

### LM117/LM217/LM317

### 1.2 V to 37 V adjustable voltage regulators

#### **Features**

- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5 A
- 0.1% Line and load regulation
- Floating operation for high voltages
- Complete series of protections: current limiting, thermal shutdown and SOA control

#### **Description**

The LM117/LM217/LM317 are monolithic integrated circuit in TO-220, TO-220FP, TO-3 and D<sup>2</sup>PAK packages intended for use as positive adjustable voltage regulators.

They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

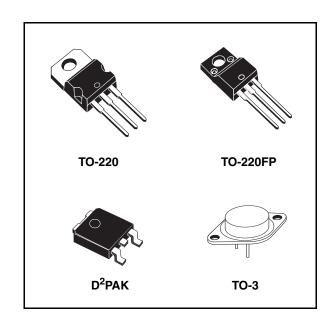
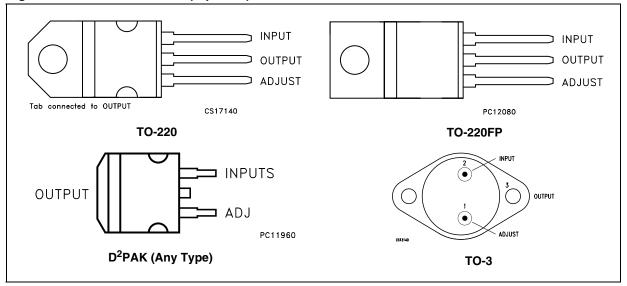



Table 1. Device summary

|                                                        | Order codes |        |        |  |  |  |  |  |  |  |
|--------------------------------------------------------|-------------|--------|--------|--|--|--|--|--|--|--|
| TO-220 D <sup>2</sup> PAK (tape and reel) TO-220FP TO- |             |        |        |  |  |  |  |  |  |  |
|                                                        |             |        | LM117K |  |  |  |  |  |  |  |
| LM217T                                                 | LM217D2T-TR |        | LM217K |  |  |  |  |  |  |  |
| LM317T                                                 | LM317D2T-TR | LM317P | LM317K |  |  |  |  |  |  |  |

Contents LM117/LM217/LM317


### **Contents**

| 1 | Pin configuration 3          |
|---|------------------------------|
| 2 | Maximum ratings4             |
| 3 | Diagram 5                    |
| 4 | Electrical characteristics 6 |
| 5 | Typical characteristics 8    |
| 6 | Application information      |
| 7 | Package mechanical data 13   |
| 8 | Revision history             |

LM117/LM217/LM317 Pin configuration

# 1 Pin configuration

Figure 1. Pin connections (top view)



Maximum ratings LM117/LM217/LM317

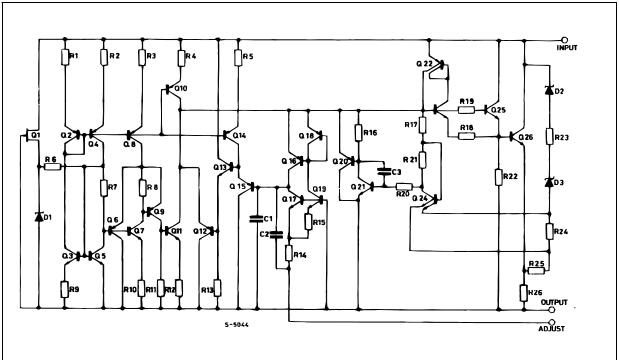
# 2 Maximum ratings

Table 2. Absolute maximum ratings

| Symbol                          | Parameter                            |                    | Value              | Unit |
|---------------------------------|--------------------------------------|--------------------|--------------------|------|
| V <sub>I</sub> - V <sub>O</sub> | Input-reference differential voltage |                    | 40                 | V    |
| I <sub>O</sub>                  | Output current                       | Internally limited | V                  |      |
|                                 |                                      | LM117              | -55 to 150         |      |
| $T_{OP}$                        | Operating junction temperature for:  | LM217              | -25 to 150         | °C   |
|                                 |                                      | LM317              | 0 to 125           |      |
| $P_{D}$                         | Power dissipation                    | ·                  | Internally limited |      |
| T <sub>STG</sub>                | Storage temperature                  |                    | -65 to 150         | °C   |

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.


