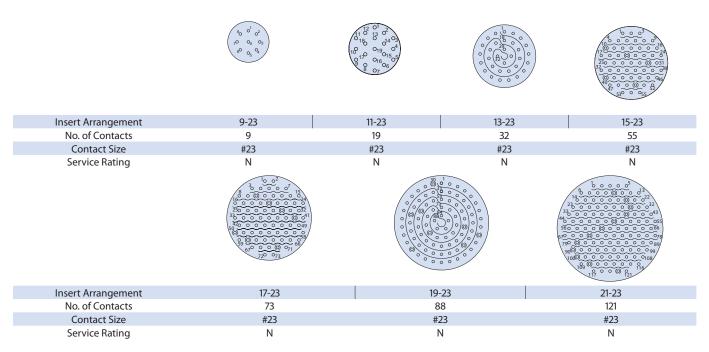

18

SERIES 701 SeaKing™ Junior Harsh-Environment Dry-Mate Connectors

Insert arrangements

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (STANDARD LAYOUTS)

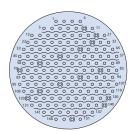


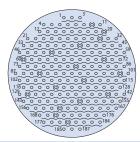


Insert arrangements

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (STANDARD LAYOUTS)

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (HIGH-DENSITY LAYOUTS)





Insert arrangements

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (HIGH-DENSITY LAYOUTS)

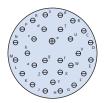
Insert Arrangement	23-23	25-23
No. of Contacts	151	187
Contact Size	#23	#23
Service Rating	N	N

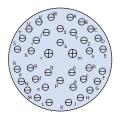
SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (COMBO LAYOUTS)

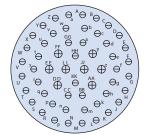
Contact Legend

#22D • #20 ⊖ #16 ⊕

#12 • #10 •

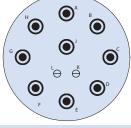


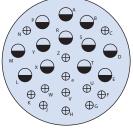

Insert Arrangement	15-15		15-97		17	-99	19-28		
No. of Contacts and Size	1X #16	14X #20	4X #16	8X #20	2X #16	21X #20	2X #16	26X #20	
Service Rating		I		I		I		I	


Contact Legend

#22D • #20 ⊖ #16 ⊕

#12 ⊕ #10 ⊚



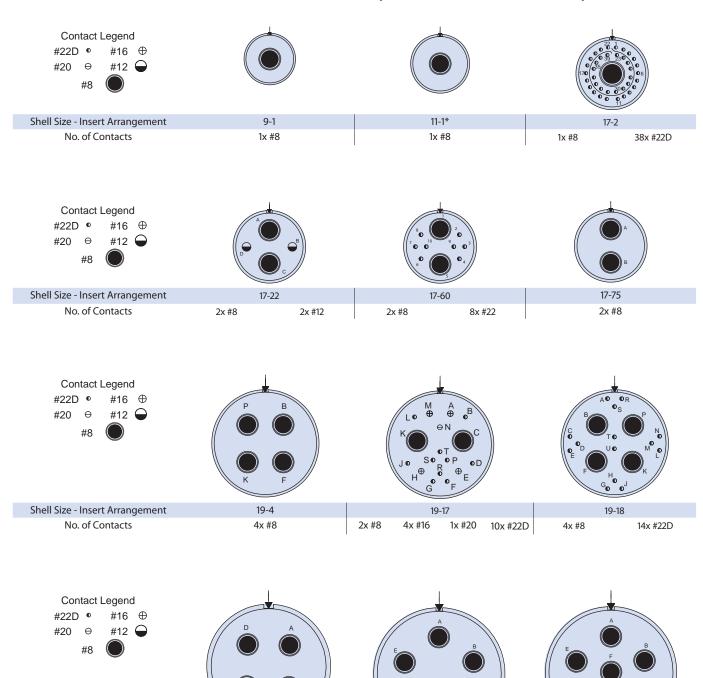

Insert Arrangement	19	-30	21	-39	2.5	5-4	
No. of Contacts and Size	1X #16	29X #20	2X #16	37X #20	8X #16	48X #20	
Service Rating		1		I		I	

Contact Legend

#22D • #20 ⊖ #16 ⊕

#12 **⊕** #10 **⊚**

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
25-43
20V #16 23V #20


		E		Н	, o _n ∈	M LO K
Insert Arrangement	25	-11	25-	24	25-	43
No. of Contacts and Size	9X #10	2x #20	12X #12	12X #16	20X #16	23X #20
Service Rating	1	N	I		I	

Insert arrangements

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (SPECIAL SHIELDED LAYOUTS)

23-5

5x #8

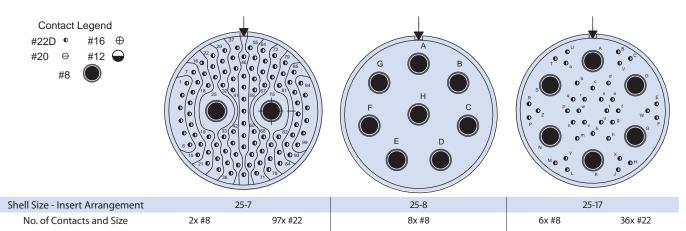
21-75

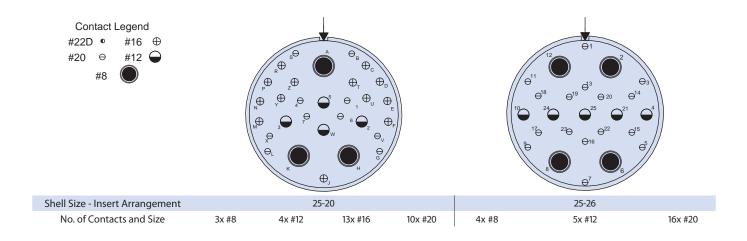
4x #8

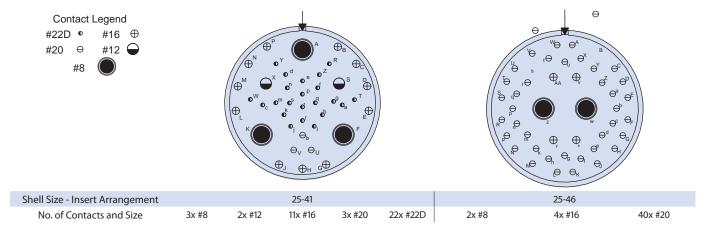
Shell Size - Insert Arrangement

No. of Contacts and Size

23-6


6x #8





Insert arrangements

SEAKING™ JUNIOR TOOLED INSERT ARRANGEMENTS (SPECIAL SHIELDED LAYOUTS)



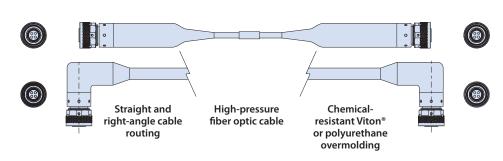
SeaKing[™] Fiber Optic

10K PSI open-face pressure rated fiber optic connectors, cables and jumpers, plus ruggedized transceivers and media converters

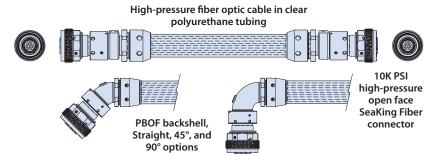
and ultrasonic inspection sensors used in intelligent pipeline inspection are ideally suited for ruggedized high-pressure fiber optics. Fiber optic interconnect systems deliver ultra high data bandwidth, immunity from RFI and other forms of electromagnetic interference, as well as reduced size and weight

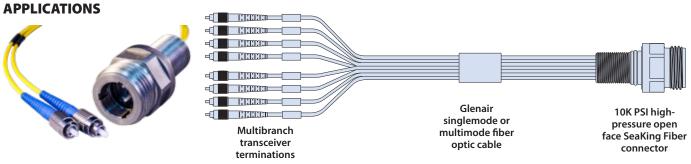
compared to high-speed copper. Glenair SeaKing™ Fiber Optic solutions include harsh-environment overmolded cable assemblies, multibranch inside-the-box jumpers, as well as Glenair signature high-temp, high-vibration transceivers and optical-to-electrical media converters. Pressure-balanced oil-filled (PBOF) cable assemblies are also available for deep subsea applications.

- Overmolded and PBOF butt-joint assemblies
- Full hydrostatic qualification test report available
- Wide range of fiber and hybrid fiber/electric layouts
- Singlemode and multimode
- <1.0db data loss for singlemode</p>

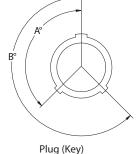


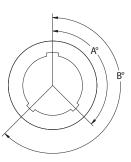
10K PSI open-face pressure-rated fiber optic connectors, cables, transceivers, and media converters


ENVIRONMENTAL OVERMOLDED FIBER OPTIC JUMPERS



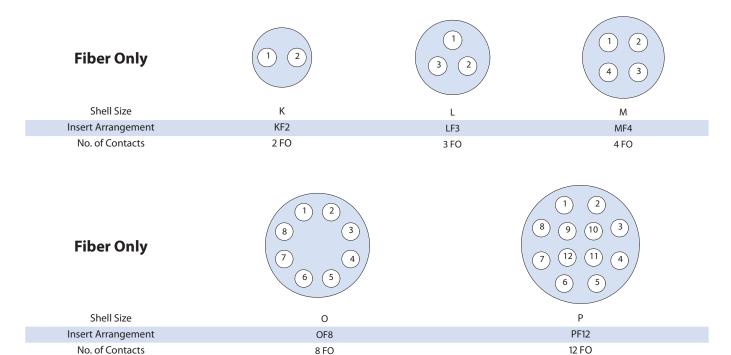
PRESSURE-BALANCED OIL-FILLED (PBOF) HIGH-PRESSURE FIBER OPTIC ASSEMBLIES



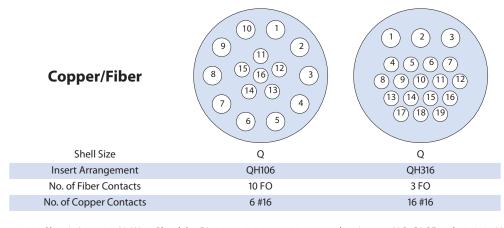

SEAKING™ BCR OR FCR TO COMMERCIAL FIBER OPTIC PIGTAIL ASSEMBLY FOR I/O-TO-BOARD MODULE

KEY AND KEYWAY POSITONS

Alternate Keyway Positions							
	Key Rotation						
Key Position	Α°	В°					
Normal (N)	150°	210°					
Α	75°	210°					
В	95°	230°					
С	140°	275°					



Receptacle (Keyway)

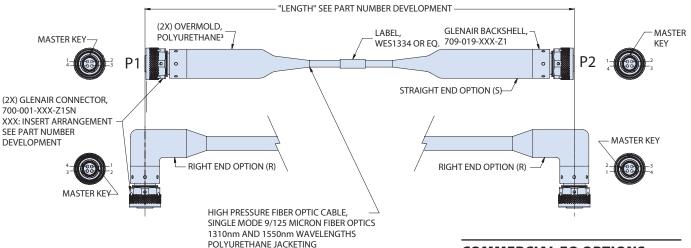


Fiber optic insert arrangements

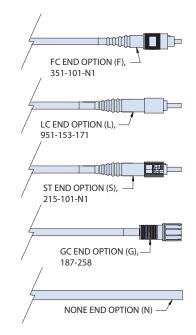
Copper/Fiber	23	① ② ③ ④ 5 6 ⑦ ⑧ ⑨ ⑩	(1) (2) (3) (4) (5) (6)	2 (3) (4) (1) (6) (5) (9) (0) (1) (9) (0) (1)
Shell Size	K	L	M	0
Insert Arrangement	KH12	LH28	MH24	OH56
No. of Fiber Contacts	1FO	2 FO	2 FO	5 FO
No. of Copper Contacts	2 #16	8 #22	4 #16	6 #16

Contact Specifications							
Contact Size	#22	#16					
Amps	3	10					
Wire Gage Accommodation	22	16					

All contact arrangements are rated for 600 volts.


Contact arrangements are shown as face view of receptacle insert. Contact arrangements of plug inserts are reverse.

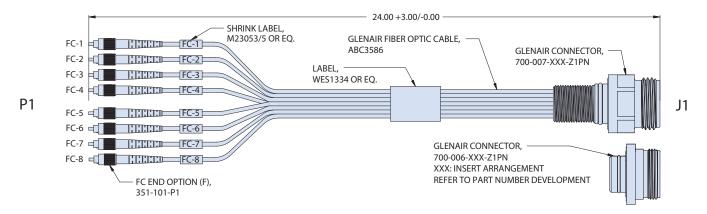
Overmolded assemblies with SeaKing™ connectors or SeaKing™ to commercial fiber optic connectors


		SeaKing Fiber - How To	o Order						
Sample Part Number		7071-0037	-С	С	Z1	-0F8	N	-24	C
Basic Number	7071-0037								
End 1 Option	C = CCP	R = right angle CCP							
End 2 Option	C = CCP F = FC leads S = ST leads	R = right angle CCP L = LC leads G = GC Leads	N = nor	ie					
Shell Material	TC = titanium	Z1 = 316 stainless steel			_				
Insert Arrangement	See page 24; ins	ert body material 316 SST				_			
Polarization	N = normal, A, B	, C; see page 23							
Length	In inches							_	
Pressure Cap Option	C = pressure cap	o, same size and material w	vill be pro	vided (709-001); omit f	or non	e	,

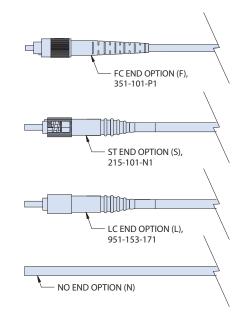
NOTES

- 1. Optical performance: Insertion loss shall be <1.0dB when measured @ 1310nm wavelength.
- 2. Molding process for high pressure applications shall be used for polyurethane overmolds.
- Insert arrangement shown is for reference only. See page 24 for SeaKing fiber optic insert arrangements.
- 4. See drawing 700-001 for connector dimensions, materials, and finishes. See PBOF assembly fittings, part number 709-003 for more information.
- 5. Wiring for each arrangement is one to one. Fiber cavities can be populated with fiber termini and/or conductors. Electrical cavities shall be populated with largest gauge wire and contacts.
- 6. Cables over 240" (20ft) shall be shipped on a reel.
- 7. Kit GBS1000-00033 shall be used for inspection/cleaning.
- 8. Recommended SeaKing terminus cleaning tool: GCLT-H160.
- 9. Fiber optic terminus: 1.58 mm ferrule id, single O-ring.
- 10. 10Kpsi open-face and mated

COMMERCIAL FO OPTIONS



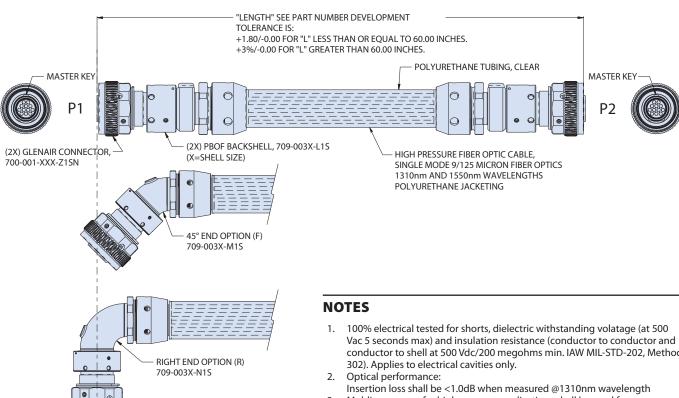
SeaKing[™] BCR or FCR to commercial fiber optic pigtail assembly for I/O-to-board module applications


SeaKing Fiber - How To Order										
Sample Part Number		7071-0038	-B	F	Z1	-0F8	N	-24	C	
Basic Number	7071-0038									
End 1 Option	$\mathbf{B} = \mathbf{BCR} \mathbf{F} = \mathbf{FCR}$									
End 2 Option	F = FC leads L = LC leads	S = ST leads N = none		-						
Shell Material	TC = titanium	Z1 = 316 stainless steel			_					
Insert Arrangement	See page 24; inser	t body material 316 SST				_				
Polarization	N = normal, A, B, C	; see page 23								
Length	In inches							•		
Pressure Cap Option	C = pressure cap, s	ame size and material will k	oe prov	/ided (7	09-002); omit f	or none	e	•	

NOTES

- Optical performance: insertion loss shall be <1.0dB when measured @ 1310nm wavelength. (See note 4)
- 2. Insert arrangement shown is for reference only. See SeaKing fiber optic insert arrangements on page 24.
- 3. See drawing 700-001 for connector dimensions, materials, and finishes. See PBOF assembly fittings, 709-003, for more information.
- 4. Wiring for each arrangement is one to one. Fiber cavities can be populated with fiber termini and/or conductors. Electrical cavities shall be populated with largest gauge wire and contacts.
- 5. Kit GBS1000-00033 shall be used for inspection/cleaning.
- 6. Recommended seaking cleaning tool: GCLT-H160.
- 7. Fiber optic terminus: 1.58 mm ferrule id, single O-ring.

