
SKU:SEN0465toSEN0476 (https://www.dfrobot.com/product-
2510.html)

(https://www.dfrobot.com/product-2510.html)

Introduction

This is a sensor that detects oxygen concentration and supports three output modes: analog, I2C,
and UART. The probe has been calibrated at the factory, which can quickly and accurately
measure the concentration of oxygen in the environment. Can be widely applied to fields like
portable devices, air quality monitoring devices, industries, mines, warehouses, and other spaces
where the air is not easy to circulate.

The probe adopts the electrochemical principle, has the characteristics of strong anti-interference
bili hi h bili hi h i i i d h i lif i l Th

https://www.dfrobot.com/product-2510.html
https://www.dfrobot.com/product-2510.html

ability, high stability, high sensitivity, etc., and the service life is as long as two years. The sensor
has 32 modifiable I2C addresses, an integrated temperature compensation algorithm, and a
threshold alarm function, It has good compatibility with mainstream main control devices such as
Arduino, ESP32, and Raspberry Pi. The easy-to-use Gravity interface, coupled with our sample

code, can quickly build an oxygen
concentration detector.

Features

Factory calibrated, accurate
measurement
High sensitivity, low power
consumption
Excellent stability and anti-
interference
Three output modes: I2C, UART
and analog
Long service life(2 years)
Compatible with 3.3~5.5V main

https://www.dfrobot.com/product-2510.html

p
controllers
32 modifiable I2C addresses
Reverse connection protection

Temperature compensation
Threshold alarm

Specification

Detection Gas: CO, O2, NH3, H2S, NO2, HCL, H2, PH3, SO2, O3, CL2, HF(Need to change
different probe)
Working Voltage: 3.3～5.5V DC
Working Current: <5mA
Output Signal: I2C, UART output (0~3V), analog voltage (see the characteristic parameters of
specific probe)
Working Temperature: -20～50℃
Working Humidity: 15～90%RH (non-condensing)
Storage Temperature: -20～50℃
S H idi 15 90%RH (d i)

https://www.dfrobot.com/product-2510.html

Storage Humidity: 15～90%RH (non-condensing)
Lifespan: >2 years (in the air)
Adapter Plate Size: 37×32mm

Characteristic Parameters

SKU SEN0465 SEN0466 SEN0467 SEN0468 SEN0469

Gas type O2 CO H2S Cl2 NH3

Detection
range

(0-25)%Vol (0-1000)ppm (0-100)ppm (0-20)ppm (0-100)p

Resolution 0.1%Vol 1ppm 1ppm 0.1ppm 1ppm

V0
voltage
output
range

(1.5-0)V (0.6-3)V (0.6-3)V (2-0)V (0.6-3)V

Vout1 1.0V@10%vol 0.9V@200ppm 1.5V@50ppm 1.2V@10ppm 1.4V@50p

SKU SEN0465 SEN0466 SEN0467 SEN0468 SEN0469Response
time (T90)

≤15S ≤30S ≤30S ≤60S ≤150S

SKU SEN0471 SEN0472 SEN0473 SEN0474 SEN0475

Gas type NO2 O3 H2 HCL HF

Detection
range

(0-20)ppm (0-10)ppm (0-1000)ppm (0-10)ppm (0-10)ppm

Resolution 0.1ppm 0.1ppm 1ppm 0.1ppm 0.1ppm

V0
voltage
output
range

(2-0)V (2-0)V (0.6-3)V (2-0)V (2-0)V

Vout1 1.3V@10ppm 0.7V@5ppm 1.3V@500ppm 0.7V@5ppm 0.7V@5ppm

Response
time (T90)

≤30S ≤120S ≤120S ≤60S ≤60S

Explanation of VO use:

VO: It means original voltage (linear) after amplifying circuit, rather than concentration value of
current environment.

Calculation method: concentration in the current environment N= 200/(Vout1-Vout0)*(Voutx-
Vout0)

Where Vout1 corresponds to Vout1 in the table and Vout0 corresponds to the voltage value of
the gas at 0 ppm in the table. Take CO as an example: zero point voltage Vout0 = 0.6V, Vout1 =
0.9V, the current voltage of VO Voutx = 1.2V, then the current concentration in the environment
N = 400ppm

Note: The analog output is the original uncalibrated voltage of the probe, the UART/I2C data is
factory calibrated, if there is no special requirement, it is recommended to use the calibrated
UART/I2C data.