Table 3. Thermal data

| Symbol            | Parameter                           | D <sup>2</sup> PAK | TO-220 | TO-220FP | TO-3 | Unit |
|-------------------|-------------------------------------|--------------------|--------|----------|------|------|
| R <sub>thJC</sub> | Thermal resistance junction-case    | 3                  | 3      | 5        | 4    | °C/W |
| R <sub>thJA</sub> | Thermal resistance junction-ambient | 62.5               | 50     | 60       | 35   | °C/W |

LM117/LM217/LM317 Diagram

# 3 Diagram

Figure 2. Schematic diagram



Electrical characteristics LM117/LM217/LM317

### 4 Electrical characteristics

**Table 4.** Electrical characteristics for LM117/LM217 ( $V_I$  -  $V_O$  = 5 V,  $I_O$  = 500 mA,  $I_{MAX}$  = 1.5 A and  $P_{MAX}$  = 20 W,  $T_J$  = -55 to 150°C for LM117,  $T_J$  = -25 to 150 °C for LM217, unless otherwise specified)

| Symbol               | Parameter                                            | Test condition                                                           | ıs                     | Min.  | Тур. | Max. | Unit |
|----------------------|------------------------------------------------------|--------------------------------------------------------------------------|------------------------|-------|------|------|------|
| 41/                  | Line regulation                                      | V V 2 to 40 V                                                            | T <sub>J</sub> = 25°C  |       | 0.01 | 0.02 | %/V  |
| $\Delta V_{O}$       | Line regulation                                      | $V_1 - V_0 = 3 \text{ to } 40 \text{ V}$                                 |                        |       | 0.02 | 0.05 | %) V |
|                      |                                                      | V <sub>O</sub> ≴ V                                                       | $T_J = 25^{\circ}C$    |       | 5    | 15   | mV   |
| AV/ .                | Load regulation                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                        |                        |       | 20   | 50   | IIIV |
| $\Delta V_{O}$       | Load regulation                                      | V <sub>O</sub> ≥5 V,                                                     | $T_J = 25^{\circ}C$    |       | 0.1  | 0.3  | %    |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                        |                        |       | 0.3  | 1    | /0   |
| I <sub>ADJ</sub>     | Adjustment pin current                               |                                                                          |                        |       | 50   | 100  | μA   |
| $\Delta I_{ADJ}$     | Adjustment pin current                               | $V_1 - V_0 = 2.5 \text{ to } 40V  I_0 = 3.5 \text{ to } 40V$             |                        | 0.2   | 5    | μΑ   |      |
| $V_{REF}$            | Reference voltage (between pin 3 and pin 1)          | $V_{I} - V_{O} = 2.5 \text{ to } 40V I_{O} = 10$<br>$P_{D} \leq P_{MAX}$ | mA to I <sub>MAX</sub> | 1.2   | 1.25 | 1.3  | ٧    |
| $\Delta V_{O}/V_{O}$ | Output voltage temperature stability                 |                                                                          |                        |       | 1    |      | %    |
| I <sub>O(min)</sub>  | Minimum load current                                 | V <sub>I</sub> - V <sub>O</sub> = 40 V                                   |                        |       | 3.5  | 5    | mA   |
| 1                    | Maximum load current                                 | V <sub>I</sub> - V <sub>O</sub> ≤15 V, P <sub>D</sub> < P <sub>MAX</sub> |                        | 1.5   | 2.2  |      | Α    |
| I <sub>O(max)</sub>  | Waximum load current                                 | $V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX},$                         | T <sub>J</sub> = 25°C  |       | 0.4  |      | A    |
| eN                   | Output noise voltage (percentage of V <sub>O</sub> ) | B = 10Hz to 100kHz, T <sub>J</sub> = 2                                   |                        | 0.003 |      | %    |      |
| SVR                  | Supply voltage rejection (1)                         | T <sub>.I</sub> = 25°C, f = 120Hz                                        | C <sub>ADJ</sub> =0    |       | 65   |      | dB   |
| SVN                  | Supply voltage rejection (1)                         | C <sub>ADJ</sub> =10                                                     | C <sub>ADJ</sub> =10µF | 66    | 80   |      | uБ   |

<sup>1.</sup>  $C_{ADJ}$  is connected between pin 1 and ground.