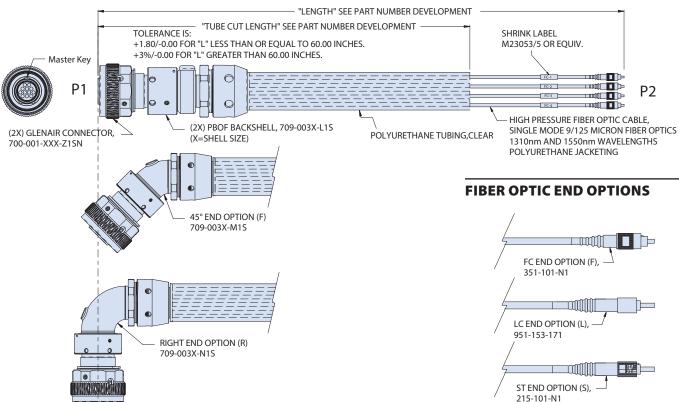
COMMERCIAL FO OPTIONS



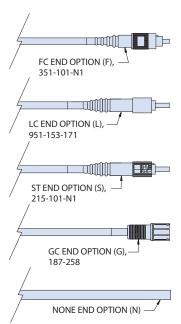
PBOF back-to-back SeaKing fiber optic assembly with straight, 45°, or 90° connectors

SeaKing Fiber - How To Order									
Sample Part Number		707	1-0049	-S	S	MF4	-36	N	
Basic Number	7071-0049								
Backshell End Option (P1)	S = straight	R = right	F = 45°						
Backshell End Option (P1)	S = straight	R = right	F = 45°						
Insert Arrangement	See page 24; Inse	See page 24; Insert body material 316 SST							
Cable Length	In inches								
Polarization	N = normal; see p	age 23							

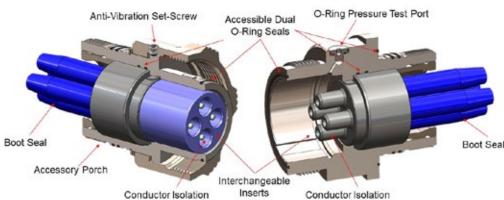
- conductor to shell at 500 Vdc/200 megohms min. IAW MIL-STD-202, Method
- 3. Molding process for high pressure applications shall be used for polyurethane overmolds
- 4. Insert arrangement shown is for reference only. See SeaKing fiber optic insert arrangements on page 24.
- 5. Wiring shall be one-to-one for all insert arrangements
- 6. Cables over 240" (20ft) shall be shipped on a reel.
- Kit GBS1000-00033 shall be used for inspection/cleaning.
- 8. Recommended SeaKing cleaning tool: GCLT-H160.
- 9. All solder cup cavities are isolated with M23053/8 heat shrink tubing.
- 10. See drawing 700-001 for connector dimensions, materials, and finishes. See PBOF assembly fittings (709-003) for more information.
- 11. Wiring for each arrangement is one to one. Fiber cavities can be populated with fiber termini and/or conductors. Electrical cavities shall be populated with largest gauge wire and contacts.
- 12. Fiber optic terminus: 1.58 mm ferrule id, single o-ring.



P2


PBOF single-ended fiber optic pigtail cable assembly with straight, 45°, and 90° routing

SeaKing Fiber - How To Order									
Sample Part Number	7071-0050	-S	F	MF4	-XX	-XX	N		
Basic Number	7071-0050								
Backshell End Option (P1)	S = Straight R	= Right $\mathbf{F} = 45^{\circ}$							
Fiber End Option	F, L, S, G, N								
Insert Arrangement	See page 24; Insert	t body material 316 SST							
Cable Length	In inches								
Tube Cut Length	In inches								
Polarization	N = Normal; see pa	age 23							


NOTES

- 1. Optical performance: Insertion loss shall be <1.0dB when measured @ 1310nm wavelength. (See note 4)
- Insert arrangement shown is for reference only. See SeaKing fiber optic insert arrangements
- See drawing 700-001 for connector dimensions, materials, and finishes. See PBOF assembly fittings, 709-003, for more information.
- 4. Wiring for each arrangement is one to one. Fiber cavities can be populated with fiber termini and/or conductors. Electrical cavities shall be populated with largest gauge wire and
- 5. Kit GBS1000-00033 shall be used for inspection/cleaning.
- Recommended SeaKing cleaning tool: GCLT-H160.
- Fiber optic terminus: 1.58 mm ferrule id, single O-ring.

Glenair's SeaKing Power connector family is rated to 10K PSI in open-face or mated condition. These high-voltage (1–3kV) and high-amperage (up to 350 Amps) solder cup contact connectors are ready for immediate deployment in overmolded or PBOF configurations for primary power junction applications. Test ports available upon request. A range of shell sizes and contact inserts are available.

- API 16D and 17E-compliant test ports
- Fully redundant dual **O-ring sealing**
- Indexable flange or threaded bulkhead designs
- O-ring pressure inspection ports available on all BCR and **FCR designs**
- Factory acceptance testing in both mated and open-face conditions
- **Keyed mating interface** for mismate prevention

Conductor Isolation

SeaKing™ Power connectors for underwater primary power junctions

Available configurations and applications

CABLE CONNECTOR PLUG (CCP)

SeaKing™ Power API 16D and 17E-Compliant Cable Connector Plug (CCP)

- PBOF and overmold compatible cable connector plug
- Super duplex stainless steel or titanium construction with glassreinforced thermoplastic insulator
- Accepts various backshell accessories
- Aggressive coupling nut knurling for easy field mating
- Inspection ports, spanner wrench holes, and coupling nut lock set screws ensure reliable foolproof performance
- Mates with SeaKing Power receptacle assemblies with similar contact arrangement
- Conductor sealing boots protect solder cup wire-to-contact terminations in the event of a flooded hose

FLANGE CONNECTOR RECEPTACLE (FCR)

SeaKing[™] Power API 16D and 17E-Compliant Flange Connector Receptacle (FCR)

- FCR delivers 10K PSI sealing in both mated and open-face condition
- Indexable flange allows receptacle shell rotation for 360° routing flexibility of right-angle-mating cable plugs
- Available API O-ring pressure test ports ensure reliability prior to deployment to ocean floor
- Super duplex stainless steel or titanium shells for complete compatibility with mating CCP
- Wire sealing boots ensure reliable environmental protection of cableto-connector interface

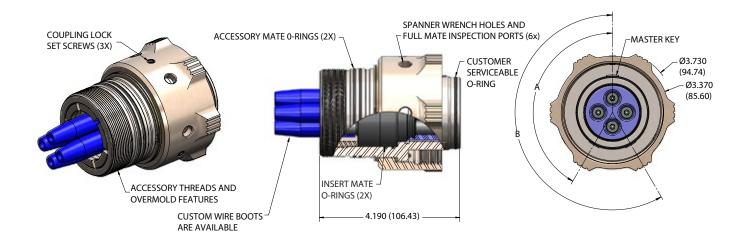

BULKHEAD CONNECTOR RECEPTACLE (BCR)

SeaKing™ Power API 16D and 17E-Compliant **Bulkhead Connector Receptacle (BCR)**

- BCR is designed for direct threaded bulkhead mounting
- Supplied washer, mounting nut, and bulkhead-mate O-ring seals ensure secure sealing and grounding to equipment housing
- BCR shell equipped with both wrench flats and spanner wrench holes for convenient installation regardless of tool choice
- Available API O-ring pressure test ports ensure reliability prior to deployment
- Mates with SeaKing Power CCP with similar contact arrangement

	SeaKing [™] Power Performance Specifications					
Pressure Rating	Plug: 10,000 psi, mated condition Receptacles: 10,000 psi mated and open face	per ISO 13628-6				
Electrical	1–3kV, 350 Amps max per contact	per MIL-STD-202, Method 301				
Materials	Salt Spray (corrosion) Humidity (steady state) Thermal Cycle	MIL-STD-202, Method 101 MIL-STD-202, Method 103 ISO 13628-6				
Power Ratings	3kV, 50 Amp / contact 1kV, 50 Amp / contact 1kV, 150 Amp / contact 1kV, 350 Amp / contact	P/N 700-101-48, 700-106-48 P/N 707-0065, 707-0066 P/N 707-0088, 707-0089 P/N 707-0142				

HIGH VOLTAGE SUBSEA SeaKing™ Power connectors for underwater primary power junctions



Size 48, 4-way #8 HV contacts, 3kV, 50 amps/contact

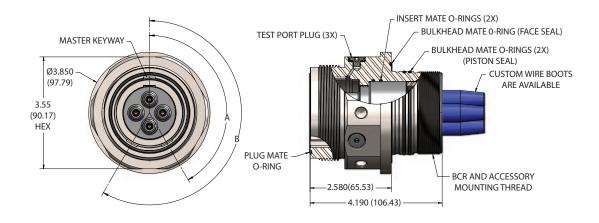
700-101-48 SEAKING POWER, CABLE CONNECTOR PLUG (CCP), SIZE 48, 4-WAY #8 HV CONTACTS*

How to Order							
Sample Part Number		700-101	-48HV4	Z 1	S	N	
Series	700-101 = cable c	700-101 = cable connector plug					
Shell Size / Insert Arrangement	-48HV4 = shell size	-48HV4 = shell size 48 / layout HV4					
Shell Material	Z1 = SS super dup	Z1 = SS super duplex TC = titanium					
Contact Style	P = pins	S = 9	ockets		_		
Polarization	N = normal, A, B, C	; see key positions	table at right			-	

Key Positions				
Position A B				
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

^{*}Mates only with 700-106 BCR or FCR

HIGH VOLTAGE SUBSEA SeaKing™ Power connectors for underwater primary power junctions


Size 48, 4-way #8 HV contacts, 3kV, 50 amps/contact

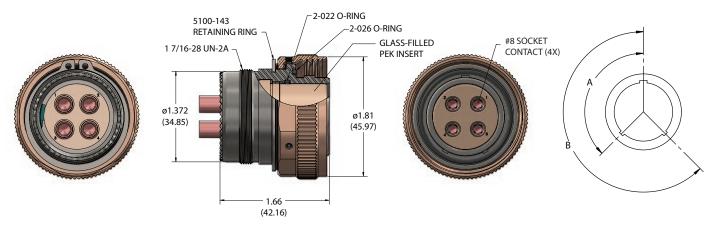
700-106-48 SEAKING POWER, FLANGE OR BULKHEAD CONNECTOR RECEPTACLE (FCR OR BCR), SIZE 48, 4-WAY #8 HV CONTACTS*

How to Order							
Sample Part Numbe	•	700-106	-48HV4	Z1	S	N	В
Series		700-106 = bulkhead or flange connector receptacle (BCR OR FCR)					
Shell Size/ Insert Arrangement	-48HV4 = shell siz	48HV4 = shell size 48 / layout HV4					
Shell Material	Z1 = SS super dup	Z1 = SS super duplex TC = titanium					
Contact Style	P = pins	P = pins S = sockets					
Polarization	N = normal, A, B, C	N = normal, A, B, C; see key positions table at right					
Mounting Option*	F = FCR option and	B = BCR option includes bulkhead nut and washer F = FCR option and includes indexable mounting flange (fastener not included) N = None, receptacle is mountable to a threaded bulkhead					
Shell Option*	API = test ports; o	mit for none					

Key Positions				
Position A B				
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

^{*}Mates only with 700-101 Cable Connector Plug

SeaKing™ Power connectors for underwater primary power junctions

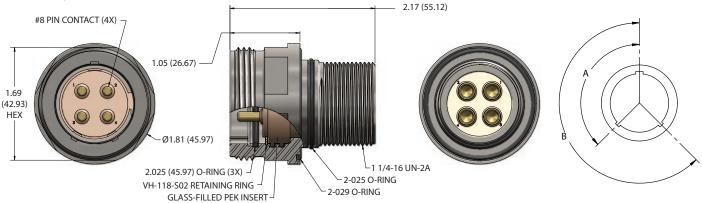

Size P, 4-way #8 HV contacts, 1kV, 50 amps/contact

707-0065-P4 SEAKING POWER, CABLE CONNECTOR PLUG (CCP)*

How to Order						
Sample Part Number		707-0065	-P4	- Z 1	S	N
Series	707-0065 = cable co	707-0065 = cable connector plug (CCP)				
Shell Size / Insert Arrangement	P4					
Shell Material	Z1 = stainless steel TC = titanium					
Contact Style	P = pin (707-0066 or	nly) S = socket (707-0065	only)		
Polarization	N = Normal, A, B, C;	see key positions table a	t right			

Key Positions				
Position	Α	В		
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

^{*}Mates only with 707-0066 BCR



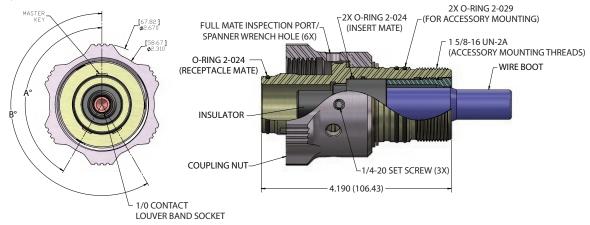
707-0066-P4 SEAKING POWER, BULKHEAD CONNECTOR RECEPTACLE (BCR)*

How to Order						
Sample Part Numbe	Sample Part Number 7		-P4	- Z 1	S	N
Series	707-0066 = bulk he	ead receptacle (BCR)				
Shell Size / Insert Arrangement	P4	P4				
Shell Material	Z1 = stainless steel	1 = stainless steel TC = titanium				
Contact Style	P = pin (707-0066 o	nly) S = socket ((707-0065	only)		
Polarization	N = Normal, A, B, C;	see key positions table				-

Key Positions				
Position	Α	В		
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

*Mates only with 707-0065 CCP

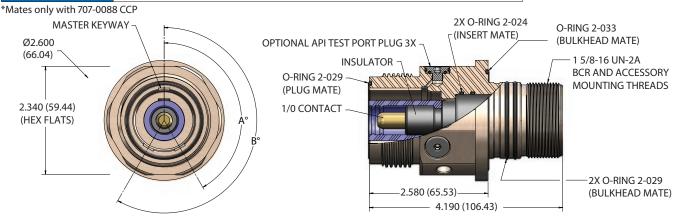
SeaKing™ Power connectors for underwater primary power junctions


Size 32, 1-way #1/0 HV contact, 1kV, 150 amps/contact

707-0088 SEAKING POWER, CABLE CONNECTOR PLUG (CCP), SIZE 32, 1-WAY #1/0 HV CONTACTS*

How to Order						
Sample Part Number		707-0088	Z 1	P	N	
Series	707-0088 =cable connector plug					
Shell Material	Z1 = stainless steel TC = titanium					
Contact Style	P = pin S = socket					
Polarization	N = normal, A , B , C ; see key positions table at	right				

Key Positions				
Position	Α	В		
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

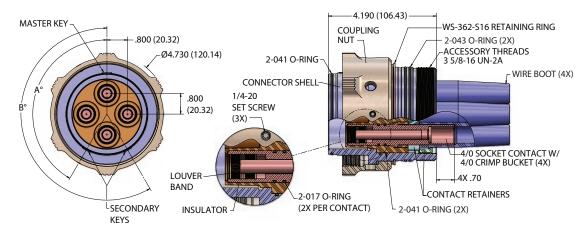

*Mates only with 707-0089 FCR or BCR

707-0089 SEAKING POWER, FCR/BCR, SIZE 32, 1-WAY #1/0 CONTACTS*

		How to Order					
Sample Part Number		707-0089	Z 1	Р	N	-N	-API
Series		707-0089 = flange connector receptacle or bulkhead connector receptacle					
Shell Material	Z1 = stainless steel TC	1 = stainless steel TC = titanium					
Contact Style	P = pin S = socket	P = pin S = socket					
Polarization	N = normal, A, B, C; see	N = normal, A, B, C; see key positions table at right					
Mounting Option*	B = BCR option and includes bulkhead nut and washer F = FCR option and includes indexable mounting flange N = none, receptacle is mountable to a threaded bulkhead						
Shell Option*	API = test ports; omit fo	r none					,