Board Overview

(https://dfimg.dfrobot.com/nobody/wiki/617e7b52992ac13109305c38bd4fbd7c.png)
Smart Gas Sensor Terminal

Label Name Function description

1 D/T I2C data line SDA / UART data transmitting-TX

https://dfimg.dfrobot.com/nobody/wiki/617e7b52992ac13109305c38bd4fbd7c.png

Label Name Function description
g

2 C/R I2C clock line SCL / UART data receiving-RX

3 - GND -

4 + Power supply + (3.3-5V compatible)

Label Name Function description

1 VCC Positive power supply (3.3-5V compatible)

2 GND GND negative power supply

3 V0
The raw voltage output of the gas probe. You can develop your own
conversion algorithm based on the original output.

4 ALA
Threshold alarm function, the threshold can be set through API, when
exceeding this value, the pin will output high level.

5 NA Reserve custom pins, you can contact us for custom functions.

Tutorial for Arduino

Download the program to UNO and open the serial monitor to check the gas concentration.

Note:

The initial power-on requires more than 5 minutes of preheating. It is recommended to
preheat more than 24 hours if it has not been used for a long time.
After switching the communication mode or changing the I2C address, the system needs
to be powered off and on again.

Requirements

Hardware

DFRuino UNO R3 (https://www.dfrobot.com/product-838.html) x1
DFR0784 Smart Gas Sensor Terminal x1
Gas probe x1
Jumper wires

Software

https://www.dfrobot.com/product-838.html

Software

Arduino IDE (https://www.arduino.cc/en/Main/Software)
Download and install the DFRobot_GasSensor Library
(https://github.com/DFRobot/DFRobot_MultiGasSensor) (About how to install the
library? (https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0))

Acquire data in passive mode

Connection

https://www.arduino.cc/en/Main/Software
https://github.com/DFRobot/DFRobot_MultiGasSensor
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0

(https://dfimg.dfrobot.com/nobody/wiki/5b8919ea31cafb8d2ddbc0d0ee1627d6.png)

https://dfimg.dfrobot.com/nobody/wiki/5b8919ea31cafb8d2ddbc0d0ee1627d6.png

Sample code

Connect the module to the Arduino according to the connection diagram above. Of course,
you can also use it with Gravity I/O Expansion Board () to build the project prototype more
conveniently and quickly.
Set the DIP switch SEL on the sensor to 0, and use I2C communication by default.
The default I2C address is 0x74. If you need to modify the I2C address,You can configure the
hardware I2C address through the DIP switch on the module, or run the code to modify the
address group to modify the address. The corresponding relationship between the DIP
switch and the I2C address parameter is as follows:

ADDRESS_0: 0x77, A0=0, A1=0
ADDRESS_1: 0x76, A0=1, A1=0
ADDRESS_2: 0x75, A0=0, A1=1
ADDRESS_3: 0x74, A0=1, A1=1

Download and install the DFRobot_GasSensor Library
(https://github.com/DFRobot/DFRobot_MultiGasSensor) (About how to install the library?
(https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0))

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART
https://github.com/DFRobot/DFRobot_MultiGasSensor
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0

p
Open Arduino IDE and upload the following code to Arduino UNO.
Open the serial port monitor of Arduino IDE, adjust the baud rate to 115200, and observe
the serial port print result.

Statement

In this routine, the controller needs to request data from the sensor every time, and then the
sensor returns the data.
Default use I2C communication, mask #define I2C_COMMUNICATION in the code, and set the
dip switch SEL to 1, the sensor is connected to the corresponding port defined by the
controller, if use UNO, the blue line is connected to D3 and the green line is connected to
D2, if use ESP32, the blue line is connected to IO17 and the green line is connected to IO16.
After re-uploading the code, the whole system will be re-powered and will switch to UART
communication.
Turn off temperature compensation by default, modify the code
gas.setTempCompensation(gas.ON); , turn on temperature compensation after re-uploading

the code

https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0

/*!
 * @file initiativereport.ino
 * @brief The sensor actively reports all data
 * @n Experimental method: Connect the sensor communication pin to the main control, then
 * @n Communication mode selection, dial switch SEL:0: IIC, 1: UART
@n I2C address selection, the default I2C address is 0x74, A1 and A0 are combined into 4 t
 | A1 | A0 |
 | 0 | 0 | 0x77
 | 0 | 1 | 0x76
 | 1 | 0 | 0x75
 | 1 | 1 | 0x74 default i2c address
 * @n Experimental phenomenon: Print all data via serial port
*/
#include "DFRobot_MultiGasSensor.h"