Table 5. Electrical characteristics for LM317 ( $V_I$  -  $V_O$  = 5 V,  $I_O$  = 500 mA,  $I_{MAX}$  = 1.5 A and  $P_{MAX}$  = 20 W,  $T_J$  = 0 to 125°C, unless otherwise specified)

| Symbol               | Parameter                                            | Test condition                                                               | ıs                     | Min.  | Тур. | Max.  | Unit        |
|----------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------|-------|------|-------|-------------|
| 41/                  | Line regulation                                      | V V 2 to 40 V                                                                | $T_J = 25^{\circ}C$    |       | 0.01 | 0.04  | %/V         |
| $\Delta V_{O}$       | Line regulation                                      | $V_1 - V_0 = 3 \text{ to } 40 \text{ V}$                                     |                        |       | 0.02 | 0.07  | %) <b>V</b> |
|                      |                                                      | V <sub>O</sub> ≤5 V                                                          | $T_J = 25^{\circ}C$    |       | 5    | 25    | mV          |
| $\Delta V_{O}$       | Load regulation                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                            |                        |       | 20   | 70    | 1117        |
| 70                   | Load regulation                                      | V <sub>O</sub> ≥5 V,                                                         | $T_J = 25^{\circ}C$    |       | 0.1  | 0.5   | %           |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                            |                        |       | 0.3  | 1.5   | 70          |
| $I_{ADJ}$            | Adjustment pin current                               |                                                                              |                        |       | 50   | 100   | μΑ          |
| $\Delta I_{ADJ}$     | Adjustment pin current                               | $V_I - V_O = 2.5 \text{ to } 40V,$<br>$I_O = 10 \text{ mA to } 500\text{mA}$ |                        | 0.2   | 5    | μΑ    |             |
| V <sub>REF</sub>     | Reference voltage (between pin 3 and pin 1)          | $V_1 - V_0 = 2.5 \text{ to } 40V I_0 = 10$<br>$P_D \le P_{MAX}$              | 1.2                    | 1.25  | 1.3  | ٧     |             |
| $\Delta V_{O}/V_{O}$ | Output voltage temperature stability                 |                                                                              |                        |       | 1    |       | %           |
| I <sub>O(min)</sub>  | Minimum load current                                 | $V_1 - V_0 = 40 \text{ V}$                                                   |                        |       | 3.5  | 10    | mA          |
| 1                    | Maximum load current                                 | V <sub>I</sub> - V <sub>O</sub> ≤15 V, P <sub>D</sub> < P <sub>MAX</sub>     |                        | 1.5   | 2.2  |       | Α           |
| I <sub>O(max)</sub>  | Maximum load current                                 | $V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX},$                             | T <sub>J</sub> = 25°C  |       | 0.4  |       | Α .         |
| eN                   | Output noise voltage (percentage of V <sub>O</sub> ) | B = 10Hz to 100kHz, $T_J = 2$                                                |                        | 0.003 |      | %     |             |
| SVR                  | Supply voltage rejection (1)                         |                                                                              |                        |       | 65   |       | dB          |
| SVN                  | Supply voltage rejection V                           | $T_J = 25^{\circ}C$ , $f = 120Hz$                                            | C <sub>ADJ</sub> =10μF | 66    | 80   | OB OB |             |

<sup>1.</sup>  $C_{ADJ}$  is connected between pin 1 and ground.

# 5 Typical characteristics

Figure 3. Output current vs input-output differential voltage

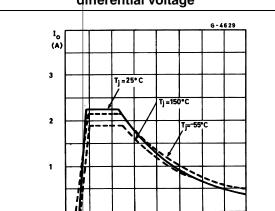



Figure 4. Dropout voltage vs junction temperature

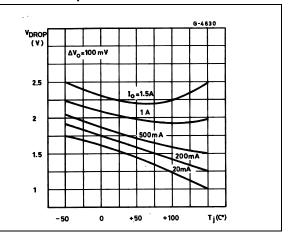
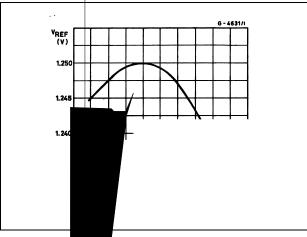




Figure 5. Reference voltage vs junction

**v**<sub>i</sub>-v<sub>o</sub>( v )



### 6 Application information

The LM117/217/317 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see *Figure 3*), giving an output voltage  $V_O$  of:

$$V_0 = V_{REF} (1 + R_2/R_1) + I_{ADJ} R_2$$

The device was designed to minimize the term  $I_{ADJ}$  (100 µA max) and to maintain it very constant with line and load changes. Usually, the error term  $I_{ADJ} \times R_2$  can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM117/217317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor  $R_1$  (see *Figure 3*) should be tied as close as possible to the regulator, while the ground terminal of  $R_2$  should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow:

An input bypass capacitor of 0.1 µF

An adjustment terminal to ground 10  $\mu F$  capacitor to improve the ripple rejection of about 15 dB (CADJ).