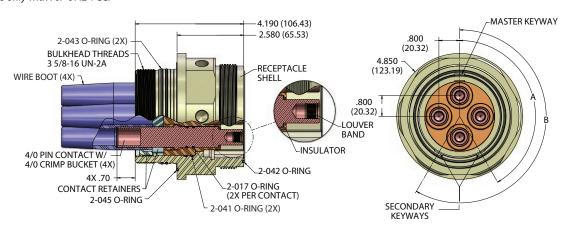
Key Positions				
Position	Α	В		
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		

SeaKing™ Power connectors for underwater primary power junctions


Size 64, 4-way #4/0 HV contact, 1kV, 350 amps/contact

How to Order					
Sample Part Number		707-0142	1	N	
Series	707-0142 = SeaKing Power				
Connector Style	-1 = cable connector plug (CCP) -6 = flange connector receptacle (FCR) -7 = bulkhead connector receptacle (BCR)				
Key Position	N = normal, A, B, C; see key positions table				

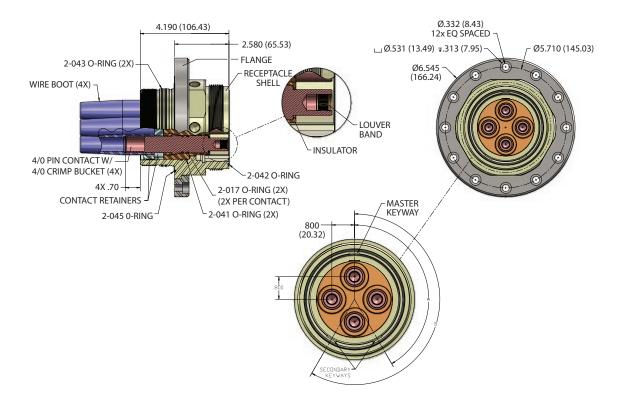
Key Positions				
Position	Α	В		
N	150°	210°		
Α	75°	210°		
В	95°	230°		
С	140°	275°		


707-0142-1 SEAKING POWER, CABLE CONNECTOR PLUG (CCP), SIZE 64, 4-WAY #4/0 HV CONTACTS*

*Mates only with 707-0142-6 FCR or 707-0142-7 BCR

707-0142-7 SEAKING POWER, BULKHEAD CONNECTOR RECEPTACLE (BCR), SIZE 64, 4-WAY #4/0 HV CONTACTS*

*Mates only with 707-0142-1 CCP


HIGH VOLTAGE SUBSEA SeaKing™ Power connectors for underwater primary power junctions

Size 64, 4-way #4/0 HV contact, 1kV, 350 amps/contact

707-0142-6 SEAKING POWER, FLANGE CONNECTOR RECEPTACLE (FCR), SIZE 64, 4-WAY #4/0 HV CONTACTS*

*Mates only with 707-0142-1 CCP

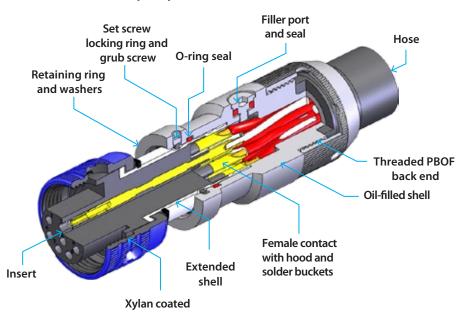
UNDERWATER 10K PSI DRY MATE ELECTRICAL SuperG55TM

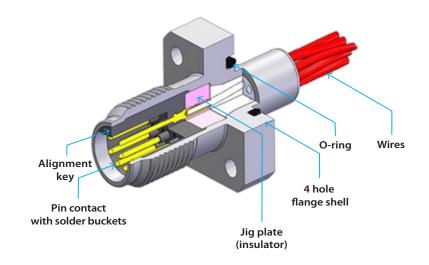
High-pressure open face bulkhead (BCR) and flange receptacles (FCR)

The SuperG55™ family of dry-mate underwater deep-sea-high pressure connectors are a revolutionary new design of the popular industry-standard used in countless ROV, underwater camera, diver communications, lights, pan and tilts, and other deep subsea applications.

Available in multiple shell sizes, the SuperG55[™] is manufactured from 316L Stainless Steel with insert molded contact assemblies designed for pressure-sealed applications up to 10K psi mated and unmated. Intermateable and intermountable with other "55" series connectors, the Glenair solution introduces a long list of product innovations designed to improve performance and durability. Our PBOF versions, for example, utilize

easy-to-assemble threaded fittings which deliver both superior sealing performance while reducing installation time. Other innovations include full-mate inspection ports, improved solder cup contact design and more. Cable plugs and receptacles available in attachable (userterminatable) versions as well as factory overmolded single-ended whips.


- 10,000 psi mated/ unmated (approx. 22,500ft/7,000m)
- Recessed socket contacts in plugs for electrical safety
- Intermateable and intermountable with other "55" series connectors
- 4 shell sizes 15, 20, 24 and 32 with 3 to 39 contacts
- PBOF versions available
- 600 VDC, 5 to 18 Amps (dependent on conductor and cable size and make-up)



Key mechanical and environmental features

SUPERG55™ PRESSURE-BALANCED OIL-FILLED CABLE CONNECTOR PLUG (CCP)

SUPERG55™ FLANGE CONNECTOR RECEPTACLE (FCR)

	Material Finish Codes							
Code	Material/Finish	Code	Material/Finish					
	Anodized Aluminum	PK	Composite Thermoplastic (PEEK)					
NAB2	Aluminum Bronze	В	Brass					
Т	Titanium	Alternative materials available, contact factory						

SuperG55™ Performance Specifications					
Mating Cycles	500				
Pressure	689 Bar (10,000 PSI) Mated and Un-mated				
Operating Temperature	-20°C to +90°C				
Voltage Rating	600 VDC / 440 Vac				
Current (max.)	5 to 18 Amps (dependant on contact and cable conductor sizes)				

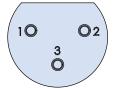
SuperG55™ Material/Finish					
Shells	316L Stainless Steel/ Passivated				
Insulator	PEEK/NA				
Insert	Neoprene/NA				
Contacts	Copper Alloy/Gold Plated				
O-rings	Nitrile/NA				
Overmold and Cable	Polyurethane or Neoprene/NA				
Coupling Nut	316L Stainless Steel/ Protective Coating Blue				
Bulkhead	PTFE Insulated 16 AWG				
Receptacle Tails	Wire/NA				
Cable	Polyurethane or Neoprene Jacketed/NA				

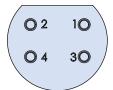
NON-STANDARD MATERIALS: Other material options are available as part of our non-catalog offerings including anodized aluminum, titanium, and aluminum bronze. Glenair is also able to supply SuperG55™ interconnects in composite thermoplastic (PEEK) to meet application requirements for reduced cathodic corrosion as well as weight reduction without affecting connector performance.

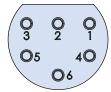
HIGH-SPEED ETHERNET: The SuperG55™ Ethernet option is available in the 1508, 2013 and 2021 contact configurations and provides both high speed (Up to 1GB) and power (600 Volts) in a full subsea environment (10,000 PSI). Gigabit speed data transfer up to a distance of 75mtrs.

Insert arrangements

SUPERG55™ INSERT ARRANGEMENTS Mating face view of pin insert (socket insert IDs are reversed)

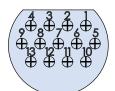


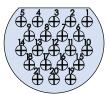




Shell Size 15

1503 3 Size #12 AWG Contacts 1504 4 Size #16 AWG Contacts 1506 6 size #16 AWG Contacts 1508* 8 size #16 AWG Contacts

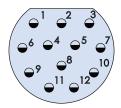


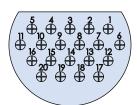

Shell Size 20 2004

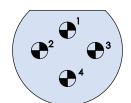
2003 3 Size #10 AWG Contacts

4 Size #10 AWG Contacts 2006 6 Size #10 AWG Contacts

Shell Size 20


2008*


8 Size #12 AWG Contacts 2013*


13 Size #16 AWG

Contacts

2021* 21 Size #16 AWG Contacts

1 ⊕ ⊕ ⊕ ⊕ ⊕ 4 7 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 13 14 ⊕ ⊕ ⊕ ⊕ ⊕ 19 20 ⊕ ⊕ ⊕ ⊕ ⊕ 22 27 ⊕ ⊕ ⊕ ⊕ ⊕ 37 38 ⊕ ⊕ 39

Shell S	iize 24	Shell Size 32				
2412	2420	3204***	3239**			
12 Size #12 AWG	20 Size #16 AWG	4 Size #6 AWG	39 Size #16 AWG			
Contacts	Contacts	Contacts	Contacts			

Bulkhead Mounting Torque (Values are for dry non-lubricated threads) Size 15 - 14.12NM (125LB. INS.) Size 20 - 18.64NM (165LB.INS.) Size 24 - 25.42NM (225LB.INS.) Size 32 - TBD *Compatible with high-speed Ethernet
**3239 is not intermateable with any other brand of

***3239 is not intermateable with any other brand of connector. Contact factory for details
*** Contact factory for availability

Super G55 Series connectors

G55 A1 ATTACHABLE CABLE CONNECTOR PLUG (CCP)

SuperG55™ - How To Order						
Sample Part Number		G55A1	-1508	-0000		
Series	SuperG55™ = under dry-mate, long version attachable					
Shell Shell Size/Insert Arrangement Size	See shell size/insert (page 38)	arrangements	_			
Overall Length	In feet (0000 = no cable, 0001 = one foot, etc.)					
Potting Boot	PB = potting boot; omit for none. Not required if used for OFR1					
Material Option	Omit for stainless ste B = brass coupling n		PK = peek See materi			

G55 01 STRAIGHT OVERMOLDED, CABLE PLUG (CCP)

SuperG55™ - How To Order							
Sample Part Number	G	5501	-1508	-0004			
Series	SuperG55™ = underwater dry-mate, straight overmol	ded CCP					
Shell Size/Insert Arrangement	See shell size/insert arrang (page 38)	gements					
Cable Length	In feet (0001 = one foot, 00	In feet (0001 = one foot, 0002 = two feet etc.)					
Inch Increments	3, 6 or 9 inches; omit for wl	3, 6 or 9 inches; omit for whole feet lengths					
Material Option	Omit for stainless steel B = brass coupling nut and barrel PK = peek coupling nut and barrel See material options on page 40						
Back-to-Back	B2B = back-to-back; omit if not required						

G55 R1 RIGHT ANGLE OVERMOLDED, CABLE CONNECTOR PLUG (CCP)

SuperG55™ - How To Order							
Sample Part Number	r	G55R1	-1508	-0004			
Series		SuperG55™ = underwater dry-mate, right angle overmolded CCP					
Shell Size/Insert Arrangement	See shell size / insert arranç	See shell size/insert arrangements (page 38)					
Cable Length	In feet (0001 = one foot, 0	In feet (0001 = one foot, 0002 = two feet etc.)					
Inch Increments	3, 6 or 9 inches; omit for w	3, 6 or 9 inches; omit for whole feet lengths					
Material Option	Omit for stainless steel B = brass coupling nut and	PK = peek coupling nut and barrel d barrel See material options on page 40					
Back-to-Back	B2B = back-to-back; omit if not required						

Super G55 Series connectors

G55 OF1 STRAIGHT OIL-FILLED CABLE CONNECTOR PLUG (CCP)

SuperG55™ - How To Order							
Sample Part Number	•	G550F1	-1508	-0010			
Series	SuperG55™ = Underwate straight oil-filled CCP						
Shell Size/Insert Arrangement	See shell size / insert arran	See shell size / insert arrangements (page 40)					
Overall Length	In feet (0000 = no cable, no hose 0001 = one foot, etc.)						
Back-to-Back*	B2B = back-to-back (min.	B2B = back-to-back (min. 7ft hose length); omit if not required					

^{*}Consult factory for additional back-to-back options

G55 OFR1 RIGHT ANGLE OIL-FILLED CABLE CONNECTOR PLUG (CCP)

SuperG55™ - How To Order							
Sample Part Number	G	550FR1	-1508	-0010			
Series	SuperG55™ = Underwater dry right angle oil-filled CCP	-mate,					
Shell Size/Insert Arrangement	See shell size / insert arrangem	See shell size/insert arrangements (page 40)					
Overall Length	In feet (0000 = no cable, no hose 0001 = one foot, etc.)						
Back-to-Back*	B2B = back-to-back (min. 7ft h	B2B = back-to-back (min. 7ft hose length); omit if not required					

^{*}Consult factory for additional back-to-back options

G55 06 FLANGE CONNECTOR RECEPTACLE (FCR)

SuperG55™ - How To Order							
Sample Part Number		G5506	-2013	-0004			
Series	SuperG55™ = underwater dry-mate, flange connector receptacle (FCR)						
Shell Size/Insert Arrangement	See shell size/insert arrangements (page 40)						
Cable Length	In feet (0001 = 1 foot, 0004 = 4 feet, standard length)						
Material Option	Omit for stainless steel B = brass coupling nut and barrel See material options on page 37						

Super G55 Series connectors

G55 07 BULKHEAD CONNECTOR RECEPTACLE (BCR)

SuperG55™ - How To Order							
Sample Part Number	G55	07	-1508	-0004			
Series	SuperG55™ = underwater dry-mate, bulkhead connector receptacle (BCR)						
Shell Size/Insert Arrangement	See shell size/insert arrangements (page 38)						
Cable Length	In feet (0001 = 1 foot, 0004 = 4 feet, standard length)						
Material Option	Omit for stainless steel B = brass coupling nut and barrel See material options on page 40						

G55 A2 ATTACHABLE CABLE CONNECTOR RECEPTACLE (CCR)

SuperG55™ - How To Order							
Sample Part Number		G55A2	-1508	-0000			
Series	SuperG55™ = underwater attachable cable connecto (CCR)						
Shell Size/Insert Arrangement	See shell size / insert arrang	See shell size / insert arrangements (page 38)					
Cable Length	In feet (0000 = no cable, 0001 = one foot, etc.)						
Material Option	Omit for stainless steel B = brass coupling nut and barrel PK = peek coupling nut and barrel See material options on page 40						

^{*}Currently only 1504, 1506, 1508, 2013, 2021 & 2420 insert arrangements are available.

