
VeriStand
Feature Usage

2022-07-11

Contents

VeriStand 2020 R6 Manual. 5
New Features. 5
Activating Your Software. 6

VeriStand Licensing Options. 6
Activating a Product. 8
Deactivating and Transferring a Product. 10
Activation FAQ. 10

VeriStand Environment. 12
Components of a VeriStand Project. 14
Differences between Workspace and VeriStand Editor. 25
APIs in VeriStand. 26
Keyboard Shortcuts. 26

Configuring and Running a Project. 31
Creating a New Project. 32
Configuring a System Definition File. 32
Configuring a Project File. 119
Deploying the System Definition File to a Real-Time Target. 122
Creating User Interfaces with the VeriStand Editor. 128
Running the VeriStand Workspace. 144
Running VeriStand Operations Using the Command Line. 165

Using NI-XNET Interfaces. 166
NI-XNET Overview. 167
Adding NI-XNET Databases. 169
Editing NI-XNET Databases. 170
Importing NI-XNET Frames. 171
Using NI-XNET Frame IDs. 172
Accessing Timing and ID Information for Incoming NI-XNET Frames. 173
Logging Incoming NI-XNET Frames. 175
Replaying Logged NI-XNET CAN Frame Data. 178
Configuring NI-XNET CAN Cyclic Frame Faulting. 180
Configuring Cyclic Redundancy Checks (CRCs) and Counters for Outgoing NI-
XNET CAN Frames. 182
NI-XNET Bus Monitor. 183

ni.com2

VeriStand Feature Usage

How VeriStand Applies Scaling Factors to NI-XNET Signals. 184
Integrating and Executing Models. 184

Supported Model Types and Modeling Environments. 185
Models FAQs. 193
Choosing Compiler Tools for a Model. 194
Using Models from MathWorks Simulink® Software. 196
Using Models from C and C++. 200
Using Models from LabVIEW VIs. 203
Controlling and Monitoring Model Execution. 207
Common Issues with Models in VeriStand. 210

Maximizing System Performance. 212
Streamlining the System Definition. 212
Configuring the BIOS Settings of the Controller. 213
Configuring the Ethernet Settings of the Controller. 214
Optimizing Hardware Performance. 215
Improving Model Performance. 216
Optimizing Reflective Memory. 216

Data Logging Options. 219
VeriStand Add-ons. 223

Logging Target Data with the Embedded Data Logger. 224
Creating Custom Devices. 225
Customizing an FPGA Target. 300

ASAM XIL API - Generic Simulator Interface. 318
Accessing the VeriStand ASAM XIL Testbench. 319
Implementation Differences and Limitations with the ASAM XIL Interface. . . 319
ASAM XIL Framework C# Access. 320
Configuring the ASAM XIL Framework. 321
ASAM XIL Port Configuration Tag Reference. 321

Creating Real-Time Test Scenarios with Stimulus Profiles and Real-Time Test
Sequences. 326

Navigating the Stimulus Profile Editor Environment. 327
Creating Stimulus Profiles. 330
Creating Real-Time Sequences. 352
Viewing Stimulus Profile Test Results. 401

© National Instruments 3

VeriStand Feature Usage

Logging Real-Time Test Data with the Stimulus Profile Editor. 404
Communicating with the VeriStand Editor Using Stimulus Profile Arguments. . .
. 407
Getting Started with the Stimulus Profile Editor Tutorial. 408

VeriStand Reference. 442
Related Documentation. 442
NI Hardware Support. 443
VeriStand Directories and Aliases. 446
VeriStand Error Codes. 448
VeriStand File Extensions. 459
System Channels. 461

VeriStand .NET Reference. 464
Glossary. 466

ni.com4

VeriStand Feature Usage

VeriStand 2020 R6 Manual
The VeriStand manual contains information that will allow you to develop,
prototype, and test control systems using hardware I/O and your simulation models.

The VeriStand software framework enables you to perform real-time or PC-based
test configuration and execution that can be easily customized and extended with
LabVIEW, TestStand, and other software tools.

Getting Started Resources
VeriStand includes a comprehensive collection of references, procedures, and
conceptual documentation to help you get started using the product.

Resource Description

Video Tutorials Contains video demonstrations of major features for VeriStand.
Licensing Options Lists features available in different VeriStand software packages.
VeriStand Environment Details the parts of the VeriStand environment that you will

interact with while creating a project.
Components of a Project Contains information on how VeriStand systems work.
Configuring and Running a
Project

Describes how to configure and run a project on your system.

Using VeriStand Add-ons Describes how to customize and extend the VeriStand
environment.

Supported VeriStand Add-ons Lists add-ons supported by NI or the VeriStand community.
VeriStand .NET Reference Describes how to programmatically control VeriStand using

the .NET API.
Related Documentation Provides more information on help for VeriStand.

New Features
Learn what's new in VeriStand 2020 R6.

© National Instruments 5

VeriStand Feature Usage

http://ni.com/r/exsx3e
http://www.ni.com/r/vsaddons

VeriStand Editor

Set the default appearance of channels on the screen. Click File > Preferences and
select Screen to set the channel label location and cluster arrangement.

FPGA Addon Custom Device

FPGA Addon Custom Devices now support all FXP datatypes that are also supported
by LabVIEW. You can access this custom device from GitHub.

NI-SWITCH Custom Device

Use the G scripting API to modify a NI-SWITCH Custom Device. For more
information, refer to Scripting Examples.lvproj in <Application Data>\LabVIEW
20xx\examples\NI VeriStand Custom Devices\Routing and Faulting. You can access
this custom device from GitHub.

VeriStand Licensing Options
NI offers a variety of licenses for the different ways you can use VeriStand in
development and deployment applications.

Licensing Options

Use the following descriptions to determine the VeriStand licensing option that fits
your needs.

Note For more information on activating VeriStand licenses, refer to
ni.com/activate. To purchase a VeriStand license, refer to ni.com/veristand.
For questions about specific licensing needs, contact an NI representative.

License Description

Evaluation Mode Software runs as a Full Development system for 7 days. The evaluation period
can be extended to 45 days. You can activate a VeriStand license at any point
during or after the evaluation period.

Full Development Enables full VeriStand functionality.
PC Development Enables you to run simulations on a desktop PC.

ni.com6

VeriStand Feature Usage

https://www.ni.com/r/vsfpgaaddon
http://www.ni.com/r/ni-switch-custom-device
https://www.ni.com/activate
https://www.ni.com/veristand

License Description
Operator Enables you to configure a project file by determining the preconfigured

system definition file that runs on the target and defining the test environment
that an operator interacts with.

Comparing License Option Features

The following table shows the features available with the Full Development, PC
Development, and Operator licenses.

Note The table does not contain the Evaluation Package because it
includes the same features as the Full Development license. You must
install MathWorks Simulink® software to run uncompiled models.

Component Feature Full
Development

PC Development Operator

System Explorer View system definition
files as read-only

— — ✓

Create new system
definition files

✓ ✓ —

Configure supported NI
hardware devices

✓ ✓ —

Configure custom devices ✓ ✓ —
Configure models ✓ ✓ —
Add targets ✓ ✓ —
Add user channels ✓ ✓ —
Add calculated channels ✓ ✓ —
Map channels ✓ ✓ —
Add alarms ✓ ✓ —
Add procedures ✓ ✓ —
Deploy system definition
file to a real-time target

✓ — ✓

Navigation pane of the
VeriStand Editor

Add standard and custom
Tools menu utilities

✓ ✓ ✓

© National Instruments 7

VeriStand Feature Usage

Component Feature Full
Development

PC Development Operator

Configure alarm responses ✓ ✓ ✓
Add custom files to a
project

✓ ✓ ✓

Export channel resources ✓ ✓ ✓

Workspace Create new screen files ✓ ✓ ✓
Add standard and custom
controls and indicators

✓ ✓ ✓

Reconfigure alarms ✓ ✓ ✓

Stimulus Profile Editor Create stimulus profiles ✓ ✓ ✓
Run stimulus profiles ✓ ✓ ✓
Log data ✓ ✓ ✓

Models Run compiled models ✓ ✓ ✓

Activating a Product
Use NI License Manager to activate software products at work and home without
having to open the software.
Before using your products, you must activate them in accordance with their license
agreement. To activate a product, you must first purchase a license. For information
on purchasing license, contact your local NI sales representative or visit the NI
Worldwide Offices web page. If you do not have an NI User Account, visit the MyNI
Dashboard and create one.

Note

■ If your NI software is licensed through a volume license agreement,
you do not need to activate your products. Instead, you need to point NI
License Manager to a volume license server.
■ For home use through a volume license agreement, request a license
file from your volume license administrator.

Use NI License Manager to activate your NI software:

ni.com8

VeriStand Feature Usage

1. In the General section, click Activate Software.

Note If prompted to log in, click LOG IN TO ACTIVATE. Enter your
NI User Account credentials and click Log in.

2. All the unlicensed products are listed in the Activate Software window. There
are four ways to activate your products.

1. Check my account for licenses
■ Licenses associated with your account are verified successfully,
activation completes.
■ If your account lacks the appropriate licenses for a particular
product, proceed to activate the product using either a activation
code or a serial number.

2. Enter a serial number
You can find your serial numbers in the following locations:

■ On the Certificate of Ownership included in your software kit
■ On the products packing slip or shipping label
■ On a previously installed version of your application software, by
selecting Help > About

Note Visit the NI Info Codes web page and enter the Info Code
SerialNumbers_en for the latest information regarding
locating a serial number

3. Enter activation codes
Click on Generate an activation code or visit ni.com/activate to obtain
an activation code.

4. Connect to a volume license server
Enter the name of the volume license server on which your NI products
should check for licenses.

3. Click ACTIVATE or CONNECT.

4. Follow the prompts in the Activate Software window to complete activation.

© National Instruments 9

VeriStand Feature Usage

Note If you were using NI software before you began the activation
process, you may need to restart the software.

You can use your product immediately after activation.

Deactivating and Transferring a Product
Use NI License Manager to deactivate and transfer a software license.
To transfer licenses, you need to deactivate the software on the current computer
and activate it on a different computer.

If you exceed the number of computers or transfers allowed in the NI Software
License Agreement, you must deactivate the extra software.

Note If your organization uses NI Volume License Manager to manage NI
software under a volume license agreement (VLA), notify your volume
license administrator before transferring your software to another
computer.

1. In the Views section, click Local Licenses.
2. Select the product you want to deactivate.

3. In the Actions section, click Deactivate.

4. In the Deactivate dialog box, click Yes.

Once a product is deactivated, you can reactivate it on another computer. You can
reuse an activation code to reactivate the product on a new computer. If you do not
have the original product media, you can download the latest version by visiting the
NI Downloads web page.

Activation FAQ

What Is Activation?

Activation is the process of obtaining an activation code to enable your software to
run on your computer. An activation code is an alphanumeric string that verifies the

ni.com10

VeriStand Feature Usage

software, version, and computer ID to enable features on your computer. Activation
codes are unique and are valid on only one computer.

What Is the NI Licensing Wizard?

The NI Licensing Wizard is a part of NI License Manager that leads you through the
process of enabling software to run on your machine.

What Information Do I Need to Activate My NI Software?

You need your NI User account log-in, the product version and serial number, and a
computer ID that uniquely identifies your computer. Certain activation methods
may require additional information for delivery. This information is used only to
activate your product. Complete disclosure of the NI software licensing information
privacy policy is available at ni.com/activate/privacy . If you optionally choose to
register your software, your information is protected under the NI privacy policy,
available at ni.com/privacy.

How Do I Find My Product Serial Number?

Your serial number uniquely identifies your purchase of NI software. You can find
your serial number on the Certificate of Ownership included in your software kit, or
you can visit ni.com/r/SerialNumbers_en.
If you have installed a previous version using your serial number, you can find the
serial number by selecting Help > About within the application. You can also contact
your local NI branch at ni.com/contact.

What Is a Computer ID?

The computer ID is a 16-character value that uniquely identifies your computer. NI
requires this information to enable your software. You can find your computer ID
through the NI Licensing Wizard or by using NI License Manager, as follows:

■ Launch the NI License Manager.
■ Click Computer Information in the ribbon.

© National Instruments 11

VeriStand Feature Usage

For more information about product activation and licensing, refer to ni.com/
activate.

How Can I Evaluate NI Software?

You can evaluate most NI products, in accordance with the license agreement.
Evaluation terms vary, depending on which product you want to evaluate. Refer to
your product documentation for specific information on the product's evaluation
mode.

Moving Software after Activation

To transfer your software to another computer, uninstall the software on the first
computer, then install and activate it on the second computer. You can transfer your
software from one computer to another; you do not need to contact or inform NI of
the transfer. Because activation codes are unique to each computer, you will need a
new activation code. Refer to the How do I Activate my Software? section to learn
how to acquire a new activation code and reactivate your software.

Deactivating a Product

To deactivate a product and return it to its preactivation state, navigate to the Local

Licenses view, select the product to be deactivated, and click Deactivate from the
ribbon. Alternatively, navigate to the Local Licenses view, right-click the product in
the License tree, and click Deactivate . If the product was in evaluation mode before
you activated it, the properties of the evaluation mode may not be restored.

Using Windows Guest Accounts

NI License Manager does not support Microsoft Windows Guest accounts. You must
log in to a non-Guest account to run licensed NI application software.

VeriStand Environment
The VeriStand environment is configuration-based, consisting of several dialog
boxes and windows that allow you to modify various components of a project.

ni.com12

VeriStand Feature Usage

The following table describes the windows that make up the VeriStand
environment.
Window Common Tasks How to Access

VeriStand
Editor

■ Accessing the system definition file
■ Creating screens that serve as the user interface
■ Monitoring system data displaying in user
interface indicators
■ Manipulating variables, such as model
parameters, through user interface controls
■ Creating mappings to connect channels
■ Interacting with various tools designed for
monitoring alarms, viewing channel data, or
running stimulus profiles
■ Testing system behavior using channel faulting
and error monitoring tools
■ Controlling the execution of your system
■ Launching System Explorer and the Workspace

■ Configuring and running stimulus profiles
■ Configuring services
■ Configuring alarm responses

Open a VeriStand project.

System
Explorer

Creating and modifying system definition files by:

■ Representing the hardware and software
components in the system
■ Creating alarms and procedures that execute on
the target
■ Creating mappings to connect channels
■ Configuring settings of the VeriStand Engine,
such as the rate at which the system runs

■ Double-click the
system definition
file (.nivssdf) in the
Project Files pane
of the VeriStand

Editor.
■ Launch a system
definition file from
Project Files and
click Configure.

Workspace
■ Creating screens that serve as the user interface
with which an operator interacts

Double-click Workspace

in the Project Files pane
of the VeriStand Editor.

© National Instruments 13

VeriStand Feature Usage

Window Common Tasks How to Access
■ Monitoring system data displaying in user
interface indicators
■ Manipulating variables, such as model
parameters, through user interface controls
■ Interacting with various tools designed for
monitoring alarms, viewing channel data, scaling
and calibrating channels, or running stimulus
profiles

Components of a VeriStand Project
A VeriStand project contains at least one project file (.nivsprj), one system definition
file (.nivssdf), and one screen file (.nivsscr or .nivsscreen). These files are used to
configure, deploy, and interact with your system.
The following figure illustrates the locations of these files and major components of
an VeriStand project.

Some components operate internally in the system when you run a project. Other
components are user-visible features you create and configure in the VeriStand
environment.

ni.com14

VeriStand Feature Usage

Note The host computer and deployment target can be the same desktop
PC. In this situation, you deploy a system definition file to host desktop PC
like you would deploy the file to a remote target.

Host Computer

A host computer hosts the screen files that serve as the user interface for operators
and runs the VeriStand Gateway.

Note The host computer must be a PC running a supported version of
Windows.

Internal Feature

VeriStand Gateway—Creates a TCP/IP communication channel that facilitates
communication with the VeriStand Engine over the network. The VeriStand Gateway
receives channel values from the VeriStand Engine and stores them in a table. You
can view these values using the Channel Data Viewer tab in VeriStand Editor or the
Channel Data Viewer workspace tool. If you run a project on a desktop PC, the
VeriStand Gateway initiates the VeriStand Engine.
If you run a project on an real-time target, the VeriStand Gateway synchronizes with
the system definition file that is running on the RT target. If the system definition file
currently running on the VeriStand Engine does not match the system definition
that the VeriStand Gateway expects, then the VeriStand Gateway does not
synchronize with the system definition file running on the RT target.

Interactive Features

The following are features that you can modify.

■ Project File—The .nivsprj file that defines high-level settings, such as:

■ The screen and system definition files to run
■ Available users and their permissions for the project
■ The list of tools you can launch from the Tools Launcher

© National Instruments 15

VeriStand Feature Usage

■ Which services run when you deploy a project to the target
■ The IP address of the VeriStand Gateway
■ Stimulus profiles and real-time sequences

■ Screen File—The .nivsscr or .nivsscreen files that define the configuration
and settings for the screens and display items you view in the VeriStand

Editor or Workspace, respectively
■ Stimulus profile—A test executive that can call real-time sequences, open
and close VeriStand projects, and perform data-logging and pass/fail analysis.
It also connects real-time sequences to system definition files to bind channel
data within the system definition file to variables in the real-time sequence.
Stimulus profiles execute on the host computer. You create and run a stimulus
profile using the Stimulus Profile Editor.
■ National Instruments Driver Software—You need the appropriate driver
software to communicate with hardware installed on a target. For a list of the
required driver software, see the VeriStand Readme located at <Program
Files>\National Instruments\NI VeriStand\readme\readme.html. If you
installed VeriStand to a different location, locate the readme directory in the
install location you specified.

Development Computer

The development computer is the computer that contains the VeriStand software.
The computer on which you develop a NI VeriStand project might be different from
the host computer in the system. To extend the functionality of VeriStand, you might
also use the following NI products on the development computer:

■ LabVIEW Development System—If you want to create custom devices,
workspace controls/indicators, timing devices, and/or Tools menu utilities,
you need the LabVIEW Development System.
■ LabVIEW Real-Time Module—You need this module to use RT functions in
custom device VIs.
■ LabVIEW FPGA Module—If you add a National Instruments FPGA target to a
project, it must have an associated FPGA bitfile. VeriStand provides FPGA
bitfiles for certain FPGA devices. If you want to customize these FPGA bitfiles

ni.com16

VeriStand Feature Usage

or create a custom FPGA bitfile for another FPGA target, you need the FPGA
Module.

Deployment Target

The deployment target in an VeriStand system is a desktop PC or RT target on which
you run the system definition file and VeriStand Engine.

Internal Feature

The following is a feature that you cannot directly modify.

■ VeriStand Engine—The non-visible execution mechanism that controls the
timing of the entire system and the communication between the target and
the host computer. The VeriStand Engine consists of multiple timed loops that
use RT FIFOs to transfer data between the loops.

Note To deploy a system definition file to an RT target, you must
first download support files for VeriStand to the target.

Interactive Features

The following are features that you can modify.

■ System Definition File—The .nivssdf file you configure in the System
Explorer window. A system definition file contains the configuration settings
of the VeriStand Engine, including:

■ The rate at which the system runs.
■ DAQ devices, NI-XNET devices, FPGA targets, or reflective memory devices
and the task and channel configurations for each.
■ Simulation models to execute, and the rate at which they execute.
■ The list of active alarms. You can use alarms to trigger actions on the
target, such as procedures, or to display dialog boxes that alert the user of
an event.
■ The list of procedures that can execute on the target. A procedure is a
script of commands that define a set of actions in the VeriStand Engine.

© National Instruments 17

VeriStand Feature Usage

■ The system mappings that determine how channels are connected.
■ The list of channels for data objects in the system. The following table
displays common channel types.
Channel Type Examples

Hardware I/O channels DAQ, FPGA, etc.
Model channels Inputs, outputs, parameters, and signals
User channels Used to store or map user-defined values in the system
Calculated channels Channels that represent the result of a user-defined calculation

of other channels in the system

■ Model—A mathematical representation of a real-world system. A model
responds to stimuli by producing outputs in a way that emulates the behavior
of the modeled item. Models contain inputs and outputs, called inports and
outports, that communicate with other parts of the control system. Build
models using several different modeling environments, and then integrate the
model into a system definition file.

VeriStand Engine

The VeriStand Engine is the execution mechanism that controls the timing of the
entire system and the communication between the target and the host computer.
The VeriStand Engine executes hardware I/O, runs models, procedures, alarms, and
tests, and computes values in the channel table based on the results of model
execution and hardware I/O. This engine runs on either a desktop PC in simulation
mode or as an embedded application on a RT system.
The VeriStand Engine consists of multiple timed loops that use real-time (RT) FIFOs
to transfer data between the loops. Each loop performs designated tasks and has an
assigned priority. Although you cannot change the priority or primary tasks of the
engine loops, you can customize loop operations, such as the execution rate. The
system definition file contains the configuration settings for the VeriStand Engine.

