
MFS02 Thermal Mass Flow Sensor Optimal for ultra fast measuring of gas flow and direction

Benefits & Characteristics

- Excellent solution for applications with high flow rates and fast response time in CTA mode
- Very high measuring dynamic with CTA mode (10'000'000 : 1) without bypass
- Detection of flow direction

- Excellent for very low flow rates and leakage detection with bridge mode
- High chemical resistance against aggressive gases and vapors

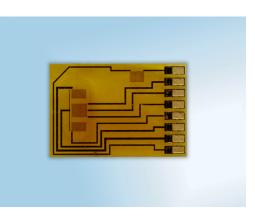
Illustration¹⁾

1) For actual size, see dimensions

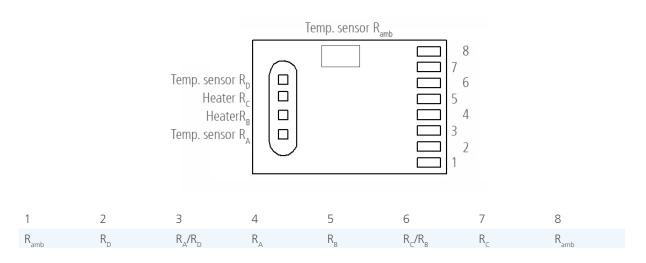
Technical Data

Dimensions (L / L2 x W x H / H2 in mm):	5.0 x 3.4 x 0.5	
Operating measuring range:	0 m/s to 1.5 m/s (full bridge mode)	
	0 ml/min to 100 ml/min (full bridge mode)	
	0 m/s to 150 m/s (CTA mode)	
	0 l/min to 10 l/min (CTA mode)	
Minimum operating range:	0 ml/min to 1 ml/min	
Response sensitivity:	0.0003 m/s (20 microliter/min)	
Accuracy:	< 2 % of the measured value (dependent on the electronics and calibration)	
Response time t ₆₃ :	< 10 ms	
Temperature range (chip):	-40 °C to +160 °C	
Temperature range (gas):	-40 °C to +80 °C (maximal +80 °C less than chip temperature)	
Temperature sensitivity:	< 0.1 % / K (dependent on the electronics)	
Connection:	bonding pads	
2 elements:	$R_{hiah} (0 \text{ °C}) = 710 \Omega \pm 10 \% R_A, R_D$	
2 elements:	$R_{low}(0 \text{ °C}) = 530 \ \Omega \pm 10 \ \% \ R_{B}, R_{C}$	

MFS02 | Flow | Thermal Mass Flow Sensor MFS02



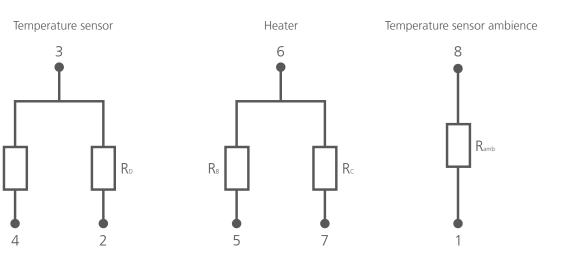
physical. chemical. biological.


THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PR
\mathbf{O}

Matching between elements:	< 2 %
1 element:	$R_{amb}(0 \ ^{\circ}C) = 825 \ \Omega \pm 10 \ \%$
Voltage range (nominal):	2 V to 6 V (full bridge mode)
Bridge offset (full bridge mode):	Maximal \pm 50 mV at V _{cc} = 5 V; typical \pm 10 mV
TCR bridge offset (full bridge mode):	Maximal ±50 ppm/K x V _{cc} /2
Power consumption (no flow):	10 mW to 50 mW (resp. chip temperature +50 °C to +160 °C)

Product Photo

Pin Assignment



physical. chemical. biological.

Electrical Equivalent Circuit

Order Information

RA

Description:	Item number:	Former main reference:
MFS02	103743	050.00263

Additional Electronics

Description:	Item number:	Former main reference:
MFS02.PSTD.0	103745	050.00266
MFS02.PEXP.0	103746	050.00267
MicroFlowSens Amplifier Module	104955	350.00097

Innovative Sensor Technology IST AG, Stegrütistrasse 14, 9642 Ebnat-Kappel, Switzerland Phone: +41 71 992 01 00 | Fax: +41 71 992 01 99 | Email: info@ist-ag.com | www.ist-ag.com

All mechanical dimensions are valid at 25 °C ambient temperature, if not differently indicated • All data except the mechanical dimensions only have information purposes and are not to be understood as assured characteristics • Technical changes without previous announcement as well as mistakes reserved • The information on this data sheet was examined carefully and will be accepted as correct; No liability in case of mistakes • Load with extreme values during a longer period can affect the reliability • The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner • Typing errors and mistakes reserved • Product specifications are subject to change without notice • All rights reserved

MFS02 | Flow | Thermal Mass Flow Sensor MFS02