G55 02 STRAIGHT OVERMOLDED CABLE CONNECTOR RECEPTACLE (CCR)

	SuperG55™ - How To	Orde	r				
Sample Part Number		02	-1508	-0004			
Series	SuperG55™ = underwater dry-ma straight overmolded CCR	uperG55™ = underwater dry-mate, traight overmolded CCR					
Shell Size/Insert Arrangement	See shell size / insert arrangement	ee shell size/insert arrangements (page 38)					
Cable Length	In feet (0001 = one foot, 0002 = to	n feet (0001 = one foot, 0002 = two feet etc.)					
Inch Increments	3, 6 or 9 inches; omit for whole fee	t len	gths		•		
Material Option	Omit for stainless steel B = brass coupling nut and barrel	PK = peek coupling nut and barrel See material options on page 40					
Back-to-Back	B2B = back-to-back; omit if not re	B2B = back-to-back; omit if not required					

Super G55 Series connectors

G55 R2 RIGHT ANGLE OVERMOLDED CABLE CONNECTOR RECEPTACLE (CCR)

SuperG55™ - How To Order								
Sample Part Numbe	G55F	R2 -	-1508	-0004				
Series	SuperG55™ = underwater dry-mate, right angle overmolded CCR							
Shell Size/Insert Arrangement	See shell size/insert arrangements	See shell size / insert arrangements (page 40)						
Cable Length	In feet (0001 = one foot, 0002 = tw	o fee	t etc.)					
Inch Increments	3, 6 or 9 inches; omit for whole feet	t leng	ths					
Material Option	Omit for stainless steel B = brass coupling nut and barrel	PK = peek coupling nut and barrel See material options on page 37						
Back-to-Back	B2B = back-to-back; omit if not required							

G55 OF2 STRAIGHT OIL-FILLED CABLE CONNECTOR RECEPTACLE (CCR)

SuperG55™ - How To Order							
Sample Part Number		G550F2	-1508	-0010			
Series	uperG55™ = Underwater dry-mate, traight oil-filled CCR						
Shell Size/Insert Arrangement*	See shell size / insert arran	e shell size / insert arrangements (page 40)					
Overall Length	In feet ($0000 = \text{no cable}$, r	feet (0000 = no cable, no hose, 0001 = one foot, etc.)					
Back-to-Back**	B2B = back-to-back (min.	7ft hose leng	th); omit if no	t required			

^{*}Currently only 1504, 1506, 1508, 2013, 2021, and 2420 insert arrangements are available

G55 OFR2 RIGHT ANGLE OIL-FILLED CABLE CONNECTOR RECEPTACLE (CCR)

	SuperG55™ - I	low To Order				
Sample Part Number G:		G550FR2	-1508	-0010		
Series	SuperG55™ = Underwateright angle oil-filled CCR	uperG55™ = Underwater dry-mate, ght angle oil-filled CCR				
Shell Size/Insert Arrangement*	See shell size/insert arra	ngements (page	e 40)			
Overall Length	In feet (0000 = no cable,	n feet (0000 = no cable, no hose, 0001 = one foot, etc.)				
Back-to-Back*	B2B = back-to-back (min	. 7ft hose length	n); omit if no	t required		

^{*}Currently only 1504, 1506, 1508, 2013, 2021, and 2420 insert arrangements are available

^{**}Consult factory for additional back-to-back options

^{**}Consult factory for additional back-to-back options

Super G55 Series connectors

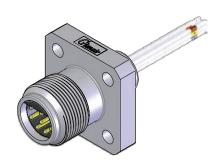
G55 D1 DUMMY SEALING PLUG (DSP)

	SuperG55™ - Hov	w To Order				
Sample Part Number		G55D1	-1508	-0000		
Series	SuperG55™ = dummy sealin	G55™ = dummy sealing plug (DSP)				
Shell Size/Insert Arrangement	See shell size / insert arrange	ell size/insert arrangements (page 38)				
Cable Length	0000 = no cable					
Material Option	Omit for stainless steel B = brass coupling nut and b			nut and ba on page 4		

G55 D2 DUMMY SEALING RECEPTACLE (DSR)

	SuperG55™ - Ho	w To Order			
Sample Part Number	Sample Part Number		-1508	-0000	
Series	SuperG55™ = dummy sea (DSR)	erG55™ = dummy sealing receptacle			
Shell Size/Insert Arrangement	See shell size/insert arran	shell size/insert arrangements (page 38)			
Cable Length	0000 = no cable				
Material Option	Omit for stainless steel B = brass coupling nut an		ek couplin erial optio		

G55 M1 SOCKET TO SOCKET (CCP)


	SuperG55™ - H	ow To Order	•			
Sample Part Number		G55M1	-1508	-0001		
Series	SuperG55™ = underwate back-to-back socket CCP					
Shell Size/Insert Arrangement	See shell size/insert arrai (page 38)	nell size / insert arrangements				
Cable Length	In feet (0000 = no cable,	feet (0000 = no cable, 0001 = one foot, etc.)				
Material Option	Omit for stainless steel B = brass coupling nut ar		K = peek cou ee material op			


Super G55 Series custom connectors

G55 06 FLANGE CONNECTOR RECEPTACLE (FCR) WITH EARTH LEAD

SuperG55™ - How To Order								
Sample Part Number	G5506	-1508	-0004	-EL				
Series	SuperG55™ = underwater dry-mate, FCR with earth lead							
Shell Size/Insert Arrangement	See shell size/insert arrang	ee shell size/insert arrangements (page 40)						
Cable Length	In feet (0001 = 1 foot, 000	4 = 4 feet, star	dard len	gth)				
Earth Lead	EL = earth lead (ground)	L = earth lead (ground)						
Material Option	T = titanium; omit for stain	less steel				•		

G55 07 BULKHEAD CONNECTOR RECEPTACLE (BCR) WITH EARTH LEAD

	SuperG55™ - H	ow To Order				
Sample Part Number	1	G5507	-1508	-0004	-EL	
Series	SuperG55™ = underwater with earth lead	dry-mate, BCR				
Shell Size/Insert Arrangement	See shell size/insert arrang	hell size / insert arrangements (page 40)				
Cable Length	In feet (0001 = 1 foot, 0004	= 4 feet, standa	ard lengtl	n)		
Earthing Lead	EL = earth lead (ground)					
Material Option	T = titanium; omit for stainl	ess steel				

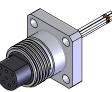
G55 06IF FLANGE CONNECTOR RECEPTACLE (FCR) WITH INDEXABLE FLANGE

	SuperG55™ - Hov	v To Order			
Sample Part Number		G5506IF	-1508	-0004	
Series	SuperG55™ = underwater connector receptacle (FCR) flange				
Shell Size/Insert Arrangement	See shell size / insert arrang	e hell size / insert arrangements (page 40)			
Cable Length	In feet (0001 = 1 foot, 000 4	4 = 4 feet, standard	d length)		
Material Option	Omit for stainless steel B = brass coupling nut and			g nut and k ns on page	

Super G66 reverse-gender connectors

G66 OVERMOLDED CABLE CONNECTOR PLUGS AND RECEPTACLES


G66 OIL-FILLED CABLE CONNECTOR PLUGS AND REČEPTACLES


G66 CABLE CONNECTOR PLUGS AND BULKHEAD, FLANGE AND CABLE CONNECTOR RECEPTACLES

Cable Connector Plug

Bulkhead Connector Receptacle

Flange Connector Receptacle G6606

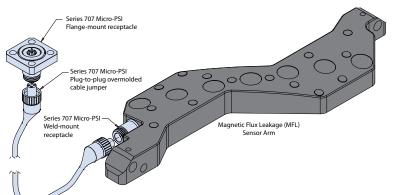
Cable Connector Receptacle

AND RECEPTACLE

Dummy Sealing Receptacle G66D2

Dummy Sealing Plug G66D1

INSERT ARRANGEMENTS


Additional insert arrangements can be engineered, contact factory

G66A1	G6607	G660	16		G66A2	
COMING	SOON: SuperG6	6™ - Consult factory	for avail	ability		
Sample Part Number		G66A1	-2008	-0000		
Series		uperG66™ = underwater dry-mate, able connector plug (CCP)				
Shell Size/Insert Arrangement	See shell size/ins (page 38)	ee shell size / insert arrangements page 38)				
Cable Length	0000 = no cable; specified lengths					
Material Option	Omit for stainless PK = peek coupli B = brass couplin Reference materia	ng nut and barrel				
Potting Boot	PB = potting boo	t; omit if not required	l. Not req	uired if c	hanged 1	to OFR1

connectors and cables

he Series 707 Micro-PSI is an ultraminiaturized 10K PSI high-pressure, high-temperature interconnect designed specifically for pipeline inspection applications in Magnetic Flux Leakage and ultrasonic pipeline inspection PIGs. The Micro-PSI insert arrangements feature two high-density micro TwistPin layouts for sensor applications and high-speed Gigabit Ethernet, and a Coax contact layout for 5 GHz performance. Micro-PSI connectors are supplied as discrete plugs, or overmolded plug cordsets with rugged Viton or Polyurethane jacketing. Bulkhead and flange mount receptacles are 10K psi open-face pressure sealed, and incorporate fused vitreous glass inserts for <1X10⁻⁷ scc He/sec hermetic performance. Serviceable O-rings on plugs and dual piston and face O-rings on receptacles provide high-reliability sealing.

◆ Application example shows the 707 Micro-PSI used to interconnect an MFL sensor to on-board PIG data storage.

- 10,000 PSI pressure rated
- 5 GHz Coax
- Less than 1 x 10^-7 scc He/sec @ 1 ATM pressure differential
- Special-purpose high density (.050" contact spacing) intelligent inspection (PIG) connector series
- 3 Amp high-speed **Gigabit Ethernet-ready**
- -20° to +150°C temperature range
- High-density, small form-factor

10K PSI SOLUTION Micro-PSI

Microminiature, high-pressure Specifications and insert arrangements

MICRO PSI HOW TO ORDER, SPECIFICATIONS, MATERIALS AND FINISHES

	Micro-P	SI - How To Ord	er					
Sample Part Number			707-0264	-7	ME4	Z 1	S	N
Series / Basic P/N	707-0264 = Series and Basic Part Numb	oer						
Connector Style	1 = CCP (Cable Connector Plug) 6 = FCR (Flange Mount Receptacle)	,	5 = CCR (Cable Connector Receptacle) 7 = BCR (Bulkhead Mount Receptacle)					
Shell Size/Layout	See Insert Arrangements							
Shell Material	Z1 = Stainless Steel					,		
Contact Type and Termination Style	Plugs P = Pin/Solder Cups B = Pin/Flying Leads (6 inches long) C = Pin/PCB Terminals			ng)			-	
Clocking Position	N = Normal, A, B, C (See Key and Keywa	y Positions table	below)					

Performance Ratings Connector Pressure Ratings:

10,000 PSI (Open face receptacle) 10,000 PSI (Mated CCP)

Pressure Tested To:

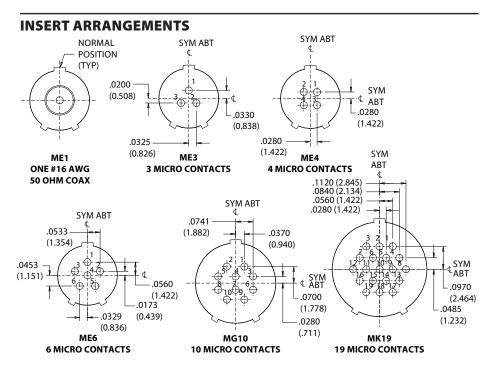
10,000 PSI per ISO 13628-6

Electrical Performance:

Insulation Resistance: 1000 Meghohms at 100 VDC per EIA-364-21 Coax Performance: DC to 5 GHz Temperature Range: -20°C to +150°C

Hermeticity:

<1 x 10^-7 scc He/sec @ 1 ATM pressure differential; receptacles only


Connector Material/Finish

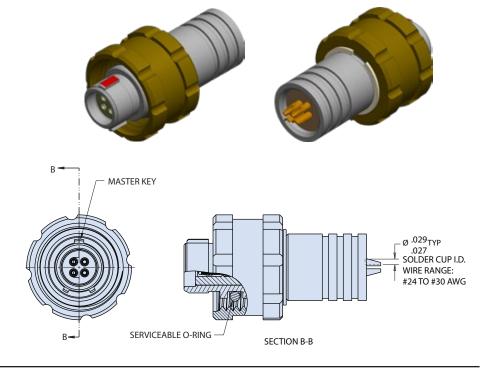
Connector Shell: 316L SST/passivated Coupling Ring: nickel bronze/None O-rings: Viton 90 durometer/none Contacts: nickel-iron alloy/gold over nickel Hermetic Seal: vitreous glass/none

NOTES

- Plug connectors typically supplied as prewired factory cable assemblies with Viton® overmolding for caustic chemical resistance
- Receptacle connectors commonly supplied as prewired pigtails or flex jumpers for direct connection to printed circuit boards and / or data drives
- High-speed Ethernet up to 1Gbps

	MicroPSI Key and Keyway Positions							
	Key	Rotation						
Key Position	Χ°	Υ°	Plug	Receptacle				
Normal (N)	150°	210°	MASTER KEY	ALIGNMENT INDICATOR, RED MASTER KEYWAY				
А	75°	210°	*					
В	95°	230°						
С	140°	275°	Ada	,				

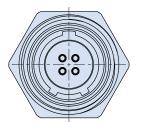
10K PSI SOLUTION Micro-PSI

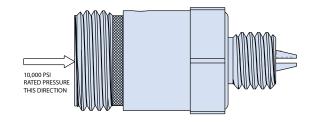


Microminiature, high-pressure connectors and cables

707-0264-1 MICRO-PSI CABLE CONNECTOR PLUG

- 10K psi rated, mated condition
- Red alignment indicator for accurate mating
- Serviceable O-ring for reliable sealing and easy maintenance
- Ultra small form-factor
- Mates with 707-0264-5 CCR, 707-0264-6 FCR and 707-0264-7 BCR

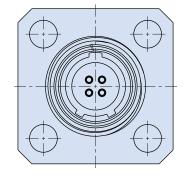


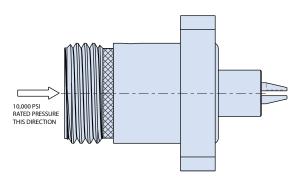

707-0264-5 MICRO-PSI CABLE CONNECTOR RECEPTACLE

- 10K psi open-face rated
- Vitreous glass sealed, <1X10⁻⁷ scc He/sec hermeticity
- Operating temperature -20° to +150° C
- Alignment and full-mate indicators
- Ultra small form-factor
- Flying lead option available
- Mates with 707-0264-1 CCP Plugs

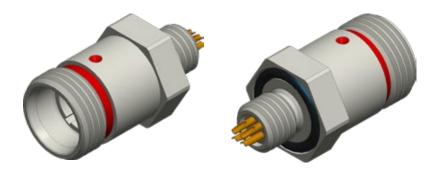
10K PSI SOLUTION

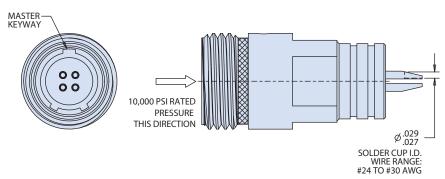
Micro-PSI


Microminiature, high-pressure connectors and cables


707-0264-6 MICRO-PSI FLANGE MOUNT RECEPTACLE

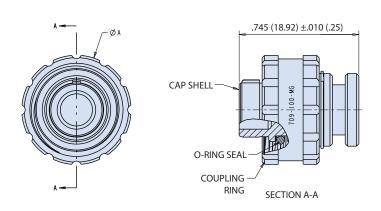
- 10K psi open-face rated
- Vitreous glass sealed, <1X10⁻⁷ scc He/sec hermeticity
- Operating temperature -20° to +150° C
- Fail-safe piston and mounting face O-rings
- Alignment and full-mate indicators
- Ultra small form-factor
- Flying lead option available
- Mates with 707-0264-1 CCP Plugs





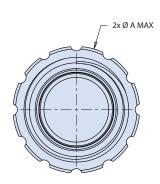
707-0264-7 MICRO-PSI BULKHEAD MOUNT RECEPTACLE

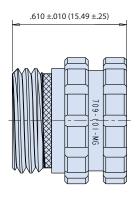
- 10K psi open-face rated
- Vitreous glass sealed, <1X10⁻⁷ scc He/sec hermeticity
- Operating temperature -20° to +150°C
- Fail-safe piston and mounting face O-rings
- Alignment and full-mate indicators
- Flying lead option available
- Mates with 707-0264-1 CCP Plugs


10K PSI SOLUTION Micro-PSI

Microminiature, high-pressure connectors and cables

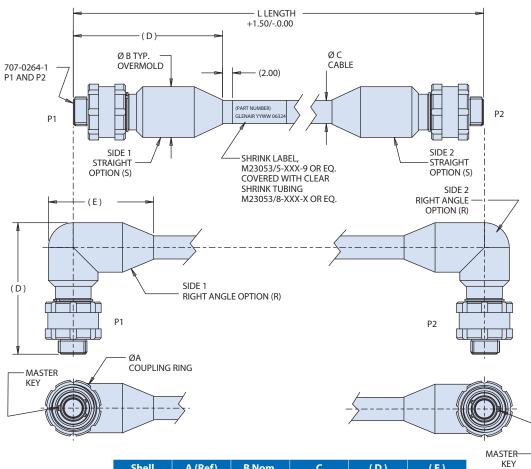
709-100 MICRO-PSI PLUG PRESSURE

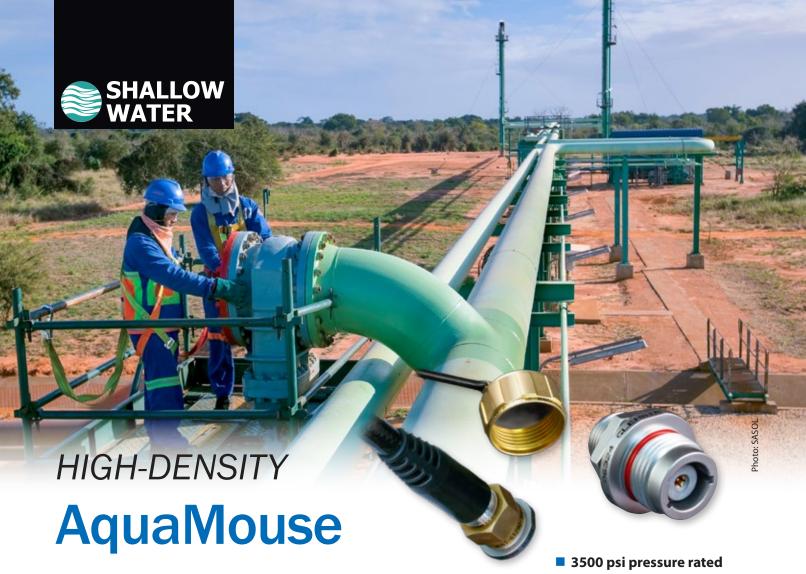

- 10K psi rated, mated condition
- Red alignment indicator for accurate mating
- Serviceable O-ring for reliable sealing and easy maintenance