Note The VeriStand Engine determines which system definition file to run
by communicating over the network with the VeriStand Gateway.

The following figure illustrates the operation of the VeriStand Engine.

ni.com18

VeriStand Feature Usage

The following table displays the priority and default execution rate for the loops of
the VeriStand Engine.

VeriStand Engine
loop

Description Priority Default
execution
rate

Primary Control
Loop (PCL)

Controls the timing for the VeriStand Engine
and maintains the most up-to-date table of
channel values. Use System Explorer to set the
execution mode of the PCL.

Per iteration, the PCL executes the following
tasks:

■ Reads and writes high-speed FPGA I/O,
analog and counter DAQ I/O, and
Asynchronous Custom Device Loop data.
■ Applies scaling to the data.
■ Executes one step of the real-time
sequence of a test that is currently
running

High 100 Hz

© National Instruments 19

VeriStand Feature Usage

VeriStand Engine
loop

Description Priority Default
execution
rate

■ Sends data to the Data Processing
Loop to synchronize the table of channel
values.
■ Sends data to the Model Execution
Loop(s).
■ Prompts the Data Processing Loop,
Model Execution Loop(s), and
Asynchronous Custom Device Loop(s) to
execute.
■ Performs software fault insertion.
■ Creates mapping connections.
■ Executes inline custom devices.
■ Reads status information from the
Waveform Processing Loop and DAQmx
Waveform Producer Loop(s).

Note For more information on the
PCL, see Primary Control Loop
Execution Steps

Model Execution
Loop(s)

Executes a corresponding compiled model.
The number of models in the system definition
determines the number of loops.

Per iteration, each Model Execution Loop
executes the following tasks:

■ Reads the data sent by the PCL and
maps this data to model inports.
■ Executes one step of the model.
■ Reads model outport values and sends
this data to the PCL.
■ Reads model inport signals and sends
this data to the PCL.

Medium A
decimation
of the PCL
rate

ni.com20

VeriStand Feature Usage

VeriStand Engine
loop

Description Priority Default
execution
rate

Note A Model Execution Loop
handles high-speed, dynamic data
associated with model inports and
outports, while a Model Interface
Loop reads and applies the lower-
speed, asynchronous updates to
model parameter values.

Asynchronous
Custom Device
Loop(s)

Executes and transmits custom device inport
data values per iteration of the PCL. The
VeriStand Engine is responsible for initiating
the Asynchronous Custom Device Loop.

■ High
■ Medium
■ Low

User-defined

Waveform
Processing Loop

Transfers waveform data through the system.

Per iteration, the Waveform Processing Loop
executes the following tasks:

■ Reads waveform data from DAQmx
Waveform Producer Loops.
■ Sends waveform data to the VeriStand
Gateway.
■ Reads waveform data from custom
devices.
■ Sends waveform data to custom
devices.

Low Event driven

DAQmx
Waveform
Producer Loops

Acquires waveforms from DAQ devices. Each
DAQmx Waveform Producer Loop corresponds
to a waveform task in the system definition.

Per iteration, Waveform Producer Loop
executes the following tasks:

■ Reads waveform data from analog
input channels on DAQ devices.
■ Sends waveform data to the Waveform
Processing Loop.

Low 10 Hz or
user-defined

© National Instruments 21

VeriStand Feature Usage

VeriStand Engine
loop

Description Priority Default
execution
rate

■ Logs acquired data to .tdms files.

Data Processing
Loop

Distributes the execution commands received
by the Communication Receive Loop among
the engine loops. Like the PCL, the Data
Processing Loop maintains a complete copy of
the channel values table.

Per iteration, the Data Processing Loop
executes the following tasks:

■ Receives the table of channel values
from the PCL.
■ Executes procedures, alarms, and
calculated channels.
■ Transmits updated table of channel
values to the PCL.
■ Sends data values to the
Communication Send Loop.

Medium A
decimation
of the PCL
rate

Communication
Send Loop

Transmits channel values to the VeriStand
Gateway.

Low 15 Hz

Communication
Receive Loop

Listens for execution commands that the
VeriStand Gateway sends.

Low Event driven

XNET Loop Reads and writes XNET data. Low 100 Hz
DIO Loop Reads and writes low-speed digital DAQ I/O

data.
Low A

decimation
of the PCL
rate

Model Interface
Loop

Reads and writes the lower-speed,
asynchronous updates to model parameter
values.

Low Event driven

Primary Control Loop Execution Steps

The Primary Control Loop (PCL) controls the timing of the VeriStand Engine by
performing several execution steps.

ni.com22

VeriStand Feature Usage

The PCL can run in Parallel mode or Low Latency mode. The difference between the
modes is the timing of model-related steps:

■ In Parallel mode, the PCL initiates execution of models and continues to its
next iteration without waiting for models to finish executing. This causes a
one-cycle delay between when a model executes and when the data it
produces is available to the system
■ In Low Latency mode, the PCL waits for the Model Execution Loop(s) to
finish writing data to models before it reads and publishes model values to
the system. This occurs during every iteration of the system. When the model
completes execution, the PCL provides data from the model to other loops
during the same iteration that the model generated the data.

Note NI recommends you select Low Latency mode only if you need
to minimize the latency between your inputs, model execution, and
outputs. Waiting for Model Execution Loops to read, execute, and
write on each iteration can significantly slow the execution speed of
the system.

You can use System Explorer to set the execution mode of the PCL.
The following table compares the execution steps of Parallel and Low Latency
Modes.

Note The VeriStand Engine in both modes executes inline custom devices
in the order defined in the system definition file.

Step Parallel mode Low latency mode

1 Gets inputs from hardware devices in the system definition.

Note If the system includes an inline hardware interface custom device, the PCL
reads DAQ digital lines and counters after the Read Data from HW case of the
custom device executes in step 3.

2 Reads asynchronous custom device FIFOs from the previous iteration.

© National Instruments 23

VeriStand Feature Usage

Step Parallel mode Low latency mode
3 Runs the Read Data from HW case of inline hardware interface custom devices. If you

configured hardware scaling, VeriStand applies the scaling after acquiring all hardware
inputs.

4 Reads previous iteration data from models in the
system definition.

Note This step executes on the second
and subsequent iterations.

—

5 Reads data from the previous iteration of the Data Processing Loop.
6 Processes system mappings.

Note VeriStand components (including custom devices) cannot read data from a
previous step until the PCL processes system mappings, even if the previous step
acquired the data the component needs.

7 Runs the Execute Model case of inline model interface custom devices.
8 Executes steps of running real-time sequences.

Note VeriStand executes real-time sequences after input operations but before
output operations and continues to run every step of the real-time sequence
until the sequence is complete, reaches a Yield step, or completes an iteration of
a loop with Auto Yield set to TRUE. If a sequence takes longer than the given time
for an iteration of the PCL, the PCL runs late. To avoid errors, break up the timing
of the steps by placing Yield steps throughout the sequence and enabling the
Auto Yield property for any loops in the sequence.

9 Processes system mappings.
10 Writes data to models.
11 Initiates asynchronous execution of models. Initiates execution of models and

waits for them to complete execution.
12 — Reads data from models.
13 — Processes system mappings.
14 Writes data to the Data Processing Loop.
15 Writes output data to hardware devices.

ni.com24

VeriStand Feature Usage

Step Parallel mode Low latency mode
16 Runs the Write Data to HW case of inline hardware interface custom devices.
17 Writes data to asynchronous custom device FIFOs.

Differences between Workspace and VeriStand Editor

The Workspace and VeriStand Editor contain features that are unique to their
respective screen files.
The screen files for each application are not compatible with each other. You cannot
convert files from one application to the other.
Use the following table to determine the screen application to use based on the task
you want to accomplish.
Task Supported Application

■ Natively design a user interface at run-time.
■ Access scripting capabilities.
■ Operators can launch the application without opening VeriStand.
■ View screens across multiple monitors.
■ Use core controls such as rings and tabs.
■ View the project configuration tree within the application.

VeriStand Editor

■ Access the Channel Calibration tool.
■ Access macro recording and playback capabilities.
■ Access custom objects.
■ Access API to automate the application.
■ Use services to launch application tools upon connecting to a
target.
■ Sync services with the launch of the application window.
■ Access add-ons.
■ Map a vector channel to controls or indicators.
■ Access model controls.1

■ Access a built-in TDMS file viewer.2

■ Use the application for benchmarking CPU and debugging the
Console Viewer that ships with the Workspace.3

Workspace

© National Instruments 25

VeriStand Feature Usage

Task Supported Application
■ Access a built-in tool to launch the NI-XNET Bus Monitor.4

■ Access a tools menu that you can edit from Project Explorer.5

1 You can map execution channels to regular controls to achieve the same functionality as a
model control within the VeriStand Editor.
2 If you double-click a TDMS file in the VeriStand Editor, the file launches in your default viewer.
3 You can use the browser-based console viewer in the VeriStand Editor.
4 You can use an action button to launch the bus monitor application in the VeriStand Editor.
5 You can use action buttons to launch custom tools from the VeriStand Editor.

APIs in VeriStand
VeriStand provides a variety of Application Program Interfaces (APIs) to
programmatically create, deploy and interact with system definitions.
These APIs are made available by C# assemblies installed to the Global Assembly
Cache (GAC). You can access the GAC from any .NET-compatible programming
language or environment, such as LabVIEW, Python, and NI TestStand.
If you are using LabVIEW to program VeriStand, you can access these APIs within the
NI VeriStand > Execution palette.

Keyboard Shortcuts
Navigate VeriStand using keyboard shortcuts.

File Operations

Action Shortcut

Create a new screen document and add it to the existing project. <Ctrl-N>
Open an existing project. <Ctrl-O>
Close the current document. <Ctrl-W>
Save the current file. <Ctrl-S>
Save all open files. <Ctrl-Shift-S>
Quit VeriStand. <Alt-F4>

ni.com26

VeriStand Feature Usage

Basic Editing

Action Shortcut

Cut. <Ctrl-X>
<Shift-Delete>

Copy. <Ctrl-C>
<Ctrl-Insert>

Paste. <Ctrl-V>
<Shift-Insert>

Undo. <Ctrl-Z>
<Alt-Backspace>

Redo. <Ctrl-Y>
<Alt-Shift-Backspace>

Editing Text

Action Shortcut

Select a single word in a string. Double-click text
Select the entire string. Triple-click text
Move the cursor within a string by one word in the direction of the
arrow.

<Ctrl-Right arrow>
<Ctrl-Left arrow>

Move the cursor to the beginning of the current line. <Home>
Move the cursor to the end of the current line. <End>
Move the cursor to the beginning of the string. <Ctrl-Home>
Move the cursor to the end of the string. <Ctrl-End>
Cancel text entry. <Esc>
Submit text entry. <Ctrl-Enter>
Open shortcut menu for selected item. <Shift-F10>
Add free label or comment to the project screen. <Double-click open area>
Find and replace text or objects within a project. <Ctrl-Shift-F>
Find and replace text or objects within a document. <Ctrl-F>

© National Instruments 27

VeriStand Feature Usage

Selecting and Moving Objects

Action Shortcut

Select multiple objects. <Shift-Click>
Add object to the current selection.
Select all objects. <Ctrl-A>
Move selected objects in grid-sized increments. <Arrow keys>
Move selected objects four grid units. <Shift-Arrow key>
Copy and drag selected object. <Ctrl-Drag>
Copy selected object and move it along one axis. <Ctrl-Shift-Drag>
Resize selected object while maintaining aspect ratio. <Shift-Resize>
Resize selected object while maintaining center point. <Ctrl-Resize>
Resize selected object while maintaining both aspect ratio and center
point.

<Shift-Ctrl-Resize>

Create additional blank space along the axis you drag the mouse. <Ctrl-Drag open area>

Navigating the Environment

Action Shortcut

Search document for next instance of text or an object. This command is only
available when in Find mode.

<Enter>
<F3>
<Ctrl-G>

Search document for previous instance of text or an object. This command is
only available when in Find mode.

<Shift-Enter>
<Shift-F3>
<Shift-Ctrl-G>

Cycle through document tabs in the order in which they appear onscreen. <Ctrl-Tab>
Cycle through document tabs in the opposite order in which they appear
onscreen.

<Ctrl-Shift-Tab>

ni.com28

VeriStand Feature Usage

Navigating the Screen and Mapping Diagram

Action Shortcut

Highlight all mappings and nodes connected to a selected item. <Ctrl+,>
Shift focus to the palette search bar. <Ctrl-Spacebar>

<Ctrl-Alt-Spacebar> for
Chinese keyboards

Scroll the document horizontally. <Shift-Mouse Wheel>
Shift focus from one control to another in tabbing order while the
code is running.

<Tab>

Shift focus from one control to another in reverse tabbing order while
the code is running.

<Shift-Tab>

Pan across the project screen. <Spacebar-Drag>

Deployment Commands

Action Shortcut

Deploy the active system definition. <F6>
Undeploy the active system definition. <F7>
Connect to the system definition that is currently running on the VeriStand Gateway. <F8>
Disconnect from the current running system definition. This leaves the VeriStand
Gateway running for other clients.

<F9>

Help Commands

Action Shortcut

Display the Context Help. <Ctrl-H>

Access additional information on selected item. <F1>

© National Instruments 29

VeriStand Feature Usage

Wiring

Action Shortcut

Delete all broken wires from the diagram. <Ctrl-B>
Delete a wire you are in the process of creating. <Esc>

<Ctrl-Z
Select one wire segment. Single-click wire
Select a wire branch. Double-click wire
Select the entire wire. Triple-click wire
Create a new wire branch from an existing wire. <Ctrl-Click> wire
Tack down the wire segment and start a new wire segment. Single-click while wiring
End the wire without connecting it to a node. Double-click while wiring
Switch the direction of a wire between horizontal and vertical. <Tap spacebar> while wiring
Organize the diagram or the selected code to make it easier to
understand.

<Ctrl-U>

Navigating the Project Files Navigation Pane

Action Shortcut

Expand everything in the selected folder. <*> on the numeric keypad
Expand the selected folder. <+> on the numeric keypad
Collapse the selected folder. <-> on the numeric keypad
Expand the selected folder if it is closed. Otherwise, this keyboard
shortcut selects the first child.

<Right arrow>

Collapse the selected folder if it is open. Otherwise, this keyboard
shortcut selects the parent.

<Left arrow>

Select the item beginning with the entered letter(s). <Any printable key>
Open the selected document. <Enter>
Rename the selected item. <F2>
Move the selection to the first item in the tree. <Home>
Moves the selection to the last item in the tree. <End>
Move the selection to the first visible item in the tree. <Page up>

ni.com30

VeriStand Feature Usage

Action Shortcut
Move the selection to the last visible item in the tree. <Page down>

Zooming

Action Shortcut

Zoom in and out. <Ctrl-Mouse wheel>
Zoom in. <Ctrl-+>
Zoom out. <Ctrl-->
Zoom to fit. <Ctrl-0>
Zoom to fit the selection. <Ctrl-9>

Configuring and Running a Project
Create, configure, run, and manipulate VeriStand projects.

Note Not all steps are available on every VeriStand license.

1. Create a new VeriStand project—Create a new project in VeriStand to develop,
prototype, and test control systems using hardware I/O and simulation
models.

2. Configure the system definition—Modify a system definition file to complete
tasks such as configuring the VeriStand engine, adding models, and creating
aliases.

3. Configure the project file—Configure a VeriStand project to complete tasks
such as adding tools menu items, services, alarm responses, and custom files.

4. Deploy the system definition—Deploy the system definition file to the real-
time (RT) target to run a project.

5. Create user interfaces with the VeriStand Editor—Use the VeriStand Editor to
create interfaces that an operator can use to interact with a VeriStand project.

6. Optional: Run the Workspace—Launch the Workspace to run a project, view
and modify the user interface, and to perform operations such as monitoring

© National Instruments 31

VeriStand Feature Usage

alarms, viewing channel data, scaling and calibrating channels, and running
stimulus profiles.

Search within the programming environment to access the following example of a
working project: Engine Demo

You can also run VeriStand operations using the command line.

Creating a New Project
Create a new project in VeriStand to develop, prototype, and test control systems
using hardware I/O and simulation models.

1. Open VeriStand.

2. Click Default Project.

3. Enter a Project Name.

4. Select a Location to save the project.

5. Select a System Definition.

Note If you do not have a system definition, leave this field as None
chosen. VeriStand will create a new system definition file with the
same name as the project.

6. Click Create.

After you create a new project, configure the system definition.

Configuring a System Definition File
Modify a system definition file to complete tasks such as configuring the VeriStand
engine, adding models, and creating aliases.
Before you begin, you must create a new system definition file.

The system definition file contains the configuration settings of the VeriStand
Engine, such as the system rate and the list of channels.

1. Open a project in VeriStand.
2. Depending on your goal, complete any of the following tasks.

ni.com32

VeriStand Feature Usage

Goal Task

Adding and activating a
system definition file

Reuse or add new system definition files to VeriStand projects.

Versioning a system
definition file

Create and test modifications to your system definition file by
duplicating the file in the VeriStand Editor.

Connecting to a target
system definition

Connect to the target's deployed system definition to send
and receive data.

Specifying a target Select a target and designate its name, operating system, and
IP address.

Configuring the VeriStand
Engine

Control the timing of the system and the communication
between the target and host computer.

Adding and configuring a
procedure

Set the actions the VeriStand Engine executes in response to
an alarm, when called from another procedure, or as a startup
procedure.

Adding and configuring an
alarm

Use alarms to notify the user that the value of a channel has
gone outside a specified range of values.

Adding and configuring a
hardware device

Add and configure National Instruments hardware, timing and
sync devices, and custom devices.

Scaling a channel on
hardware devices

Create scales to convert hardware channel unit
measurements to transducer/actuator scaled units.

Adding and configuring a
custom device

Add and configure third-party custom devices to execute user-
defined actions, determined by LabVIEW VIs.

Adding and configuring a
model

Connect a model to other parts of the system and run the
model on a hardware target.

Adding a user channel Store a single value as a user channel to use as a variable in
procedures, stimulus profiles, and other operations.

Adding a calculated
channel

Produce a new value based on calculations performed on
other channels in the system using the Mapping Diagram.

Creating an alias Set an alternate name for channels in a system definition file.
Mapping channels and
aliases

Connect channels or aliases to one another.

After you configure the system definition, configure the project file.

© National Instruments 33

VeriStand Feature Usage

Creating a New System Definition File

You can create a new system definition file without creating a new project with
System Explorer.

1. Open VeriStand.
2. Create or open a VeriStand project.

3. Click Configure... to open System Explorer.

4. Click File > New to open the New System Definition dialog box.

5. Enter a System Definition name.

6. Click OK.

After creating the system definition file, add it to the project.

Adding and Activating a System Definition File

Reuse or add new system definition files to VeriStand projects.
Before you begin, create a new system definition file.

1. Launch the VeriStand Editor.

2. Click New > Add File.

3. In the Select Item window, select a system definition file (.nivssdf), and click
Open.

4. In the VeriStand Editor, click the Project Files tab.

5. Right-click the new system definition file and click Make Active.

Versioning a System Definition File

Create and test modifications to your system definition file by duplicating the file in
the VeriStand Editor.
Before you begin, create a VeriStand project.
VeriStand supports the versioning of project documents, including the system
definition. Copy an existing system definition to test changes. The original file serves
as a restoration point whereas the copy can be modified.

ni.com34

VeriStand Feature Usage

1. Open a project in the VeriStand Editor.

2. In the Navigation pane, click Project Files.

3. Right-click the existing system definition file (.nivssdf) and select Duplicate.

Note If the system definition has unsaved changes, you will be
prompted to save the file.

4. Optional: Update the name of the new system definition.

1. Right-click the file and select Rename.
2. Enter a new name for the file.

5. Modify the new system definition file.

6. Right-click the modified system definition and select Make Active.

7. Select Operate > Deploy to deploy the modified system definition.

8. Optional: Remove a system definition file by right-clicking the file and
selecting Delete.

Note You cannot remove an active system definition. Right-click the
system definition and select Make Inactive before deleting the file.

Connecting to a Target System Definition

Connect to the target's deployed system definition to send and receive data.

Before you begin, you must deploy the system definition to a real-time target.

1. Open a project in VeriStand.

2. In the VeriStand Editor, select Operate > Connect.

Specifying a Target

Select a target and designate its name, operating system, and IP address.
Update the target specification when reusing a system definition with a new real-
time target.

© National Instruments 35

VeriStand Feature Usage

1. Launch the VeriStand Editor.

2. In the Project Files pane, double click the system definition file (.nivssdf) to
open the Mapping Diagram.

3. In the Select Target drop-down, select a target.

Note The Select Target drop-down only appears when you have
more than one target in your system definition.

