OUTPUT RAIL TO RAIL 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE

■OPERATING FROM $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$ to 5.5 V
■1W RAIL TO RAIL OUTPUT POWER @ $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{THD}=1 \%, \mathrm{f}=1 \mathrm{kHz}$, with 8Ω Load

■ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA)

■75dB PSRR @ 217Hz from 5V to 2.6V
■ULTRA LOW POP \& CLICK
UULTRA LOW DISTORTION (0.1\%)
■ UNITY GAIN STABLE
■ AVAILABLE IN SO8, MiniSO8 \& DFN8 3x3mm

DESCRIPTION

The TS4871 is an Audio Power Amplifier capable of delivering 1W of continuous RMS Ouput Power into 8Ω load @ 5 V .

This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5 V supply for a Pout $=250 \mathrm{~mW}$ RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided.

The TS4871 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components.

The unity-gain stable amplifier can be configured by external gain setting resistors.

APPLICATIONS

■ Mobile Phones (Cellular / Cordless)
■ Laptop / Notebook Computers

- PDAs

Portable Audio Devices

ORDER CODE

Part Number	Temperature	Package			Marking
			D	S	
TS4871	$-40,+85^{\circ} \mathrm{C}$	\bullet			48711
		\bullet	\bullet	4871	

[^0]PIN CONNECTIONS (Top View)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{1)}$	6	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage ${ }^{2)}$	G_{ND} to V_{CC}	V
$\mathrm{T}_{\text {oper }}$	Operating Free Air Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{thja}}$	Thermal Resistance Junction to Ambient ${ }^{3)}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	SO8	175	
	MiniSO8	215	70
QdF8	Power Dissipation	Internally Limited ${ }^{4)}$	
ESD	Human Body Model	2	kV
ESD	Machine Model	200	V
Latch-up	Latch-up Immunity	Class A	
	Lead Temperature (soldering, 10sec)	260	${ }^{\circ} \mathrm{C}$

1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed $V_{C C}+0.3 \mathrm{~V} / \mathrm{G}_{\mathrm{ND}}-0.3 \mathrm{~V}$
3. Device is protected in case of over temperature by a thermal shutdown active @ $150^{\circ} \mathrm{C}$
4. Exceeding the power derating curves during a long period, involves abnormal operating condition.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2.5 to 5.5	V
$\mathrm{~V}_{\mathrm{ICM}}$	Common Mode Input Voltage Range	G_{ND} to $\mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}$	V
$\mathrm{~V}_{\mathrm{STB}}$	Standby Voltage Input : Device ON Device OFF	$\mathrm{G}_{\mathrm{ND}} \leq \mathrm{V}_{\mathrm{STB}} \leq 0.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}-0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{STB}} \leq \mathrm{V}_{\mathrm{CC}}$	V
R_{L}	Load Resistor	$4-32$	Ω
$\mathrm{R}_{\text {thja }}$	Thermal Resistance Junction to Ambient ${ }^{1)}$		150
	SO8	190	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	MiniSO8	41	

1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 20)
2. When mounted on a 4 layers PCB

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 6 V}, \mathrm{GND}=\mathbf{0 V}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply Current No input signal, no load		5.5	8	mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1)}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, $\mathrm{RL}=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		260		mW
THD + N	$\begin{aligned} & \text { Total Harmonic Distortion + Noise } \\ & \text { Po }=200 \mathrm{~mW} \text { rms, } \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega \end{aligned}$		0.15		\%
PSRR	Power Supply Rejection Ratio ${ }^{2)}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega$, RFeed $=22 \mathrm{~K} \Omega$, Vripple $=200 \mathrm{mV}$ rms		75		dB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

1. Standby mode is actived when Vstdby is tied to Vcc
2. Dynamic measurements $-20^{*} \log (\mathrm{rms}($ Vout $) / \mathrm{rms}($ Vripple $)$). Vripple is the surimposed sinus signal to $\mathrm{Vcc} @ \mathrm{f}=217 \mathrm{~Hz}$