709-101 MICRO-PSI RECEPTACLE PRESSURE

- 10K psi rated, mated condition
- Red alignment indicator for accurate mating
- Serviceable O-ring for reliable sealing and easy maintenance


10K PSI SOLUTION Micro-PSI


Microminiature, high-pressure connectors and cables

7071-0069 MICRO-PSI OVERMOLDED PLUG-TO-PLUG / PIGTAIL CABLE ASSEMBLY

	Mlcro-I	PSI - How To Order							
Sample Part Number		7071-0069	-S	R	-ME4	- Z1	U	N	-4
Series / Basic P/N	7071-0069 = Back-to-Back or Pigtail Pl	ug Cable Assembly							
Overmold Style (P1)	R = Right Angle S = Straight								
Overmold Style (P2)	$\mathbf{R} = \text{Right Angle}$ $\mathbf{S} = \text{Straight}$ $\mathbf{N} = \text{Not}$	= Right Angle S = Straight N = None (pigtail assembly)							
Shell Size / Contact Layout	ee page 50								
Plug Shell Material	1 = Stainless Steel TC = Titanium								
Overmold and Jacket Mtrl	V = Viton U = Polyurethane								
Clocking Position	N = Normal, A, B, C (See page 50)							-	
Length (inches)	Length in inches, i.e. 4 equals 4 inches								

Shell Size	A (Ref) Cplg Ring	B Nom. Overmold	C Cable	(D) Overmold	(E) 90 Length
ME	0.550	0.470	0.265	1.50	1.00
MG	0.685	0.585	0.342	1.50	1.13
MK	0.750	0.675	0.590	1.50	1.16

Ultraminiature 3500 PSI

Originally developed for petroleum pipeline inspection equipment, Series 802 connectors are available in ten sizes from 1 to 130 contacts and equipped with Viton® O-rings to withstand exposure to corrosive chemicals and high temperature environments. These connectors feature high density crimp Mighty Mouse inserts, 316 stainless steel or marine bronze shells and a piston O-ring for hydrostatic sealing. Series 802 insulated wire, panel mount receptacles can be ordered as square flange, in-line or jam-nut versions. Choose integral shield termination platform or accessory thread for use with a variety of strain relief options. Crimp style gold-plated crimp contacts accept #12–30 wire. Connectors are backfilled with epoxy potting compound. Hermetic glass—sealed connectors come with solder cup contacts (non-removable) or PC tails. 100% tested to meet 1 x 10-7 cc/sec helium leakage. Open face pressure rating 3500 PSI.

- High-temperature and corrosive chemicalresistant Viton® or Nitrile O-rings
- Ultraminiature #23 contacts
- Size #20, #20HD, #16, #12, #8 signal, power, fiber optic and shielded contacts
- Discrete connectors and turnkey cable assemblies

AQUAMOUSE CONNECTOR CONFIGURATIONS AND CLASSES

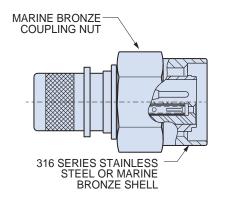
Series 802 Plugs

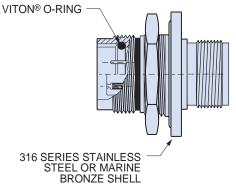
Series 802 Jam Nut Mount

Series 802 Square Flange Receptacle

Series 802 Hermetic

Series 802 Hermetic Bulkhead Feed-Thru



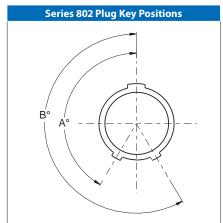

HIGH-DENSITY 2400M / 3500 PSI Ultraminiature Harsh-Environment

Series 802 AquaMouse™ performance specifications and material and finish

Glenair Series 802 AquaMouse™ Delivers High-Pressure Sealing and Rugged Design in a Miniature Package

Series 802 Plug

Series 802 Receptacle


Stainless Steel or Marine Bronze

Available in ten sizes from 1 to 130 contacts, Series 802 connectors feature 316 stainless steel or marine bronze shells. Viton® o-rings resist high temperature and corrosive chemicals.

3500 psi

These connectors withstand up to 3500 PSI hydrostatic pressure in a mated condition. Hermetic versions withstand 1000 PSI open face pressure.

AQUAMOUSE SPECIFICATIONS AND PLUG KEY POSITIONS

Key Rotation		
Key Rotation A° B°		
° B°		
0° 210°	,	
° 210°	,	
5° 230°	>	
0° 275°	,	
° 275°	,	
° 210°		
3	° 230° 275° 275°	

Performance Specifications				
Current Rating	#23–5 A, #20–7.5 A, #16–13 A, #12–23 A			
Dielectric Withstanding Voltage	#23–750 VAC, #20HD–1000VAC, #16 and #12–1800 VAC			
Insulation Resistance	5000 megohms minimum			
Operating Temperature	-65° C. to +175° C.			
Hydrostatic Pressure	3500 PSI mated, 1000 PSI open face (hermetic)			
Shock	300 g.			
Vibration	37 g.			
Durability	2000 mating cycles			

	Material and Finish				
Shells, Jam Nuts	316 stainless steel or marine bronze				
Coupling Nuts	Marine bronze, unplated				
Contacts	Copper alloy, 50 µInch gold plated. Socket hood: stainless steel, passivated. Hermetic pin contacts: Nickel-Iron alloy per ASTM-F-30, 50 µInch gold plated.				
Insulators	Liquid crystal polymer (LCP) , 30% glass-filled				
Contact Retention Clip	Beryllium copper alloy				
Interfacial Seal, O-rings	Viton Rubber				
Interfacial seal, rear grommet	Fluorosilicone rubber, blue				
O-rings	Viton [®]				

High-pressure harsh-environment connectors and overmolded cables for inline inspection pigs and shallow subsea applications

Designed for use in oceanographic, geophysical and other severe industrial environments, Glenair Series 22 Geo-Marine® Connectors and Cables are the ultimate harsh-environment power and signal connector solution. Built to withstand hydrostatic pressures up to 5,000 PSI and exposure to extreme temperatures and corrosives, the Series 22 Geo-Marine® is ideally suited for applications such as intelligent pipeline inspection, towed array sonar systems, submersibles and ROVs, offshore oil drilling equipment, seabed exploration, well monitoring equipment, and digital seismic streamers.

Geo-Marine® plugs are equipped with arctic coupling nuts—made from marine-grade naval bronze—with easy-to-grip castellated knurling and a powerful ratcheted anti-decoupling mechanism which guarantees reliable mating and demating performance in even the harshest environments. Supplied as discrete connectors—or more typically in build-to-print overmolded cable assemblies.

Geo-Marine®

- 5000 psi pressure rated
- Marine Grade 316 stainless steel machined shells and Naval Bronze coupling rings
- High-pressure environmental and hermetically sealed receptacles for field applications
- Power and signal insert arrangements from 2 to 128 contacts
- Anti-vibration ratcheted coupling nuts with castellated knurling
- Available Viton® overmolded cable assemblies

PROVEN-PERFORMANCE

Geo-Marine® Connectors

High-pressure fused-glass underwater / harsh-environmental connectors

Range of Offerings

Series 22 Geo-Marine® connectors are supplied with either fused-glass or high grade thermoplastic insulators. Both classes of connectors are supplied with rugged, corrosion-resistant materials. Low-profile and scoop-proof cable plugs and receptacles, as well as bulkhead feed-thrus are available. Specially-designed cable sealing backshells

as well as EMI/RFI shield termination backshells and environmentally-sealed protective covers complete the range of discrete product offerings. 35 insert arrangements (contact sizes #12, #16, #20 and #22) are tooled and fully available. Special inline single-pin HTHP glass fused contacts also available.

WIDE RANGE OF PLUG CONFIGURATIONS WITH ANTI-GALLING ARCTIC COUPLING NUTS

Cable plug with accessory threads

Cable plug with overmold adapter

Panel-mounted plug

Factory overmolded plug

HIGH-PRESSURE ENVIRONMENTAL AND FUSED-GLASS RECEPTACLE CONFIGURATIONS

Jam Nut

In-Line

Square Flange

Solder-Mount

Bulkhead Feed-Thru

Single-pin HTHP

RUGGEDIZED STAINLESS STEEL BACKSHELLS AND OTHER CONNECTOR ACCESSORIES

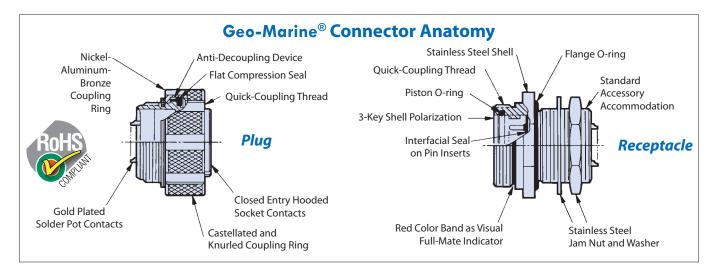
Environmental strain relief backshell

Overmolding adapter

Right-angle strain relief backshell

Environmentally sealed protective covers

PROVEN-PERFORMANCE Geo-Marine® Connectors



High-pressure fused-glass underwater / harsh-environmental connectors

	Performance Specifications					
Hydrostatic Pressure Rat	ing:		5,000 PSI (fully mated)	5,000 PSI (fully mated)		
Operating Temperature:			-65°C to +125°C			
Durability:			500 Cycles of mate/dema	te		
Insulation Resistance:			1000 Megohms minimum	at 500 VD0		
		Class H F	lermetic Receptacles			
0	pen-Face Pressure Rating			1,000	to 5,000 PSI	
	Hermeticity		Less than	n 1 X 10⁻6 scc	He/second @ 1 atmosphere	
		C	Current Rating			
Current	Rating	Envi	ronmental		Hermetic	
Size 22 (Contact	500 V	/DC, 5 amps		500 VDC, 3 amps	
Size 20 (Contact	500 VI	DC, 7.5 amps		500 VDC, 5 amps	
Size 16 (Contact	750 V	DC, 13 amps		750 VDC, 10 amps	
Size 12 (Contact	750 VI	DC, 23 amps	750 VDC, 17 amps		
		S	Service Rating			
Country at Ciny	Sug	gested Operational V	/oltage (Sea Level)		Test Voltage	
Contact Size	AC(RMS	5)	DC		(Sea Level)	
22 GA	400		550		1300 VDC	
20 GA	600		850		1800 VDC	
16 GA	900		1250		2300 VDC	
12 GA	300		450		2300 VDC	

	Depth/Pressure Conversion									
Feet	Meters	P.S.I.	Bar	Feet	Meters	P.S.I.	Bar			
1	.3	.4	.0296	1,000	304.8	433.0	29.8543			
10	3.1	4.3	.2965	1,500	457.2	649.5	44.7814			
50	15.2	21.7	1.4962	2,500	762.0	1082.5	74.6357			
100	30.5	43.3	2.9854	5,000	1524.0	2165.0	149.2715			
250	76.2	108.3	7.4670	10,000	3048.0	4330.0	298.5430			
500	152.4	216.5	14.9271	11,547	3519.35	5000.0	344.7379			

Cable/Wire D.C. Resistance						
Copper Conductors at Room Temperature						
AWG	Ohms per 1000 feet	AWG	Ohms per 1000 feet			
28	66.2 Max	20	10.4 Max			
26	41.6 Max	18	6.5 Max			
24	26.2 Max	16	4.1 Max			
22	16.5 Max	14	2.6 Max			
		12	1.6 Max			

PROVEN-PERFORMANCE

Geo-Marine® Connectors

High-pressure fused-glass underwater / harsh-environmental connectors

	Connector Materials and Potting	
Item	Material	Potting
Connector Shells	CRS 316 SAE-AMS-QQ-S-763	
Protective Covers	CRS 316 SAE-AMS-QQ-S-763	
Solder Mount Receptacle	CRS 316 SAE-AMS-QQ-S-763	
Plug Coupling Nut	Marine Bronze SAE AMS-4640	
Molding Adapters and Backshells	See individual product pages	
Insulators, Class "E"	Epiall 1908, Diallyl Phthalate or Hysol CP2-4289	
Insulators, Class "H"	Fused Vitreous Glass	
Contacts, Pin - Class "E"	Leaded Nickel Copper, CA 7021	
Contacts, Pin - Class "H"	Nickel-Iron Alloy 52 - MIL-I-23011, Class 2	
Contacts, Socket	Copper Alloy, CA7021	
Contacts, Socket Hood	CRS, SAE-AMS-QQ-S-763 AISI 305	
O-Rings	Nitrile (Buna-N) Rubber MIL-G-21569	
Interfacial and Peripheral Seals	Flourosilicone Rubber MIL-DTL-25988	

Caution

Electrical safety limits must be established by the user. Peak voltages, switching surges, transients, etc., should be used to determine the safety of application.

APPLICATION NOTES

- All parts will be identified with manufacturer's name and part number, space permitting.
- Glenair 600 series backshell assembly tools are recommended for assembly and installation.
- Electrical ratings are based on connectors only, not terminated to a cable or conductors, with proper cleaning and drying after hydrostatic testing.
- On all length callouts, tolerance is ± .060 unless otherwise specified.
- Metric dimensions appear in parentheses in diagrams and tables, based on 1 inch = 25.4 mm, for reference only. Unless otherwise specified, the following other dimensional tolerances apply:

 $.xx = \pm .03 (0.8)$ $.xxx = \pm .015 (0.4)$ Lengths = $\pm .060 (1.52)$ Angles = $\pm .5^{\circ}$

conduit systems

tandard circular and rectangular connectors are rated for +125°C due to elastomeric materials that cannot withstand higher temperatures and pressures. Glenair's high-temperature ThermaRex series is built to withstand temperatures as high as +300°C and the extreme pressures of bottom-hole applications such as logging while drilling (LWD) and measurement while drilling (MWD). Designed for use in electronic modules and tools, these high-density, precision-machined rectangular and circular connectors are ideally suited for reliability and performance in the HTHP domain.