4. In the Configuration pane, click Document.

5. Enter the target's Name.
6. In the Operating System drop-down, select the target's operating system.

7. Enter the target's IP Address.

Note VeriStand does not support remote Windows targets. The IP
address will remain localhost.

8. Click File > Save all.

Configuring the VeriStand Engine

Control the timing of the system and the communication between the target and
host computer.
Before you begin, you should understand the VeriStand Engine and the PCL
execution mode steps.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Select Controller in the configuration tree.

4. Use the Controller Configuration page that appears to the right of the tree to
configure the VeriStand Engine.

5. Save the system definition file.

ni.com36

VeriStand Feature Usage

Adding and Configuring a Procedure

Set the actions the VeriStand Engine executes in response to an alarm, when called
from another procedure, or as a startup procedure.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Procedures in the configuration tree.

4. Click Add Procedure to add an empty procedure to the configuration tree.

5. Use the Procedure Configuration page that appears to the right of the
configuration tree to configure the procedure.

6. Save the system definition file.

Now that you have added a procedure, you can call that procedure from multiple
alarms.

Calling One Procedure from Multiple Alarms

Configure an Alarm Command step to trigger an alarm that executes a procedure
without resetting/disabling the alarm and exiting the subroutine.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Procedures in the configuration tree.
4. Click a procedure.

5. Click Add > Alarm Command.
6. Double-click the alarm command you added.

7. In the Alarm Command Step Configuration page, click the Function drop-
down, and select an option that resets or disables the alarm.

© National Instruments 37

VeriStand Feature Usage

Note The Alarm field should be grayed out, indicating that the step
will execute for the calling alarm. If it is not, enable Apply settings to

the alarm that tripped this procedure.

8. Save the system definition file.

Adding and Configuring Alarms

Use alarms to notify the user that the value of a channel has gone outside a
specified range of values.

Add and configure alarms with the VeriStand Editor, System Explorer, and
Workspace.
Depending on your goal, access the following locations to add and configure alarms.
Goal Location

■ Add a new alarm to the system definition file
■ Assign alarms to groups
■ Set alarm priorities

In System Explorer, click
Targets > Controller >
Alarms.

Configure alarm settings In System Explorer, use the
Alarm Configuration page.

Add a new procedure to the system definition file In System Explorer, click
Targets > Controller >
Procedures.

Configure the automated actions that occur during a procedure In System Explorer, use the
Procedure Configuration
page.

Configure an alarm to trigger for a specific channel value In System Explorer, use
calculated channels.

■ Manage alarms at run time while in the VeriStand Editor,
including the high limit, low limit, corresponding procedure
name, delay duration, trip value, priority, state, and mode
information.
■ View the current status of all of the alarms in a deployed
project.

In the VeriStand Editor, click
View > Alarm Monitor.

ni.com38

VeriStand Feature Usage

Goal Location
■ Acknowledge and unacknowledge alarms.
■ Enable and disable alarms.
■ View the history of tripped alarms and export the history
to a file.

■ Manage alarms at run time in the Workspace, including the
high limit, low limit, corresponding procedure name, delay
duration, trip value, priority, state, and mode information.
■ View the current status of all of the alarms in a deployed
project.
■ Acknowledge alarms or mark them as unacknowledged.
■ Enable and disable alarms.
■ View the history of tripped alarms and export the history
to a file.

In the Workspace, open the
Alarm Monitor tool.

Adding an Alarm

Add alarms to notify users that the value of a channel is outside a specified range or
to trigger a procedure.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Alarms in the configuration tree.

4. Click Add Alarm to add an empty alarm to the configuration tree.

5. Use the Alarm Configuration page that appears to the right of the
configuration tree to configure the alarm.

6. Save the system definition file.

After adding an alarm to the system definition, an alarm status channel is created
under the alarm. You can use this status channel to monitor when an alarm triggers
or clears. If the channel was not automatically created or was deleted, right-click the
alarm and select Add Alarm Status Channel.

© National Instruments 39

VeriStand Feature Usage

Assigning an Alarm Group

Assign an alarm group to execute one alarm procedure at a time.
If a system definition file contains multiple alarm groups, one procedure per alarm
group can execute simultaneously.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Alarms in the configuration tree.
4. In the Alarm Groups table, click the cell in the column for the desired alarm

group.
5. Save the system definition file.

Alarm Group Execution
Alarm groups and priorities affect the execution of procedures within the alarm
group.
Only one alarm procedure executes at a time in an alarm group.
Use the following table to determine the order procedures will execute based on the
order of the alarms.

Note This information only applies when alarms are set in the Alarm
Configuration page to Normal mode. If an alarm is set to Indicate Only, the
alarm will trip when the monitored channel goes out of range, but will not
execute a procedure.

Order of alarms Order of procedures

Multiple alarms go out of
range simultaneously.

The alarm with the highest priority executes its procedure first.

A low-priority alarm trips
before a high-priority alarm.

The high-priority procedure interrupts the low-priority alarm. After
the high-priority procedure finishes and resets, the low-priority
procedure resumes.

A high-priority alarm trips
before a low-priority alarm.

The high-priority procedure executes, finishes, and resets the
high-priority alarm. If the low-priority alarm condition is still met
after the high-priority alarm resets, the low-priority alarm trips.

ni.com40

VeriStand Feature Usage

https://veristand.chm::/CP_Alarm.html
https://veristand.chm::/CP_Alarm.html

Order of alarms Order of procedures

Note If the channel value for the low-priority alarm
returns to a normal range before the high-priority
alarm resets, the low-priority procedure will not
execute.

Setting an Alarm Priority

Set an alarm priority to ensure high severity alarms execute immediately,
interrupting other alarms that may be executing when multiple alarms are
monitoring the same system.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Alarms in the configuration tree.
4. In the Priority column of the Alarms table, click a cell for an alarm, and enter a

numeric value.

Note A procedure called from a higher priority alarm interrupts a
procedure called from a lower priority alarm. Zero (0) is the highest
priority number.

5. Save the system definition file.

Triggering an Alarm for a Specific Channel Value

Create an alarm that trips when a channel reaches an exact value.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller in the configuration tree.

4. Right-click Calculated Channels and select Add Calculated Channel.

© National Instruments 41

VeriStand Feature Usage

5. In the Calculated Channel Settings drop-down menu, select Conditional.
6. Define the if/else statement VeriStand evaluates when the channel produces

values.

1. In Channel to check (x), select a channel to monitor.

2. In the Condition drop-down menu, select =.

3. Enter a y value that will trip the alarm.

4. Enter If True (w) as 1.

5. Enter Else (z) as 0.

7. Right-click Alarms and select Add Alarm.
8. In Alarm Source, select the calculated channel you created.

9. In Alarm Upper Limit and Alarm Lower Limit, select Constant Value and enter
0.000.

Note When the calculated channel detects the channel value you
specified (y value), the value of the calculated channel changes to 1
(If TRUE (w)) and the alarm trips.

10. Save the system definition file.

Adding and Configuring a Hardware Device

Add and configure National Instruments hardware, timing and sync devices, and
custom devices.

1. Open a project in VeriStand.
2. Depending on your hardware goal, complete any of the following tasks in

System Explorer.
Goal Task

Adding and configuring an
SLSC device

Use SLSC devices to introduce signal conditioning and fault
insertion into a real-time testing scheme.

Adding and configuring DAQ
devices

Use DAQ devices to support analog, digital, and counter I/O
functions such as acquiring waveform data.

ni.com42

VeriStand Feature Usage

Goal Task
Adding NI FPGA targets Use NI FPGA targets to create customizable I/O, help with

data preprocessing and postprocessing, add high-speed
closed-loop control, and simulate a variety of sensors for
hardware-in-the-loop testers

Adding NI-XNET devices Use the NI-XNET platform to communicate with hardware
using the CAN, LIN, and FlexRay protocols.

Adding reflective memory
networks

Use a reflective memory card to split up a simulation model
to execute simultaneously on different target systems.

Adding and configuring
timing and sync devices

Use a timing and sync device to synchronize more than one
chassis.

Synchronizing hardware
and software

Synchronize the hardware and software components of a
system to ensure consistency and optimal performance,
enable data analysis, and time correlation.

Setting chassis master
hardware synchronization
devices

Use a chassis master hardware synchronization device to
control the synchronization of all hardware in a chassis.

Adding and Configuring an SLSC device

Use SLSC devices to introduce signal conditioning and fault insertion into a real-
time testing scheme.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > SLSC in the configuration tree.

4. Right-click SLSC and click Add SLSC Chassis.

5. In the Add SLSC Chassis dialog box, use the Connect with drop-down to
specify whether to connect to the chassis using the chassis name or the host
name or IP address.

6. Enter the chassis name, host name, or IP address.

7. Enter a Username and Password for the engine to log into the SLSC chassis.

© National Instruments 43

VeriStand Feature Usage

Note Entering a user name and password removes the requirement
for custom devices to separately log into the SLSC chassis. If the
credentials are incorrect when the engine attempts to log into the
SLSC chassis, VeriStand will undeploy the system definition. By
default, the user name is anonymous and the password left empty.

8. Click OK.

9. In the configuration tree, navigate to SLSC Chassis > Modules under your
SLSC chassis.

10. Use the drop-down menus under SLSC Modules Settings to select the
modules in each of the chassis slots.

11. Save the system definition file.

SLSC Systems in Real-Time Schemes
A SLSC system is composed of chassis and module devices.
A SLSC chassis interfaces with the network and provides multiple slots for SLSC
modules. A SLSC module contains circuitry for switching, loads, and signal
conditioning.
The device under test and the measurement device send signals to the SLSC system
for signal conditioning. The SLSC system passes the signals on to the next stage in
the real-time scheme. Signals can pass back and forth through this process from
either the measurement device or the device under test. The direction of the signals
depends on the set up of the real-time scheme.
SLSC devices are assigned names using the following user-defined format.
Device Name Format

Chassis SLSC-<chassis_model>-<chassis_serial_number>
Module <chassis_name>-Mod<slot_number>

Adding and Configuring a DAQ Device

Use DAQ devices to support analog, digital, and counter I/O functions such as
acquiring waveform data.

ni.com44

VeriStand Feature Usage

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > DAQ in the configuration
tree.

4. Choose to add one or all discoverable DAQ devices.
Number of
Devices

How to Add

One
1. Click Add DAQ Device.

2. Use the Add DAQ Device dialog box to identify the DAQ device you
want to add.

3. Click OK.

All
1. Click Hardware Discovery Wizard and follow the onscreen

instructions.

2. Right-click a device and select Add Channels to display the Add DAQ

Channels dialog box.

5. Use the Add DAQ Channels dialog box to configure the type of physical
channel to add and their properties.

Note For analog input channels, you must choose to acquire the
signal a single point at a time or over a period of time as waveform.

6. Click Next.
7. Select the specific channels on the device you want to add to the system

definition.

Note If the DAQ device does not contain channels of the type you
specified, such as AO or DI, no channels are available to select.

8. Click Finish.

© National Instruments 45

VeriStand Feature Usage

9. Save the system definition file.

After you add a DAQ device, you can add and configure more channels. Add an
internal channel to a DAQ device by right-clicking the device and selecting Add

Internal Channel.

You can also add a SCXI module to a DAQ device by right-clicking the device and
selecting Add SCXI Modules. Use the Add SCXI Module dialog box to configure the
module.

Adding and Configuring DAQ Device Channels
Define how VeriStand performs measurements using DAQ channels.

Before you begin, add a DAQ device.

Each measurement type has configurable properties. For example, counter input
channels that count up have a count edge property that sets whether the channel
counts rising edges or falling edges.

Note Some properties are only available on certain devices. Refer to the
documentation for your hardware device to find out what properties your
device supports.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > DAQ in the configuration
tree.

4. Right-click a DAQ device and click Add Channels.
5. Determine the channel type you want based on the measurement type.

Measurement type Channel type

■ Accelerometer
■ Bridge
■ Current

Analog Input (AI)

ni.com46

VeriStand Feature Usage

Measurement type Channel type
■ Force
■ Pressure
■ Resistance Temperature Detector (RTD)
■ Strain
■ Thermistor Iex
■ Thermistor Vex
■ Thermocouple
■ Torque
■ Voltage

■ Current
■ Voltage

Analog Output (AO)

Digital Input Digital Input (DI)
Digital Output Digital Output (DO)

■ Count Up/Down
■ Frequency
■ Position
■ Pulse Measurement
■ Time Period

Counter Input (CI)

Pulse Generation Counter Output (CO)

6. In the Add DAQ Channels dialog box, use the Select channel type to add pull-
down to select the channel type.

7. Use the Select measurement type pull-down to select the measurement type.

8. Click Next.

9. Select the channel(s) you want to add and click Finish.

Note If the DAQ device does not contain channels of the type you
specified, no channels are available to select.

© National Instruments 47

VeriStand Feature Usage

10. Save the system definition file.
Accelerometer Channel Properties (AI)
Configure an accelerometer's analog input (AI) channel properties to measure
acceleration.
For more information on accelerometers, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Input
Configuration

Specifies the input terminal configuration to apply to the device channels.

Note If you select any configuration other than Same as device, it
overrides the configuration you specify for the device on the DAQ

Device Configuration page in System Explorer.

■ Same as device—The same configuration specified for the DAQ device
itself. To set the input terminal configuration at the device level, use the
Input Configuration pull-down menu on the DAQ Device Configuration
page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

Sensitivity The sensitivity of the sensor in the units you specify. Refer to the sensor
documentation to determine this value.

Current
Excitation
Source

Specifies the source of excitation:

■ External—Use an external excitation source instead of the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.
■ None—Supply no excitation to the channel.

ni.com48

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/accelerometers/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/

Property/Section Description
For both internal and external current excitation sources, you must use the
Current Excitation Value property.

Current
Excitation Value

The amount of excitation to supply to the sensor. Refer to the sensor
documentation to determine this value.

dB Reference Specifies the decibel reference level. When you read samples as a waveform,
the decibel reference level is included in the waveform attribute.

Coupling Mode Specifies the coupling for the channel:

■ AC—Removes the DC offset from the signal.
■ DC—Allows VeriStand to measure all of the signal.

Bridge Channel Properties (AI)
Configure a bridge-based sensor's analog input (AI) channel properties to measure
its output.
For more information on bridge-based sensors, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Bridge Configuration Specifies what type of bridge configuration to use:

■ Full Bridge

■ Half Bridge

■ Quarter Bridge

Excitation Source Specifies the source of excitation:

■ External—Use an excitation source other than the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.

For both internal and external excitation sources, you must use the
Excitation Value property.

© National Instruments 49

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgesensors/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgeconfig/

Property/Section Description
Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the

sensor documentation to determine this value.
Nominal Bridge
Resistance

Specifies the resistance of the bridge while not under load.

Enable Offset Null Specifies whether to perform a bridge offset nulling calibration.
Enable Shunt
Calibration

Specifies whether to perform a shunt calibration.

Shunt Element
Location

Specifies the location of the shunt resistor:

■ R1—Between Vch- and Vex+

■ R2—Between Vch- and Vex-

■ R3—Between Vch+ and Vex-

■ R4—Between Vch+ and Vex+

Shunt Resistance Specifies the shunt resistance.
Filter Type
(supported devices
only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

Filter Cutoff
Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

In-Situ Calibration
(supported devices
only)

Specifies whether to perform an in-situ calibration and when to perform
the calibration:

■ Before deployment—Perform an in-situ calibration before the
system definition is deployed.

ni.com50

VeriStand Feature Usage

Property/Section Description
■ After undeployment—Perform an in-situ calibration after the
system definition is no longer deployed.
■ Both—Perform an in-situ calibration before the system definition is
deployed and after the system definition is no longer deployed.
■ None—Do not perform an in-situ calibration.

In-Situ Minimum
Value (supported
devices only)

The minimum value you expect to measure when VeriStand performs an in-
situ calibration.

In-Situ Maximum
Value (supported
devices only)

The maximum value you expect to measure when VeriStand performs an
in-situ calibration.

In-Situ Input
Configuration
(supported devices
only)

Specifies the input terminal configuration to use when performing the in-
situ calibration:

■ Same as device—The same configuration specified for the DAQ
device itself. To set the input terminal configuration at the device
level, use the Input Configuration pull-down menu on the DAQ

Device Configuration page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

Current Channel Properties (AI)
Configure analog input (AI) channel properties to measure current.

For more information on measuring current, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

© National Instruments 51

VeriStand Feature Usage

https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description
Input
Configuration

Specifies the input terminal configuration to apply to the device channels.

Note If you select any configuration other than Same as device, it
overrides the configuration you specify for the device on the DAQ

Device Configuration page in System Explorer.

■ Same as device—The same configuration specified for the DAQ device
itself. To set the input terminal configuration at the device level, use the
Input Configuration pull-down menu on the DAQ Device Configuration
page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

External Shunt
Resistance

Specifies the external shunt resistance.

Force Channel Properties (AI)
Configure analog input (AI) channel properties to measure force.
For more information on measuring force, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs
any scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs
any scaling or calibration.

Bridge Configuration Specifies what type of bridge configuration to use:

■ Full Bridge

■ Half Bridge

■ Quarter Bridge

Excitation Source Specifies the source of excitation:

ni.com52

VeriStand Feature Usage

https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgeconfig/

Property/Section Description
■ External—Use an excitation source other than the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.

For both internal and external excitation sources, you must use the
Excitation Value property.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the
sensor documentation to determine this value.

Nominal Bridge
Resistance

Specifies the resistance of the bridge while not under load.

Electrical Units Specifies from which electrical unit to scale the data. Select the same
unit that the sensor data sheet or calibration certificate uses for electrical
values.

Scale: 1st Electrical
Value

Specifies the first electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 1st Physical
Value

Specifies the physical value that corresponds to the first electrical value.

Scale: 2nd Electrical
Value

Specifies the second electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 2nd Physical
Value

Specifies the physical value that corresponds to the second electrical
value.

Filter Type (supported
devices only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

Filter Cutoff Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

Pressure Channel Properties (AI)
Configure analog input (AI) channel properties to measure pressure.
For more information on measuring pressure, refer to the NI-DAQmx Manual.

© National Instruments 53

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs
any scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs
any scaling or calibration.

Bridge Configuration Specifies what type of bridge configuration to use:

■ Full Bridge

■ Half Bridge

■ Quarter Bridge

Excitation Source Specifies the source of excitation:

■ External—Use an excitation source other than the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.

For both internal and external excitation sources, you must use the
Excitation Value property.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the
sensor documentation to determine this value.

Nominal Bridge
Resistance

Specifies the resistance of the bridge while not under load.

Electrical Units Specifies from which electrical unit to scale the data. Select the same
unit that the sensor data sheet or calibration certificate uses for electrical
values.

Scale: 1st Electrical
Value

Specifies the first electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 1st Physical
Value

Specifies the physical value that corresponds to the first electrical value.

Scale: 2nd Electrical
Value

Specifies the second electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 2nd Physical
Value

Specifies the physical value that corresponds to the second electrical
value.

Filter Type (supported
devices only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.

ni.com54

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgeconfig/

Property/Section Description
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

Filter Cutoff Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

RTD Channel Properties (AI)
Configure analog input (AI) channel properties to measure temperature from a
Resistance Temperature Detector (RTD).
Platinum RTDs use a linearization curve known as the Callendar-Van Dusen
equation to measure the temperature of RTDs. For more information on measuring
temperature, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Resistance
Configuration

Specifies the number of wires to use for resistive measurements:

■ 2-Wire
■ 3-Wire
■ 4-Wire

Excitation Source Specifies the source of excitation:

■ External—Use an external excitation source instead of the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.
■ None—Supply no excitation to the channel.

For both internal and external current excitation sources, you must use the
Excitation Value property.

RTD Type Specifies the type of RTD connected to the channel:

© National Instruments 55

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/callendarvandusen/
http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/callendarvandusen/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/2wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/3wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/4wireres/

Property/Section Description
■ Custom—Use a custom RTD. You must use the three Custom RTD
Const properties to supply the coefficients for the Callendar-Van Dusen
equation.
■ Pt3750

■ Pt3851

■ Pt3911

■ Pt3916

■ Pt3920

■ Pt3928

r0 The sensor resistance at 0 degrees Celsius. The Callendar-Van Dusen
equation requires this value. Refer to the sensor documentation to
determine this value.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the sensor
documentation to determine this value.

Custom RTD A
const

Specifies the A constant of the Callendar-Van Dusen equation. VeriStand
requires this value when you use a custom RTD and specify Custom for the
RTD Type property.

Custom RTD B
const

Specifies the B constant of the Callendar-Van Dusen equation. VeriStand
requires this value when you use a custom RTD and specify Custom for the
RTD Type property.