An 1 µF tantalum (or 25 µF Aluminium electrolytic) capacitor on the output to improve transient response. In additional to external capacitors, it is good practice to add protection diodes, as shown in *Figure 4* D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging.

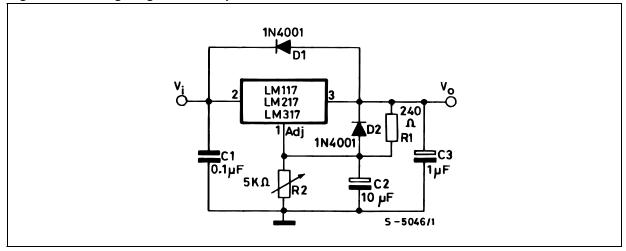



Figure 7. Voltage regulator with protection diodes

Note:

D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

Figure 8. Slow turn-on 15 V regulator

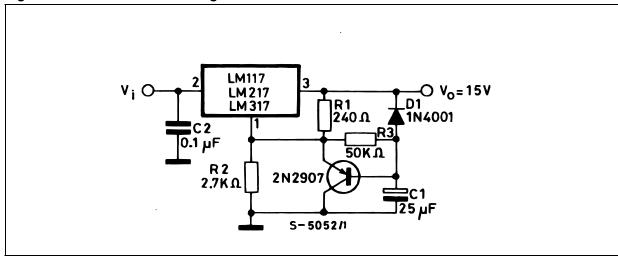



Figure 9. Current regulator

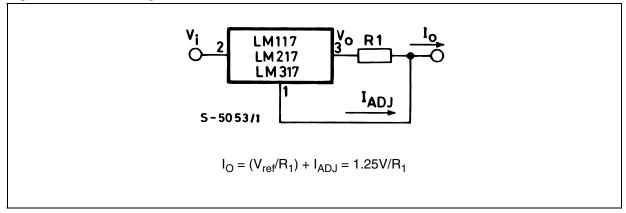
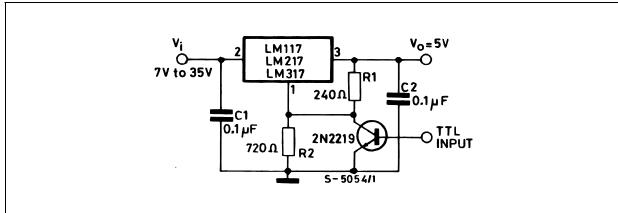
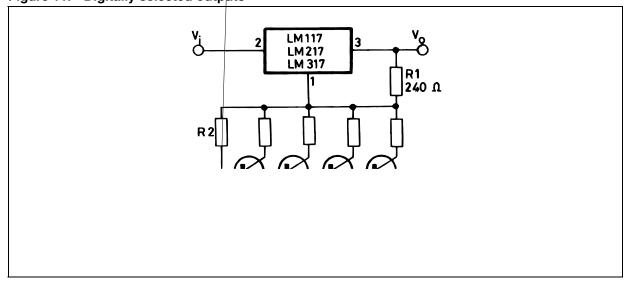
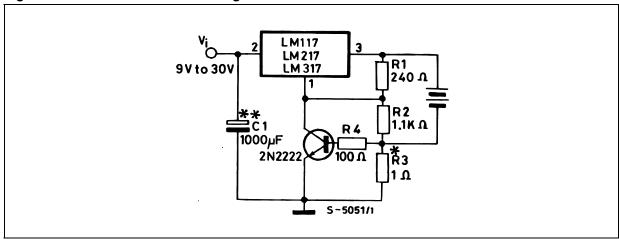



Figure 10. 5 V electronic shut-down regulator



Figure 11. Digitally selected outputs



(R<sub>2</sub> sets maximum V<sub>O</sub>)

<sup>\*</sup>  $R_S$  sets output impedance of charger  $Z_O = R_S$  (1 +  $R_2/R_1$ ). Use of  $R_S$  allows low charging rates whit fully charged battery.