Components	Functional Description
Rin	Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc $=1 /(2 \times$ Pi \times Rin \times Cin $))$
Cin	Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed	Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs	Supply Bypass capacitor which provides power supply filtering
Cb	Bypass pin capacitor which provides half supply filtering
Cfeed	Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency $1 /(2 \times$ Pi \times Rfeed \times Cfeed) $)$
Rstb	Pull-up resistor which fixes the right supply level on the standby pin
Gv	Closed loop gain in BTL configuration $=2 \times$ (Rfeed / Rin)

REMARKS

1. All measurements, except PSRR measurements, are made with a supply bypass capacitor $C s=100 \mu \mathrm{~F}$.
2. External resistors are not needed for having better stability when supply @ Vcc down to 3 V . By the way, the quiescent current remains the same.
3. The standby response time is about $1 \mu \mathrm{~s}$.

Fig. 7 : Open Loop Frequency Response

Fig. 8 : Open Loop Frequency Response

Fig. 9 : Open Loop Frequency Response

Fig. 15 : Pout @ THD + N = 1\% vs Supply Voltage vs RL

Fig. 17 : Power Dissipation vs Pout

Fig. 19 : Power Dissipation vs Pout

Fig. 16 : Pout @ THD + N = 10\% vs Supply Voltage vs RL

Fig. 18 : Power Dissipation vs Pout

Fig. 20 : Power Derating Curves

Fig. 27 : THD + N vs Output Power

Fig. 29 : THD + N vs Output Power

Fig. 31 : THD + N vs Output Power

Fig. 28 : THD + N vs Output Power

Fig. 30 : THD + N vs Output Power

Fig. 32 : THD + N vs Output Power

Fig. 33 : THD + N vs Output Power

Fig. 35 : THD + N vs Output Power

Fig. 37 : THD + N vs Output Power

Fig. 34 : THD + N vs Output Power

Fig. 36 : THD + N vs Output Power

Fig. 38 : THD + N vs Output Power

Fig. 39 : THD + N vs Output Power

Fig. 41 : THD + N vs Output Power

Fig. 43 : THD + N vs Output Power

Fig. 40 : THD + N vs Output Power

Fig. 42 : THD + N vs Output Power

Fig. 44 : THD + N vs Output Power

Fig. 45 : THD + N vs Frequency

Fig. 47 : THD + N vs Frequency

Fig. 49 : THD + N vs Frequency

Fig. 46 : THD + N vs Frequency

Fig. 48 : THD + N vs Frequency

Fig. 50 : THD + N vs Frequency

Fig. 51 : THD + N vs Frequency

Fig. 53 : THD + N vs Frequency

Fig. 55 : THD + N vs Frequency

Fig. 52 : THD + N vs Frequency

Fig. 54 : THD + N vs Frequency

Fig. 56 : THD + N vs Frequency

Fig. 57 : THD + N vs Frequency

Fig. 59 : THD + N vs Frequency

Fig. 61 : THD + N vs Frequency

Fig. 58 : THD + N vs Frequency

Fig. 60 : THD + N vs Frequency

Fig. 62 : THD + N vs Frequency

Fig. 63 : THD + N vs Frequency

Fig. 65 : THD + N vs Frequency

Fig. 67 : THD + N vs Frequency

Fig. 64 : THD + N vs Frequency

Fig. 66 : THD + N vs Frequency

Fig. 68 : THD + N vs Frequency

Fig. 69 : Signal to Noise Ratio vs Power Supply with Unweighted Filter (20 Hz to 20 kHz)

Fig. 71 : Signal to Noise Ratio vs Power Supply with Weighted Filter type A

Fig. 73 : Signal to Noise Ratio Vs Power Supply with Unweighted Filter (20Hz to 20kHz)