//Enabled by default, use IIC communication at this time. Use UART communication when disa
#define I2C_COMMUNICATION

#ifdef I2C COMMUNICATION

#ifdef I2C_COMMUNICATION
#define I2C_ADDRESS 0x74
 DFRobot_GAS_I2C gas(&Wire ,I2C_ADDRESS);
#else
#if (!defined ARDUINO_ESP32_DEV) && (!defined __SAMD21G18A__)

/**
 UNO:pin_2-----RX
 pin_3-----TX
*/
 SoftwareSerial mySerial(2,3);
 DFRobot_GAS_SoftWareUart gas(&mySerial);
#else
/**
 ESP32:IO16-----RX
 IO17-----TX
*/
 DFRobot_GAS_HardWareUart gas(&Serial2); //ESP32HardwareSerial
#endif
#endif

void setup() {

 Serial.begin(115200);

hil (! b i ())

 while(!gas.begin())
 {
 Serial.println("NO Deivces !");
 delay(1000);
 }

 Serial.println("The device is connected successfully!");

 gas.changeAcquireMode(gas.PASSIVITY);
 delay(1000);

 gas.setTempCompensation(gas.OFF);
}

void loop() {

 Serial.print("Ambient ");
 Serial.print(gas.queryGasType());
 Serial.print(" concentration is: ");
 Serial.print(gas.readGasConcentrationPPM());
 Serial.println(" %vol");
 Serial.print("The board temperature is: ");
 Serial.print(gas.readTempC());
 Serial.println(" ℃");
 Serial.println();
d l (1000)

Result

Open the serial monitor to get the gas type, concentration and temperature.

The initial power-on requires more than 5 minutes of preheating. It is recommended to
preheat more than 24 hours if it has not been used for a long time.
After switching the communication mode and changing the I2C address, the system needs
to be powered off and on again.

 delay(1000);
}

 ()

Acquire data in initiative mode

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART

Connection

(https://dfimg.dfrobot.com/nobody/wiki/f51a4c58a71a062118ca7bdfeeae63ae.png)

https://dfimg.dfrobot.com/nobody/wiki/f51a4c58a71a062118ca7bdfeeae63ae.png

Sample code

Connect the module to the Arduino according to the connection diagram above. Of course,
you can also use it with Gravity I/O Expansion Board () to build the project prototype more
conveniently and quickly.

Set the DIP switch SEL on the sensor to 0, and use I2C communication by default.

The default I2C address is 0x74. If you need to modify the I2C address,You can configure the
hardware I2C address through the DIP switch on the module, or run the code to modify the
address group to modify the address. The corresponding relationship between the DIP
switch and the I2C address parameter is as follows:

ADDRESS_0: 0x77, A0=0, A1=0
ADDRESS_1: 0x76, A0=1, A1=0
ADDRESS_2: 0x75, A0=0, A1=1
ADDRESS_3: 0x74, A0=1, A1=1

Download and install the DFRobot GasSensor Library

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART
https://github.com/DFRobot/DFRobot_MultiGasSensor

Download and install the DFRobot_GasSensor Library
(https://github.com/DFRobot/DFRobot_MultiGasSensor) (About how to install the library?
(https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0))

Open Arduino IDE and upload the following code to Arduino UNO.

Open the serial port monitor of Arduino IDE, adjust the baud rate to 115200, and observe
the serial port print result.

Statement

In this routine, the sensor will actively return data once a second, and the controller will
receive and parse the data.

Default use I2C communication, mask `#define I2C_COMMUNICATION in the code, and set
the dip switch SEL to 1, the sensor is connected to the corresponding port defined by the
controller, if use UNO, the blue line is connected to D3 and the green line is connected to
D2, if use ESP32, the blue line is connected to IO17 and the green line is connected to IO16.
After re-uploading the code, the whole system will be re-powered and will switch to UART
communication.