Figure 13. Current limited 6 V Charger



<sup>\*</sup> R3 sets peak current (0.6 A for 1 0).

<sup>\*\*</sup> C1 recommended to filter out input transients.

### 7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

#### TO-3 mechanical data

| Dim.   |      | mm.   |      |       | inch. |       |
|--------|------|-------|------|-------|-------|-------|
| Dilli. | Min. | Тур.  | Max. | Min.  | Тур.  | Max.  |
| А      |      | 11.85 |      |       | 0.466 |       |
| В      | 0.96 | 1.05  | 1.10 | 0.037 | 0.041 | 0.043 |
| С      |      |       | 1.70 |       |       | 0.066 |
| D      |      |       | 8.7  |       |       | 0.342 |
| E      |      |       | 20.0 |       |       | 0.787 |
| G      |      | 10.9  |      |       | 0.429 |       |
| N      |      | 16.9  |      |       | 0.665 |       |
| Р      |      |       | 26.2 |       |       | 1.031 |
| R      | 3.88 |       | 4.09 | 0.152 |       | 0.161 |
| U      |      |       | 39.5 |       |       | 1.555 |
| V      |      | 30.10 |      |       | 1.185 |       |

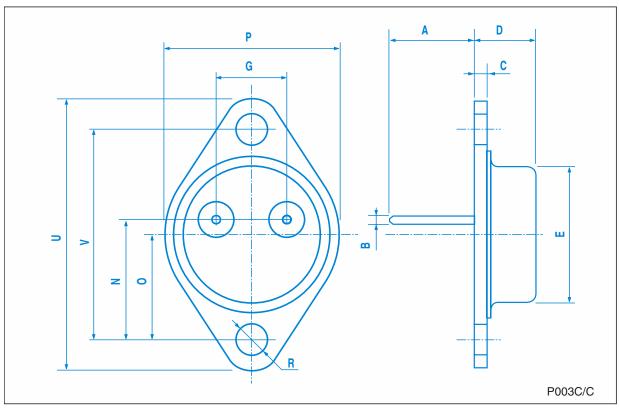



Figure 14. Drawing dimension TO-220 (type SMIC-subcon.)