Custom RTD C
const

Specifies the C constant of the Callendar-Van Dusen equation. VeriStand
requires this value when you use a custom RTD and specify Custom for the
RTD Type property.

Strain Channel Properties (AI)
Configure analog input (AI) channel properties to measure strain.

For more information on measuring strain, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

ni.com56

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description
Strain
Configuration

Specifies what type of bridge configuration to use for the strain gages:

■ Full Bridge I
■ Full Bridge II
■ Full Bridge III
■ Half Bridge I
■ Half Bridge II
■ Quarter Bridge I
■ Quarter Bridge II

Excitation Source Specifies the source of excitation:

■ External—Use an external excitation source instead of the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.
■ None—Supply no excitation to the channel.

For both internal and external excitation sources, you must use the
Excitation Value property.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the
sensor documentation to determine this value.

Lead Resistance Specifies the amount of resistance in the lead wires. Ideally, this value is the
same for all leads.

Initial Bridge
Voltage

Specifies the output voltage of the bridge in the unloaded condition.
VeriStand subtracts this value from any measurements before applying
scaling equations. Perform a voltage measurement on the bridge with no
strain applied to determine this value.

Gage Factor Specifies the sensitivity of the strain gages and relates the change in
electrical resistance to the change in strain. Each gage in the bridge must
have the same gage factor. Refer to the sensor documentation to determine
this value.

Nominal Gage
Resistance

Specifies the resistance of the gages in an unstrained position. Each gage in
the bridge must have the same nominal gage resistance. The resistance
across arms of the bridge that do not have strain gages must also be the
same as the nominal gage resistance. Refer to the sensor documentation to
determine this value.

© National Instruments 57

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgeconfig/

Property/Section Description
Poisson Ratio Specifies the ratio of lateral strain to axial strain in the material you are

measuring.
Enable Offset Null Specifies whether to perform a bridge offset nulling calibration.
Enable Shunt
Calibration

Specifies whether to perform a shunt calibration.

Shunt Element
Location

Specifies the location of the shunt resistor:

■ R1—Between Vch- and Vex+

■ R2—Between Vch- and Vex-

■ R3—Between Vch+ and Vex-

■ R4—Between Vch+ and Vex+

Shunt Resistance Specifies the shunt resistance.
Filter Type
(supported devices
only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

Filter Cutoff
Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

In-Situ Calibration
(supported devices
only)

Specifies whether to perform an in-situ calibration and when to perform the
calibration:

■ Before deployment—Perform an in-situ calibration before the
system definition is deployed.
■ After undeployment—Perform an in-situ calibration after the system
definition is no longer deployed.

ni.com58

VeriStand Feature Usage

Property/Section Description
■ Both—Perform an in-situ calibration before the system definition is
deployed and after the system definition is no longer deployed.
■ None—Do not perform an in-situ calibration.

In-Situ Minimum
Value (supported
devices only)

The minimum value you expect to measure when VeriStand performs an in-
situ calibration.

In-Situ Maximum
Value (supported
devices only)

The maximum value you expect to measure when VeriStand performs an in-
situ calibration.

In-Situ Input
Configuration
(supported devices
only)

Specifies the input terminal configuration to use when performing the in-
situ calibration:

■ Same as device—The same configuration specified for the DAQ
device itself. To set the input terminal configuration at the device
level, use the Input Configuration pull-down menu on the DAQ Device

Configuration page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

Thermistor Iex Channel Properties (AI)
Configure analog input (AI) channel properties to measure current excitation
temperature using a thermistor.
NI-DAQmx scales the resistance of a thermistor to a temperature using the Steinhart-
Hart thermistor equation. For more information on measuring temperature, refer to
the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

© National Instruments 59

VeriStand Feature Usage

https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/
http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/thermistors/
http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/thermistors/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description
Maximum Value The maximum value you expect to measure before VeriStand performs any

scaling or calibration.
Resistance
Configuration

Specifies the number of wires to use for resistive measurements:

■ 2-Wire
■ 3-Wire
■ 4-Wire

Excitation Source Specifies the source of excitation:

■ External—Use an external excitation source instead of the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.
■ None—Supply no excitation to the channel.

For both internal and external current excitation sources, you must use the
Current Excitation Value property.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the sensor
documentation to determine this value.

A Specifies the A constant for the Steinhart-Hart thermistor equation. Refer to
the sensor documentation to determine values for these constants.

B Specifies the B constant for the Steinhart-Hart thermistor equation. Refer to
the sensor documentation to determine values for these constants.

C Specifies the C constant for the Steinhart-Hart thermistor equation. Refer to
the sensor documentation to determine values for these constants.

Thermistor Vex Channel Properties (AI)
Configure analog input (AI) channel properties to measure voltage excitation
temperature using a thermistor.
NI-DAQmx scales the resistance of a thermistor to a temperature using the Steinhart-
Hart thermistor equation. For more information on measuring temperature, refer to
the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

ni.com60

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/2wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/3wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/4wireres/
http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/thermistors/
http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/thermistors/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description
Maximum Value The maximum value you expect to measure before VeriStand performs any

scaling or calibration.
Resistance
Configuration

Specifies the number of wires to use for resistive measurements:

■ 2-Wire
■ 3-Wire
■ 4-Wire

Excitation Source Specifies the source of excitation:

■ External—Use an external excitation source instead of the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.
■ None—Supply no excitation to the channel.

For both internal and external current excitation sources, you must use the
Current Excitation Value property.

r1 Specifies the value of the reference resistor.
Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the sensor

documentation to determine this value.
A Specifies the A constant for the Steinhart-Hart thermistor equation. Refer to

the sensor documentation to determine values for these constants.
B Specifies the B constant for the Steinhart-Hart thermistor equation. Refer to

the sensor documentation to determine values for these constants.
C Specifies the C constant for the Steinhart-Hart thermistor equation. Refer to

the sensor documentation to determine values for these constants.

Thermocouple Channel Properties (AI)
Configure analog input (AI) channel properties to measure temperature using a
thermocouple.
Thermocouples require cold-junction compensation (CJC) for temperature
references. For more information on measuring temperature, refer to the NI-DAQmx
Manual.

© National Instruments 61

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/2wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/3wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/4wireres/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/sigcontherm/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Thermocouple
Type

Specifies the type of thermocouples connected to the channel.
Thermocouple types differ in composition and measurement range.

■ B—B-type thermocouple.
■ E—E-type thermocouple.
■ J—J-type thermocouple.
■ K—K-type thermocouple.
■ N—N-type thermocouple.
■ R—R-type thermocouple.
■ S—S-type thermocouple.
■ T—T-type thermocouple.

CJC Value Specifies the temperature of the cold-junction if you set the CJC Source
property to Constant Value.

CJC Source Specifies the source of cold-junction compensation:

■ Constant Value—Use the CJC Value property to specify the cold-
junction temperature.
■ Internal—Use a cold-junction compensation channel built into the
terminal block.

Torque Channel Properties (AI)
Configure analog input (AI) channel properties to measure torque.

For more information on measuring torque, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs
any scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs
any scaling or calibration.

ni.com62

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/measfunds/thermocouples/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/Section Description
Bridge Configuration Specifies what type of bridge configuration to use:

■ Full Bridge

■ Half Bridge

■ Quarter Bridge

Excitation Source Specifies the source of excitation:

■ External—Use an excitation source other than the built-in
excitation source of the device.
■ Internal—Use the built-in excitation source of the device.

For both internal and external excitation sources, you must use the
Excitation Value property.

Excitation Value Specifies the amount of excitation supplied to the sensor. Refer to the
sensor documentation to determine this value.

Nominal Bridge
Resistance

Specifies the resistance of the bridge while not under load.

Electrical Units Specifies from which electrical unit to scale the data. Select the same
unit that the sensor data sheet or calibration certificate uses for electrical
values.

Scale: 1st Electrical
Value

Specifies the first electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 1st Physical
Value

Specifies the physical value that corresponds to the first electrical value.

Scale: 2nd Electrical
Value

Specifies the second electrical value used to calculate the slope and y-
intercept of a two-point linear equation to scale electrical values to
physical values.

Scale: 2nd Physical
Value

Specifies the physical value that corresponds to the second electrical
value.

Filter Type (supported
devices only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

© National Instruments 63

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/bridgeconfig/

Property/Section Description
Filter Cutoff Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

Voltage Channel Properties (AI)
Configure analog input (AI) channel properties to measure voltage.

For more information on measuring voltage, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Input Configuration Specifies the input terminal configuration to apply to the device channels.

Note If you select any configuration other than Same as device,
it overrides the configuration you specify for the device on the
DAQ Device Configuration page in System Explorer.

■ Same as device—The same configuration specified for the DAQ
device itself. To set the input terminal configuration at the device
level, use the Input Configuration pull-down menu on the DAQ Device

Configuration page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

Filter Type
(supported devices
only)

Specifies whether to apply a digital filter to the input signal:

■ Disabled—No filter.
■ Lowpass—Eliminates all signal frequency components above the
cutoff frequency.

ni.com64

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/

Property/Section Description
Filter Cutoff
Frequency
(supported devices
only)

Specifies the cutoff frequency of the digital filter.

In-Situ Calibration
(supported devices
only)

Specifies whether to perform an in-situ calibration and when to perform the
calibration:

■ Before deployment—Perform an in-situ calibration before the
system definition is deployed.
■ After undeployment—Perform an in-situ calibration after the system
definition is no longer deployed.
■ Both—Perform an in-situ calibration before the system definition is
deployed and after the system definition is no longer deployed.
■ None—Do not perform an in-situ calibration.

In-Situ Minimum
Value (supported
devices only)

The minimum value you expect to measure when VeriStand performs an in-
situ calibration.

In-Situ Maximum
Value (supported
devices only)

The maximum value you expect to measure when VeriStand performs an in-
situ calibration.

In-Situ Input
Configuration
(supported devices
only)

Specifies the input terminal configuration to use when performing the in-
situ calibration:

■ Same as device—The same configuration specified for the DAQ
device itself. To set the input terminal configuration at the device
level, use the Input Configuration pull-down menu on the DAQ Device

Configuration page.
■ Default—At run time, NI-DAQmx chooses the default terminal
configuration for the channel.
■ RSE—Referenced single-ended mode.
■ NRSE—Non-referenced single-ended mode.
■ Differential—Differential mode.
■ Pseudodifferential—Pseudodifferential mode.

Lowpass Cutoff
Filter Frequency

Specifies the frequency that corresponds to the -3dB cutoff of the analog
filter.

© National Instruments 65

VeriStand Feature Usage

https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/refsingleended/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/diffmeassys/
https://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/pseudodiffmeassystem/

Property/Section Description
(supported devices
only)

Current Channel Properties (AO)
Configure analog output (AO) channel properties to generate current.
For more information on generating current, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Note VeriStand limits the values it writes to AO channels to values
between the minimum and maximum values.

Voltage Channel Properties (AO)
Configure analog output (AO) channel properties to generate voltage.
For more information on generating voltage, refer to the NI-DAQmx Manual.

Property/Section Description

Minimum Value The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum Value The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Note VeriStand limits the values it writes to AO channels to values
between the minimum and maximum values.

Digital Input Channel Properties (DI)
Configure DI channel properties to measure digital signals.

ni.com66

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

For more information on measuring digital signals, refer to the NI-DAQmx Manual.

Property/
Section

Description

Invert Lines Specifies whether to reverse digital line polarity:

■ False—Do not invert lines.
■ True—Invert lines.
■ Same as port—Use the same option as the port that contains the
channel. To set this option, on the Port Configuration page, click Invert

digital lines.

Digital Output Channel Properties (DO)
Configure DO channel properties to generate digital signals.

For more information on generating digital signals, refer to the NI-DAQmx Manual.

Property/
Section

Description

Invert Lines Specifies whether to reverse digital line polarity:

■ False—Do not invert lines.
■ True—Invert lines.
■ Same as port—Use the same option as the port that contains the
channel. To set this option, on the Port Configuration page, click Invert

digital lines.

Count Up/Count Down Channel Properties (CI)
Configure counter input (CI) channel properties to count the rising or falling edges
of a digital signal.
For more information on counting edges, refer to the NI-DAQmx Manual.

Property/
Section

Description

Count Edge Specifies on which edges of the input signal to increment or decrement the count:

© National Instruments 67

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/
Section

Description

■ Falling—Count falling edges.
■ Rising—Count rising edges.

Count
Direction

Specifies whether to increment or decrement the counter on each edge of the
type you specify with the Count Edge property:

■ Count down—Decrement counter.
■ Count up—Increment counter.
■ Externally Controlled—The state of a digital line controls the count
direction. Each counter has a default count direction terminal.

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

Frequency Channel Properties (CI)
Configure counter input (CI) channel properties to measure the frequency of a
digital signal.
VeriStand measures the frequency of a digital signal by counting observed edges
and performing a software calculation over a period of time determined by your
expected frequency range.

Note This method uses a software calculation that may not provide the
most reliable accuracy or update rate. Alternatively, if your DAQ card
supports Pulse Measurement, use values from the Frequency channel
located under the counter channels in System Explorer.

Property/
Section

Description

Minimum
Value

The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

ni.com68

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/

Property/
Section

Description

Note The minimum value of frequency determines, and is equal to,
the measurement frequency resolution. The measurement time is
equal to the reciprocal of the minimum frequency value.

Maximum
Value

The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Count Edge Specifies on which edges of the input signal to increment or decrement the
count:

■ Falling—Count falling edges.
■ Rising—Count rising edges.

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

Position Channel Properties (CI)
Configure counter input (CI) channel properties for channels that use a linear
encoder to measure linear position.
For more information on encoders and measuring linear displacement, refer to the
NI-DAQmx Manual.

Property/
Section

Description

Z Index
Mode

Specifies the states at which signal A and signal B must be while signal Z is high for
VeriStand to reset the measurement.

Note If signal Z is never high while signal A and signal B are high, you
must choose a phase other than A High B High.

■ A High B High—Reset the measurement when signal A and signal B are high.
■ A High B Low—Reset the measurement when signal A is high and signal B is
low.

© National Instruments 69

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/latest/measfunds/encoders/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/
http://www.ni.com/documentation/en/ni-daqmx/latest/manual/manual-overview/

Property/
Section

Description

■ A Low B High—Reset the measurement when signal A is low and signal B
high.
■ A Low B Low—Reset the measurement when signal A and signal B are low.

When signal Z transitions to high and how long it stays high varies from encoder to
encoder. Refer to the documentation for the encoder to determine the timing of
signal Z with respect to signal A and signal B.

Decoding Specifies how to count and interpret the pulses the encoder generates on signal A and
signal B. X1, X2, and X4 are valid for quadrature encoders only.

■ 2 Pulse Counting—Increment the count on rising edges of signal A.
Decrement the count on rising edges of signal B. If you select this value, the Z
Index Mode property is ignored.
■ X1—If signal A leads signal B, count the rising edges of signal A. If signal B
leads signal A, count the falling edges of signal A.
■ X2— Count the rising and falling edges of signal A
■ X4—Count the rising and falling edges of signal A and signal B.

Note 2 Pulse Counting is valid only for two-pulse encoders. X2 and X4
decoding are more sensitive to smaller changes in position than X1
encoding, with X4 being the most sensitive. However, more sensitive
decoding is more likely to produce erroneous measurements if vibration
exists in the encoder or other noise exists in the signals.

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

Pulse Measurement Channel Properties (CI)
Configure counter input (CI) channel properties to measure pulse specifications.
A pulse specification is a pairing of high time and low time values.

ni.com70

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/

Note Only X Series DAQ devices support this measurement type.

VeriStand returns measurements for pulse specifications as pairs of frequency and
duty cycle values. You can access these values for each counter input channel that
performs pulse measurements through two additional channels, Frequency and
Duty Cycle, that appear under the counter channels in System Explorer.

Note If you assign this measurement type to one or more counter input
channels, you cannot assign a different measurement type to other
counter input channels on the same device.

Property/
Section

Description

Minimum
Value

The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum
Value

The maximum value you expect to measure before VeriStand performs any
scaling or calibration.

Sample Clock
Source

Specifies the name of the source terminal of the sample clock. You can use an
internal counter timebase when performing counter measurements or an
external timebase.

Sample Clock
Rate

Specifies in hertz the sampling rate in samples per channel per second. If you use
an external source for the sample clock, set this input to the maximum expected
rate of that clock.

Active Edge Specifies whether a timebase cycle is from rising edge to rising edge or from
falling edge to falling edge:

■ Falling—Falling edge(s).
■ Rising—Rising edge(s).

Timeout Value Specifies an amount of time to wait for the channel to return valid data.
VeriStand considers invalid data to be repeated values, which might occur if the
system attempts to read data faster than the Sample Clock Rate property.

When VeriStand reads invalid data, it continues to read from the channel while it
counts until the Timeout Value. VeriStand will return values of NaN until the
channel returns valid data again.

© National Instruments 71

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/mxcncpts/termnames/

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

Time Period Channel Properties (CI)
Configure counter input (CI) channel properties to measure the period of a digital
signal.
With this measurement type, VeriStand measures the period of a digital signal by
counting observed edges and performing a software calculation over a period of
time determined by your expected range.

Note This method uses a software calculation that may not provide the
most reliable accuracy or update rate. Alternatively, if your DAQ card
supports Pulse Measurement, use values from the Frequency channel
located under the counter channels in System Explorer.

Property/
Section

Description

Minimum
Value

The minimum value you expect to measure before VeriStand performs any
scaling or calibration.

Maximum
Value

The maximum value you expect to measure, before VeriStand performs any
scaling or calibration.

Note The maximum value of the time period determines, and is equal
to, the measurement time required. The maximum update rate of the
measurement is equal to the reciprocal of the maximum time period.

Count Edge Specifies on which edges of the input signal to increment or decrement the
count:

■ Falling—Count falling edges.
■ Rising—Count rising edges.

ni.com72

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

Pulse Generation Channel Properties (CO)
Configure counter output (CO) channel properties to generate digital pulses.
VeriStand generates digital pulses that are defined by pairs of frequency and duty
cycle values. Provide these values for each counter output channel that generate
pulses through two additional channels, Frequency and Duty Cycle, that appear
under the counter channels in System Explorer.
The following illustration shows the parts of a pulse.

For more information on generating pulses, refer to the NI-DAQmx Manual.

Note To assign this measurement type to channels on a non-X Series
device, set Enable HWTSP to False. If Enable HWTSP is True, only X Series
DAQ devices support this measurement type.

Property/
Section

Description

Idle State Specifies the resting state of the output terminal:

■ High—Terminal is at a high state at rest. A pulse with a high idle state starts
high, pulses to low, and returns to high.
■ Low—Terminal is at a low state at rest. A pulse with a low idle state starts at
the low value, pulses high, and returns to low.

© National Instruments 73

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/latest/gettingstarted/commonapps/

Property/
Section

Description

Initial Delay Specifies the amount of time the output remains at the idle state before generating
the pulse. The idle state always replaces high time or low time for the first pulse of a
generation, depending on the idle state.

Enable
HWTSP ■ True—Generate pulses continuously using hardware timing without a

buffer. This timing type is called hardware-timed single-point sample mode.
■ False—Generates pulses continuously without specifying timing. This timing
type is called implicit because the signal being measured is itself the timing
signal or the timing is implicit in the rate of the generated pulse train.

Note Implicit timing is appropriate when the measurement does
not require sample timing, such as with counters for buffered
frequency measurement, buffered period measurement, or pulse
train generation.

HWTSP
Clock
Source

If the Enable HWTSP property is True, this property specifies the name of the source
terminal of the sample clock. Otherwise, this property is ignored. You can use an
internal counter timebase when performing counter measurements or an external
timebase.

Note A DAQ analog channel with hardware-timed sample mode or an
FPGA device must be configured as the chassis master hardware
synchronization device on the Chassis Configuration page in System

Explorer. Otherwise, the clock source is not available, and VeriStand
returns an error during deployment.

HWTSP
Clock Rate

If the Enable HWTSP property is True, this property specifies the sampling rate in
samples per channel per second. Otherwise, this property is ignored. If you use an
external source for the sample clock, set this input to the maximum expected rate of
that

Note For device specific information about the default terminals used for
counter measurements and generations, refer to Connecting Counter
Signals.

ni.com74

VeriStand Feature Usage

http://www.ni.com/documentation/en/ni-daqmx/latest/mxcncpts/termnames/
http://www.ni.com/documentation/en/ni-daqmx/latest/mxcncpts/termnames/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/
http://www.ni.com/documentation/en/ni-daqmx/19.5/devconsid/countersigcon/

VeriStand limits how quickly you can update the frequency and duty cycle values
that define the pulses it generates. At least one complete pulse must elapse with a
set of frequency and duty cycle values before you can change one of these values. If
you update a value too quickly, VeriStand reacts in one of the following ways:

■ If the Enable HWTSP property is set to False, VeriStand ignores the new
value and continues using the latest value you successfully set.
■ If Enable HWTSP is set to True, VeriStand returns an error.