Fig. 70 : Signal to Noise Ratio vs Power Supply with Weighted Filter Type A

Fig. 72 : Current Consumption vs Power Supply Voltage

Fig. 74 : Current Consumption vs Standby Voltage @ Vcc=5V

Fig. 75 : Current Consumption vs Standby Voltage @ Vcc=2.6V

Fig. 77 : Clipping Voltage vs Power Supply Voltage and Load Resistor

Fig. 79 : Vout1+Vout2 Unweighted Noise Floor

Fig. 76 : Current Consumption vs Standby Voltage @ Vcc = 3.3V

Fig. 78 : Clipping Voltage vs Power Supply Voltage and Load Resistor

Fig. 80 : Vout1+Vout2 A-weighted Noise Floor

APPLICATION INFORMATION
Fig. 81 : Demoboard Schematic

Fig. 82 : SO8 \& MiniSO8 Demoboard Components Side

Fig. 83 : SO8 \& MiniSO8 Demoboard Top Solder Layer

Fig. 84 : SO8 \& MiniSO8 Demoboard Bottom Solder Layer

The output power is:

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.

■ Gain In Typical Application Schematic (see page 1)

In flat region (no effect of Cin), the output voltage of the first stage is:

For the second stage : Vout2 = -Vout1 (V)

The differential output voltage is:

The differential gain named gain (Gv) for more convenient usage is:

Remark : Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive

BTL Configuration Principle

The TS4871 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single ended output amplifiers. Thus, we have :

Single ended output $1=$ Vout $1=$ Vout (V)
Single ended output $2=$ Vout2 $=-$ Vout (V)
And Vout1 - Vout2 $=2$ Vout (V)

\square Power dissipation and efficiency

Hypothesis:

- Voltage and current in the load are sinusoidal
(Vout and lout)
- Supply voltage is a pure DC source (Vcc)

Regarding the load we have:

$$
\text { VoUT }=\mathrm{V}_{\text {PEAK }} \sin \omega t(\mathrm{~V})
$$

and

$$
\text { IOUT }=\frac{\text { VOUT }}{R L}(A)
$$

and

$$
\text { POUT }=\frac{V_{P E A K}{ }^{2}}{2 R L}(W)
$$

Then, the average current delivered by the supply voltage is:

$$
\mathrm{ICC}_{\mathrm{AVG}}=2 \frac{\mathrm{VPEAK}}{\pi R \mathrm{~A}}(\mathrm{~A})
$$

The power delivered by the supply voltage is Psupply $=$ Vcc Icc $_{\text {AVG }}(\mathrm{W})$

Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W)

$$
\text { Pdiss }=\frac{2 \sqrt{2 \mathrm{Vcc}}}{\pi \sqrt{\mathrm{RL}}} \sqrt{\text { POUT }}-\operatorname{PoUT}(\mathrm{W})
$$

and the maximum value is obtained when:

$$
\frac{\partial \mathrm{Pdiss}}{\partial \mathrm{PouT}}=0
$$

and its value is:

$$
\text { Pdissmax }=\frac{2 \mathrm{Vcc}^{2}}{\pi^{2} \mathrm{R}_{\mathrm{L}}}(\mathrm{~W})
$$

Remark: This maximum value is only depending on power supply voltage and load values.

The efficiency is the ratio between the output power and the power supply

$$
\eta=\frac{\text { Pout }}{\text { Psupply }}=\frac{\pi V \text { PEAK }}{4 \mathrm{Vcc}}
$$

The maximum theoretical value is reached when Vpeak = Vcc, so

$$
\frac{\pi}{4}=78.5 \%
$$

Decoupling of the circuit

Two capacitors are needed to bypass properly the TS4871, a power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb .

Cs has especially an influence on the THD +N in high frequency (above 7 kHz) and indirectly on the power supply disturbances.
With $100 \mu \mathrm{~F}$, you can expect similar THD+N performances like shown in the datasheet.