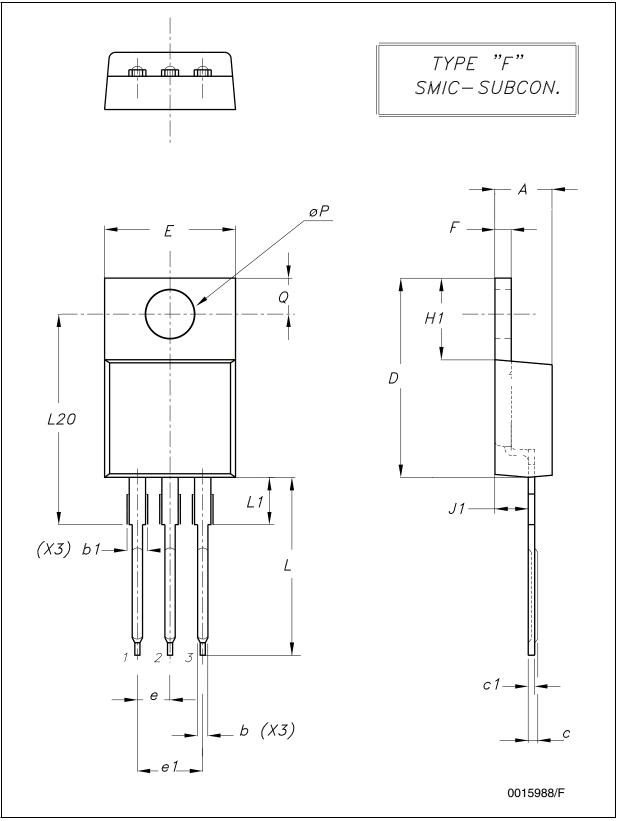
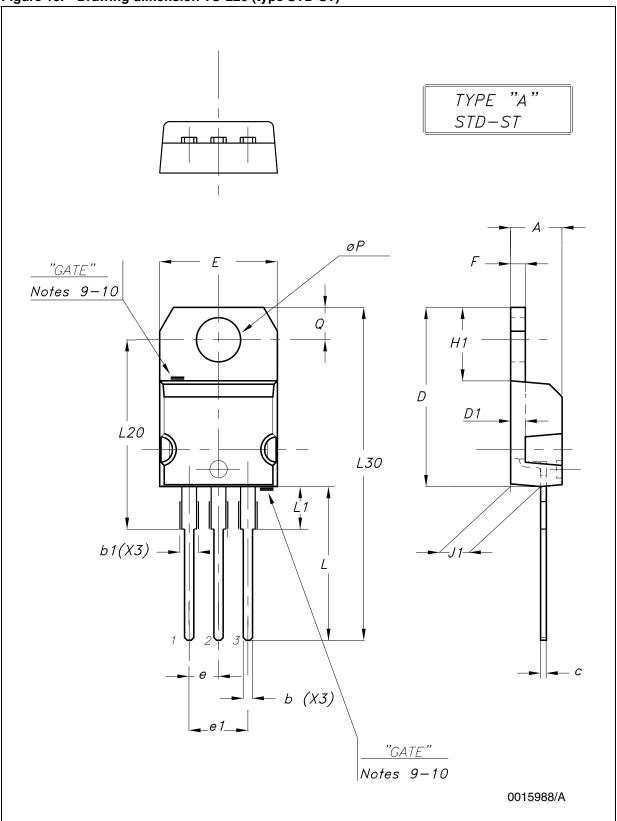
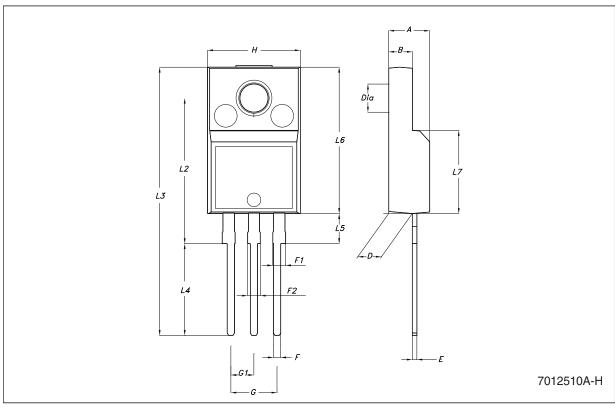



Figure 15. Drawing dimension TO-220 (type STD-ST)





Table 6. TO-220 mechanical data

|      | Type STD-ST |       |       |       | Type SMIC-Sul | ocon. |  |
|------|-------------|-------|-------|-------|---------------|-------|--|
| Dim. | mm.         |       |       | mm.   |               |       |  |
|      | Min.        | Тур.  | Max.  | Min.  | Тур.          | Max.  |  |
| Α    | 4.40        |       | 4.60  | 4.47  | 4.57          | 4.67  |  |
| A1   | 0.61        |       | 0.88  | 0.80  | 0.81          | 0.86  |  |
| b1   | 1.14        |       | 1.70  | 1.15  |               | 1.44  |  |
| С    | 0.49        |       | 0.70  |       | 0.56          |       |  |
| c1   |             |       |       |       | 0.38          |       |  |
| D    | 15.25       |       | 15.75 | 15.07 | 15.24         | 15.45 |  |
| D1   |             | 1.27  |       |       |               |       |  |
| E    | 10.00       |       | 10.40 | 10    | 10.15         | 10.30 |  |
| е    | 2.40        |       | 2.70  | 2.29  | 2.54          | 2.79  |  |
| e1   | 4.95        |       | 5.15  | 4.83  | 5.08          | 5.33  |  |
| F    | 1.23        |       | 1.32  |       | 1.27          |       |  |
| H1   | 6.20        |       | 6.60  |       | 6.24          |       |  |
| J1   | 2.40        |       | 2.72  | 2.04  | 2.67          | 2.92  |  |
| L    | 13.00       |       | 14.00 | 13.35 | 13.50         | 13.65 |  |
| L1   | 3.50        |       | 3.93  |       | 3.90          |       |  |
| L20  |             | 16.40 |       | 16.25 | 16.40         | 16.55 |  |
| L30  |             | 28.90 |       |       | 28.74         |       |  |
| ØP   | 3.75        |       | 3.85  |       | 3.83          |       |  |
| Q    | 2.65        |       | 2.95  | 2.72  | 2.74          | 2.80  |  |

Note: In spite of some difference in tolerances, the packages are compatible.

