PXIe-6570 Specifications

Contents

PXIe-6570 Specifications

These specifications apply to the PXIe-6570. When using the PXIe-6570 in the Semiconductor Test System, refer to the **Semiconductor Test System** Specifications.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Operating temperature of 0 °C to 45 °C
- Operating temperature within ±5 °C of the last self-calibration temperature
- Recommended calibration interval of 1 year. The PXIe-6570 will not meet specifications unless operated within the recommended calibration interval.
- DUT Ground Sense (DGS) same potential as the Ground (GND) pins

Note The DGS feature is only available on PXIe-6570 module revisions 158234C-**xx**L or later.

- Chassis fans set to the highest setting if the PXI Express chassis has multiple fan speed settings
- 30-minute warmup time before operation

Note When the pin electronics on the PXIe-6570 are in the disconnect state, some I/O protection and sensing circuitry remain connected. Do not subject the PXIe-6570 to voltages beyond the supported measurement range.

General

Channel count		32
Multi-site resources per instrument		
NI-Digital 16.0		4
NI-Digital 17.0 and later		8
System channel count ^[1]		256
Large Vector Memory (LVM)		128M vectors
History RAM (HRAM)		
NI-Digital 17.5 and earlier	1,023 cycles	
NI-Digital 18.0 and later	(8,192/N sites)-1 cycles	i
Maximum allowable offset (DGS minus GND)		±300 mV

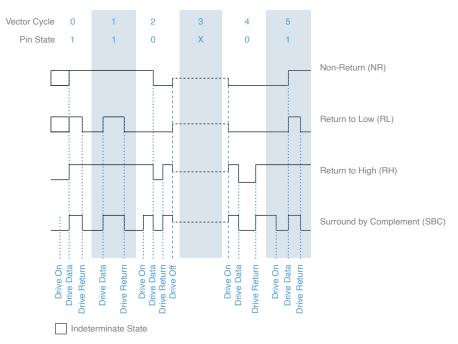
Supported measurement range[2]	-2 V to 7 V[3]

Timing

Vector Timing

Maximum vector rate	2	100 MHz	
Vector period range		10 ns to 40 μs (100 MHz to 25 kHz)	
Vector period resolut	ion	38 fs	
Timing control Vector period	Vector-by-vect	Vector-by-vector on the fly	
Edge timing	Per channel, ve	Per channel, vector-by-vector on the fly	
Drive formats	Per channel, ve	Per channel, vector-by-vector on the fly	

Clocking


Master clock source	PXIe_CLK100[4]
Sequencer clock domains	One (independent sequencer clock domains on a single instrument not supported)

Drive and Compare Formats

Drive formats ^[5]		

100 MHz maximum vector rate	Non-Return (NR), Return to Low (RL), Return to High (RH)	
50 MHz maximum vector rate	Surround by Complement (SBC)[6]	
Compare formats		Edge strobe
Edge Multipliers ^[5]		
NI-Digital 17.5 and earlier		1x
NI-Digital 18.0 and later		1x, 2x

Figure 1. Drive Formats

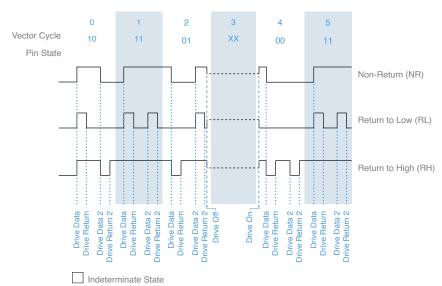


Figure 2. 2x Mode Drive Formats

Pin Data States

Pin States

- 0 Drive zero.
- 1 Drive one.
- L Compare low.
- H Compare high.
- X Do not drive; mask compare.
- ${\sf M}-{\sf Compare}$ midband, not high or low.
- V Compare high or low, not midband; store results from capture functionality if configured.
- D Drive data from source functionality if configured.
- E Expect data from source functionality if configured. [7]
- — Repeat previous cycle. Do not use a dash (-) for the pin state on the first vector of a pattern file unless the file is used only as a target of a jump or call operation.

Note Termination mode settings affect the termination applied to all non-driving pin states. Non-drive states include L, H, M, V, X, E, and potentially -. Refer to the <u>Programmable input termination mode</u> specification for more information.