Turn off temperature compensation by default, modify the code
gas.setTempCompensation(gas.ON); , turn on temperature compensation after re-uploading

https://github.com/DFRobot/DFRobot_MultiGasSensor
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0

the code

/*!
 * @file readGasConcentration.ino
 * @brief Obtain the corresponding gas concentration in the current environment and outpu
 * @n Experiment method: Connect the sensor communication pin to the main control and bur
 * @n Communication mode selection, dial switch SEL:0: IIC, 1: UART
 @n i2c address selection, the default i2c address is 0x74, A1 and A0 are combined into
 | A1 | A0 |
 | 0 | 0 | 0x77
 | 0 | 1 | 0x76
 | 1 | 0 | 0x75
 | 1 | 1 | 0x74 default i2c address
 * @n Experimental phenomenon: You can see the corresponding gas concentration value of t
 */
#include "DFRobot_MultiGasSensor.h"

//Enabled by default, use IIC communication at this time. Use UART communication when disa
#define I2C_COMMUNICATION

#ifdef I2C COMMUNICATION

#ifdef I2C_COMMUNICATION
#define I2C_ADDRESS 0x74
DFRobot_GAS_I2C gas(&Wire, I2C_ADDRESS);
#else
#if (!defined ARDUINO_ESP32_DEV) && (!defined __SAMD21G18A__)

/**
 UNO:pin_2-----RX
 pin_3-----TX
*/
SoftwareSerial mySerial(2, 3);
DFRobot_GAS_SoftWareUart gas(&mySerial);
#else
/**
 ESP32:IO16-----RX
 IO17-----TX
*/
DFRobot_GAS_HardWareUart gas(&Serial2); //ESP32HardwareSerial
#endif
#endif

void setup() {

 Serial.begin(115200);

hil (! b i ())

 while(!gas.begin())
 {
 Serial.println("NO Deivces !");
 delay(1000);
 }

 gas.setTempCompensation(gas.OFF);

 gas.changeAcquireMode(gas.INITIATIVE);
 delay(1000);
}

void loop() {
 if(true==gas.dataIsAvailable())
 {
 Serial.println("========================");
 Serial.print("gastype:");
 Serial.println(AllDataAnalysis.gastype);
 Serial.println("------------------------");
 Serial.print("gasconcentration:");
 Serial.print(AllDataAnalysis.gasconcentration);
 if (AllDataAnalysis.gastype.equals("O2"))
 Serial.println(" %VOL");
 else

S i l i tl (" PPM")

Result

Open the serial monitor, then you can get the corresponding gas concentration.

The initial power-on requires more than 5 minutes of preheating. It is recommended to
preheat more than 24 hours if it has not been used for a long time.

After switching the communication mode and changing the I2C address, the system needs
to be powered off and on again.

 Serial.println(" PPM");
 Serial.println("------------------------");
 Serial.print("temp:");
 Serial.print(AllDataAnalysis.temp);
 Serial.println(" ℃");

 Serial.println("========================");
 }
 delay(1000);
}

 ()

Threshold alarm function

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART

Connection

(https://dfimg.dfrobot.com/nobody/wiki/28bbfa6d627f27af8ec05e30afbef3c8.png)

https://dfimg.dfrobot.com/nobody/wiki/28bbfa6d627f27af8ec05e30afbef3c8.png

Sample code

Connect the module to the Arduino according to the connection diagram above. Of course,
you can also use it with Gravity I/O Expansion Board () to build the project prototype more
conveniently and quickly.

Set the DIP switch SEL on the sensor to 0, and use I2C communication by default.

The default I2C address is 0x74. If you need to modify the I2C address,You can configure the
hardware I2C address through the DIP switch on the module, or run the code to modify the
address group to modify the address. The corresponding relationship between the DIP
switch and the I2C address parameter is as follows:

ADDRESS_0: 0x77, A0=0, A1=0
ADDRESS_1: 0x76, A0=1, A1=0
ADDRESS_2: 0x75, A0=0, A1=1
ADDRESS_3: 0x74, A0=1, A1=1

Download and install the DFRobot GasSensor Library

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART
https://github.com/DFRobot/DFRobot_MultiGasSensor

Download and install the DFRobot_GasSensor Library
(https://github.com/DFRobot/DFRobot_MultiGasSensor) (About how to install the library?
(https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0))

Open Arduino IDE and upload the following code to Arduino UNO.

