multicomp PRO

Absolute Maximum Ratings

Parameter	Symbol	Values	Unit
Collector Base Voltage	V _{CBO}	60	
Collector Emitter Voltage	V _{CEO}	00	V
Emitter Base Voltage	V _{EBO}	5	
Collector Current	Ι _c	4	٨
Base Current	I _B	0.1	A
Total Power Dissipation at T _a = 25°C Derate above 25°C	р	1.25 10	W mW/°C
Total Power Dissipation at T _C = 25°C Derate above 25°C	۳ _D	40 0.32	W W/°C
Operating and Storage Junction Temperature Range	T _j , T _{stg}	-55 to +150	°C
Thermal Resistance			
Junction to Case	R _{th (i-c)}	3.13	°C/M
Junction to Ambient in Free Air	R _{th (i-a)}	100	0/11

Electrical Characteristics ($T_c = 25^{\circ}C$ unless specified otherwise)

Symbol	Test Condition	Min.	Max.	Unit
V _{CEO} *	I _C = 50mA, I _B = 0	60	-	V
I _{CEO} I _{CBO}	V_{CE} = Half Rated V_{CEO} , I_B = 0 V_{CB} = Rated V_{CBO} , I_E = 0	_	500 0.2	μA mA
I _{сво}	V_{CB} = Rated V_{CBO} , I_{E} = 0 T_{C} = 100°C		2	mA
I _{EBO}	V _{EB} = 5V, I _C = 0	-	2	mA
V _{CE (sat)} *	I _C = 1.5A, I _B = 6mA I _C = 2A, I _B = 8mA	-	2.5 2.8	M
V _{EB (on)} *	$I_{C} = 1.5A, V_{CE} = 3V$ $I_{C} = 2A, V_{CE} = 3V$	-	2.5 2.5	V
h _{FE} *	$I_{C} = 1.5A, V_{CE} = 3V$ $I_{C} = 2A, V_{CE} = 3V$	750 750	-	-
h _{fe}	I _C = 1.5A, V _{CE} = 3V f = 1MHz	1	-	-
	Symbol V _{CEO} * I _{CEO} I _{CBO} I _{CBO} V _{CE} (sat)* V _{EB} (on)* h _{FE} * h _{fe}	$\begin{array}{ c c c c } \hline Symbol & Test Condition \\ \hline V_{CEO}^{*} & I_{C} = 50 mA, I_{B} = 0 \\ \hline V_{CE} = Half Rated V_{CEO}, I_{B} = 0 \\ \hline V_{CB} = Rated V_{CBO}, I_{E} = 0 \\ \hline V_{CB} = Rated V_{CBO}, I_{E} = 0 \\ \hline V_{CB} = Rated V_{CBO}, I_{E} = 0 \\ \hline V_{CB} = 100^{\circ}C \\ \hline I_{EBO} & V_{EB} = 5V, I_{C} = 0 \\ \hline V_{CE (sat)}^{*} & I_{C} = 1.5A, I_{B} = 6mA \\ \hline I_{C} = 2A, I_{B} = 8mA \\ \hline V_{EB (on)}^{*} & I_{C} = 1.5A, V_{CE} = 3V \\ \hline I_{C} = 2A, V_{CE} = 3V \\ \hline I_{C} = 2A, V_{CE} = 3V \\ \hline I_{C} = 2A, V_{CE} = 3V \\ \hline I_{C} = 1.5A, V_{CE} = 3V \\ \hline I_{C} = 1.5A $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

*Pulse Test : Pulse Width = ≤300µs, Duty Cycle = ≤2%.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Pin Configuration:

1. Emitter

2. Collector

3. Base

multicomp PRO

Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows, the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows, the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150°C ~ 170°C 60-180 seconds	150°C ~ 200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.

Recommended Wave Solder Profiles

The recommended solder profile for devices with Pb-free terminal plating where a Pb-free solder is used.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

multicomp PRO

Wave Profile in Tabular Form

Profile Features	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~200°C/Second	~200°C/Second
Heating rate during Preheat	Typical 1-2, Max. 4°C/Sec.	Typical 1-2, Max. 4°C/Sec.
Final Preheat Temperature	Within 125°C of solder Temp.	Within 125°C of solder Temp.
Peak Temperature	235°C	260°C
Time within +0 -5°C of actual Peak	10 Seconds	10 Seconds
Ramp-Down Rate	5°C/Second Max.	5°C/Second Max.

Recommended Manual Soldering

3 Sec at 350°C or 10 Sec at 260°C for Sn/Pb System

Pin Configuration:

- 1. Emitter
- 2. Collector
- 3. Base

Dimensions	Min.	Max.
A	7.4	7.8
В	10.5	10.8
С	2.4	2.7
D	0.7	0.9
E	2.25 (Typical)	
F	0.49	0.75
G	4.5 (Typical)	
L	15.7 (Typical)	
М	1.27 (Typical)	
N	3.75 (Typical)	
Р	3	3.2
S	2.5 (Typical)	

Part Number Table

Description	Part Number	
Darlington Transistor, TO-126	BD678	

Dimensions : Millimetres

Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