#### **TO-220FP** mechanical data

| Dim  |      | mm. |       | inch. |       |       |
|------|------|-----|-------|-------|-------|-------|
| Dim. | Min. | Тур | Max.  | Min.  | Тур.  | Max.  |
| А    | 4.40 |     | 4.60  | 0.173 |       | 0.181 |
| В    | 2.5  |     | 2.7   | 0.098 |       | 0.106 |
| D    | 2.5  |     | 2.75  | 0.098 |       | 0.108 |
| E    | 0.45 |     | 0.70  | 0.017 |       | 0.027 |
| F    | 0.75 |     | 1     | 0.030 |       | 0.039 |
| F1   | 1.15 |     | 1.50  | 0.045 |       | 0.059 |
| F2   | 1.15 |     | 1.50  | 0.045 |       | 0.059 |
| G    | 4.95 |     | 5.2   | 0.194 |       | 0.204 |
| G1   | 2.4  |     | 2.7   | 0.094 |       | 0.106 |
| Н    | 10.0 |     | 10.40 | 0.393 |       | 0.409 |
| L2   |      | 16  |       |       | 0.630 |       |
| L3   | 28.6 |     | 30.6  | 1.126 |       | 1.204 |
| L4   | 9.8  |     | 10.6  | 0.385 |       | 0.417 |
| L5   | 2.9  |     | 3.6   | 0.114 |       | 0.142 |
| L6   | 15.9 |     | 16.4  | 0.626 |       | 0.645 |
| L7   | 9    |     | 9.3   | 0.354 |       | 0.366 |
| DIA. | 3    |     | 3.2   | 0.118 |       | 0.126 |



– E1 – *c2*→ D1 D Н *L2* THERMAL PAD *b2* SEATING PLANE A1→ GAUGE PLANE 0.25 *V2* 0079457/L

Figure 17. Drawing dimension D<sup>2</sup>PAK (type WOOSEOK-SUBCON.)

Table 7. D<sup>2</sup>PAK mechanical data

|      |      | TYPE STD-ST |       | TYPE | WOOSEOK-SU | BCON. |
|------|------|-------------|-------|------|------------|-------|
| DIM. | mm.  |             |       |      | mm.        |       |
|      | MIN. | TYP.        | MAX.  | MIN. | TYP.       | MAX.  |
| Α    | 4.40 |             | 4.60  | 4.30 |            | 4.70  |
| A1   | 0.03 |             | 0.23  | 0    |            | 0.20  |
| b    | 0.70 |             | 0.93  | 0.70 |            | 0.90  |
| b2   | 1.14 |             | 1.70  | 1.17 |            | 1.37  |
| С    | 0.45 |             | 0.60  | 0.45 | 0.50       | 0.60  |
| c2   | 1.23 |             | 1.36  | 1.25 | 1.30       | 1.40  |
| D    | 8.95 |             | 9.35  | 9    | 9.20       | 9.40  |
| D1   | 7.50 |             |       | 7.50 |            |       |
| E    | 10   |             | 10.40 | 9.80 |            | 10.20 |
| E1   | 8.50 |             |       | 7.50 |            |       |
| е    |      | 2.54        |       |      | 2.54       |       |
| e1   | 4.88 |             | 5.28  |      | 5.08       |       |
| Н    | 15   |             | 15.85 | 15   | 15.30      | 15.60 |
| J1   | 2.49 |             | 2.69  | 2.20 |            | 2.60  |
| L    | 2.29 |             | 2.79  | 1.79 |            | 2.79  |
| L1   | 1.27 |             | 1.40  | 1    |            | 1.40  |
| L2   | 1.30 |             | 1.75  | 1.20 |            | 1.60  |
| R    |      | 0.4         |       |      | 0.30       |       |
| V2   | 0°   |             | 8°    | 0°   |            | 3°    |

Note: The  $D^2PAK$  package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 18. D<sup>2</sup>PAK footprint recommended data