Open the serial port monitor of Arduino IDE, adjust the baud rate to 115200, and observe
the serial port print result.

https://github.com/DFRobot/DFRobot_MultiGasSensor
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0

/*!
 * @file setThresholdAlarm.ino
 * @brief Set the threshold alarm of the sensor
 * @n Experiment method: Connect the sensor communication pin to the main control and bur
 * @n Communication mode selection, dial switch SEL:0: IIC, 1: UART
*/
#include "DFRobot_MultiGasSensor.h"

//Enabled by default, use IIC communication at this time. Use UART communication when disa
#define I2C_COMMUNICATION

#ifdef I2C_COMMUNICATION
#define I2C_ADDRESS 0x77
 DFRobot_GAS_I2C gas(&Wire ,I2C_ADDRESS);
#else
#if (!defined ARDUINO_ESP32_DEV) && (!defined __SAMD21G18A__)
/**
 UNO:pin_2-----RX

pin 3 TX

 pin_3-----TX
*/
 SoftwareSerial mySerial(2, 3);
 DFRobot_GAS_SoftWareUart gas(&mySerial);
#else

/**
 ESP32:IO16-----RX
 IO17-----TX
*/
 DFRobot_GAS_HardWareUart gas(&Serial2); //ESP32HardwareSerial
#endif
#endif

#define ALA_pin 4

void setup() {

 Serial.begin(115200);

 while(!gas.begin())
 {
 Serial.println("NO Deivces !");
 delay(1000);
 }

 while (!gas.changeAcquireMode(gas.PASSIVITY))
 {
 delay(1000);
 }

 Serial.println("change acquire mode success!");

 while (!gas.setThresholdAlarm(gas.ON, 2, gas.HIGH_THRESHOLD_ALA ,gas.queryGasType()))
 {
 Serial.println("Failed to open alarm!");
 delay(1000);
 }
 pinMode(ALA_pin,INPUT);
}

void loop() {

 Serial.print(gas.queryGasType());
 Serial.print(":");
 Serial.println(gas.readGasConcentrationPPM());
 if (digitalRead(ALA_pin) == 1)
 {
 Serial.println("warning!!!");
 }

l

Result

-*After uploading the code successfully, open the serial monitor and you can observe the alarm
message. *

-ALA outputs low level by default when no alarm is triggered. Modify the HIGH_THRESHOLD_ALA
parameter in the gas.setThresholdAlarm function to LOW_THRESHOLD_ALA , then ALA outputs
high level when no alarm is triggered

 else
 {
 Serial.println("nolmal!!!");
 }

 delay(200);
}

 ()

API description

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART

DFR0784 Gravity: Electrochemical Smart Gas Sensor Terminal () There are two data reading
modes: active upload and passive response. The factory default is active upload mode, and users
can adjust them in the code according to their needs.

Mode selection function "changeAcquireMode()"

Modify the parameters in brackets of the "changeAcquireMode()" function to adjust the data
sending mode.

"INITIATIVE" is the active upload mode. In the active upload mode, the sensor will automatically
upload parameters every 1 second;

"PASSIVITY" is the passive response mode. In the passive response mode, the sensor will
feedback the parameters only every time the data reading function is called.

gas.changeAcquireMode(gas.INITIATIVE)
/*
 gas.INITIATIVE // Active upload mode
 gas.PASSIVITY // Passive response mode
*/

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART

Set the probe type function "setGasType()"

Set the probe type by the "setGasType()" function.

Read the probe type function "queryGasType()"

Through the "queryGasType()" function, You can get the type of current gas probe.

For probe compatible types and corresponding parameters, please refer to the table below.

Gas type CO O2 NH3 H2S NO2 HCL

Detection range
(0-

1000)ppm
(0-

25)%VOL
(0-

100)ppm
(0-

100)ppm
(0-

20)ppm
(0-

10)ppm

R l ti 1 0 1%VOL 1 1 0 1 0 1

gas.setGasType(/*Gas type*/gas.O2);

gas.queryGasType();

Gas type CO O2 NH3 H2S NO2 HCL
Resolution 1ppm 0.1%VOL 1ppm 1ppm 0.1ppm 0.1ppm

V0 voltage
output range

(0.6-3)V (1.5-0)V (0.6-3)V (0.6-3)V (2-0)V (2-0)V

Response time
(T90)

≤30S ≤15S ≤150S ≤30S ≤30S ≤60S

Gas type H2 PH3 SO2 O3 CL2 HF

Detection range
(0-

1000)ppm
(0-

1000)ppm
(0-

20)ppm
(0-

10)ppm
(0-

20)ppm
(0-

10)ppm

Resolution 1ppm 0.1ppm 0.1ppm 0.1ppm 0.1ppm 0.1ppm

V0 voltage output
range

(0.6-3)V (0.6-3)V
(0.6-
3)V

(2-0)V (2-0)V (2-0)V

Response time
(T90)

≤120S ≤30S ≤30S ≤120S ≤60S ≤60S

Gas concentration reading function "readGasConcentrationPPM()"

The feedback gas concentration value of the gas sensor can be read through the
"readGasConcentrationPPM()" function.