If Cs is lower than $100 \mu \mathrm{~F}$, in high frequency increases, THD+N and disturbances on the power supply rail are less filtered.
To the contrary, if Cs is higher than $100 \mu \mathrm{~F}$, those disturbances on the power supply rail are more filtered.

Cb has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency.

If Cb is lower than $1 \mu \mathrm{~F}$, THD +N increase in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up
If Cb is higher than $1 \mu \mathrm{~F}$, the benefit on $\mathrm{THD}+\mathrm{N}$ in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curve : fig.12).

Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR (see fig. 13).

■ Pop and Click performance

Pop and Click performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor Cb .

Size of Cin is due to the lower cut-off frequency and PSRR value requested. Size of Cb is due to THD $+N$ and PSRR requested always in lower frequency.

Moreover, Cb determines the speed that the amplifier turns ON. The slower the speed is, the softer the turn ON noise is.

The charge time of Cb is directly proportional to

[^1]$$
\mathrm{C}_{\mathrm{IN}}=\frac{1}{2 \pi \mathrm{RinFCL}}=795 \mathrm{nF}
$$
which gives 16 Hz .
In Higher frequency we want $20 \mathrm{kHz}(-3 \mathrm{~dB}$ cut off frequency). The Gain Bandwidth Product of the TS4871 is 2 MHz typical and doesn't change when the amplifier delivers power into the load.
The first amplifier has a gain of:
$$
\frac{\text { Rfeed }}{\text { Rin }}=3
$$
and the theoretical value of the -3dB cut-off higher frequency is $2 \mathrm{MHz} / 3=660 \mathrm{kHz}$.
We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then:
$$
\mathrm{C}_{\text {FEED }}=\frac{1}{2 \pi \text { RFEEDFCH }}=265 \mathrm{pF}
$$

So, we could use for Cfeed a 220 pF capacitor value that gives 24 kHz .

Now, we can calculate the value of Cb with the formula $\tau \mathrm{b}=50 \mathrm{k} \Omega \times \mathrm{Cb} \gg$ in $=($ Rin + Rfeed $) \times$ Cin which permits to reduce the pop and click effects. Then $\mathrm{Cb} \gg 0.8 \mu \mathrm{~F}$.
We can choose for Cb a normalized value of $2.2 \mu \mathrm{~F}$ that gives good results in THD +N and PSRR.

In the following tables, you could find three another examples with values required for the demoboard.

Remark : components with (*) marking are optional.

Application $\mathrm{n}^{\circ} 1: 20 \mathrm{~Hz}$ to 20 kHz bandwidth and 6 dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
R8*	(Vcc-Vf_led)/If_led
C5	470 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9	Short Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
S1, S2, S6, S7	$2 m m$ insulated Plug 10.16 mm pitch
S8	3 pts connector 2.54 mm pitch
P1	PCB Phono Jack
D1*	Led 3mm
U1	TS4871ID or TS4871IS

Application $\mathrm{n}^{\circ} \mathbf{2}: 20 \mathrm{~Hz}$ to 20 kHz bandwidth and 20 dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	$110 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
R8	(Vcc-Vf_led)/If_led
C5	470 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF

Designator	Part Type
C9	Short Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
S1, S2, S6, S7	$2 m \mathrm{~mm}$ insulated Plug 10.16 mm pitch
S8	3 pts connector 2.54 mm pitch
P1	PCB Phono Jack
D1*	Led 3mm
U1	TS4871ID or TS4871IS

Application $\mathrm{n}^{\circ} \mathbf{3}: 50 \mathrm{~Hz}$ to 10 kHz bandwidth and 10dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	Short Circuit 0.125 W
R2	22k / 0.125W
R4	Short Cicuit
R6	$330 \mathrm{k} / 0.125 \mathrm{~W}$
R7	(Vcc-Vf_led)/If_led
R8*	470 pF
C2	150 nF
C5	$100 \mu F$
C6	100nF
C7	Short Circuit
C9	Short Circuit
C10	1 C12 $10.16 m m ~ i n s u l a t e d ~ P l u g ~$
S1, S2, S6, S7	3 pts connector $2.54 m m$ pitch
S8	PCB Phono Jack
P1	Led 3mm
D1*	TS4871ID or TS4871IS
U1	

Application $\mathrm{n}^{\circ} 4$: Differential inputs BTL power amplifier.