300°C THERMAREX HT CONNECTORS: SERIES 806, SUPERNINE, SERIES 79

- Service rating up to 300°C
- Vibration-resistant threaded coupling
- High-temperature ceramic insulators and silicone seals
- Durable stainless steel construction
- Available in Series 806 Mil-Aero, SuperNine® D38999 type, EN2997, or Series 79 Micro-Crimp rectangular connector styles
- Utilizes Glenair Crown Ring contacts

600°C THERMAREX UHT CONNECTOR

- 300°C to 600°C service range
- Vibration-resistant threaded coupling
- Specialized contacts, laser welds, and metal seals
- Utilizes ultra-high temperature-tolerant Mineral Insulated cable
- Ideal for nuclear and other extreme temperature applications

EXTREME-TEMPERATURE TOLERANT

ThermaRex Interconnect Solutions

Cryogenic and high-temperature connector and accessory product showcase

-150°C THERMAREX CRYO CONNECTOR

ThermaRex™ CRYO

- Dynamic cryogenic connector
- Vibration at -150°C
- Ultra low-temperature Duralectric K seals

THERMAREX HIGH-TEMPERATURE HERMETIC

High-temperature sealing technology maintains 1X10⁻⁷ leak-rate performance at 300°C

CROWN RING CONTACTS

- Crimp removable contacts
- Suitable for use at 300°C or higher while maintaining low electrical resistance
- Stainless steel Crown Ring provides compression force on the socket
- Superior vibration resistance
- Higher current carrying capabilities, lower contact resistance

300°C THERMAREX WIRE

P/N 961-047 -Single Wire

P/N 960-2371 -Twisted, Shielded, Jacketed Pair

- Special nickel-coated copper alloy conductors
- 300°C continuous service
- 24 to 8 AWG, 10 colors of insulation
- Single-wires plus jacketed, shielded, twisted pair available

300°C THERMAREX POLYMER-CORE CONDUIT

- High-temperature-tolerant flexible polymer-core conduit
- All standard colors: Black, clear, orange, blue, yellow
- Qualification test report GT-17-261 available
- 300°C continuous service
- Available with high-temperature braid shield and/or jacket

300°C THERMAREX METAL-CORE CONDUIT

- Flexible passivated stainless steel core conduit
- High-temperature-tolerant ThermaRex jacket
- .127" to .250" outer diameter sizes
- 300°C continuous service

ARMORLITE CF

- P/N 103-126
- Stainless steel over copper microfilament EMI shield
- High temperature -80°C to 300°C
- Corrosion / harsh environment resistant
- 1000 hour salt spray testing completed
- 70% reduced weight vs. standard braid
- Superb electrical resistance and shielding performance

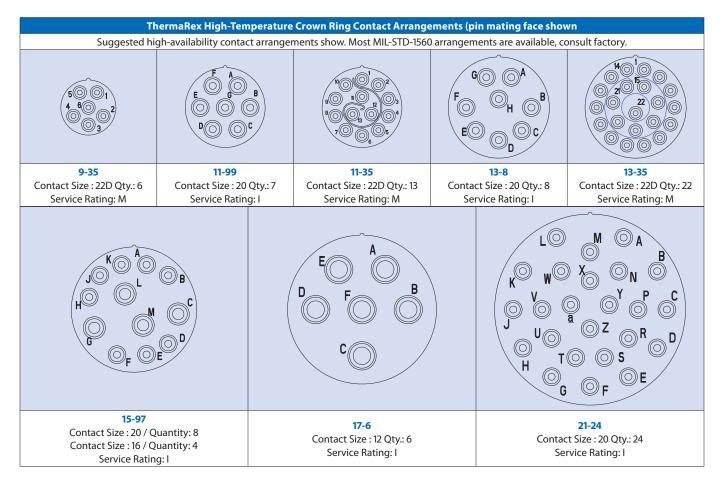
HIGH-TEMPERATURE TOLERANT

ThermaRex HT SuperNine® Connectors

High-performance fast mate/demate solution

- Service rating up to 300°C
- Vibration-resistant threaded coupling
- High-temperature ceramic insulators and silicone seals
- Durable stainless steel construction

	How To Order ThermaRex SuperNine connectors									
Sample Part Number	233-273	-20	Z1	17	-26	Р	N			
Series / Basic Part No.	233-273 High-temperature ThermaRex SuperNine connector									
Connector Style	10 = Receptacle, square flange-mount 14 = Receptacle, jam nut 16 = Plug									
Material/Finish	Z1 = Passivated CRES									
Shell Size	9 , 11, 13, 17, 19, 21, 23, 25									
Insert Arrangement	Per M1560. See insert arrangement table	s below	/							
Contact Style	P = PIn contacts S = Socket contacts A = Pin insert, less contacts B = Socket insert, less contacts									
Alternate Polarization*	A, B, C, D, E, N = Normal (IAW MIL-DTL-38	8999 Sei	ries III)							

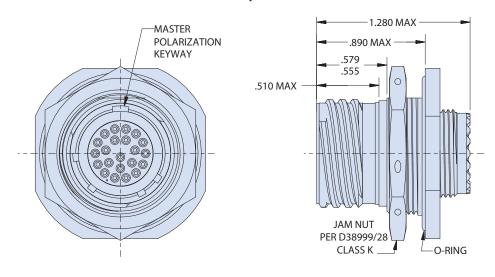

MATERIAL / FINISH NOTES

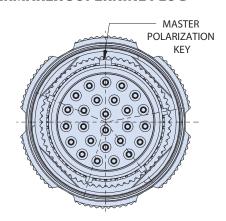
Plug and receptacle shells, coupling nut - Passivated CRES

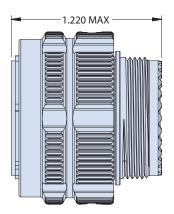
Insulator - high-grade ceramic dielectric

Grommet, interfacial, and peripheral seals - high-temp silicone

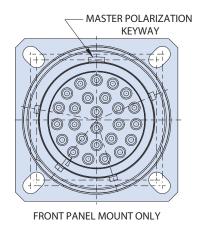
Contacts - copper alloy, gold plated, CRES hood and crown ring on socket contacts

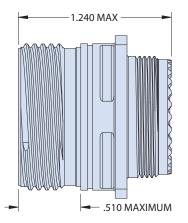

ThermaRex HT


SuperNine® Connectors


High-performance fast mate/demate solution

233-273-24 THERMAREX SUPERNINE RECEPTACLE, JAM NUT




233-273-26 THERMAREX SUPERNINE PLUG

233-273-20 THERMAREX SUPERNINE RECEPTACLE, SQUARE FLANGE-MOUNT

HIGH-TEMPERATURE TOLERANT ThermaRex HT

Series 806 Mil-Aero Connectors

Micro-miniature triple-start stub ACME solution

- Operating temperature -65°to +300°C
- Vibration-resistant threaded coupling
- High-temperature ceramic insulators and silicone seals
- Durable stainless steel construction

MATERIAL / FINISH NOTES

Plug and receptacle shells, barrel, coupling nut, jam nut, hex nut - Passivated CRES

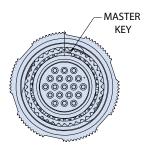
Insulator - high-grade ceramic dielectric

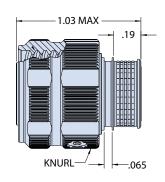
Grommet, interfacial seals - high-temp silicone

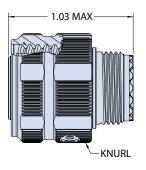
Contacts - copper alloy, gold plated, CRES hood and crown ring on socket contacts

Series 806 Arrangements with #20 Contacts (1800 Vac, 7.5 A, pin mating face shown) Arrangement No. 9-5 10-8 11-10 12-15 14-20 16-31 20-55 Arrangement No. 22-69 Series 806 Arrangements with #22HD Contacts (1300 Vac, 5 A, pin mating face shown) 9-11 10-15 11-19 Arrangement No. 8-7 12-26 14-39 18-85 Arrangement No. 20-110 24-186

HIGH-TEMPERATURE TOLERANT

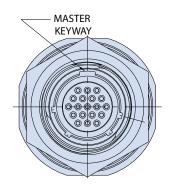

ThermaRex HT Series 806 Mil-Aero Connectors

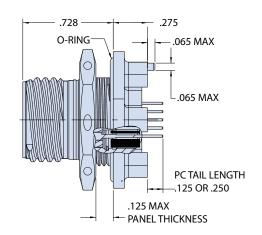


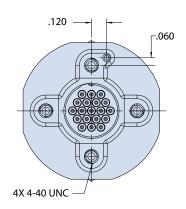

Micro-miniature triple-start stub ACME solution

SERIES 806 MIL-AERO PLUG

How To Order ThermaRex Series 806 Mil-Aero Jam Nut Receptacle								
Sample Part Number	806-042	Z1	11-19	S	M	Α		
Series / Basic Part No.	806-042 High-temperature ThermaRex Series 806 plug							
Material/Finish	Z1 = Passivated CRES							
Shell Size/Insert Arr.	Per 806-015, See tables							
Contact Style	P = PIn A = Pin connector, less contacts S = Socket B = Socket connector, less contacts							
Shell Style	M = Metric accessory thread B = Banding platform							
Polarization Keyway Code	A, B, C, D, E, F							



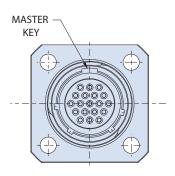


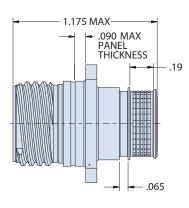


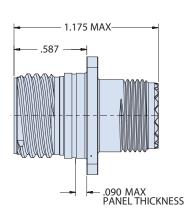
SERIES 806 MIL-AERO JAM NUT RECEPTACLE WITH PCB STANDOFF

How To Order ThermaRex Series 806 Mil-Aero Jam Nut Receptacle							
Sample Part Number	806-041	Z1	11-19	Р	N		
Series / Basic Part No.	806-041 High-temperature ThermaRex Series 806 jam nut receptacle with PCB standoff						
Material/Finish	Z1 = Passivated CRES						
Shell Size/Insert Arr.	Per 806-015, See tables						
Contact Style	P = PIn contacts only						
Polarization Keyway Code	A, B, C, D, E, F						

HIGH-TEMPERATURE TOLERANT

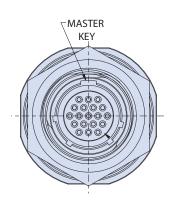

Glenair.

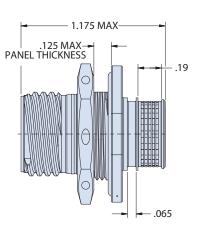

ThermaRex HT Series 806 Mil-Aero Connectors

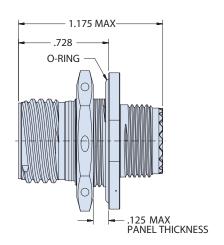

Micro-miniature triple-start stub ACME solution

SERIES 806 MIL-AERO SQUARE FLANGE RECEPTACLE

How To Order ThermaRex Series 806 Mil-Aero Jam Nut Receptacle								
Sample Part Number	806-052	Z1	11-19	S	М	Т	Α	
Series / Basic Part No.	806-052 High-temperature ThermaRex Series 806 square-flange receptacle							
Material/Finish	Z1 = Passivated CRES							
Shell Size/Insert Arr.	Per 806-015, See tables							
Contact Style	P = PIn A = Pin connector, less contacts S = Socket B = Socket connector, less contacts	ıcts						
Shell Style	M = Metric accessory thread B = Banding platform							
Panel Mounting	T = Thru-hole							
Polarization Keyway Code	A, B, C, D, E, F							


ThermaRex HT Series 806 Mil-Aero Connectors



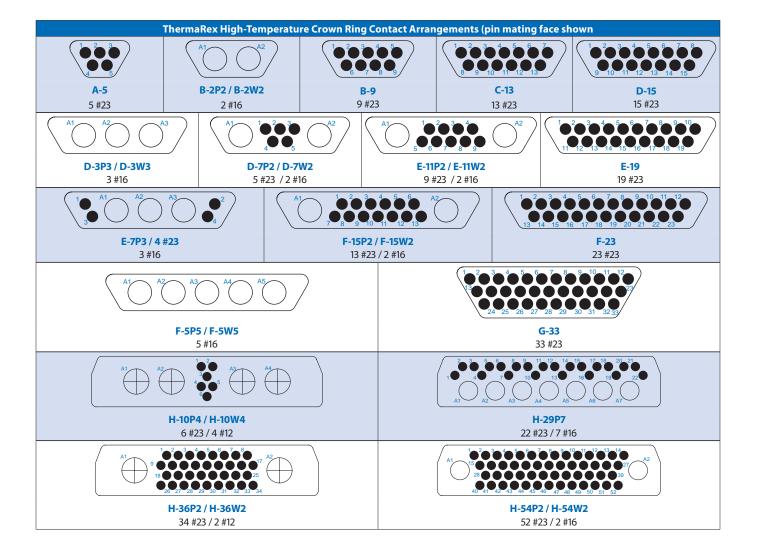

Micro-miniature triple-start stub ACME solution

SERIES 806 MIL-AERO JAM NUT RECEPTACLE

How To Order ThermaRex Series 806 Mil-Aero Jam Nut Receptacle							
Sample Part Number	806-053	Z1	11-19	S	M	Α	
Series / Basic Part No.	806-053 High-temperature ThermaRex Series 806 jam-nut receptacle						
Material/Finish	Z1 = Passivated CRES						
Shell Size/Insert Arr.	Per 806-015, See tables						
Contact Style	P = PIn A = Pin connector, less contacts S = Socket B = Socket connector, less contact	ts					
Shell Style	M = Metric accessory thread $B = Banding pla$	tform					
Polarization Keyway Code	A, B, C, D, E, F						

HIGH-TEMPERATURE TOLERANT

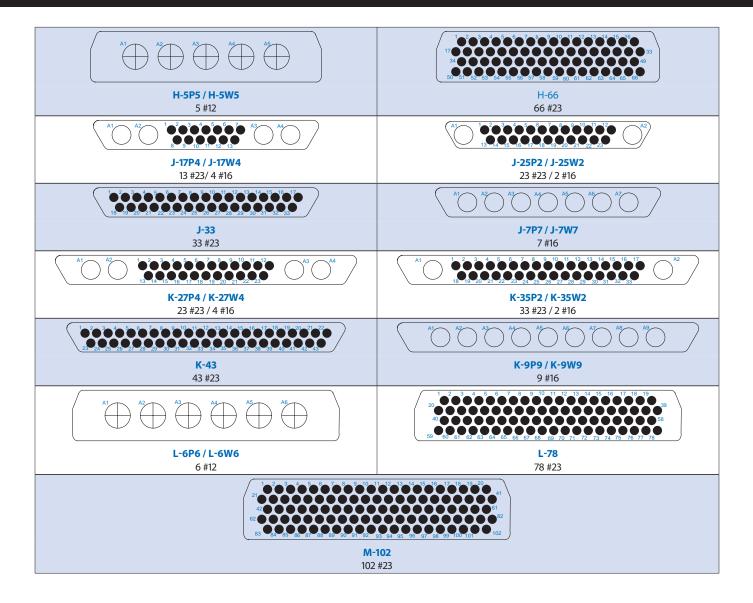
ThermaRex HT Series 79 Micro-D Connectors with Micro-Crimp Contacts



How To Order ThermaRex Series 79 connectors						
Sample Part Number	797	-756	S	H-29P7		
Series / Basic Part No.	797 High-temperature ThermaRex Series 79 crimp-contact rectangular					
Connector Type	-756 = Plug -757 = Receptacle					
Contact Type	S = Socket (for -756 Plug connectors) P = Pin (for -757 Receptacle connectors)					
Insert Arrangement	Per 799-009. See insert arrangement tabl	es belov	W	-		

lenair_®

- Service rating up to 300°C
- Vibration-resistant jackpost coupling
- High-temperature ceramic insulators and silicone seals
- Durable stainless steel construction



HIGH-TEMPERATURE TOLERANT

ThermaRex HT Series 79 Micro-D Connectors with Micro-Crimp Contacts

How To Order / Contact Arrangements

MATERIAL / FINISH NOTES

Housing, Float Mount Hardware, Guide Socket - Stainless Steel / Passivated

Pin and Socket Contact - Copper Alloy / Gold Plated

Socket Hood - Stainless Steel / Passivated Insulators - High Grade Ceramic / N/A

Grommet and Interfacial Seal - High Temperature Silicone / N/A

Retainer Clip Stainless Steel / N/A EMI Spring - Stainless Steel / Gold Plated

ELECTRICAL PERFORMANCE

Contacts: Size 23 = 5 Amps Max. / Size 16 = 13 Amps Max. / Size 12 = 23 Amps Max. DWV - 500 Vac, with 5 Milliamperes Max.leakage Insulation Resistance Resistance - 5,000 Megohms Max.