Temperature reading function "readTempC()"

The onboard temperature sensor data can be read through the "readTempC()" function.

Voltage reading function "getSensorVoltage()"

The original voltage output V0 of the gas probe can be read through the "getSensorVoltage()"
function

gas.readGasConcentrationPPM();

gas.readTempC();

function.

Configure temperature compensation function "setTempCompensation()"

You can enable/disable the temperature compensation function through the
"setTempCompensation()" function.

Threshold alarm function "setThresholdAlarm()"

You can configure the threshold alarm information through the "setThresholdAlarm()" function

gas.getSensorVoltage();

gas.setTempCompensation();
/*
 gas.ON Turn on
 gas.OFF Turn off
*/

I2C address group configuration function "changeI2cAddrGroup()"

You can configure the I2C address group code and switch between different address groups
through the "changeI2cAddrGroup()" function.

In order to prevent address conflicts when using multiple sensors, we have prepared 8 groups
with a total of 23 addresses. If necessary, You can use "change sensor iic addr.ino" in the library

gas.setThresholdAlarm(gas.ON, 200, gas.LOW_THRESHOLD_ALA ,gas.queryGasType());
/*
 gas.ON Turn on
 gas.OFF Turn off
 200 Set threshold
 gas.LOW_THRESHOLD_ALA Jump to low level when alarming
 gas.HIGH_THRESHOLD_ALA Jump to high level when alarming
 gas.queryGasType() Set alarm gas type
*/

with a total of 23 addresses. If necessary, You can use change_sensor_iic_addr.ino in the library
file "example",to switch by modifying the group serial number configuration of
"changeI2cAddrGroup()". After the serial port information displays "IIC addr change success!",
power on again.

S i l l i l

gas.changeI2cAddrGroup(i);
 /*
 i Group number

 //Group serial number and DIP switch configuration table
 A0 A1Dial level 00 01 10 11
 Group number Group address
 1 0x60 0x61 0x62 0x63
 2 0x64 0x65 0x66 0x67
 3 0x68 0x69 0x6A 0x6B
 4 0x6C 0x6D 0x6E 0x6F
 5 0x70 0x71 0x72 0x73
 6（Default address group） 0x74 0x75 0x76 0x77
 7 0x78 0x79 0x7A 0x7B
 8 0x7C 0x7D 0x7E
 */

Serial port protocol usage tutorial

Through the UART serial communication protocol, you can connect DFR0784 Gravity:
Electrochemical Smart Gas Sensor Terminal () to any controller with UART for data reading and
sensor configuration. Note: At this time, the SEL end of the DIP switch on the sensor must be
placed in the "1" position

Serial port parameter setting

Baud rate 9600

Data bit 8 bit

Check bit 1 bit

Communication protocol description

https://wiki.dfrobot.com/SKU_SEN0465toSEN0476_Gravity_Gas_Sensor_Calibrated_I2C_UART

① 0x78——Modify terminal communication mode

The terminal has two communication modes, active uploading and question and answer. The

factory default is active uploading mode, and data is sent every 1s.

Send

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte

Start
bit

addr Command
Communication

mode
-- -- -- --

Che
valu

0xFF 0x01 0x78

Active upload
mode: 0x03

Question and
answer mode:

0x04

0x00 0x00 0x00 0x00
0x8
0x8

EXP.FF 01 78 03 00 00 00 00 84 (switch to initiative mode)

EXP.FF 01 78 04 00 00 00 00 83 (switch to passive mode)

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Start
bit

Command
Back to

calibration
-- -- -- -- --

Check
value

0xFF 0x78

Success:
0x01

Failure:
0x00

0x00 0x00 0x00 0x00 0x00
0x87
0x88

EXP.FF 78 01 00 00 00 00 00 87

② Initiative mode，Data Format

In the active upload mode, the terminal will return data every 1s. The data format is as follows.