Edge Timing

Edge Types

Drive edges		
NI-Digital 17.5 and earlier	4; drive on, drive data, drive return	
NI-Digital 18.0 and later	6; drive on, drive data, drive return,	
	drive data 2, drive return 2, drive off	
Compare edges		
NI-Digital 17.5 and earlier	1; strobe	
NI-Digital 18.0 and later	2; strobe, strobe 2	
Number of time sets ^[8]	31	

Edge Generation Timing

Edge placement range		
Minimum	Start of vector period (0 ns)	
Maximum	5 vector periods or 40 μs, whichever is smaller	
Minimum required edge separation		

Between any driven data change

NI-Digital 17.5 and earlier 5 ns

NI-Digital 18.0 and later 3.75 ns

Between any Drive On and Drive Off edges 5 ns

Between Compare Strobes 5 ns

Edge placement resolution 39.0625 ps

Edge placement accuracy: Drive^[9]

NI-Digital 17.5 and earlier

Edge Multiplier = 1x ±500 ps, warranted

NI-Digital 18.0 and later

Edge Multiplier = 1x ±500 ps, warranted

Edge Multiplier = 2x Bit rate ≤ 200 Mbps: ±500 ps, typical

Edge Multiplier = 2x Bit rate ≤ 266 Mbps: ±600 ps, typical

Edge placement accuracy: Compare [9]

NI-Digital 17.5 and earlier

Edge Multiplier = 1x ±500 ps, warranted

NI-Digital 18.0 and later

Edge Multiplier = 1x ±500 ps, warranted

Edge Multiplier = 2x	Bit rate ≤ 100 Mbps: ±500 ps, typical
Edge Multiplier = 2x	Bit rate ≤ 133 Mbps: ±700 ps, typical

Overall timing accuracy[9]			
NI-Digital 17.5 and earlier			
Edge Multiplier = 1x	lier = 1x ±1.5 ns, warranted		
NI-Digital 18.0 and later			
Edge Multiplier = 1x	±1.5 ns, warranted		
Edge Multiplier = 2x	Bit rate ≤ 200 Mbps: ±1.5 ns, typical		
Edge Multiplier = 2x	Bit rate ≤ 266 Mbps: ±1.8 ns, typical		

Driver, Comparator, Load

Driver

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.	
Programmable levels	V_{IH}, V_{IL}, V_{TERM}	
Voltage levels Range (V _{IH} , V _{IL} , V _{TERM})	-2 V to 6 V	

Minimum swing (V _{IH} minus	s V _{IL})	400 mV, into a 1 MΩ load
Resolution (V _{IH} , V _{IL} , V _{TERM})		122 μV
Accuracy (V _{IH} , V _{IL} , V _{TERM})		±15 mV, 1 MΩ load, warranted
Maximum DC drive current	rent ±32 mA	
Output impedance	50 Ω	
Rise/fall time, 20% to 80%	1.2 ns, up to 5 V	

Comparator

Signal type		Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Programmable levels		V _{OH} , V _{OL}
Voltage levels		
Range (V _{OH} , V _{OL}) -2 V to		o 6 V
Resolution (V _{OH} , V _{OL})	122 μ	V
Accuracy (V _{OH} , V _{OL})	±25 mV, from -1.5 V to 5.8 V, warranted	
Programmable input termination modes		High Z, 50 Ω to V _{TERM} , Active Load
Leakage current		<15 nA, in the High Z termination mode

Active Load

Programmable levels	I _{OH} , I _{OL}	
Commutating voltag	ge (V _{COM})	
Range	-2 V to 6 V	
Resolution	122 μV	
Current levels		
Range	1.5 mA to 24 mA	
Resolution	488 nA	
Accuracy	1 mA, 3 V over/under drive, typical	

PPMU

PPMU Force Voltage

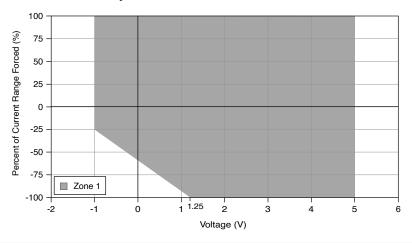
Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.	
vels	
17.5 and earlier	-2 V to 6 V
18.0 and later	-2 V to 6 V
	6 V to 7 V in Extended Voltage Range[10]
	GND. vels 17.5 and earlier

Resolution	122 μV
Accuracy	
NI-Digital 17.5 and earlier	± 15 mV, 1 M Ω load, from -2 V to 6 V, warranted
NI-Digital 18.0 and later	± 15 mV, 1 M Ω load, from -2 V to 6 V, warranted
	±50 mV, 1 M Ω load, from 6 V to 7 V, typical $\underline{^{[10]}}$

PPMU Measure Voltage

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.	
Voltage lev Range	rels -2 V to 6 V	
Resolution	228 μV	
Accuracy	±5 mV, warranted	

PPMU Force Current


How to Calculate PPMU Force Current Accuracy

Range	Resolution	Accuracy
±2 μA	60 pA	±1% of range for Zone 1 of <u>Figure 3</u> , warranted
±32 μA	980 pA	
±128 μA	3.9 nA	
±2 mA	60 nA	

Range	Resolution	Accuracy
±32 mA	980 nA	

Table 1. PPMU Force Current Accuracy

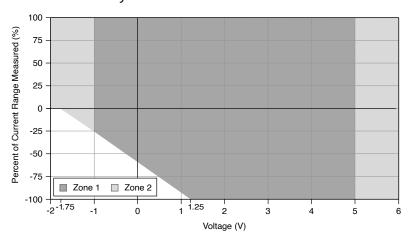
Figure 3. Warranted Current Accuracy Zone for PPMU Force Current

Note The boundaries of Zone 1 are inclusive of that zone. The area outside of Zone 1 does not have a warranted spec for PPMU force current accuracy.