Operating Temperature: -65°C to +300°C

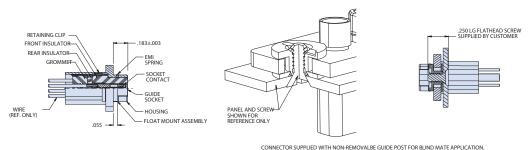
BLIND MATE MISALIGNMENT ALLOWANCE

Shell Sizes A, B, C, D, E, F, G, J, K:

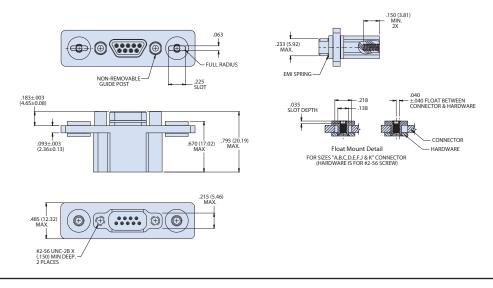
 \pm .040 (1.02) Allowable misalignment from centerline Shell Sizes H, L:

±.040 (1.02) Allowable misalignment from centerline

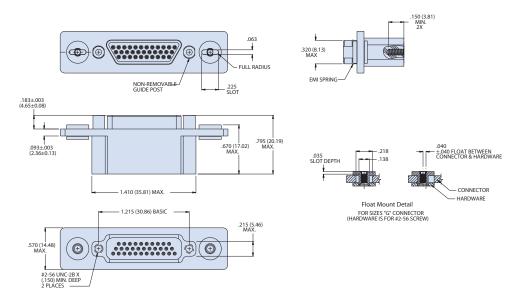
±.050 (1.27) allowable misalignment from centerline



HIGH-TEMPERATURE TOLERANT ThermaRex HT Series 79


High-Performance Crimp-Contact Micro-D 797-756 Plug Details

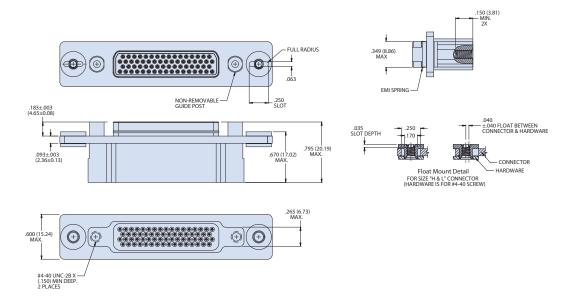
CROSS-SECTIONAL VIEW AND HARDWARE



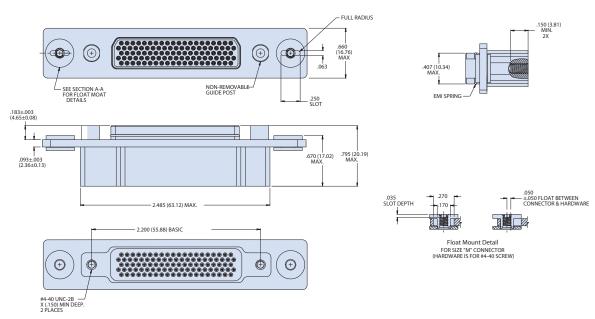
CONNECTOR SUPPLIED WITH NON-REMOVALBE GUIDE POST FOR BLIND MATE APPLICATION.
FLOAT MOUNT BUSHING HAS SHELL SIZES "M", "L" & "H" WITH #4-40 UNC-2B THREAD. ALL OTHER SIZES HAVE #2-56 UNC-2B THREAD

SHELL SIZES A, B, C, D, E, F, J, K

SHELL SIZE G


HIGH-TEMPERATURE TOLERANT

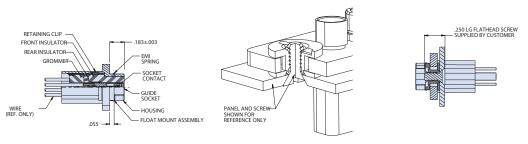
ThermaRex HT Series 79



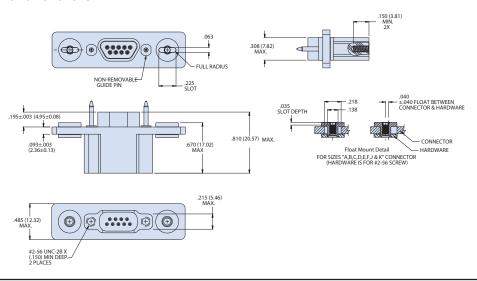
High-Performance Crimp-Contact Micro-D 797-756 Plug Details

SHELL SIZES HAND L

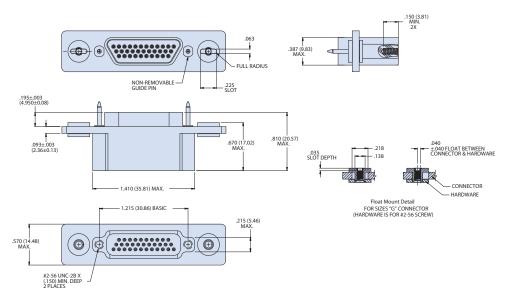
SHELL SIZE M



ThermaRex HT Series 79


High-Performance Crimp-Contact Micro-D 797-757 Receptacle Details

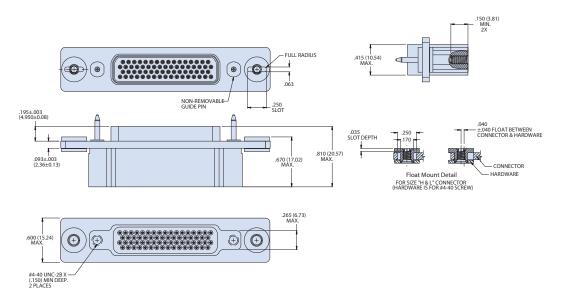
CROSS-SECTIONAL VIEW AND HARDWARE



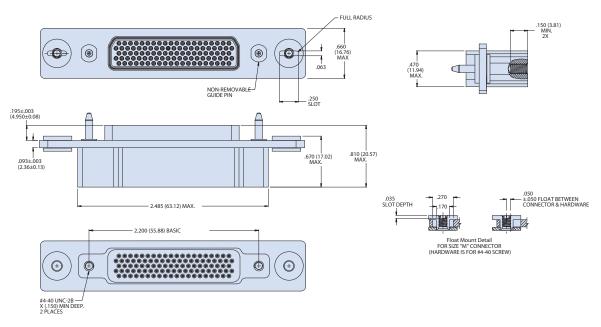
CONNECTOR SUPPLIED WITH NON-REMOVALBE GUIDE POST FOR BLIND MATE APPLICATION.
FLOAT MOUNT BUSHING HAS SHELL SIZES "M", "L" & "H" WITH #4-40 UNC-28 THREAD. ALL OTHER SIZES HAVE #2-56 UNC-28 THREAD

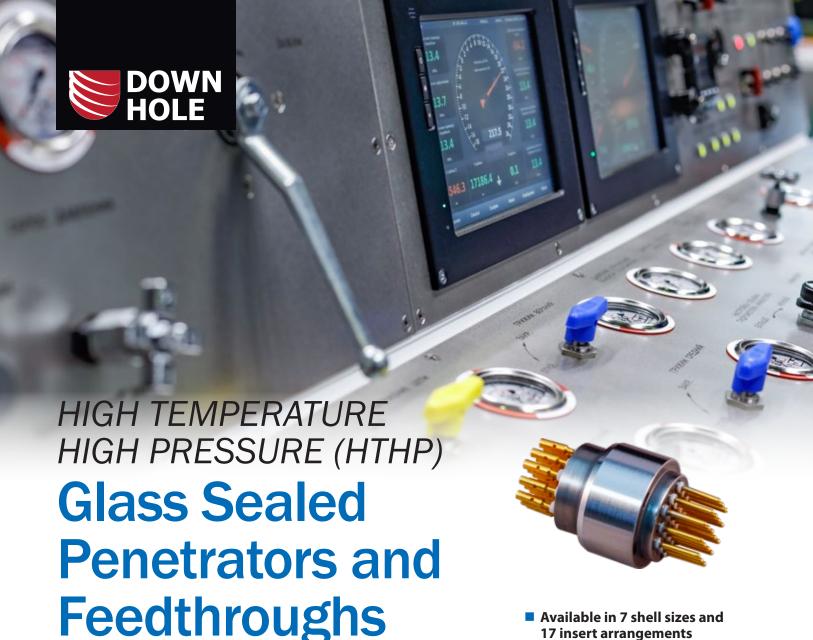
SHELL SIZES A, B, C, D, E, F, J, K

SHELL SIZE G


HIGH-TEMPERATURE TOLERANT

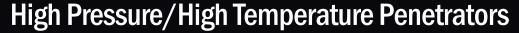
ThermaRex HT Series 79




High-Performance Crimp-Contact Micro-D 797-757 Receptacle Details

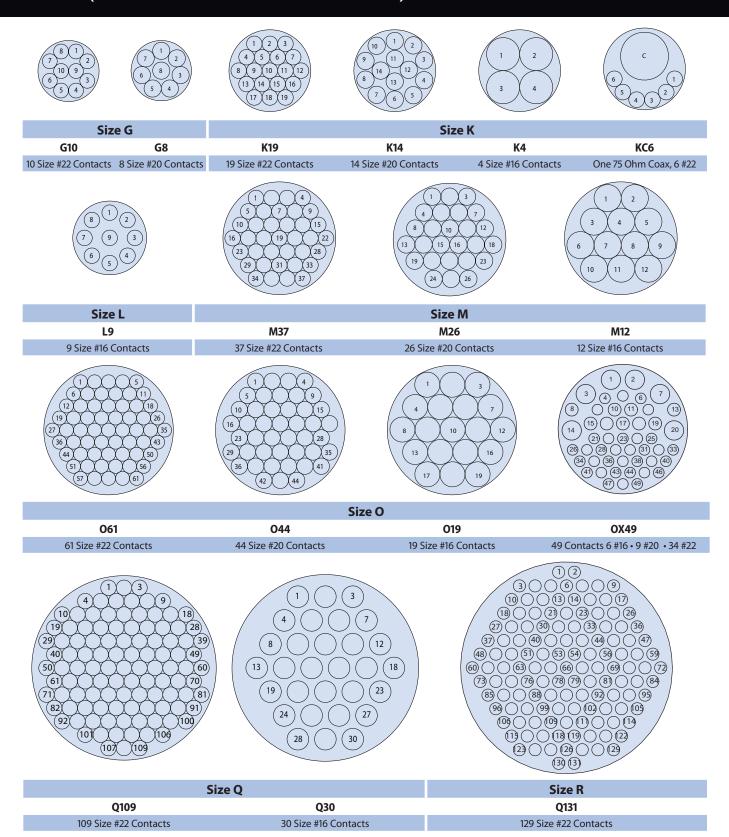
SHELL SIZES H AND L

SHELL SIZE M


Glass sealed penetrators and feedthroughs provide sealed interconnect solutions for downhole applications such as logging while drilling (LWD) and measurement while drilling (MWD) applying methods such as near-balanced, underbalanced and overbalanced drilling. In these environments, conditions can reach temperatures approaching 300°C while experiencing elevated shock and vibration, downhole fluids / pressures, and limited working room. Glenair HTHP penetrators are typically used where a waterproof seal is needed but connectorized separation from equipment is not. Standard plugs are rated to 10K PSI, mated condition. Standard receptacles are rated to 10K PSI both mated and open-face.

- Available in 7 shell sizes and 17 insert arrangements
- Standard penetrators with hermeticity of <1 X 10⁻⁷ sccHe/ sec @ 1 atmosphere differential and rated to 10,000 PSI
- High-pressure / hightemperature penetrators rated to 25,000 PSI and hermeticity of <1 X 10⁻⁸ sccHe/ sec @ 1 atmosphere differential

MULTI-PIN AND SINGLE-PIN PENETRATORS, RECEPTACLES, AND FEED-THRUS



DOWNHOLE HTHP

Glass sealed insert contact arrangements - Mating face view of pin insert (socket insert IDs are reversed)

Well-Master® 260°

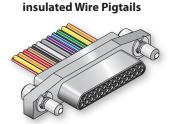
The Micro-D connector for serious, high-temperature applications

Standard Micro-D connectors are rated for +125°C. Glenair's MWDM Micro-D can withstand +150°C continuous operating temperature and can be upgraded to +200°C if assembled with special high temperature epoxies. But oil, gas and geothermal wells can subject electronic instruments to temperatures as high as +260°C. The GHTM Series Micro-D meets the need for a high density, high performance connector capable of handling this temperature. The GHTM features contacts made from a special alloy that resists softening when exposed to temperatures up to +260°C (500° F). Rugged passivated stainless steel shells and hardware, high temperature liquid crystal polymer (LCP) insulators allow these connectors to survive the most demanding environments. Unique angled mounting ears allow the Well-Master™ 260° to fit in confined spaces.

- +260°C operating temperature
- Angled mounting ears to fit in small diameter instruments
- High reliability twistpin contact system with special high temperature alloy
- .050" Pitch contact spacing for reduced size
- Solder cup, pre-wired or PCB

+260°C Cable Connector

SERIES GHTM WELL-MASTER 260°

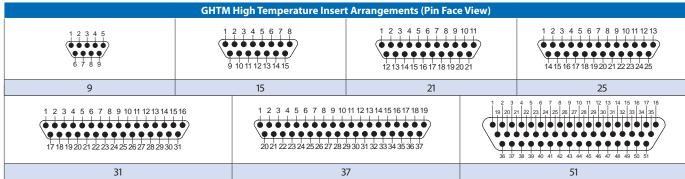

Downhole Micro-D Connector



Reference information / insert arrangements

In addition to extreme high temperature tolerance, and demating resistance to vibration and shock, the Glenair Well-Master™ 260° Micro-D connector features unique shell packaging designed to conform with the cylindrical shape of instrument housings. Special angled mounting ears facilitate incorporation of the connector into available space, and the Micro-D's overall reduced size compared to other rectangular connector solutions allows for more efficient utilization.

High Temperature Micro-D with



High Temperature PCB Header

High Temperature Backto-Back Micro-D

Mating face of pin connector. Socket connector contact numbers are reversed.

SERIES GHTM WELL-MASTER 260°

Downhole Micro-D Connector

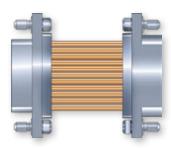
Insulated wire connector with pin or socket contacts

GHTM PRE-WIRED CONNECTORS WITH +260°C MIL SPEC PTFE/POLYIMIDE WIRE

GHTM Well-Master™ 260° pre-wired Micro-D connectors withstand +260°C continuous operating temperature. These .050" pitch Micro-D connectors are terminated to #24 AWG insulated wire. Nickel-coated copper wire conforms to M22759/87, PTFE/polyimide insulation. Pin contacts are gold-plated high performance twistpin type and are recessed into insulator to prevent damage. Special nickel alloy contact material resists softening in high heat. Machined passivated stainless steel shell. Glass-filled high temperature LCP thermoplastic insulators. 100% hi-pot tested. Meets performance requirements of MIL-DTL-83513. Available with 9 to 51 contacts. 3 A., 600 Vac, -55°C to +260°C.

How To Order									
Sample Part Number		GHTM	-31	S	-4	Т	1	-18	В
Series	GHTM Glenair High Temperature Micro								
Shell Size	9, 15, 21, 25, 31, 37, 51								
Contact Type	P - Pin/Plug S - Socket/Receptacle								
Wire Gage (AWG)	4 – #24								
Wire Type	T – PTFE/Polyimide Insulated Nickel Coated Copper								
Wire Color	1 – White								
Wire Length (Inches)	18 – Wire Length In Inches. "18" Specifies 18 Inches.								
Mounting Hardware	B - Std. Thru-Hole (Ø.089/.095) M - Hex Head Jackscrew S - Slot Head Jackscrew P - Integral Jackpost See Mounting Hardware Table								

GHTM Mounting Hardware							
B Std. Thru-Hole Mounting .096/.088 (2.43/2.23) Dia.	M and S #2-56 Jackscrews Slot head (S), Hex Head (M)	P Integral Jackpost #2-56					
Pin	Pin	Pin					
	Co Contractor						
Socket	Socket	Socket					


SERIES GHTM WELL-MASTER 260°

Downhole Micro-D Connector

Back-to-back cable assemblies and right-angle PCB headers

GHTM BACK-TO-BACK CONNECTORS WITH +260°C MIL SPEC PTFE/POLYIMIDE WIRE

GHTM Well-Master® 260° back-to-back Micro-D cable assemblies withstand +260°C continuous operating temperature. These .050" pitch Micro-D connectors are terminated to #24 AWG insulated wire. Nickel-coated copper wire conforms to M22759/87, PTFE/polyimide insulation. Pin contacts are gold-plated high performance twistpin type and are recessed into insulator to prevent damage. Special nickel alloy contact material resists softening in high heat. Machined passivated stainless steel shell. Glass-filled high temperature LCP thermoplastic insulators. Meets performance requirements of MIL-DTL-83513. Available with 9 to 51 contacts. 3 A., 600 Vac, -55°C to +260°C.

How To Order									
Sample Part Number		GHTM	-31	GS	-6	Т	1	-18	В
Series	GHTM Glenair High Temperature Micro-D								
Shell Size	9, 15, 21, 25, 31, 37, 51								
Contact Type	GP - Pin Connector Both Ends GS - Socket Connector Both Ends CS - Pin Connector to Socket Connector								
Wire Gage (AWG)	4 - #24								
Wire Type	T - PTFE/Polyimide Insulated Nickel Coated Copper								
Wire Color	1 - White								
Wire Length (Inches)	ength (Inches) 18 - Wire length in Inches (2" minimum for 2 rows, 3" minimum for 3 rows)								
Mounting Hardware	B - Std. Thru-Hole M - Hex Head Jackscrew S - Slot Head Jackscrew P - Integral Jackpost (See Mounting Hardware Table, opposite page)								

GHTM RIGHT ANGLE PRINTED CIRCUIT BOARD HEADERS

GHTM Well-Master® 260° right angle PCB Micro-D connectors withstand +260°C continuous operating temperature. These .050" pitch Micro-D connectors have .020 inch diameter (0.51mm)gold-plated PC terminals. Terminal spacing is .100 inch by .075 inch (2.54 by 1.91mm). Pin contacts are gold-plated high performance twistpin type and are recessed into insulator to prevent damage. Special nickel alloy contact material resists softening in high heat. Machined passivated stainless steel shell with integral jackpost. Glass-filled high temperature LCP thermoplastic insulators to withstand soldering heat. Meets performance requirements of MIL-DTL-83513. Available with 9 to 51 contacts. 3 A., 600 Vac, -55°C to +260°C.