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Start
bit

Command
Gas

concentration
high bit

Gas
concentration

low bit

Gas
type

Decimal
places

Temperature
value
High

0xFF 0x88 0x00 0x00 0x00 0x00 0x00

Note:

Gas concentration value = (high gas concentration x 256 + low gas concentration) x
resolution
The decimal place is 0, the resolution is 1; the decimal place is 1, the resolution is 0.1; the
decimal place is 2, the resolution is 0.01
For the calculation method of temperature value, please refer to the sample code below:
"Calculation of temperature value"

p

Gas Type Table

Gas Type Command Gas Type Command

NH3 0x02 SO2 0x2B

H2S 0x03 NO2 0x2C

CO 0x04 HCL 0x2E

O2 0x05 CL2 0X31

H2 0x06 HF 0x33

O3 0x2A PH3 0x45

③ 0x86——Passive mode,Read gas concentration data

In the question and answer mode, you need to send commands to read various parameters of
the terminal. The method of reading the gas concentration is as follows.

Send

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Start
bit

addr Command -- -- -- -- --
Check
value

0xFF 0x01 0x86 0x00 0x00 0x00 0x00 0x00 0x79

EXP.FF 01 86 00 00 00 00 00 79

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

Start
bit

Command
Gas

concentration
high bit

Gas
concentration

low bit

Gas
type

Decimal
places

-- --

0xFF 0x86 0x00 0x00 0x00 0x00 0x00 0x00

EXP.FF 86 00 00 00 00 00 00 7A

Note:

Gas concentration value = (high gas concentration x 256 + low gas concentration) x
resolution
The decimal place is 0, the resolution is 1; the decimal place is 1, the resolution is 0.1; the
decimal place is 2, the resolution is 0.01

④ 0x87——Passive mode,Read temperature data

In the question and answer mode, you need to read various parameters of the terminal by
sending commands. The terminal integrates the thermistor, which can obtain the real-time
temperature of the terminal. The way to read the terminal temperature is as follows.

Send

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

St t Ch k

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8
Start
bit

addr Command -- -- -- -- --
Check
value

0xFF 0x01 0x87 0x00 0x00 0x00 0x00 0x00 0x78

EXP.FF 01 87 00 00 00 00 00 78

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

Start
bit

Command
Temperature

data
high bit

Temperature
data

low bit
-- -- -- --

0xFF 0x87 0x00 0x00 0x00 0x00 0x00 0x00

EXP.FF 87 00 00 00 00 00 00 79

Note:

For the calculation method of temperature value, please refer to the sample code below:

"Calculation of temperature value"

⑤ 0x88——Passive mode,Read temperature and gas concentration data

In the question and answer mode, you need to read various parameters of the terminal by
sending commands, and the way to read the temperature and gas concentration data of the
terminal is as follows.

Send

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Start
bit

addr Command -- -- -- -- --
Check
value

0xFF 0x01 0x88 0x00 0x00 0x00 0x00 0x00 0x77

EXP.FF 01 88 00 00 00 00 00 77

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6
Start
bit

Command
Gas

concentration
high bit

Gas
concentration

low bit

Gas
type

Decimal
places

Temperature
value
High

0xFF 0x88 0x00 0x00 0x00 0x00 0x00

EXP. FF 88 00 00 00 00 00 00 78

Note:

Gas concentration value = (high gas concentration x 256 + low gas concentration) x
resolution
The decimal place is 0, the resolution is 1; the decimal place is 1, the resolution is 0.1; the
decimal place is 2, the resolution is 0.01
For the calculation method of temperature value, please refer to the sample code below:
"Calculation of temperature value"

⑥ 0x89——Configure threshold alarm function

⑥ g

The terminal has a threshold alarm function, the alarm threshold and judgment logic can be
configured. The configuration method is as follows,After the configuration is successful, the
entire system needs to be powered on again to take effect.

Note: When no external controller is connected and only the sensor is used to achieve this
function, the sensor must be set to active upload mode after the parameters related to the
threshold alarm function are configured.

Send

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte

Start
bit

Empty Command
Function
switch
setting

Alarm
concentration

threshold
high bit

Alarm
concentration

threshold
low bit

-- --

0xFF 0x01 0x89

On:
0x01
Off:
0x00

0x00 0x00 0x00 0x0

EXP. FF 01 89 00 00 05 00 00 71 (turn off the alarm function)

EXP. FF 01 89 01 00 05 00 00 70 (open the alarm function)
Please refer to ⑤ for how to calculate the concentration.