Accessing Cold-Junction Compensation
Channels on SCXI Accessories
Manually add a Cold-Junction Compensation (CJC) channel to a system definition.
Before you start, add a DAQ device and use MAX to configure the SCXI chassis,
module, and accessory.

Note For information on adding and configuring SCXI chassis and
modules, refer to the Measurement & Explorer Help.

CJC channels on SCXI accessories, such as the SCXI-1303, do not automatically
appear under SCXI modules in System Explorer. You must manually add them.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > DAQ in the configuration
tree.

4. Right-click a DAQ device and select Add SCXI Modules.

5. In the Add SCXI Module dialog box, specify the module type to add, set #
Internal channels to 1, and click OK.

6. Under SCXI Chassis, click the SCXI Module you added.

7. Click Internal Channels > Channel 0.
8. In physical channel name field, enter _cjTemp.

© National Instruments 75

VeriStand Feature Usage

Map a thermocouple scale to the _cjTemp internal channel to convert the acquired
voltage values to temperature units.

Setting Up Timing and Logging Properties for
Waveform Acquisitions
Use tasks to define properties for when a system starts and stops acquisitions and
how to perform data logging.

Before you begin, add a DAQ device to the system definition.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > DAQ in the configuration
tree.

4. Under a DAQ device, click Analog Input.

5. In the Sample Mode drop-down menu, select Waveform.

6. In the Analog Input Task drop-down menu, select Create new...

7. In the Create DAQ Task dialog box, name the task and set basic timing
properties and click OK.

8. Click Waveform Tasks and select the task you created.
9. Depending on your goal, access one of the following areas to configure how

VeriStand performs waveform acquisitions.
Goals Location

Perform finite acquisitions and identify an
external sample clock.

Click the task and use the Task

Configuration page.
Allow logging and configure to save data in .tdms
log files.

Click Logging and use the Logging

Configuration page.
Control waveform acquisitions by DAQ devices. Use waveform task channels.

ni.com76

VeriStand Feature Usage

Goals Location
Define triggers to for acquisitions to start and
stop when a certain analog or digital value occurs
or a software command is received.

Click Triggers and use the Triggers

Configuration page.

10. Save the system definition file.
Adding Waveform Task Channels
Use Analog Input (AI) channels with waveform tasks to control waveform
acquisitions by DAQ devices, such as how VeriStand logs waveform data and defines
triggers that start and stop acquisitions.

As part of setting up an AI channel(s) to acquire waveforms, you need to specify the
rate, size, and other properties of the acquisitions you want to perform. You set
these properties in a group called a task, and then assign the task back to the AI
channel(s). You must assign one task to each DAQ device that performs waveform
acquisitions.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > DAQ in the configuration
tree.

4. Depending on your goal, add one of the following task channels.

Note You can write to these channels at run time.

Goals Task Channel How to Add

Set a task to an active, running state. Task Enabled Always available under each task.
Specify if logging occurs during
acquisitions.

Logging Enabled In the Logging Configuration page,
click Allow TDMS logging .

Specify when logging stops and
begins with a new file.

Start New File

Set a finite task to automatically
restart itself and wait for a new

Retriggerable In the Triggers Configuration page,
set Acquisition mode to Finite.

© National Instruments 77

VeriStand Feature Usage

Goals Task Channel How to Add
trigger when the acquisition is
complete.
Set a software start trigger to begin
an acquisition.

Start Trigger In the Triggers Configuration page,
set Trigger type to Software.

5. Save the system definition file.
Single-Point Versus Waveform Acquisition
Specify if an Analog Input (AI) channel performs single-point or waveform
acquisitions when you add the channel to a system definition.
In single-point acquisitions, channels acquire a single point at a time and return the
value directly to the system. A single-point acquisition is an immediate, non-
buffered operation that occurs at the rate at which the system runs.
In waveform acquisitions, channels acquire signals over a period of time as
waveforms.
The following table displays the use case for each acquisition type.
Acquisition
Type

Use Case

Single-Point Useful for implementing closed-loop control, as the system reads one value per
iteration of the Primary Control Loop and can produce appropriate outputs during
the same iteration.

Waveform Useful for reading data at a rate faster than the rate a system runs.
For example, when you need to monitor or log a value that changes quickly, such
as the pressure in an engine cylinder, acquiring the signal as a waveform allows
you to achieve the high sampling rate required to represent the signal adequately.
When you configure AI channels to perform waveform acquisitions, you can
achieve rates up to the maximum sampling rate for the DAQ device without being
restricted by the system rate.

Adding NI FPGA Targets

Use NI FPGA targets to create customizable I/O, help with data preprocessing and
postprocessing, add high-speed closed-loop control, and simulate a variety of
sensors for hardware-in-the-loop testers

ni.com78

VeriStand Feature Usage

You can add an FPGA target and corresponding FPGA configuration file to a system
definition file without installing the LabVIEW FPGA Module. However, you must
install the LabVIEW FPGA Module to create a custom FPGA bitfile and configuration
file.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > FPGA in the configuration
tree.

4. Choose to add one or all discoverable FPGA targets.
Number of
Devices

How to Add

One
1. Click Add FPGA Target.
2. Select an FPGA configuration file

3. Click OK.

All
1. Click Hardware Discovery Wizard and follow the onscreen

instructions.
2. Select a target to display its configuration page.
3. In the path control, select the FPGA configuration file.

5. Save the system definition file.

You can configure the FPGA device and its individual channels with the FPGA Target
and FPGA Channel configuration pages.

Adding NI-XNET Devices

Use the NI-XNET platform to communicate with hardware using the CAN, LIN, and
FlexRay protocols.
You can configure an NI-XNET session by adding ports for your devices under the
protocol you want to use.
Depending on your goal, complete any of the following tasks.

© National Instruments 79

VeriStand Feature Usage

https://veristand.chm::/CP_FPGA_Target.html
https://veristand.chm::/cp_fpga_channel.html

Goal Task

Adding any type of NI-XNET
port

Discover all NI-XNET devices on connected targets and
automatically add ports for them to the system definition file.

Adding a CAN, FlexRay, or LIN
port

Add a CAN, FlexRay, or LIN port to a system definition file.

Adding an NI-XNET Port
Discover all NI-XNET devices on connected targets and automatically add ports for
them to the system definition file.

1. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

2. Click Targets > Controller > Hardware > Chassis > NI-XNET in the
configuration tree.

3. Click Hardware Discovery Wizard and follow the onscreen instructions.
The new NI-XNET device(s) appears under the appropriate section in the
configuration tree.

Note You can restrict the type of NI-XNET device to discover. Select
CAN, FlexRay, or LIN, in the configuration tree and click Hardware

Discovery Wizard.

4. Select each new port to display its configuration page.
5. Specify the XNET database and cluster within the database to associate with

the port.
6. Save the system definition file.

Expand the port to view sections for adding incoming and outgoing frames, data
logging files, and other options. Use the CAN, FlexRay, or LIN Port configuration
page to configure additional settings for the newly added port.

ni.com80

VeriStand Feature Usage

Adding a CAN, FlexRay, or LIN Port
Add a CAN, FlexRay, or LIN port to a system definition file.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET in the
configuration tree.

4. Select the type of port you want to add.

5. Click Add CAN/FlexRay/LIN Port to display the Add New NI-XNET CAN/

FlexRay/LIN Port dialog box.
6. Enter a port name, address, XNET database, and cluster within the database

to associate with the port, and click OK.
7. Save the system definition file.

Expand the port to view sections for adding incoming and outgoing frames, data
logging files, and other options. Use the CAN, FlexRay, or LIN Port configuration
page to configure additional settings for the newly added port.

Adding Reflective Memory Networks

Use a reflective memory card to split up a simulation model to execute
simultaneously on different target systems.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > Data Sharing in the
configuration tree.

4. Choose to add one or all discoverable reflective memory cards.

© National Instruments 81

VeriStand Feature Usage

Number of
Devices

How to Add

One
1. Right-click Data Sharing.

2. Select Add Reflective Memory.

All
1. Click Hardware Discovery Wizard and follow the onscreen

instructions.

Note The wizard lists reflective memory cards in the GE
category.

5. Configure the reflective memory network using the Reflective Memory

Configuration page.
6. Save the system definition file.

Adding and Configuring Timing and Sync Devices

Use a timing and sync device to synchronize more than one chassis.
You must add a timing and sync device to the Timing and Sync directory of
VeriStand in order to add it to the system definition.
VeriStand includes one example timing and sync device. You can add a timing and
sync device to a system definition file without installing LabVIEW. However, you
must install the LabVIEW development environment to create a custom timing and
sync device.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > Timing and Sync in the
configuration tree.

4. Right-click Timing and Sync.
5. From the drop-down menu, select a timing and sync device.

6. Use the Timing and Sync Configuration page to configure the device.

ni.com82

VeriStand Feature Usage

7. Save the system definition file.

Synchronizing Hardware and Software

Synchronize the hardware and software components of a system to ensure
consistency and optimal performance, enable data analysis, and time correlation.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Depending on your goal, complete any of the following tasks.
Goal Tasks

Configure
timing of the
system

1. Click Targets > Controller.
2. Under Timing Source Settings, in the Primary Control Loop timing

source drop-down, select the device that will time the system by
sending ticks to the Primary Control Loop of the VeriStand Engine
to start loop iterations.

3. Enter a Target Rate and a Timing Source Timeout.

Synchronize
hardware-
timed single-
point devices in
a single chassis.

1. Click Targets > Controller > Hardware > Chassis.
2. In the Chassis master hardware synchronization device drop-down,

select the device that will synchronize signal-based hardware
devices in the chassis by distributing a Sample Clock to them.

Note You must configure this for each chassis in your
system definition. Additionally, you can only
synchronize hardware in a PXI chassis, and all devices
must be connected to the PXI backplane because the
Sample Clock is routed from the chassis master using
PXI_Trig0.

3. Configure the device.

Synchronize
hardware-
timed single-
point devices in

1. Share the chassis Reference Clocks between chassis with the 10
MHz REF IN and OUT BNC connectors on the backplanes of the PXI
chassis.

2. Click Targets > Controller > Hardware > Chassis

© National Instruments 83

VeriStand Feature Usage

Goal Tasks
a multiple
chassis.

3. Configure a chassis to export a start trigger.

1. In the Chassis master hardware synchronization device drop-
down, select the device that will synchronize signal-based
hardware devices in the chassis by distributing a Sample
Clock to them.

2. In the Export start trigger on line drop-down, select which
line the chassis will export a start trigger.

4. Configure a chassis to import the start trigger.

1. In the Chassis master hardware synchronization device drop-
down, select the device that will synchronize signal-based
hardware devices in the chassis by distributing a Sample
Clock to them.

2. In the Trigger line drop-down, select which line the chassis
will import the start trigger.

Synchronize
complex
systems

Synchronizing more complex systems may require additional system and
software configuration and additional hardware.
For detailed help on synchronizing complex systems, see the white paper
on Building Synchronized VeriStand Systems.

4. Save the system definition file.

Hardware Synchronization Types
Use Time-Based and Signal-Based Synchronization to coordinate hardware device
timing in a system.
In Time-Based Synchronization, each piece of time-based hardware shares a
common wall-clock time reference. For test and measurement hardware, there are
many industry standards for time such as IEEE 1588, GPS, network time protocol
(NTP), pulse per second (PPS), and inter-range instrumentation group (IRIG) time
codes.
With Signal-Based Synchronization, the system uses physical hardware pulses as a
reference for events. Each piece of signal-based hardware in the system shares a
hardware clock. The clock can be a shared Sample Clock or a high-frequency
Reference Clock. Each signal-based device derives a Sample Clock and a shared
start trigger from the shared clock. When multiple signal-based devices are

ni.com84

VeriStand Feature Usage

synchronized, they update I/O simultaneously and also drift by the same number of
samples over a time period.
The following table displays common use cases for each type of hardware
synchronization.
Synchronization Type Use Case

Time-Based
■ Correlate data logged by time-based devices, such as XNET
devices.
■ Initiate I/O sampling across time-based devices.

Signal-Based
■ Simultaneously sample I/O across several different data
acquisition devices.
■ Update the PWM duty cycle of an FPGA device.
■ Update analog outputs of data acquisition devices.

Setting Chassis Master Hardware Synchronization Devices

Use a chassis master hardware synchronization device to control the
synchronization of all hardware in a chassis.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Choose to add and configure one of the following hardware devices to the
system definition.
Device Type Device Configuration

NI-DAQ The NI-DAQ device must have at least one analog input or output channel.

NI FPGA Any NI FPGA device.

Timing and
Sync

The timing and sync device must have the capability to drive the 0 line.

Note The RTSI 0 line is a digital line that sends a clock signal
that synchronizes all hardware I/O devices in the system.

© National Instruments 85

VeriStand Feature Usage

4. Click Targets > Controller > Hardware > Chassis in the configuration tree to
open the Chassis Configuration page.

5. Click Chassis master hardware synchronization device to select the hardware
device.

6. Save the system definition file.

Scaling a Channel on Hardware Devices

Create scales to convert hardware channel unit measurements to transducer/
actuator scaled units.
Before you begin, you might need to scale a channel when using a sensor that
requires scaling from its voltage or current output into engineering units. Use your
sensor's documentation for more information on creating a scale.

For input channels, scales convert read samples from the hardware channel to
scaled units. Scales on output channels convert written samples to pre-scaled units
of the channel.

1. Depending on your goal, complete one of the following tasks.
Goal Task

Create a lookup table scale. Map an array of pre-scaled values to an array of
corresponding scaled values.

Create a polynomial scale. Convert values using a polynomial equation with up to
ten coefficients.

Create a thermocouple scale. Convert values to Kelvins or degrees Celsius, Fahrenheit,
or Rankine.

Import scales from another
application.

Import a scale created by another system definition file
(.nivssdf) or NI-DAQmx.

Import scale values from a text
file.

Import scale table values or coefficients from a text file.

2. Map the scale to the channel.

Creating a Lookup Table Scale

Map an array of pre-scaled values to an array of corresponding scaled values.

ni.com86

VeriStand Feature Usage

VeriStand applies linear interpolation to values between the table values. This
ensures that values scale proportionally.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Right-click Scales and select Add Scale > Lookup Table.

4. On the new scale's Lookup Table Configuration page, enter the scale Name

and Units to associate with the scaled values.

Note The units you enter will supersede the units associated with
the channel.

5. Enter and edit pairs of pre-scaled values and corresponding scaled values in
the table.

6. Save the system definition file.

VeriStand clips samples that are outside the maximum and minimum scaled values
found in the table.

Creating a Polynomial Scale

Convert values using a polynomial equation with up to ten coefficients.
VeriStand requires two direction coefficients for a polynomial scale. They are a
forward polynomial to convert pre-scaled values to scaled values and a reverse
polynomial to convert scaled values to pre-scaled values.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Right-click Scales and select Add Scale > Polynomial Scale.

4. On the new scale's Polynomial Scale Configuration page, enter the scale Name

and Units to associate with the scaled values.

© National Instruments 87

VeriStand Feature Usage

Note The units you enter will supersede the units associated with
the channel.

5. In the Coefficients drop-down menu, choose one of the following directions
for the coefficients table.
Direction Description

Forward Coefficients table represents a polynomial from pre-scaled to scaled values.

Reverse Coefficients table represents a polynomial from scaled to pre-scaled values.

6. Enter Coefficients for an order of the polynomial in the table control, where
the coefficients are a0, a1, a2,...an for your polynomial scale y = a0 + a1x +
a2x2 + … + anxn.

Note For forward coefficients, y is the scaled data and x is the raw
data. For reverse coefficients, x is the scaled data and y is the raw
data.

7. Save the system definition file.

After creating a direction coefficient, you can click Generate to use regression
analysis to estimate coefficients for the opposite direction. In the dialog box, enter a
Minimum and Maximum value for the raw range and click OK.

Creating a Thermocouple Scale

Convert values to Kelvins or degrees Celsius, Fahrenheit, or Rankine.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Right-click Scales and select Add Scale > Thermocouple Scale.

4. On the new scale's Thermocouple Scale Configuration page, enter the scale
Name.

ni.com88

VeriStand Feature Usage

Note The units you enter will supersede the units associated with
the channel.

5. Select the Thermocouple Type,Temperature Units, CJC Type (cold-junction
compensation device), and CJC Sensor locations.

6. Save the system definition file.

Mapping Scales to Channels

Use VeriStand to apply a scale when you deploy and run the system definition.
You can map a scale to multiple channels, but a channel can only have one scale
applied.
Scales can map to the following:

■ FPGA channels
■ Single-point DAQ channels
■ XNET signals and raw data frames
■ Custom device channels that you flag as scalable

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Create a scale.

4. Right-click Scales and select Map Scales.

5. In the Scale Mappings dialog box, select one channel from Sources and one or
more channels from Destinations.

6. Click Connect to map the scale to the channel(s).

Note Connect is only enabled if it is valid to apply the selected scale
to the selected channel(s).

7. Save the system definition file.

The mapped channels appear in Mappings.

© National Instruments 89

VeriStand Feature Usage

Importing and Exporting Scale Mappings
Save and import the mappings of scales to channels using text files.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Right-click Scales and select Map Scales.

4. In the Scale Mappings dialog box, complete the following tasks.
Goal Task

Import a scale
mapping.

Click Exporting and select a destination to save the text file.

Export a scale
mapping.

Click Importing and select the file you want to import.

Note The system definition file that you import scale
mappings into must have matching scale and channel
names.

5. Save the system definition file.

Importing Scales from Another Application

Import a scale created by another system definition file (.nivssdf) or NI-DAQmx.
The scale names you import must not duplicate scale names already in the system
definition file.

You can import NI-DAQmx custom scales saved in MAX on the host computer. You
can also import NI-DAQmx custom scales exported from MAX as an INI file. VeriStand
does not support map range scales from MAX.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Right-click Scales and select Import Scales.

ni.com90

VeriStand Feature Usage

4. In the Import Scales dialog box, select the type of scale to import.
5. Save the system definition file.

Importing Scale Values from a Text File

Import scale table values or coefficients from a text file.

Before you import a text file, format it.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Create a new lookup table scale or polynomial scale.

4. On the Lookup Table Configuration or Polynomial Scale Configuration page,
click Import.

5. Select a text file that contains scale values and click OK.

6. In the Import Table Values or Import Polynomial Coefficients dialog box,
import values from the text file, and click OK.

Note VeriStand imports polynomial coefficient values depending on
the value in the Coefficients drop-down menu.

7. Save the system definition file.

Maintain the text file to allow reuse in multiple system definitions.

Defining Scale Values in a Text File
Format scale values in a text file to import to VeriStand.

VeriStand converts non-numeric characters in the import file to 0.

1. Create a text file.
2. Depending on the type of scale you want to import, use the format example in

your text file.

© National Instruments 91

VeriStand Feature Usage

Scale Type Format Example

Lookup Table Either column can serve as the pre-scaled values or the scaled values.

Value1 delimiter Value1
Value2 delimiter Value2

The file can contain more than two columns of values

Value1 delimiter Value2 delimiter Value3

Polynomial
Coefficients

Order0Coefficient
Order1Coefficient
.
.
.
Order9Coefficient

After creating and formatting the text file, you can import it to VeriStand.

Adding and Configuring a Custom Device

Add and configure third-party custom devices to execute user-defined actions,
determined by LabVIEW VIs.

Note You can add a custom device to a system definition file without
installing LabVIEW. However, you must install LabVIEW to create a custom
device.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller in the configuration tree.

4. Right-click Custom Devices and select a device from the drop-down menu.
5. Configure the custom device.

ni.com92

VeriStand Feature Usage

6. Save the system definition file.

Adding and Configuring a Model

Connect a model to other parts of the system and run the model on a hardware
target.
Before you begin, you must compile the model to use it. To learn more about
models, refer to Components of a Model and Primary Control Loop Step Execution
in Models.
VeriStand executes each model in its own loop. If a system definition contains
multiple models referencing the same compiled model, VeriStand makes a
temporary copy of the model so each loop has its own compiled model to execute.

Note Adding more than one instance of the same compiled model causes
errors if the model accesses a shared resource, such as a dependency.
Contact your model provider for information about whether the model
accesses such resources.

1. Launch the VeriStand Editor.

2. On the Mapping Diagram on the Palette, click Software > Simulation Model and
drop the model node on the diagram.

3. In the Open dialog box, select a simulation model and click Open.
The Mapping Diagram will load the model.

4. In the Configuration pane, use the Item tab to modify the model.

1. Set the Initial state of the model to Running or Paused.

Note To change the values of model parameters before the
first time step, set the Initial state to Paused.