How To Order							
Sample Part Number		GHTM	-25	P	RA	P	-110
Series GHTM Glenair High Temperature Micro-D							
Shell Size 9, 15, 21, 25, 31, 37, 51							
Gender P = Pin/Plug S = Socket/Receptacle							
Termination Type RA = Right Angle Board Mount							
Mounting Hardware P - Integral Jackpost; See Mounting Hardware Table opposite page							
All lengths ±.015 (.38) .080, .110, .125, .140, .150, .175, .190, .205							

esigned for safe operation in petrochemical refineries, oil & gas drilling platforms, and other explosion zone applications, the Glenair ITS-Ex series connector is optimized for life-of-system durability and reliability. Qualified by the globally-recognized IEC and IECEx standards bodies, the connector series is suitable for use in application areas where flammable gases and vapors are present as a normal condition of operation (group IIC) and with temperature classes T6 and T5, zones 1 and 2; and for applications where potentially flammable dust is present as a normal condition of operation (group IIIC) and with temperature classes T80°C and T95°C in zone 21 and 22.

Series ITS-Ex is designed for easy and repeatable termination of armored and unarmored cables built to IEEE 45, IEC, BS, DIN, and JIC standards. A full range of power and signal contacts, from size #16 to size #0 in over 40 insert arrangements are available to address all common voltage, wire size and connector service class ratings.

Special Ex design attributes of the series include an integral labyrinth flame path cooling zone, 2-part epoxy potting well, fixed in-line receptacles for attachment of cables to cable management brackets and trays, set screw (grub screw) secured protective safety covers, and durable life-of-system Ex marking labels.

- contacts, tools, etc.
- Grub nuts (set screw) to lock coupling nut
- Long plug barrels provide cooling zone
- Labyrinth gas exit port/ pathway augments cooling
- Accessorv accommodation for potted glands
- Increased wall thickness
- Stainless steel and Marine Bronze available

SERIES ITS-EX IECEx/ATEx Qualified Explosive Zone Connectors

RANGE OF APPLICATIONS

- Automotive refueling or petrol stations
- Oil & gas extraction
- Oil refineries
- Gas pipelines and distribution
- Chemical processing plants
- Aircraft refuelling and hangars
- Transportation
- Pharmaceuticals
- Food processing
- Metal surface grinding
- Sugar refineries
- Grain handling and storage
- Coal mining

ATEX Marking

II 2 G Ex db IIC T6, T5 Gb II 2 D Ex tb IIIC T80°C, T95°C Db IP68 $-40^{\circ}\text{C} \le \text{Tamb} \le +40^{\circ}\text{C} \text{ (T6, T80}^{\circ}\text{C) or } +55^{\circ}\text{C} \text{ (T5, T95}^{\circ}\text{C)}$

IECEx Marking

Ex db IIC T6, T5 Gb Ex tb IIIC T80°C, T95°C Db IP68 -40°C ≤ Tamb ≤ +40°C (T6, T80°C) or +55°C (T5, T95°C)

bulkhead-mountable designs

Glenair manufactures connectors qualified to VG96929, VG95234 and VG95328 standards. These connectors are mostly used in harsh-environment military applications for ground vehicles and ground systems. Our new Marine Bronze version increases the level of robustness of these connectors to be successfully used in all severe environment navy installations, as well as off-shore platforms, sea ports, geological and

oceanographic applications.

- Marine bronze alloy for superior corrosion resistance in seawater and other harsh environments
- Ideal for shipboard and offshore drilling applications
- Available in Series ITS (5015 reverse-bayonet), Series IPT (26482), Series IGE (Single-pole high-power VG96929) and Series IT (5015 threaded)
- IP67 environmental sealing in mated condition; IP68 available
- Hundreds of available contact arrangements for both power and signal as well as hybrid applications

Topside / Shipboard Environmental Connectors

Series overview

ITS-MB MIL-C-5015 TYPE REVERSE-BAYONET CONNECTORS

VG95234 Equivalent Marine Bronze Series

ITS-MB connectors are compliant with VG95234, using all the same insert arrangements available in the standard ITS Reverse Bayonet Connectors catalog. Typically they are used for power and signal transmission, with wires from 26 AWG to 4/0. A wide variety of backshells allow the ITS-MB to accept jacketed cables, single or multi-poles, with or without RFI/EMI shielding, conduits with PG or metric thread. IP67 protection is the standard performance. IP68 on request.

IT-MB MIL-C-5015G TYPE THREADED CONNECTORS

MIL-C-5015 Compliant Marine Bronze Series

IT-MB is a threaded connector compliant with the MIL-DTL-5015 standard. All the electrical characteristics are available in the IT standard catalog. IT-MB family is a threaded version mostly used for power and signal, with IP67 standard performance sealing.

IPT-MB MIL-DTL-26482 TYPE HIGH DENSITY BAYONET CONNECTORS

VG95328 Equivalent Marine Bronze Series

IPT-MB connectors are the choice for reliability when 20-16 AWG signal cables are used. The insert arrangements as well as the electrical characteristics are detailed in the IPT IPT-SE catalog. Backshells suitable for EMI shield terminations and heat shrink boots are also available.

The receptacle is also available with PCB contacts. IP67 protection is the standard performance. IP68 on request.

IGE-MB MIL-C-5015 TYPE REVERSE-BAYONET SINGLE-POLE POWER CONNECTORS

VG96929 Equivalent Marine Bronze Series

IGE-MB High Power Single Pole Connectors are used with cables from 16 to 240 mma.

These connectors achieve high-performance working current and peak current, and are ideal for engines, power supplies, and power distribution boxes. Several backshells are available, either straight or 90° elbows for the most reliable cable accommodation. See the VG96929 catalog for detailed electrical characteristics. IP67 protection is the standard performance. IP68 on request.

Terminated, tested, and ready for use

Clenair overmolded cable assemblies may be supplied with materials such as Viton®, Duralectric™, polyurethane, EPDM, Santoprene™, or polyamide to optimize harsh-environment performance for the Oil & Gas industry. Assemblies may be specially shielded with conductive overbraiding for superior mechanical protection, flexibility, and resistance to RFI and other forms of electromagnetic interference. Fast turnaround and quality fabrication in overmolded cable assemblies depends on capital investment in tooling, injection molding equipment, planetary wire stranders, and braiding machines.

Rugged point-to-point overmolded assembly with Geo-Marine® connectors

ADVANTAGES OF OVERMOLDING

- Waterproof sealing
- Robust mechanical protection
- Permanent protection of terminations
- Resistance to chemicals and fuels
- No induced cold flow stress
- Electrical isolation and insulation
- Reduced wear damage
- Flexible routing and cable entry
- Repeatable assembly performance

Interconnect Cable Assemblies



with environmentally-resistant Duralectric™ jacketing

DURALECTRIC™ APPLICATION AND MATERIAL PROPERTIES

Duralectric[™] is high-performance elastomeric material for use as wire insulation, cable jacketing, conduit jacketing, cable/conduit overmolding, and molded boots. Perfectly suited for immersion, chemical or caustic fluid exposure, temperature extremes, UV radiation and more.

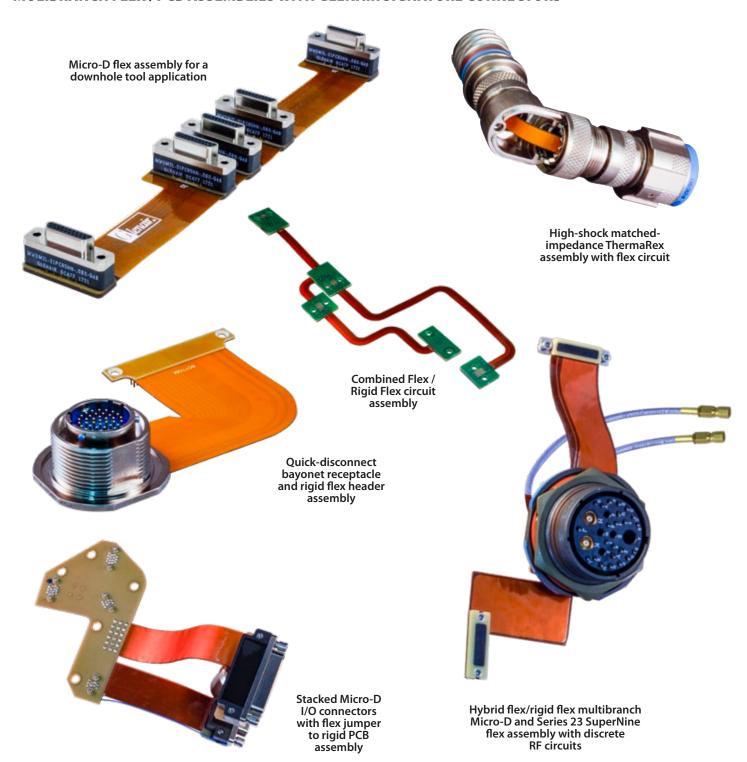
- Service temperature range: -65°C to 225°C
- Duralectric K (Kelvin) range: -110° to 225°C
- Fire-resistant, Low Smoke-Zero Halogen (LSZH)
- Mil-aero and industrial fluid-resistant
- Accelerated UV/sunlight resistant,53 year equivalent exposure
- Ozone resistant IAW ASTM D1149
- Moldable and extrudable

Turboflex® power pylon cable assembly with Duralectric™ jacketing

Duralectric™ jacketing employed in environmental commercial application

Turnkey connectorized flex/PCB circuit assemblies incorporating Glenair's broad range of innovative small form-factor circular and rectangular PCB connector solutions. All terminations backpotted for compliance with conformal coating processes.

GLENAIR SIGNATURE PCB CONNECTOR TYPES AVAILABLE IN TURNKEY FLEX ASSEMBLIES



TURNKEY PCB/Flex Circuit Assemblies

Glenair. with Glenair signature PC tail connectors

MULIBRANCH FLEX / PCB ASSEMBLIES WITH GLENAIR SIGNATURE CONNECTORS

Conduit Systems The flexible wire protection and cable

The flexible wire protection and cable routing alternative to standard jacketed cables

Conduit wire protection systems for high-reliability applications must be able to withstand extreme environments—from immersion in harsh chemicals, to temperature extremes and numerous flex cycles—without breakdown or failure. Glenair conduit systems are rigorously engineered to meet the exacting specifications of both commercial and military—geophysical and oceanographic environments.

Corrosion resistant, flexible polymer-core materials are available in a wide variety of materials to suit any application: Annular material choices include: Kynar, PVDF and G-FLEX Siltem, helical choices include ETFE, FEP, PFA, PTFE, and PEEK plus AS81914 /1 – 11 qualified materials and configurations.

Metal-core versions are specified for extreme crush resistance and optimal EMI shielding. The helically-wound metal conduit provides extremely high levels of EMI protection across all radiation fields and frequencies. Stainless steel versions are often specified for environments subject to temperature extremes such as geophysical applications.

- Hermetically sealed, flexible metal-core conduit for interconnect applications
- Lightweight, flexible helical and annular polymer-core materials and easy to install fittings, transitions and adapters
- Turnkey, factoryterminated assemblies for industrial applications

SERIES 72, 73 AND 74

Convoluted Tubing and Conduit

Wire protection conduit and cable routing fittings selection guide

SERIES 72 CONVOLUTED TUBING PRODUCT SELECTION GUIDE

Factory Terminated **Assemblies**

Sentry system

Easy-to-Install **Guardian system**

SERIES 74 CONVOLUTED TUBING PRODUCT SELECTION GUIDE

Helical Convoluted **Tubing**

Assemblies

Easy Assembly **Hat Trick** System

Super Durable **Internal Braid** System

Ultra Lightweight Composite Hummer Nut System

SERIES 75 METAL-CORE HELICALLY-WOUND CONDUIT PRODUCT SELECTION GUIDE

connector backshell

Metal-Core Helical-Wound Conduit

Turnkey Factory Terminated Assemblies

Low-Profile **RP Plus** System

Heavy-Duty Environmental Metal System

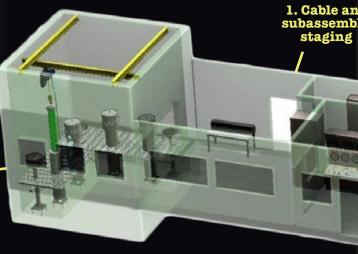
Heavy-Duty Environmental Conduit System

Reduce package size, weight, and labor with turnkey factory assemblies

- Glenair can design, build, terminate—and even pre-wire—turnkey conduit wire routing solutions.
- Certified factory assemblers and calibrated tooling create betterperforming systems.
- Simple point-to-point or complex multi-branch.

Hydrostatic Test Lab

GLENDALE, CALIFORNIA


Special behind-the-scenes tour of Glenair's hydrostatic test lab for high-pressure electrical and fiber optic interconnects

DISCRETE
CONNECTOR
TESTING:
All Glenair
high-pressure
interconnects
are subjected
to 100%
inspection
and test

2. Large cable and subassembly pressure test bunker

LARGE PRESSURE
VESSELS: Built to
accommodate complete
cable assemblies, mated
connectors, and customersupplied subassemblies

TECHNICAL
STAFF:
Knowledgable
and trained
subsea specialists
perform both
in-house product
qualification
testing, as well
as customer
subassemblies

control room: The modular consoles in the control room provide for up to 8 pressure circuits, operating in Manual mode or Automated. Each circuit is capable of a maximum of 16.5K psi.

Monitors display: Automated Test Profiles, Data Acquisition, remote viewing of Test rooms and more. System is network connected for access to Profiles and distribution of test reports.

3. Hydrostatic test lab control room

4. Production connector staging

5. Small connector pressure test bunker

SeaKing[™] and SuperG55[™] QUALIFICATION
TESTING: Both Glenair Series 70 SeaKing and
SuperG55 rugged dry-mate subsea connectors
have been tested and qualified to their 10K
psi pressure rating—open-face and mated—in
Glenair's state-of-the-art hydrostatic test lab.
Additional testing included mating cycles, salt
spray, and electrical continuity.

Glenair Hydrostatic Test Lab Technical Specifications and Pressure Test Standards						
Pressure test profiles	Automated or manual					
Maximum test pressure	16.5K psi					
Data acquisition types	Pressure, time, temperature, and electrical performance					
Performance monitoring under pressure	I/R, continuity, insertion loss, and backreflection (optical)					
Industry profiles	All major oil & gas standards					
Custom profiles	Yes, including customer-supplied subassemblies					
Capacity (large pressure vessels)	Working volume = 12" diameter x 72" depth; Test specimen weight up to 1500 lbs.					

INTERCONNECT SOLUTIONS

Glenair, Inc.

1211 Air Way • Glendale, California • 91201-2497 Telephone: 818-247-6000 • Fax: 818-500-9912 • sales@glenair.com www.glenair.com

Glenair East

20 Sterling Drive

203-741-1115

Wallingford, CT

6492

203-741-0053

sales@glenair.com

Glenair Microway SystemsTelephone:7000 North Lawndale Avenue847-679-8833Lincolnwood, ILFacsimile:60712847-679-8849

Glenair GmbH

Schaberweg 28

61348 Bad Homburg

Germany

Telephone:

06172 / 68 16 0

6172 / 68 16 90

info@glenair.de

Glenair Italia S.p.A.Telephone:Via Del Lavoro, 7+39-051-78281140057 Quarto Inferiore –Facsimile:Granarolo dell'Emilia+39-051-782259Bologna, Italyinfo@glenair.it

Glenair Korea Telephone: 6-21Tapsil-ro 58beon-gil +82-07-5067-2437 Giheung-gu, Yongin-si Facsimile: Gyeonggi-do +82-504-375-4549 Republic of Korea sales@glenair.kr

Glenair UK Ltd
Telephone:
40 Lower Oakham Way
Oakham Business Park
Mansfield, Notts
NG18 5BY England
Telephone:
+44-1623-638100
Facsimile:
+44-1623-638111
Sales@glenair.co.uk

Glenair Nordic AB

Gustav III : S Boulevard 42

SE-169 27 Solna

Sweden

Telephone:
+46-8-50550000
sales@glenair.se

Glenair Iberica Telephone:
C/ La Vega, 16 +34-925-89-29-88
45612 Velada Facsimile:
Spain +34-925-89-29-87
sales@glenair.es

Glenair France SARL
7, Avenue Parmentier +33-5-34-40-97-40
Immeuble Central Parc #2
31200 Toulouse +33-5-61-47-86-10
France sales@glenair.fr

© 2020 Glenair, Inc. Printed in U.S.A.