- 1. Specify the desired forced current.
- 2. Based on the desired forced current, select an appropriate current range from Table 1.
- 3. Divide the desired forced current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Forced.
- 4. Based on the impedance of the load, calculate the voltage required to force the desired current from step 1. Use the following equation: Voltage Required = Desired Current * Load Impedance.
- 5. Using Figure 2, locate the zone in which the Percent of Current Range Forced calculated in step 3 intersects with the Voltage calculated in step 4. If the intersection is outside of Zone 1, then there are no warranted specs. To get warranted specs, the current range and/or forced current must be adjusted until the intersection is in Zone 1.

6. Based on the zone found in step 5, use Table 1 to calculate the accuracy of the forced current.

PPMU voltage clamps		
Range	-2 V to 6 V	
Resolution	122 μV	
Accuracy	±100 mV, typical	


PPMU Measure Current

How to Calculate PPMU Measure Current Accuracy

Range	Resolution	Accuracy
±2 μA	460 pA	±1% of range for Zone 1 of Figure 4, warranted
±32 μA	7.3 nA	
±128 μA	30 nA	±1.5% of range for Zone 2 of <u>Figure 4</u> , warranted
±2 mA	460 nA	
±32 mA	7.3 μΑ	

Table 2. PPMU Measure Current Accuracy

Figure 4. Warranted Current Accuracy Zones for PPMU Measure Current

Note The boundaries of Zone 1 are inclusive of that zone. All other boundaries are inclusive of Zone 2. The area outside of Zone 1 and Zone 2 does not have a warranted spec for PPMU measure current accuracy.

- 1. Specify the desired measured current.
- 2. Based on the desired measured current, select an appropriate current range from Table 2.
- 3. Divide the desired measured current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Measured.
- 4. If forcing voltage and then measuring current, Voltage in Figure 3 is equal to the forced voltage. If forcing current and then measuring current, Voltage in Figure 3 is equal to the voltage required to force the desired current based on the impedance of the load. Use the following equation: Voltage Required = Desired Current * Load Impedance.
- 5. Using Figure 3, locate the zone in which the Percent of Current Range Measured calculated in step 3 intersects with the Voltage calculated in step 4. If the intersection is outside of Zone 1 or Zone 2, then there are no warranted specs. To get warranted specs, the current range and forced current or forced voltage must be adjusted until the intersection is in Zone 1 or Zone 2.
- 6. Based on the zone found in step 5, use Table 2 to calculate the accuracy of the measured current.

PPMU Programmable Aperture Time

Aperture time	
Minimum	4 μs
Maximum	65 ms
Resolution	4 μs

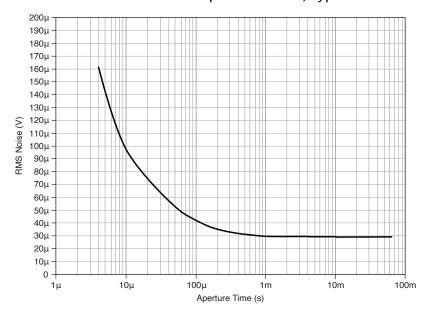


Figure 5. Voltage Measurement Noise for Given Aperture Times, Typical

Pattern Control

Opcodes

Refer to the following table for supported opcodes. Using matched and failed opcode parameters with multiple PXIe-6570 instruments requires the PXIe-6674T synchronization module. Other uses of flow-control opcodes with multiple PXIe-6570 instruments only require NI-TCLK synchronization.

Category	Supported Opcodes
Flow Control	 repeat jump jump_if set_loop end_loop exit_loop exit_loop_if call return

Category	Supported Opcodes
	keep_alive
	match
	halt
Sequencer Flags and Registers	set_seqflag
	clear_seqflag
	write_reg
Ciam al	-
Signal	set_signal
	pulse_signal
	clear_signal
Digital Source and Capture	capture_start
	capture
	capture_stop
	source_start
	source
	source_d_replace

Note The source_d_replace opcode is only available with NI-Digital 18.0 or later.