In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12.

We have also: $\mathrm{R} 4=\mathrm{R} 5, \mathrm{R} 1=\mathrm{R} 6, \mathrm{C} 4=\mathrm{C} 5$.

The gain of the amplifier is:

$$
\text { GVDIFF }=2 \frac{\mathrm{R} 1}{\mathrm{R} 4}
$$

For Vcc=5V, a 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier you could follow the bill of material below.

Components :

Designator	Part Type
R1	$110 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R5	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	$110 \mathrm{k} / 0.125 \mathrm{~W}$
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
R8*	(Vcc-Vf_led)/If_led
C4	470 nF
C5	470 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9	Short Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
D1*	Led 3mm
S1, S2, S6, S7	$2 m m$ insulated Plug $10.16 m m ~ p i t c h ~$
S8	3 pts connector 2.54mm pitch
P1, P2	PCB Phono Jack
U1	TS4871ID or TS4871IS

Note on how to use the PSRR curves (page 7)

We have finished a design and we have chosen the components values:

- Rin=Rfeed=22k Ω
- $\mathrm{Cin}=100 \mathrm{nF}$
- Cb=1 $\mu \mathrm{F}$

Now, on fig. 13, we can see the PSRR (input grounded) vs frequency curves. At 217 Hz we have a PSRR value of -36 dB .
In reality we want a value about -70 dB . So, we need a gain of 34 dB !
Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With $\mathrm{Cb}=100 \mu \mathrm{~F}$, we can reach the -70 dB value.

The process to obtain the final curve $(\mathrm{Cb}=100 \mu \mathrm{~F}$, $\mathrm{Cin}=100 \mathrm{nF}$, $\mathrm{Rin}=$ Rfeed $=22 \mathrm{k} \Omega$) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12. The measurement result is shown on the next figure.

Fig. 85 : PSRR changes with $\mathbf{C b}$

What is the PSRR ?

The PSRR is the Power Supply Rejection Ratio. It's a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output.

How do we measure the PSRR ?

Fig. 86 : PSRR measurement schematic

- Principle of operation

- We fixed the DC voltage supply (Vcc), the AC sinusoidal ripple voltage (Vripple) and no supply capacitor Cs is used

The PSRR value for each frequency is:

$$
\operatorname{PSRR}(\mathrm{dB})=20 \times \log _{10}\left\lceil\frac{\mathrm{Rms}\left(\mathrm{~V}_{\text {ripple }}\right)}{\operatorname{Rms}\left(\mathrm{Vs}_{+}-\mathrm{Vs}_{-}\right)}\right\rceil
$$

Remark: The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise.

■High/low cut-off frequencies

For their calculation, please check this "Frequency Response Gain vs Cin, \& Cfeed" graph:

PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
B	0.33		0.51	0.013		0.020
C	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
e		1.27			0.050	
H	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

PACKAGE MECHANICAL DATA

DIM.	mm.	MIN.	TYP	MAX.	MIN.	TYP.

\square

PACKAGE MECHANICAL DATA

	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.7				

\square

[^0]: MiniSO \& DFN only available in Tape \& Reel with T suffix(IST \& IQT) D = Small Outline Package (SO) - also available in Tape \& Reel (DT)

[^1]: the internal generator resistance $50 \mathrm{k} \Omega$.
 Then, the charge time constant for Cb is
 $\tau \mathrm{b}=50 \mathrm{k} \Omega \mathrm{xCb}$ (s)
 As Cb is directly connected to the non-inverting input (pin $2 \& 3$) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), Cin must be charged faster than Cb . The charge time constant of Cin is
 τ