2. Set the Decimation of the model rate.

3. Click Import parameters.

4. In the Import Parameters dialog box, select the parameters you want to
import as channels and click OK.

© National Instruments 93

VeriStand Feature Usage

The parameters you selected appears inside the node when you expand
it.

Note Importing too many parameters negatively impacts
system performance.

5. Click Import signals.

6. In the Import Signals dialog box, select the signals you want to import as
a channels and click OK.
The signals you selected appears inside the node when you expand it.

Note Importing too many signals negatively impacts system
performance.

7. Optional: If your model contains a vector inport or outport, set the
Vector port specification as Segment into scalar channels or Maintain as

vector channel.

Note Scalar channels provide greater flexibility than vector
channels. Vector channels only map to models that contain a
vector channel of the same size. You cannot map a vector
channel to controls or indicators on your Workspace or use it
with calculated channels, alarms, procedures, and others.

5. Wire the channels to create mappings.
6. Depending on your goal, complete the following tasks to configure the model

further.
Goal Task

Set model timing Adjust the step size to have the model run at a different rate.
Set model parameters Use the VeriStand Editor, Workspace, Model Parameter

Manager, and Stimulus Profile Editor to set the values of model
parameters.

Scope global parameters Update the scope of all global parameters in a model to the
target-level or model-level.

ni.com94

VeriStand Feature Usage

Goal Task
Set the default values for
inports

Change the default value for an inport to prevent your models
from using invalid values.

Configure the execution
order of multiple models

Define the order that the Primary Control Loop (PCL) executes
models.

7. Save the system definition file.

After adding the model to the system definition, use model execution channels to
interact with models.

Components of a Model

Models run on hardware targets and contain inports, outports, parameters, and
signals to respond to stimuli from other parts of the system by producing outputs in
a way that simulates the modeled item.
The following table displays common model components that connect to other
parts of the system or allow you to interact with the model.
Component Description

Inports and
Outports

Communicates with other parts of the control system. You can map inports and
outports directly to hardware inputs and outputs, other models in the system,
system channels, and more. Inports and outports are dynamic values the
simulation updates each time the model executes.

Parameters Acts like variables in the model. You can manipulate parameters to tune the
behavior of the simulation. For example, an operator can set a parameter before
the model starts executing or update its value between the execution of discrete
tests.

Signals Serves as probes, or test points, of a model as it executes.

For example, consider a system with a model that runs a physical controller on a
hardware target to represent a DC motor. Such a model might contain the following
components:

■ An inport that accepts the motor command from the motor controller
■ An outport that returns the motor speed from the model
■ Parameters that adjust the load on the motor
■ A signal that returns internal data that aids in debugging

© National Instruments 95

VeriStand Feature Usage

Primary Control Loop Step Execution in Models

The Primary Control Loop (PCL) executes steps in models differently if it is in parallel
mode or in low latency mode.
Setting the PCL execution mode to parallel or low latency affects the steps that the
VeriStand engine takes each iteration. The following table displays the main
differences.
PCL iteration Parallel mode steps Low latency mode steps

First
1. Writes values to model.
2. Initiates execution of model.

1. Writes values to model.
2. Waits for model to finish executing.
3. Reads values from model.

Second and
after 1. Reads values from previous

execution of model.
2. Writes values to model.
3. Initiates execution of model.

In addition, the PCL timing differs in models depending on if it is running in parallel
mode or low latency mode.

Parallel Mode Primary Control Loop Timing in
Models
Models that have a Primary Control Loop (PCL) set to parallel mode have a one-
cycle delay between when a model executes and when the data it produces is
available to the system.
As seen in the following illustration, the PCL will not wait for models to finish
executing before it executes other steps.

ni.com96

VeriStand Feature Usage

Model Execution Deadlines

In parallel mode, because the PCL does not wait for the models to finish executing
before it executes other steps, models can continue executing even after the PCL
starts its next iteration. During the next iteration, the model must finish executing
before the PCL can read data from models. The following illustration shows how the
VeriStand engine imposes this deadline in parallel mode.

If a model does not finish executing by the deadline, the VeriStand engine does not
schedule any models to execute during that iteration. The Model Count system
channel also increments.

Note To identify the model that was late, monitor the Time Step Duration
execution channel for each model. This is useful when a system contains
multiple models.

Deadlines When Model Rate Differs from Target Rate

If you configure a model to run at a decimation of the PCL rate, the VeriStand engine
enforces a deadline when the decimation specifies it to finish executing. For
example, if the target rate for the PCL is 100 Hz and the decimation for a model is 2
(therefore, it runs at 50 Hz), the VeriStand Engine does not impose a deadline after
the first 100 Hz PCL iteration because, according to the decimation, the model is not
scheduled to finish executing.
However, after the second 100 Hz PCL iteration, when the model stops executing,
the VeriStand Engine imposes a deadline. This happens on a per-model basis. A
different model in the system with a decimation of 1 has a deadline imposed at
every 100 Hz PCL iteration.

© National Instruments 97

VeriStand Feature Usage

Low Latency Primary Control Loop Timing in
Models
Models in VeriStand that have a Primary Control Loop (PCL) set to low latency mode
wait for the model to finish executing so other loops can access the data generated
before executing again.
As seen in the following illustration, the PCL will let models transfer data before
executing the next step.

Decimated Models

A model that is decimated returns values on every Nth iteration of the PCL, when N
represents the decimation factor rather than every iteration as shown in the
previous illustration. Additionally, passing data between decimated models causes
an expected N tick delay where N represents the decimation factor.

Note Since decimated models run in parallel, they ignore the execution
order you set in the system definition file. If you want to implement an
execution order, add handshaking code to the decimated models.

Model Execution Deadlines

In low latency mode, the VeriStand engine does not enforce deadlines. The PCL
waits for models to finish executing before moving to the next iteration. In other
words, even though the late models delay the execution of VeriStand engine
components, you can access data from models when needed. The Model Count and
HP Count system channels increment when a model makes the PCL late.

ni.com98

VeriStand Feature Usage

Note To identify the model that made the PCL late, monitor the Time Step
Duration execution channel for each model. This is useful when a system
contains multiple models.

Setting Model Timing

Adjust the step size to have the model run at a different rate.
Before you begin, learn about the VeriStand system.

A model is set to run at a rate as defined in the build options when the model is
compiled. Depending on configuration settings for the system definition, the rate at
which the VeriStand Engine executes models can differ from the compiled rate.
The following equation describes how the VeriStand Engine executes models:

actual model rate = Primary Control Loop (PCL) rate / model decimation

Modify the system definition to alter this equation.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Set the PCL rate.

1. Click Targets > Controller in the configuration tree.

2. Under Timing Source Settings, set a Target Rate.

4. Set the model decimation.

1. Click Targets > Controller > Simulation Models > Models in the
configuration tree.

2. Click a model.

3. Under Model Settings, enter a Decimation.

5. Save the system definition file.

If both the controller and plant are simulated, such as during a model-in-the-loop
test, you can run your model at a different rate than specified when it was compiled.

© National Instruments 99

VeriStand Feature Usage

For example, you can set the Primary Control Loop of a model compiled to run at
100 Hz to 1 kHz, or 10 times faster than real time (assuming model decimation is 1).
This results in more simulations and more data in a shorter amount of time.
However, a model that does not run in real time is potentially unstable. When
testing with hardware, such as hardware-in-the-loop testing, run your model at the
rate it was compiled to accurately simulate the system.

Setting Model Parameters

Use the VeriStand Editor, Workspace, Model Parameter Manager, and Stimulus

Profile Editor to set the values of model parameters.

Depending on your goal, complete the following task to set model parameters.
Goal Task

Change the initial value of
model parameters

Configure VeriStand to apply initial values for model parameters
from a .txt file when a system definition file deploys.

Manually set individual
parameters at run time.

Use model calibration controls in the Workspace to view and
modify the values for any model parameters in the system
definition.

Lock model parameters at run
time

Lock a parameter in the Workspace to prevent its value from
updating.

Declare temporary variables in
a model parameter file

Declare temporary variables within a .txt file and use those
temporary variables as new parameter values or as parts of
expressions that define new parameter values.

Call a subscript from a model
parameter file

Call additional parameter files from within a .txt file to
encapsulate certain elements of a test in separate files.

Alias parameter names in a
model parameter file

Use an alias file to define syntactically correct aliases for model
parameter names.

Import and manage batches of
model parameters in the
VeriStand Editor

Import model parameters with the Model Parameter Manager to
apply values defined in an external .txt file to a model.

Import and manage batches of
model parameters in the
Workspace
Update model parameters
during a stimulus profile test

Use the Update Model Parameters from File step in a stimulus
profile to apply model parameter values defined in a text file to a
simulation model that is deployed and running on a target.

ni.com100

VeriStand Feature Usage

Changing the Initial Value of Model Parameters
Configure VeriStand to apply initial values for model parameters from a .txt file when
a system definition file deploys.
Before you begin, format the initial values in the .txt file to VeriStand supported
syntax.

By default, the initial values of parameters are the values that were compiled into
the model. However, VeriStand can automatically apply parameter values from a file
when you deploy the system definition file. You can switch initial parameter values
between tests without recompiling models.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Simulation Models in the configuration tree.

4. On the Model Configuration page, click Apply parameter values from a file at

initialization.
5. Configure the paths to the parameter file and any dependent files.

Note You can only select one model parameter file for VeriStand to
apply to models on the target that contain matching parameters.
Use the main model parameter file to call subscripts saved in
separate files.

6. Save the system definition file.

Locking Model Parameters at Run Time
Lock a parameter in the Workspace to prevent its value from updating.
Before you begin, you must deploy and connect to a system definition with models
before you can lock model parameters.
Locking a parameter is useful if you want an expression to determine the initial
value of a parameter, but do not want its value to change based on the expression.

© National Instruments 101

VeriStand Feature Usage

For example, in the expression b = a * 2, changing the value of variable a results in a
change to the value of the parameter, b. If you lock b, its value does not update if a
changes.

Note Locking a parameter does not prevent users from directly changing
its value in the VeriStand Editor, Workspace controls, or the Model

Parameter Manager. Locked parameters ignore only expression-based
changes.

VeriStand always unlocks parameters when you deploy a system definition. You
cannot lock parameters when VeriStand initializes parameter values prior to running
the model.

1. Open the Workspace.
2. Right-click a parameter.

3. On the Item Properties dialog box, enable Lock.

4. Click OK.

A glyph appears next to the parameter to indicate you locked it.

Supported Syntax in Model Parameter Files
Format .txt files to the correct syntax before you apply them to a simulation model.
The text files must be in the following format.
parameter1 delimiter value1
parameter2 delimiter value2
...

Note The text file cannot contain any column headers.

The following table describes valid entries for the elements of the text file.
Element
type

Valid entries

parameter When processing parameter files, VeriStand expects this element to start with a letter
and contain only alphanumeric characters or underscores. To update a parameter

ni.com102

VeriStand Feature Usage

Element
type

Valid entries

whose expression does not fit these naming conventions, such as a block parameter
that must include the model and block names, separated by slashes, enclose this
element in curly braces ({ }). For example: {model1/sine/parameter1}.

■ The expression of a model parameter, as displayed on the Model Parameter

configuration page in System Explorer

■ An alias to a model parameter path
■ The command subscript to call another model parameter file
■ The name of a temporary variable

Note You can use temporary variables elsewhere in the same
parameter file, but they are local to that file.

delimiter A tab, equals sign (=), or comma (,)
value

■ A numeric constant (double)
■ A matrix in row-major form with the following element types:

■ Numeric constants (doubles)
■ Fractions of the form x/y, where x and y are doubles
■ A temporary variable that represents a scalar value

For example, if a and b are declared variables, then [1 -2/3; a b]is a valid 2 x 2
matrix.
■ The constants Infinity and -Infinity
■ An expression that follows the VeriStand expression syntax
■ A path to another model parameter file

Note A path is only valid if the corresponding parameter entry is
subscript.

Refer to the text files in the <Common Data>\Examples\Stimulus Profile\Engine
Demo\Stimulus Profiles\Update Model Parameters directory for examples of valid
model parameter text files.

© National Instruments 103

VeriStand Feature Usage

Declaring Temporary Variables in a Model
Parameter File
Declare temporary variables within a .txt file and use those temporary variables as
new parameter values or as parts of expressions that define new parameter values.
Before you begin, learn about the supported syntax for .txt files.

1. Open a formatted .txt file.
2. Create a new line for the temporary variable.
3. Enter the temporary variable name in the parameter column and the variable

value in the value column.

Note The variable name must start with a letter and contain only
alphanumeric characters or underscores.

4. Save the text file.
5. Configure VeriStand to allow temporary variables based on where you call the

text file.
Location How to configure

Stimulus Profile
Editor 1. Open a stimulus profile.

2. On the Edit tab, select Update Model Parameters from File.

3. Set the Allow Temporary Variables property to true.

Initializing
parameters 1. Use System Explorer to apply initial values for model

parameters from a .txt file.

2. On the Simulation Models page, click Allow temporary variables.

Model Parameter
Manager tab 1. Use the VeriStand Editor to import model parameters.

2. In the Configure Parameter Import dialog box, click Allow local

variables.

ni.com104

VeriStand Feature Usage

Location How to configure
Model Parameter
Manager
Workspace tool

1. Use the Workspace to import model parameters.

2. In the Select Model Calibration File dialog box, click Allow

temporary variables.

Note Allowing temporary variables causes VeriStand to assume that
any parameter column entries that do not exactly match model
parameter names are temporary variables. For example, if Allow
Temporary Variables is TRUE and you enter a model parameter
name incorrectly, VeriStand creates a temporary variable with the
new name and uses that variable instead of the model parameter.
You do not receive an error notification about the name mismatch.

The following excerpt from the ParameterUpdate2.txt example file shows how you
can declare a temporary variable, tempConversionFactor. The variable is used in an
expression that defines the value of the environment temperature (C) model
parameter.

Note This file uses a tab delimiter.

tempConversionFactor 0.5
{environment temperature (C)} 50 * tempConversionFactor

This file is part of the Update Model Parameters example, available in the <Common
Data>\Examples\Stimulus Profile\Engine Demo\Stimulus Profiles\ directory.

Calling a Subscript from a Model Parameter File
Call additional parameter files from within a .txt file to encapsulate certain elements
of a test in separate files.
Before you begin, learn about the supported syntax for .txt files.

1. Open a formatted .txt file.

© National Instruments 105

VeriStand Feature Usage

2. Create or open a second text file that updates parameters from the same
model.

Note This is the subscript file. The subscript file must use the same
delimiter as the calling file.

3. In the original file, create a new line to call the subscript.
4. Enter subscript in the parameter column and the path to the file to call in the

value column.

Note The path can be absolute or relative to the directory that
contains the calling file.

When the call to the top-level text file executes, VeriStand inserts the contents of the
subscript file into the calling file at the line that contains the subscript call. You also
can use subscript calls recursively to call subscripts from within subscripts.
The second line of the following excerpt from the ParameterUpdate2.txt example file
shows how you can call a subscript file, in this case subfile.txt, from a model
parameter file.

Note This file uses a tab delimiter.

{environment temperature (C)} 50 * tempConversionFactor
subscript subfile.txt

This file is part of the Update Model Parameters example, available in the <Common
Data>\Examples\Stimulus Profile\Engine Demo\Stimulus Profiles\ directory.

Aliasing Parameter Names in a Model Parameter
File
Use an alias file to define syntactically correct aliases for model parameter names.

ni.com106

VeriStand Feature Usage

In addition to creating cleaner parameter files, aliasing parameter names can extend
the reusability of a test by allowing you to simply update the alias file if you want to
use the same test on a model with different parameter names.

1. Open a formatted text file (.txt or .m).
2. Replace the parameter names with syntactically correct aliases.

Note Each alias must start with a letter and contain only
alphanumeric characters or underscores.

3. Create a new text (.txt) file and enter the aliases and their corresponding
model parameter paths in the same format you used for the model parameter
file.

Note The alias file must have a .txt file extension and use the same
delimiter as the parameter file with which it corresponds.

4. Save the text files.
5. Configure VeriStand to use the parameter alias file path based on where the

original model parameter text file is called.
Location How to enter

Stimulus Profile
Editor 1. Open a stimulus profile.

2. On the Edit tab, select Update Model Parameters from File.

3. Enter the Alias File path.

Initializing
parameters 1. Use System Explorer to apply initial values for model parameters

from a .txt file.

2. On the Simulation Models page, enter the Parameter alias file

path.

Model Parameter
Manager tab 1. Use the VeriStand Editor to import model parameters.

2. In the Configure Parameter Import dialog box, enter the Alias

File Path.

© National Instruments 107

VeriStand Feature Usage

Location How to enter
Model Parameter
Manager
Workspace tool

1. Use the Workspace to import model parameters.

2. In the Select Model Calibration File dialog box, enter the
Parameter alias file path.

6. Set the Delimiter property to the delimiter type that both the parameter file
and the alias file use.

When the feature that calls the top-level text file executes, VeriStand uses the alias
file to map the aliases in the parameter file to actual model parameters.
The following examples show how to format a parameter file with aliases and its
corresponding alias file.

Note These files use a tab delimiter.

File type Example

Parameter a 25
b 900

Alias a {model/environment temperature (C)}
b {model/idle speed (RPM)}

Scoping Global Parameters

Update the scope of all global parameters in a model to the target-level or model-
level.

Before you begin, identify your parameter’s type and scope.
In VeriStand, parameters have two scopes.

■ Target-level scope—VeriStand applies updates to all global parameter
values with the same name in other models that run on the same target.
■ Model-level scope—VeriStand restricts the scope of updates to just the
parameter in the owning model.

ni.com108

VeriStand Feature Usage

All global parameters in a particular model share the same scope.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Simulation Models > Models in the configuration
tree.

4. Click a model.

5. Click Parameters.

6. On the Parameters Configuration page, use the Scope for Global Parameters
drop-down to select Target or Model.

7. Save the system definition file.

Identifying Local and Global Parameters
Use VeriStand to determine if your parameters are local or global.
Before you begin, add a model and import parameters.
Local parameters apply to a specific subsystem, or block, in the owning model.
Local parameters allow you to independently adjust a common parameter for
multiple instances of the same block.
Global parameters, by default, apply to the current model and to any global
parameters with the same name in other models on the target. You can restrict
global parameters in a model from applying to other models by configuring the
scope of the global parameters. Global parameters are similar to workspace
variables in MathWorks MATLAB® software.

A parameter expression contains the model name that appears in the System

Explorer configuration tree. Every parameter also has an associated path that
contains the name the model was compiled under. The expression of a global
parameter also indicates whether its scope is at the target-level or the model-level.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).

© National Instruments 109

VeriStand Feature Usage

System Explorer opens.

3. Click Targets > Controller > Simulation Models > Models in the configuration
tree.

4. Click a model.

5. Click Parameters and select a parameter.

6. On the Parameter Configuration page, review the parameter information.
7. Based on the model's expression and characteristics, determine the

parameter type.
Example expression Characteristic Parameter type

Sine Wave/Block1/
Amplitude

The root of the Amplitude parameter is a
block rather than a model.

Local

Sine Wave/
Amplitude

The root of Amplitude is the owning model. Global, model-level
scope

Amplitude The root of Amplitude is not a specific model. Global, target-level
scope

Note The name of the owning model in the system definition is Sine
Wave.

Setting Default Values for Inports

Change the default value for an inport to prevent your models from using invalid
values.

The default value of all inports is 0. Change the default if your model divides by an
inport to avoid an invalid operation.

Note Verify if your system configuration will cause the initial default value
to go unused. For example, if the Primary Control Loop execution mode is
in Low Latency, the model is assigned to the first execution group, and an
inport is mapped to hardware, the inport will always receive its value from
hardware.

1. Launch the VeriStand Editor.

ni.com110

VeriStand Feature Usage

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Simulation Models > Models in the configuration
tree.

4. Click a model.

5. Click Inports and click an inport.

6. On the Inport Configuration page, set the Default Value.
7. Save the system definition file.

Configuring the Execution Order of Models

Define the order that the Primary Control Loop (PCL) executes models.

1. Use the following table to determine the order that your models execute.

Note The PCL execution mode does not affect the execution order
for multiple models.

Model
execution

Description Diagram

In parallel
(default)

Models read data from the previous
PCL iteration and execute in
parallel.
If you map one model to another,
the second, dependent, model
always receives data the first
model generated during the
previous iteration of the Model
Execution Loop. It does not receive
data the first model generates
during the current iteration.