Pipeline Latencies

Minimum delay between source_start opcode and the first source opcode or subsequent source_start opcode	3 μs
Matched and failed condition pipeline latency	80 cycles

Source and Capture

Digital Source^[11]

Operation modes Serial and parallel; broadcast and site-unique

Source memory size 32 MB (256 Mbit) total

Maximum waveforms 512

Digital Capture^[11]

Operation modes Serial and parallel; site-unique

Capture memory size 1 million samples

Maximum waveforms 512

Independent Clock Generators

Note This functionality requires NI-Digital 18.0 or later.

Number of Clock Generators	32 (one per pin)
Clock Period Range	6.25 ns to 40 us (160 MHz to 25 kHz)[12]
Clock Period Resolution	38 fs

Frequency Measurements

Note This functionality requires NI-Digital 17.0 or later.

Frequency counter measure frequency

Range 5 kHz to 200 MHz, 2.5 ns minimum pulse width

Accuracy See <u>Calculating Frequency Counter Error</u>

Calculating Frequency Counter Error

Use the following equation to calculate the frequency counter error (ppm).

$$\left(\frac{TB_{err}}{(1-TB_{err})} + \frac{20ns}{(MeasurementTime-UnknownClockPeriod)}\right) * 1,000,000$$
 where

- MeasurementTime is the time, in seconds, over which the frequency counter measurement is configured to run
- UnknownClockPeriod is the time, in seconds, of the period of the signal being measured
- TB_{err} is the error of the Clk100 timebase

Refer to the following table for a few examples of common Clk100 timebase accuracies.

PXI Express Hardware Specification Revision 1.0	PXIe-1085 Chassis	PXIe-6674T Override
100 μ (100 ppm)	25 μ (25 ppm)	80 n (80 ppb)

Table 3. TB_{err}

Example 1: Calculating Error with a PXIe-1085 Chassis

Calculate the error of performing a frequency measurement of a 10 MHz clock (100 ns period) with a 1 ms measurement time using the PXIe-Clk100 provided by the PXIe-1085 chassis as the timebase.

Solution

$$\left(\frac{25\mu}{(1-25\mu)} + \frac{20\text{ns}}{(1\text{ms}-100\text{ns})}\right) * 1,000,000$$

= 45ppm

Example 2: Calculating Error when Overriding with the PXIe-6674T

Calculate the error if you override the PXIe-Clk100 timebase with the PXIe-6674T and increase the measurement time to 10 ms.

Solution

$$\left(\frac{80n}{(1-80n)} + \frac{20ns}{(10ms-100ns)}\right) * 1,000,000$$

= 2ppm

Calibration Interval

Recommended calibration interval	1 year

Physical Characteristics

PXIe slots	2
Dimensions	131 mm × 42 mm × 214 mm (5.16 in. × 1.65 in. × 8.43 in.)
Weight	920 g (32.45 oz.)

Power Requirements

The PXIe-6570 draws current from a combination of the 3.3 V and 12 V power rails. The maximum current drawn from each of these rails can vary depending on the

PXIe-6570 mode of operation. The total power consumption will not exceed the input power specification.

Input power		68 W	
Current Draw		-	
3.3 V	4.4 A		
12 V	4.7 A		

¹ The system channel count is the maximum number of channels available when using multiple PXIe-6570 instruments in a single chassis as a digital subsystem. Some functionality described in this document requires that a PXIe-6674T synchronization module be used in conjunction with each digital subsystem.

- ² If the total voltage sourced or driven on any pin relative to GND exceeds the supported measurement range, instrument performance may be degraded.
- ³ Voltages > 6 V require the Extended Voltage Range mode of operation.
- ⁴ Sourced from chassis 100 MHz backplane reference clock, external 10 MHz reference, or PXIe-6674T.

- ⁶ The SBC format is not supported within the 2x edge multiplier mode.
- ⁷ This functionality requires NI-Digital 18.0 or later.
- $\frac{8}{2}$ 31 time sets can be configured. One additional time set, represented by a -, repeats the previous time set.

 $[\]frac{5}{2}$ When using NI-Digital 18.0 and later, the maximum vector rate for patterns may be limited by the pulse width requirements, which may not allow all formats and edge multipliers to be used up to the fastest vector rate.

- $\frac{9}{2}$ For specifications in a Semiconductor Test System, refer to the **Semiconductor Test System Specifications.**
- 10 The Extended Voltage Range is an unwarranted mode of operation that allows the PMU to force voltages between 6 V and 7 V for applications that can tolerate more error than the normal force voltage accuracy.
- ¹¹ To learn how to calculate achievable data rates for Digital Source or Digital Capture, visit <u>ni.com/info</u> and enter the info code DigitalSourceCapture to access the Calculating Digital Source Rate tutorial or the Calculating Digital Capture Rate tutorial.
- ¹² Clocks with a period < 7.5 ns will have a non-50% duty cycle.