Return

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Start
bit

Command
Return

configuration
result

Function
switch
status

Alarm
concentration

threshold
high bit

Alarm
concentration

threshold
low bit

--

0xFF 0x89
Success:

0x01
Failure: 0x00

On:
0x01
Off:
0x00

0x00 0x00 0x00

To configure the threshold alarm by code using a controller such as Raspberry Pi, you can use

o co gu e t e t es o d a a by code us g a co t o e suc as aspbe y , you ca use
this python code: GAS_ALA.zip
(https://img.dfrobot.com.cn/wiki/5cabf4771804207b131ae8cb/4511aa3ce95c0c0ac3224b59f90
dbf75.zip)

Checksum calculation

Check value = (inverted (byte 1 + byte 2 + ··· ··· + byte 7) + 1

The reference routine is as follows:

https://img.dfrobot.com.cn/wiki/5cabf4771804207b131ae8cb/4511aa3ce95c0c0ac3224b59f90dbf75.zip

/**
* Function name: unsigned char FucCheckSum(uchar *i,ucharln)
* Function description: Sum check (reverse the sum of 1\2\3\4\5\6\7 of the sending and rec
* Function description: reverse the sum of the array element 1 to the penultimate element
**/
char data[] = {0xFF,0x01,0x89,0x00,0x00,0x05,0x00,0x00};

unsigned char FucCheckSum(unsigned char *i,unsigned char ln)
{
 unsigned char j,tempq=0;
 i+=1;
 for(j=0;j<(ln-2);j++)
 {
 tempq+=*i;
 i++;
 }
 tempq=(~tempq)+1;
 return(tempq);
}

Calculation of temperature value

}

void setup() {
 Serial.begin(115200);
 Serial.println(FucCheckSum(data,8),HEX);

}

void loop() {

}

Precautions for use

byte Temp_H = 0x01;//Temperature data high bit
byte Temp_L = 0xD9;//Temperature data low bit

void setup() {
 Serial.begin(115200);
 uint16_t temp_ADC = (Temp_H << 8) + Temp_L;
 float Vpd3 = 3 * (float)temp_ADC / 1024;
 float Rth = Vpd3 * 10000 / (3 - Vpd3);
 float Temp = 1 / (1 / (273.15 + 25) + 1 / 3380.13 * log(Rth / 10000)) - 273.15;
 Serial.println(Temp);
}

void loop() {

}

It is forbidden to plug or unplug the probe with power on.
It is forbidden to directly solder the pins of the module, but the sockets of the pins can be
soldered.

The module should avoid contact with organic solvents (including silica gel and other
adhesives), paints, pharmaceuticals, oils and high-concentration gases.
The module must not be subjected to excessive shock or vibration.
The module needs to be warmed up for more than 5 minutes when powered on for the first
time. It is recommended to warm up for more than 24 hours if it has not been used for a
long time.
Do not apply this module to systems involving personal safety.
Do not install the module in environment with strong air convection.
Do not leave the module in high-concentration organic gas for a long time.
The data returned by the serial port of the module is the real-time concentration value in the
current environment. If there is no standard gas, please do not try the calibration command.
This command will clear the calibrated data, and the data returned by the serial port will be
inaccurate.
To judge whether the module communication is normal, it is recommended to use a USB to
TTL tool (communication level 3V) to observe and judge according to the communication

TTL tool (communication level 3V) to observe and judge according to the communication
protocol through the serial debugging assistant software.

FAQ
For any questions, advice or cool ideas to share, please visit the DFRobot Forum
(https://www.dfrobot.com/forum/).

More Documents

DFRobot-Electrochemical Module .pdf
(https://dfimg.dfrobot.com/nobody/wiki/109c27f066f92d0a9d117e7b15663f97.pdf)

Dimension.pdf
(https://dfimg.dfrobot.com/nobody/wiki/c1c65716cf68166ccd23e2b2809a204c.pdf)

DFshopping_car1.png Get Smart Gas Sensor Terminal (https://www.dfrobot.com/product-
2510.html) from DFRobot Store or DFRobot Distributor. (https://www.dfrobot.com/index.php?
route=information/distributorslogo)

Turn to the Top

https://www.dfrobot.com/forum/
https://dfimg.dfrobot.com/nobody/wiki/109c27f066f92d0a9d117e7b15663f97.pdf
https://dfimg.dfrobot.com/nobody/wiki/c1c65716cf68166ccd23e2b2809a204c.pdf
https://www.dfrobot.com/product-2510.html
https://www.dfrobot.com/index.php?route=information/distributorslogo