In series Models execute relative to each
other.
If you map one model to another,
defining an execution order allows
you to ensure that the second,
dependent model receives data the

© National Instruments 111

VeriStand Feature Usage

Model
execution

Description Diagram

first model generates during the
same iteration.

2. Launch the VeriStand Editor.

3. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

4. Click Targets > Controller > Simulation Models > Execution Order in the
configuration tree.

5. On the Execution Order Configuration page, drag the red cells representing
the Models from one group to another to arrange them in the order that you
want the models to execute.

Note Models in the same execution groups execute in parallel.

6. Click Refresh to reorder the Models and Execution order lists based on the
changes you have made.

7. Save the system definition file.

Adding a User Channel

Store a single value as a user channel to use as a variable in procedures, stimulus
profiles, and other operations.
Extend user channel functionality by mapping a channel to other channels. For
example, use a single user channel to start multiple models simultaneously by
mapping the user channel to the Model Command channel of each model. Use this

ni.com112

VeriStand Feature Usage

technique to perform actions such as triggering alarms and dynamically changing a
value in a real-time sequence.

Note The user channel's location in the system definition cannot be
changed after the user channel is created.

1. Launch the VeriStand Editor.

2. Click View > System Definition.

3. Optional: In the System Definition Palette, right-click User Channels and
select New > Folder to create a sub-folder for your user channels.

4. Right click User Channels or the sub-folder you created and select New > User

Channel.

Note To add more than one user channel, select New > Multiple user

channels and use the Create Multiple User Channels dialog box to
configure the user channels.

5. In the Create a New User Channel dialog box, enter a Name, Description, Unit,
and Initial Value.

6. Click OK.
7. Save the system definition file.

On the Mapping Diagram, expand the User Channels node to find the new user
channel.

Note In the System Definition Palette, right-click a user channel to Delete

or change its Properties.

Adding a Calculated Channel

Produce a new value based on calculations performed on other channels in the
system using the Mapping Diagram.
You can also use System Explorer to add a calculated channel.

© National Instruments 113

VeriStand Feature Usage

1. Open VeriStand.

2. In the VeriStand Editor, click Project Files.

3. Right-click your system definition file (.nivsdf) and select Mapping Diagram.

4. On the Mapping Diagram, click the Software palette and drag a calculated
channel onto the diagram.
Calculated
channel

Description

Formula Calculates the result of the formula you specify.
Maximum Compares two values and returns the larger value.
Minimum Compares two values and returns the smaller value.
Lowpass Filter Applies a lowpass Butterworth filter to the input channel.
Peak and Valley Calculates the peak, valley, and offset of a cyclical waveform

produced by the input channel. This calculation is performed by
running the incoming value through a lowpass Butterworth filter and
comparing the filtered value to previous maximum and minimum
values.

Acceleration Calculates the acceleration and velocity of the input channel.
Average Calculates the average value of the input channel.
Conditional Compares X with Y based on the configured condition. This channel

outputs W for true and Z for false.

5. Use the Configuration pane to configure the calculated channel.
6. Save the system definition file.

Formula Calculated Channel Options

Use standard math operators and functions to create variables that customize
calculated channels.
All formulas must adhere to the following rules:

■ Every formula must contain a reference to at least one variable.
■ Variables must be contained in brackets. For example, [variable].
■ Element-wise calculation is done when one of the operands is a variable or
the parameter is a variable.

ni.com114

VeriStand Feature Usage

■ Decimal separators on literal numbers must be periods. Alternative
separators, such as commas, are not supported.

Refer to the following table of supported formula formats for examples that you can
use to configure a calculated variable.

Formula format Description Example

[<variable>] + x Element-wise arithmetic addition [Var0] + 1
[<variable x>] + [variable y>] [Var0] + [Var1]
[<variable>] - x Element-wise arithmetic subtraction [Var0] - 1
[<variable x>] - [<variable y>] [Var0] - [Var1]
[<variable>] * x Element-wise arithmetic multiplication [Var0] * 5
[<variable x>] * [<variable y>] [Var0] * [Var1]
[<variable>] / x Element-wise arithmetic division [Var0] / 5
[<variable x>] / [<variable y>] [Var0] / [Var1]
function([<variable>]) Apply the function to the variable sin([Var0])
x + y * z / [<variable>] Arithmetic equation 2 + 3 * 4 / [Var0]
(x + y) * z / [<variable>] Arithmetic equation (2 + 3) * 4 / [Var0]
-[<variable>] Unary minus -[Var0]
+[<variable>] Unary plus (a no-op) +[Var0]
[<variable>]^x Power operator [Var0]^3

Note The data type for all numerics is double-precision, floating-point.

Refer to the following table of supported functions and operators for examples of
formula elements that you can use to configure a calculated channel.

Formula
element

Definition

Supported Function sin(x) Calculates the sine of x. Enter x in radians.
cos(x) Calculates the cosine of x. Enter x in radians.
tan(x) Calculates the tangent of x. Enter x in radians.
asin(x) Calculates the inverse of sine of x. The result is in radians.
acos(x) Calculates the inverse of cosine of x. The result is in radians.

© National Instruments 115

VeriStand Feature Usage

Formula
element

Definition

atan(x) Calculates the inverse of tangent of x. The result is in
radians.

abs(x) Returns the absolute value of x.
rand() Generates a random number between 0 and 1.
exp(x) Computes the value of e raised to the x power.
sqrt(x) Calculates the square root of x.
sign(x) Returns 1 if x is greater or less than 0. Returns 0 if x is equal

to 0.
int(x) Calculates the integer value of x.

Supported Operator + Addition
- Subtraction
* Multiplication
/ Division
() Parenthesis. The contents are evaluated first
^ Calculate the base raised to the power of the exponent

Adding a Calculated Channel with System Explorer

Produce a new value based on calculations performed on other channels in the
system using System Explorer.
You can also use the Mapping Diagram to add a calculated channel.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Calculated Channels in the configuration tree.

4. Click Add Calculated Channel to add an empty calculated channel to the
configuration tree.

5. Click the empty calculated channel.
6. On the Calculated Channel Configuration page, click the function drop-down

and select a function for the calculated channel.

ni.com116

VeriStand Feature Usage

Calculated
channel

Description

Formula Calculates the result of the formula you specify.
Maximum Compares two values and returns the larger value.
Minimum Compares two values and returns the smaller value.
Lowpass Filter Applies a lowpass Butterworth filter to the input channel.
Peak and Valley Calculates the peak, valley, and offset of a cyclical waveform

produced by the input channel. This calculation is performed by
running the incoming value through a lowpass Butterworth filter and
comparing the filtered value to previous maximum and minimum
values.

Acceleration Calculates the acceleration and velocity of the input channel.
Average Calculates the average value of the input channel.
Conditional Compares X with Y based on the configured condition. This channel

outputs W for true and Z for false.

7. Configure the calculated channel.
8. Save the system definition file.

Use the Calculated Channels main page to set the order in which the system reads
values from the calculated channels you added.

Creating an Alias

Set an alternate name for channels in a system definition file.
Before you begin, you must add a model to the system definition.

The VeriStand Editor will reference the alias instead of the full channel path.

Note The alias' location in the system definition cannot be changed after
the alias is created.

1. Launch the VeriStand Editor.

2. Click View > System Definition.

© National Instruments 117

VeriStand Feature Usage

3. Optional: In the System Definition Palette, right-click Aliases and select New >
Folder to create a sub-folder for your alias.

4. Navigate to the channel you want to create an alias for.

5. Right click the channel and select Create alias from selection.

6. In the Select Folder for New Aliases dialog box, select the location you want
the alias to appear in the system definition and click OK.

7. Optional: Configure the alias.

1. Right click the alias you created and click Properties.

2. In the Properties dialog box, enter a Name and Description.
3. Select a new linked channel.

4. Click OK.

8. Save the system definition file.

On the Mapping Diagram, expand the Aliases node to find the new alias.

Note In the System Definition Palette, right-click an alias to Delete it.

Mapping Channels and Aliases

Connect channels or aliases to one another.
Before you begin, add a channel or alias to the system definition.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double click the system definition file (.nivssdf) to
open the Mapping Diagram.

3. Click a channel or alias terminal and drag a wire to another channel or alias
terminal to map them.

Note You can create mappings between terminals with matching
names by right-clicking two nodes and selecting Automap. If the
direction of the mapping cannot be automatically determined, use

ni.com118

VeriStand Feature Usage

the Automap dialog box that appears to specify the source of the
mappings.

4. Click File > Save all.

You can remove a mapping by selecting and deleting the wire.

Configuring a Project File
Configure a VeriStand project to complete tasks such as adding tools menu items,
services, alarm responses, and custom files.

1. Launch the VeriStand Editor.
2. Depending on your goal, complete any of the following tasks.

Goal Task

Adding a custom Workspace
tools menu item to the project
file.

Add items to the Tools menu of the Workspace to display
custom dialog boxes.

Adding custom VIs. Add custom VIs by building a LabVIEW project into a
source distribution and adding it to VeriStand.

Adding custom files to the
project file.

Add custom files, such as documentation, to the project
file.

Connecting multiple hosts to
the same target.

Configure one or more host computers to communicate
with the same target using the VeriStand Gateway.

After you configure the project file, deploy the system definition.

Creating a VI Source Distribution

Integrate custom VIs into VeriStand by building a LabVIEW project into a source
distribution.
Use the LabVIEW Application Builder to build a source distribution to call custom VIs
in VeriStand. This creates a local copy of the VI dependencies.

1. Open the LabVIEW project containing the VI in Project Explorer.

2. Right-click Build Specifications and select New > Source Distribution.

© National Instruments 119

VeriStand Feature Usage

http://www.ni.com/r/labview-application-builder

3. In Source Distribution Properties, set where to build the output.

1. Under the Category list, click Information.

2. Enter a Build specification name.

3. Select the Destination directory.

4. Include the VI source files.

1. Under the Category list, click Source Files.

2. Add the custom VI and any supporting sub-VIs to Always Included.

5. Specify the output type.

1. Under the Category list, click Destinations.

2. Click Add Destination to create a new destination.

3. Enter a Destination label that matches the VI name.

4. Set the Destination type as Directory.

6. Remove additional exclusions.

1. Under the Category list, click Additional Exclusions.

2. Disable Exclude file from vi.lib, Exclude files from instr.lib, and Exclude

files from user.lib.

7. Click Build.

When the build finishes, LabVIEW creates the VI and all necessary dependencies in
the destination path.
After building the custom VI, add it to the VeriStand project or to the Tools menu.

Adding a Standard or Custom Tools Menu Item

Add items to the Tools menu of the Workspace to display custom dialog boxes.

Before you begin, build the custom Tools menu item into a source distribution.
Use these dialog boxes to perform operations such as monitoring alarms, viewing
channel data, scaling and calibrating channels, or running stimulus profiles.

1. Open the VeriStand Editor.

ni.com120

VeriStand Feature Usage

2. In the Navigation pane, click Project Files.

3. Right-click Workspace and select Configure Tools.

4. Use the Tools Properties dialog box to add and configure Tools menu items.

5. Click OK.

Adding Custom VIs

Add custom VIs by building a LabVIEW project into a source distribution and adding
it to VeriStand.
Before you begin, build the VI into a source distribution.

1. Open the VeriStand Editor.

2. In the Navigation pane, click Project Files.

3. Click New > Add File.

4. In the Select Item window, select a custom VI and click OK.

5. Optional: In the Project Files tab, right-click the custom VI and click Run On

Deploy.

Note Enabling this option allows VeriStand to automatically run the
VI when the system definition deploys.

6. Click File > Save all.

Adding Custom Files

Add custom files, such as documentation, to the project file.

1. Launch the VeriStand Editor.

2. In the Navigation pane, click Project Files.

3. Click New > Add File.

4. In the Select Item window, select a file, and click Open.

The file appears in the Project Files tab.

© National Instruments 121

VeriStand Feature Usage

Connecting Multiple Hosts to the Same Target

Configure one or more host computers to communicate with the same target using
the VeriStand Gateway.
Before you begin, you will need the IP address of the host that you want to run the
VeriStand Gateway.

1. On the host that you want to connect, open the VeriStand Editor.

2. In the Navigation pane, click Project Files.
3. Double-click your project file (.nivsprj) to open it as a new tab.

4. In the Configuration pane, click the Document tab.

5. In Gateway address, enter the IP address of the host running the VeriStand
Gateway.

Note The default is localhost, which specifies that the VeriStand
Gateway is running on the local machine.

6. Click File > Save all.

The host you configured now connects to the instance of the VeriStand Gateway that
runs on the host whose IP address you entered.

Deploying the System Definition File to a Real-Time Target
Deploy the system definition file to the real-time (RT) target to run a project.
Before you start, download VeriStand support files for the RT target using MAX.

1. Launch the VeriStand Editor.

Note You can deploy the system definition without launching the
VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

ni.com122

VeriStand Feature Usage

3. Select Controller in the configuration tree to display the Controller

Configuration page.

4. Select PharLap from the Operating System drop-down menu.

5. Enter the IP Address of the RT target.

6. Save and close System Explorer.

7. Open the VeriStand Editor.

8. Click Operate > Deploy.

If a system definition file is already running on the RT target, one of the following
happens:

■ If the system definition file on the host computer is the same as the system
definition deployed to the target, the host connects to the target and launches
the VeriStand Editor or Workspace without deploying the system definition
file.
■ If the system definition file on the host computer is different from the
system definition deployed to the target, clicking Operate > Deploy stops the
system definition on the target and deploys the system definition on the host.

You can also manage individual targets at run time and configure a watchdog timer
for VeriStand to execute during deployment.
After you deploy the system definition, you can create a user interface with the
VeriStand Editor.

Downloading Support Files in MAX

Before you can deploy VIs or a system definition file to a real-time target, use NI
Measurement & Automation Explorer (MAX) to download support files.

1. Launch MAX.

2. In the configuration tree, click Remote Systems.

3. Select the real-time target you want to deploy to and click Software.

Note If the real-time target does not have a Software category, then
it does not support the required software.

© National Instruments 123

VeriStand Feature Usage

4. On the toolbar, click Add/Remove Software to launch the LabVIEW Real-Time
Software Wizard.

Note You will be prompted to enter the real-time system's
administrator name and password if it has one. For more
information, refer to the Logging into your System topic in the
Measurement & Automation Explorer Help.

5. Optional: Select Custom software installation (currently installed) and click
Next to install recommended software if prompted.

6. Click the icon next to VeriStand RT Engine.

7. Select Install the feature and click Next.

8. Confirm that you want to install VeriStand support and click Next.

MAX displays the progress of the installation and reboots the target so it is ready for
a system definition file.

Running the VeriStand Gateway Silently

Deploy a system definition without launching a VeriStand user interface, such as
VeriStand Editor or System Explorer.
By silently running the VeriStand Gateway, you can deploy a system definition, close
the user interface, and then reconnect to the still-deployed project upon re-opening
the user interface. This allows you to leave the system definition deployed while
being able to connect and disconnect testing user interfaces as needed.
If you run the VeriStand Gateway silently without first launching VeriStand, the
VeriStand Editor will indicate Legacy Project Functionality Disabled in the window
title. While in this state, you will not be able to access the following features:

■ Workspace

■ Workspace Tools dialog box
■ Console Viewer

■ XNET Bus Monitor

■ Channel Calibration

ni.com124

VeriStand Feature Usage

■ System Explorer Options dialog box

While the Gateway is running silently, you can check on the Gateway's status and
use programmatic APIs.

1. Open a command prompt.

Note You can also use the Windows Run command or a language of
your choice.

2. Execute one of the following commands using the following syntax:
"<Base>\veristand-server.exe" <command>.
Command Description

help Displays command options.
start Starts the Gateway.
stop Stops the Gateway.
status Displays the Gateway status.

Individual Target Management

You can manage individual targets at run time by connecting and disconnecting
individual targets and undeploying a system definition.
The following table displays the ways you can manage targets at run time.
Management Action Description

Connect Individual
Targets

Use the Manage Targets dialog box to connect to a new target for the
first time or to reconnect to an old target after maintenance.

Disconnect Individual
Targets

Use the Manage Targets dialog box to disconnect a target for
maintenance if it returns an error or develops a physical fault.

Undeploy a System
Definition

Use the Manage Targets dialog box to undeploy the system definition
from an old target.

Connecting Individual Targets

Use the Manage Targets dialog box to connect to a new target for the first time or to
reconnect to an old target after maintenance.

© National Instruments 125

VeriStand Feature Usage

Connecting to a target deploys the system definition to the target. You must define
the target in the system definition before connecting to a new target. Otherwise, you
must undeploy the system definition from all targets, define the new target, and
redeploy to all targets.

1. In the VeriStand Editor, click Tool Launcher > Manage Targets.

2. In the Manage Targets dialog box, select the target or targets that you want to
connect.

3. Click Deploy.

Note If you are reconnecting a target that already has the system
definition, select the target in the Manage Targets dialog box and
click Connect.

4. In the Running Project dialog box, click Close on successful deployment so
that the window closes automatically.

5. Click Save Log to save a copy of the deploy status log.

6. Click Close.

In the Manage Targets dialog box, check that the State indicator shows that the
target is running.

Disconnecting Individual Targets

Use the Manage Targets dialog box to disconnect a target for maintenance if it
returns an error or develops a physical fault.

1. In the VeriStand Editor, click Tool Launcher > Manage Targets.

2. In the Manage Targets dialog box, select the target or targets that you want to
disconnect.

3. Click Disconnect.

In the Manage Targets dialog box, check that the State indicator shows that the
target is disconnected.

ni.com126

VeriStand Feature Usage

Undeploying the System Definition from an Individual Target

Use the Manage Targets dialog box to undeploy the system definition from an old
target.
Undeploying the system definition from a target also disconnects the target.

1. In the VeriStand Editor, click Tool Launcher > Manage Targets.

2. In the Manage Targets dialog box, select the target or targets that you want to
undeploy the system definition to.

3. Click Undeploy.

In the Manage Targets dialog box, check that the State indicator shows that the
target is disconnected. Once the system definition is undeployed, you must
redeploy it before you can reconnect the target.

Configuring the Watchdog Timer when Deploying to a Real-Time Target

You can modify the timing watchdog that stops the execution of the VeriStand
Engine if too much time elapses when you deploy a project to a real-time target.
The timing watchdog is controlled by the Watchdog Timer Loop. This loop executes
at a rate of 10 Hz and at a lower priority than the other loops in the VeriStand
Engine.
The Watchdog Timer Loop executes and resets the Watchdog Timer system channel
every 500 milliseconds. When the Primary Control Loop executes, it evaluates
whether the Watchdog Timer system channel reports a time greater than 1 second.
If it does, VeriStand throws an error and stops execution of the VeriStand Engine.
To enable or disable watchdog functionality, complete the following steps:

1. Open System Explorer.

2. Select Controller from the configuration tree to display the Controller

Configuration page.

3. Select Other Settings > Filter Watchdog Errors.

© National Instruments 127

VeriStand Feature Usage

When you enable this option, VeriStand will filter errors reported by the timing
watchdog. You can then monitor and respond to the Watchdog Timer system
channel with custom alarms and procedures.

Creating User Interfaces with the VeriStand Editor

Use the VeriStand Editor to create interfaces that an operator can use to interact
with a VeriStand project.
These user interfaces, called screens, allow an operator to easily control and
monitor specific channels within a system definition at run-time. A project is a
collection of related screens.
Use the following topics to familiarize yourself with the parts of the VeriStand Editor
that create, configure, and operate user interfaces.

1. Viewing, Creating, and Interacting with Screens
2. Adding and Configuring Components of a Screen
3. Configuring Controls and Indicators to Send and Receive Data

Viewing, Creating, and Interacting with Screens

Create screens and projects in the VeriStand Editor to view, create, and interact with
user interfaces.
The following image highlights the parts of the editor you use to open, access, and
interact with screens and projects.

ni.com128

VeriStand Feature Usage

1
Project Files—Use this tab to open, create, and organize all the files within a project.

2
Tools Launcher—Use this tab to launch various tools for interacting with your project while it
runs.

3
Document—After you open one or more screens, click one of these tabs to access the contents
of a single screen.

4 Configuration pane—Use this pane to edit various aspects of your current project.

5
Palette—Organized hierarchy of all the controls and indicators you can add to the screen. By
adding controls and indicators to the screen, you can modify the user interface an operator
uses to interact with a project.

6
Screen—Use this area to view and modify the contents of a screen.

Tools pane—Use this pane to access various tools for interacting with your project while it
runs. You can also use this pane to view errors and warnings that occur in your project.

Adding and Configuring Components of a Screen

Add controls and indicators to a Screen to modify the user interface of a VeriStand
project.
The following image highlights the parts of the VeriStand Editor you use to add and
configure controls and indicators.