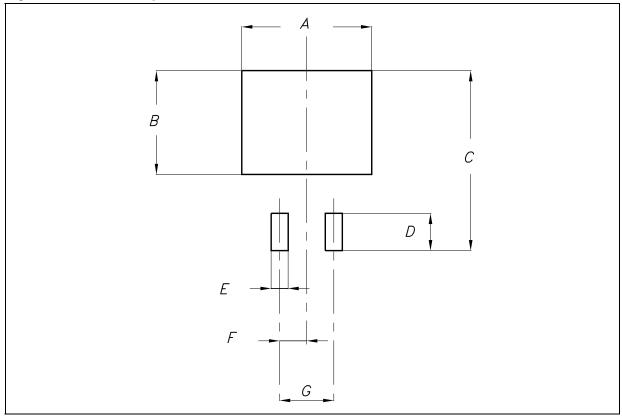
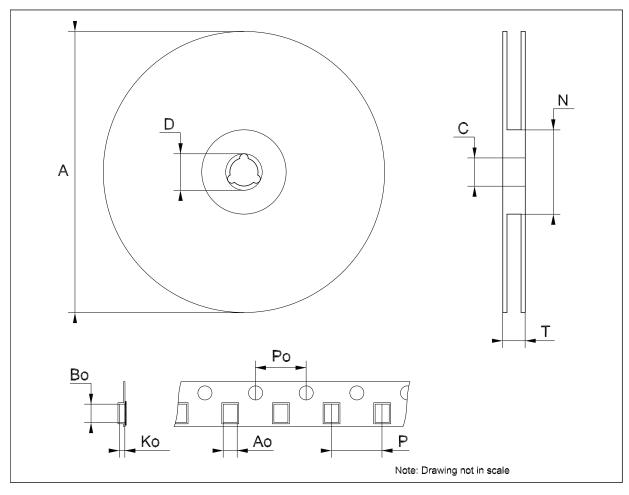




Table 8. Footprint data

| Values    |       |       |  |  |  |  |  |
|-----------|-------|-------|--|--|--|--|--|
| mm. inch. |       |       |  |  |  |  |  |
| A         | 12.20 | 0.480 |  |  |  |  |  |
| В         | 9.75  | 0.384 |  |  |  |  |  |
| С         | 16.90 | 0.665 |  |  |  |  |  |
| D         | 3.50  | 0.138 |  |  |  |  |  |
| E         | 1.60  | 0.063 |  |  |  |  |  |
| F         | 2.54  | 0.100 |  |  |  |  |  |
| G         | 5.08  | 0.200 |  |  |  |  |  |

# Tape & reel D<sup>2</sup>PAK-P<sup>2</sup>PAK-D<sup>2</sup>PAK/A-P<sup>2</sup>PAK/A mechanical data

| Dim.   |       | mm.   |       |       | inch. |       |
|--------|-------|-------|-------|-------|-------|-------|
| Dilli. | Min.  | Тур.  | Max.  | Min.  | Тур.  | Max.  |
| А      |       |       | 180   |       |       | 7.086 |
| С      | 12.8  | 13.0  | 13.2  | 0.504 | 0.512 | 0.519 |
| D      | 20.2  |       |       | 0.795 |       |       |
| N      | 60    |       |       | 2.362 |       |       |
| Т      |       |       | 14.4  |       |       | 0.567 |
| Ao     | 10.50 | 10.6  | 10.70 | 0.413 | 0.417 | 0.421 |
| Во     | 15.70 | 15.80 | 15.90 | 0.618 | 0.622 | 0.626 |
| Ko     | 4.80  | 4.90  | 5.00  | 0.189 | 0.193 | 0.197 |
| Ро     | 3.9   | 4.0   | 4.1   | 0.153 | 0.157 | 0.161 |
| Р      | 11.9  | 12.0  | 12.1  | 0.468 | 0.472 | 0.476 |



Revision history LM117/LM217/LM317

# 8 Revision history

Table 9. Document revision history

| Date        | Revision | Changes                                                                                                                                |
|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| 01-Sep-2004 | 10       | Mistake V <sub>REF</sub> ==> V <sub>O</sub> , tables 1, 4 and 5.                                                                       |
| 19-Jan-2007 | 11       | D <sup>2</sup> PAK mechanical data has been updated, add footprint data and the document has been reformatted.                         |
| 13-Jun-2007 | 12       | Change values $\Delta I_{ADJ}$ and $V_{REF}$ test condition of $I_O = 10$ mA to $I_{MAX} ==> I_O = 10$ mA to 500mA on <i>Table 5</i> . |
| 23-Nov-2007 | 13       | Added Table 1.                                                                                                                         |
| 06-Feb-2008 | 14       | Added: TO-220 mechanical data Figure 14 on page 15, Figure 15 on page 16 and Table 6 on page 17.                                       |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com