© National Instruments 129

VeriStand Feature Usage

1 System Definition palette—A palette that displays the targets and channels in the current
system definition file. You can drag channels from the System Definition palette and drop
them onto the screen to add controls and indicators for those channels. VeriStand selects an
appropriate control or indicator type for the channel.

2 Controls and indicators—Objects you add to the screen to either enter or view data from the
system definition. Each control or indicator can accept or display a single type of data, such as
a number, a TRUE/FALSE value, or a text string.

3 Item tab—Collection of options for customizing a selected control or indicator. The options on
the Item tab appear only when you select a control or indicator on a screen.

Configuring Controls and Indicators to Send and Receive Data

Configure a screen to send a receive data by mapping controls and indicators to a
channel in the system definition.
A screen contains various components that allow a user to send data to a system
definition as well as receive data from it. These components are called controls and
indicators.

1 Lock—Locks the screen, making it easier to send and receive data with controls and indicators
by preventing the controls from being edited while you operate them.

ni.com130

VeriStand Feature Usage

Note You can also operate controls while locked. However, you have to select the
control before you can operate it.

2 System definition tree—Displays the configuration tree of the current system definition. You
can navigate the tree to select the channel you want to map with the control or indicator.

3 Data source—Displays the path of the channel currently mapped to the control or indicator.
The channel path is only visible when you select a control or indicator on the screen.

VeriStand Editor Tools

The VeriStand Editor provides tools that allow you to manipulate a project without
having to open the system definition.
Goal Task

Log data Create logging specification (.nivslspec) files with Log Management to
configure and execute host-side data logging.

View model values Check signal values with the Model Signal Viewer without importing
the signal as a channel or editing the system definition file.

Fault a channel to a
specific value

Fault a channel with the Channel Fault Manager to test the behavior of
a system when a channel reaches a specific value.

Import and manage
batches of model
parameters

Import model parameters with the Model Parameter Manager to apply
values defined in an external .txt file to a model.

View channel values at
run time

Monitor channels with the Channel Data Viewer to view the current
values of several channels together.

Logging Data with the VeriStand Editor

Create logging specification (.nivslspec) files with Log Management to configure and
execute host-side data logging.

You can add and configure logging specifications after connecting to a deployed
system definition. This enables you to adjust which channels to log, when to start
and stop logging, and the format of log files produce by the control. You can also
configure logging specifications to automate post-processing actions, such as
merging log data or producing reports, for log files produced during a log session.

© National Instruments 131

VeriStand Feature Usage

1. In the VeriStand Editor, click View > Tool Launcher > Log Management.
2. Use the following sections of the VeriStand Editor to add and configure a

logging specification file.

1 Logging Specification—The logging specification file appears in the Files pane under the
current project. Select the logging specification file you want to configure.
To create a new logging specification file, right-click the project file and select Add New

> Logging Specification.
2 Logging specification file screen—When you open a logging specification file in

VeriStand, the file is displayed in a screen. Use the screen to add channels to log.
3 Configuration—Contains various options for configuring the log session, such as when

to start and stop logging, how to save the log files, and options for post processing of
log files.

4 Log Management—Displays all of the logging specification files in your project. Use the
Log Management tool to view the state of logging specifications and to manually start
and stop logging sessions.
To display this tab, click Log Management in the Tool Launcher.

5 Execution Control section—Contains Start and Stop options for the selected logging
specification file.

ni.com132

VeriStand Feature Usage

Click Start to begin a log session. If you specified to log immediately, logging begins
after you click Start. If you created a start trigger, logging begins after the specified
condition is triggered.

3. Save the logging specification file.

Viewing Model Values in the VeriStand Editor

Check signal values with the Model Signal Viewer without importing the signal as a
channel or editing the system definition file.

1. In the VeriStand Editor, click View > Tool Launcher > Model Signal Viewer.

2. In the Model Signal Viewer tab, click Select Signals.

3. In the Select Signals dialog box, click the signals you want to view and click
OK.

Note Only select signals that you need immediate information on.
Adding too many signals will decrease the VeriStand Engine’s
execution loop rate. For every 500 signals displayed, there is an
expected 1% drop in performance.

The Path and Value of the signals you selected will appear in the Model Signal

Viewer tab.

Faulting a Channel to a Specific Value

Fault a channel with the Channel Fault Manager to test the behavior of a system
when a channel reaches a specific value.
Before you begin, you must add and connect to a system definition file in order to
use VeriStand Editor tools.

1. In the VeriStand Editor, click View > Channel Fault Manager.

2. In the Channel Fault Manager pane, click Add Fault, and select the channel
you want to fault.

© National Instruments 133

VeriStand Feature Usage

Note You can select multiple channels and fault all the selected
channels to a single value.

3. In the Value field, enter the value to which you want to force the channel, and
then click OK.
Channel Fault Manager saves the value as a pending value.

4. Verify the value and click Apply Pending Changes to apply the value.

VeriStand forces the channel to the value you specified.

To update fault values, click in the Pending Value column, enter the new value, and
then click Apply Pending Changes.

Importing and Managing Batches of Model Parameters with the VeriStand Editor

Import model parameters with the Model Parameter Manager to apply values
defined in an external .txt file to a model.
Before you can work with model parameters, you must deploy and connect to a
system definition and understand model parameter syntax.
Maintaining model parameter values in external files allows you to quickly switch
between batches of test parameters without manually entering the values. This tool
is also useful for managing multiple parameters from a single interface.
Setting the value of a parameter is a two-step process: importing or calculating new
values, and then applying the new values.

1. In the VeriStand Editor, click View > Model Parameter Manager.

2. In the Model Parameter Manager pane, click Import File.

3. In the Configure Parameter Import dialog box, select Parameter File Path and
browse to the .txt file that contains parameter values.

1. If aliases define the parameters in the file, select Alias File Path and
browse to the alias file.

4. Click OK to import the values from the file as pending values.

5. Verify the values and click Apply Pending Changes to apply the values.

ni.com134

VeriStand Feature Usage

To update model parameter values, click in the Pending Value column, enter the
new value, and click Apply Pending Changes.

Supported Syntax for Model Parameter Manager
The Model Parameter Manager supports simple text files (.txt) as model parameter
files.

The Model Parameter Manager allows text files that conform to the model
parameter file format that other VeriStand features support.
One limitation of using model parameter text files is that the manager imports and
sets the result of the expression rather than the expression itself. The following
parameter definitions demonstrate this limitation.

a 10
b a * 2

In this example, the Model Parameter Manager sets the value of b to 20, not a * 2.
Changes to the value of a do not affect b because the original expression is no
longer valid.

Viewing Channel Values at Run Time

Monitor channels with the Channel Data Viewer to view the current values of several
channels together.

1. In the VeriStand Editor, Click View > Channel Data Viewer.

2. In the Channel Data Viewer tab, click the Channel Filter pull-down menu and
select the type of channels to display.
Type of channel Description

Channels Displays all channels in the system definition file.

Parameters Displays model parameters.

Writable Displays all writable channels. To update the value of a writable channel,
click inside the Pending Value cell for the channel, enter the desired
value, and then click Apply Pending Changes.

Aliases Displays all aliases defined in the system definition file.

© National Instruments 135

VeriStand Feature Usage

Type of channel Description

Custom Allows you to display channels of your choosing. To select the channels
to display, click Select Channels and use the system definition
configuration tree to select the channels to display.

Actions Controls

Launch EXE, BAT, or real-time sequence files from the screen.

■ Details

Launching an EXE or BAT File from the Screen

1. Add an action button to your screen.

2. Select the action button and use the Action Configuration section Item tab to
configure the action button.
You can define arguments to pass to the EXE or BAT file when you run it. For
example, if you want to launch a web browser, you can specify a specific web
page to launch.

3. To launch the EXE or BAT file, switch your screen to operate mode and press
the action button.

You can also use the action buttons to open file formats other than EXE and BAT.
VeriStand calls the default program to open the file you specify.

Configuring and Running a Real-Time Sequence

You can use any of the Actions controls to configure and run a real-time sequence.
However, the Real-Time Sequence control gives you more control and oversight over
sequence execution. You can pause and stop a sequence, view the sequence time,

ni.com136

VeriStand Feature Usage

and visualize the return value of the sequence, which often indicates a pass/fail
result for your test.
Complete the following steps to configure and run a real-time sequence by using the
Real-Time Sequence control:

1. Add the Real-Time Sequence control to your screen.

2. On the Item tab, click Sequence Path to specify the real-time sequence file.

3. Click Target to select the target on which you want to run the real-time
sequence.

4. Click Configure Parameters to update the parameters in the real-time
sequence file.

5. Switch the screen to operate mode and click Run on the Real-Time Sequence
control to run the real-time sequence.

Array Controls

Enter or display array data.

■ Details

What Is an Array?

An array consists of elements and dimensions. Elements are the data that make up
the array. A dimension is the length, height, or depth of an array. An array can have
one or two dimensions.

© National Instruments 137

VeriStand Feature Usage

How Do I Display an Array?

Drag an existing array channel from the System Definition palette onto the screen.
The control will automatically populate with array values. The dimension and size of
the array will match the channel.

How Do I Find an Array Element?

To locate a particular element in an array, you must use indices. Each dimension in
the array has an index. Indices let you navigate through an array and retrieve
elements, rows, columns, and pages from an array on the diagram.

Note Array indices are zero-based. The index of the first element in the
array, regardless of dimension, is zero.

Automotive Controls

Create an automotive dashboard.

Booleans Controls

Enter or display true and false data.

ni.com138

VeriStand Feature Usage

■ Details

Which Boolean Control Should I Use?

Boolean Type Use

Buttons Enter true or false input.
Checkbox Select an item or items from a list.
LEDs Displays true or false data. You must select Show Content on the configuration

pane for content to appear on the LED.
Power Button Sets power state.
Switches Enter true or false input in an application.
Alarm Displays alarm data.

Charts Controls

Display data from channels or waveforms in the system definition file.

© National Instruments 139

VeriStand Feature Usage

■ Details

Configuring a Scale

1. Select the Chart control on the Screen.

2. On the Item tab, select Scale Legend in the Visual Style section.
The Scales box appears on the screen.

3. Select the scale you want to configure.

4. Update the settings for the scale on the Item tab.

Adding a Cursor

1. Select the Chart control on the Screen.

2. On the Item tab, select Cursor Legend in the Visual Style section.
The Cursors box appears on the screen.

3. Click New Cursor to add a cursor.

Containers Controls

Group and organize controls and indicators.

■ Details

When Should I Use a Tab Control?

Tab controls are useful when you have several panel objects that are used together
or during a specific phase of operation. For example, you might have an application
that requires the user to first configure several settings before a test can start, then

ni.com140

VeriStand Feature Usage

allows the user to modify aspects of the test as it progresses, and finally allows the
user to display and store only pertinent data.

Drawings Controls

Decorate the user interface with images, lines, or shapes.

Numerics Controls

Enter and display numeric data.

■ Details

© National Instruments 141

VeriStand Feature Usage

Which Numerics Control Should I Use?

Control Use

Numeric control and
indicator

Enter or display numeric data.

Sliders Display numeric data in a vertical or horizontal slide with a customizable
scale and a pointer that helps you see the exact value.

Gauge, Meter, and
Knob

Enter or display numeric data in a rotary scale.

Tank Display numeric data in a vertical slide that resembles a real tank or
thermometer instrument.

Timestamp Enter or display a time and date value.
Progress bars Show progress in a vertical bar or circle.

What Is the Difference between Significant Digits and Digits of Precision?

Significant digits specifies the number of significant digits to display in the numeric
control.
Digits of precision specifies how many digits to display after the decimal point.

How Do I Use, View, and Store Absolute Time?

Use the Timestamp control to use, view, and store absolute time with high
precision. This data type can accurately store 18 digits of precision in whole seconds
and 19 digits of precision in fractions of a second. The Timestamp control displays
values in local time. However, the timestamp wire data type stores values in UTC.
Although you can use a numeric control to display timestamp values, the numeric
control holds a relative quantity. The Timestamp control holds an absolute quantity.

What Characters Do Numerics Controls Accept?

Character(s) Description

Hexadecimal digits 0 through F
Octal digits 0 through 7
Binary digits 0 and 1
Decimal digits 1, 1.0, 2, 3.5, and so on
. Decimal point

ni.com142

VeriStand Feature Usage

Character(s) Description
+ Positive symbol
- Negative symbol
E or e For scientific or engineering notation format
Infinity Infinity
NaN Not a number
/ For use in absolute time format
: For use in absolute time format
AM, am, PM, pm For use in absolute time format
SI prefixes
y yocto (10 -24)
z zepto (10 -21)
a atto (10 -18)
f femto (10 -15)
p pico (10 -12)
n nano (10 -9)
u micro (10 -6)
m milli (10 -3)
c centi (10 -2)
d deci (10 -1)
da deka (10 1)
h hecto (10 2)
k kilo (10 3)
M mega (10 6)
G giga (10 9)
T tera (10 12)
P peta (10 15)
E exa (10 18)
Z zetta (10 21)

© National Instruments 143

VeriStand Feature Usage

Character(s) Description
Y yotta (10 24)

Pull Downs Controls

Create a list that a user can cycle through to make selections.

■ Details

How Do I Assign Specific Values to the Pull Downs?

1. Select the control to which you want to assign specific values.

2. On the configuration pane, assign and arrange specific values in the Items
section.

Text Controls

Create text entry boxes and labels.

ni.com144

VeriStand Feature Usage

Running the VeriStand Workspace

Launch the Workspace to run a project, view and modify the user interface, and to
perform operations such as monitoring alarms, viewing channel data, scaling and
calibrating channels, and running stimulus profiles.

1. Open a project in VeriStand.

2. In the Project Files tab, double-click Workspace.
3. Depending on your goal, complete any of the following tasks in the

Workspace.
Goal Task

Adding and configuring
controls and indicators

Use the Workspace Controls palette to add and configure
controls and indicators to create a user interface.

Modifying control
mappings at run time

Change the channel mapping of a control or indicator while the
Workspace runs.

Calibrating a hardware
channel at run time

Use the Channel Calibration tool to calibrate hardware channels
by adjusting the values they return to known values while a
system definition runs.

Using channel value
forcing

Use the Channel Fault Manager tool to test the behavior of a
system when a channel reaches a certain value.

Logging test results with
stimulus profiles

Use the Stimulus Profile Editor to create and execute a stimulus
profile on your host machine to log test data acquired from real-
time sequences performed on a target.

Recording commands
sent to the target

Use the Macro Recorder tool to record commands, such as the
setting of channel or parameter values, model execution states,
and fault or alarm values, that VeriStand sends to the target and
save them to a macro (.nivsmacro) file.

Playing back commands
sent to the target

Use the Macro Player tool to review the commands that
VeriStand sent to the target using the macro (.nivsmacro) file
you recorded with the Macro Recorder tool.

Setting model parameter
values in the Workspace

Use model calibration controls in the Workspace to view and
modify the values for any model parameters in the system
definition.

Importing and managing
batches of model
parameters

Use the Model Parameter Manager tool to import and apply
model parameter values defined in external .m or .txt files to a
model.

© National Instruments 145

VeriStand Feature Usage

Goal Task
Displaying waveform
data in a graph

Use a waveform graph control to display data from one or more
waveforms in the system definition file to monitor and verify
acquired data.

Enhancing your
Workspace to view data

Use other tools, such as the Alarm Monitor, TDMS File Viewer,
and XNET Bus Monitor, to view data in the Workspace.

Viewing the console
output of a real-time
target

Use the Console Viewer tool to display the console output for a
real-time target to monitor or access the target remotely.

Configuring and
Executing host-side
logging

Use the Data Logging control to adjust log times, better format
data files, select start and stop times, and more at run time.

Adding and Configuring Controls and Indicators

Use the Workspace Controls palette to add and configure controls and indicators to
create a user interface.

1. Open the Workspace.

2. Select Screen > Edit Mode to display the Workspace Controls palette and
alignment grid.

3. Click the Workspace Controls palette and drag a control or indicator onto the
alignment grid.

4. In the Item Properties dialog box, configure the control or indicator.

Note If the Workspace contains simple or FFT graph controls and
the project that owns the screen file connects to the VeriStand
Gateway running on a remote target, you must set the TTL value to
128 on the Port Settings page of the Options dialog box. Otherwise,
these graph controls will not update.

Modifying Control Mappings at Run Time

Change the channel mapping of a control or indicator while the Workspace runs.

1. Right-click a control or indicator.

ni.com146

VeriStand Feature Usage

2. In the Item Properties dialog box, click Browse.

3. In the Browse dialog box, select a channel in the configuration tree, and click
OK.

4. In the Control Label field, rename the control or indicator, and click OK.

Calibrating a Hardware Channel at Run Time

Use the Channel Calibration tool to calibrate hardware channels by adjusting the
values they return to known values while a system definition runs.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.
You can calibrate channels according to polynomial equations you define, custom-
defined channels marked as scalable, as well as FPGA and single-point DAQ
channels in running system definitions.

Note If a channel has a scale mapped to it, VeriStand applies the scale
first and applies the calibration to the scaled channel values second.

VeriStand supports polynomial calibrations with up to ten coefficients. A simple
polynomial calibration is a linear calibration, y = mx + b, where m is the first-order
coefficient (a1) that serves as the scale and b is the constant (a0) that serves as an
offset.

1. In the Workspace, select Tools > Channel Calibration to launch the tool.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

2. In the Channel Calibration tool under Scalable Channels, select a channel you
want to calibrate.

3. Click Next.

4. On the User Information page, enter metadata about the specific calibration
procedure you want to perform.

© National Instruments 147

VeriStand Feature Usage

Note This information is used to store the history of calibrations
performed for a channel. You can view the information by clicking
View History on the main page of the Channel Calibration tool.

5. On the Polynomial Calibration Details page, enter coefficients to define the
polynomial equation that will calibrate the channel.

Note You can click Build Table and then complete a procedure for
automatically calculating polynomial coefficients that best fit raw
sensor values to known input values.

6. Click Finish.

The Scaled and Calibrated Value column in the Scalable Channels table displays
channel values after the calibration.
When you close the Channel Calibration tool, the calibration remains applied to the
channel. Even if you close the Workspace or undeploy and redeploy the system
definition, the calibration remains active until you remove it.

You also can use the Calibration VIs in the LabVIEW Execution API to automate
applying calibrations and reading raw values from hardware channels.

Channel Calibration

The Channel Calibration tool displays channel information such as channel names,
paths, values, and calibration dates you use to calibrate your hardware.
The following image highlights the layout of the Channel Calibration tool you will
interact with to calibrate values received from a hardware device.

ni.com148

VeriStand Feature Usage

1 Scalable Channels—Displays both the Raw Value the channel acquires or generates and the
Scaled and Calibrated Value.
Values in the latter column reflect both scales mapped to the channel in the system definition
and calibrations you apply to the channel with this tool.

2 Units—Displays the units associated with the channel. If you map a scale to the channel, the
units associated with the scale display.

3 Delete Calibration—Removes a selected channel.
The button is disabled when a selected channel does not have a calibration applied to it.

4 Show hidden channels?—Displays hidden channels available for calibration in the Scalable

Channels table.

5
View History—Displays information about previous calibrations performed for a channel,
including the date and time it started and the calibration coefficients.

Using Channel Value Forcing

Use the Channel Fault Manager tool to test the behavior of a system when a channel
reaches a certain value.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.

© National Instruments 149

VeriStand Feature Usage

1. In the Workspace, select Tools > Channel Fault Manager to launch the tool.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

2. In the Channel Fault Manager tool, select a channel from the configuration
tree and click Add Fault.

3. In the Fault Value dialog box, enter a fault value for the specified channel and
click OK.

The faulted channel and value appear in the Channel Fault Manager tool.

Logging Test Results with Stimulus Profiles

Use the Stimulus Profile Editor to create and execute a stimulus profile on your host
machine to log test data acquired from real-time sequences performed on a target.

If the Stimulus Profile Editor is not in the Tools menu, add it.
You can start multiple concurrent stimulus profile executions. Each stimulus profile
execution performs sequential execution of one or more real-time sequences.

1. In the Workspace, select Tools > Stimulus Profile Editor.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box. The Stimulus

Project Editor launches as a separate application and may take a
few minutes to open.

2. On the Start Page tab, select New Stimulus Profile.
3. Configure your stimulus profile.

1. From the Steps palette, drag steps to the relevant step group folders.

2. From the Sequences palette, drag real-time sequences to the relevant
group folders.

4. On the Start Page tab, select New Real-Time Sequence.

ni.com150

VeriStand Feature Usage

5. Configure your real-time sequence file.

1. From the Primitives palette, drag statements to the real-time sequence.

2. From the Sequences palette, drag sequences to the real-time sequence.

6. Save the real-time sequence.

7. In the Stimulus Profile File window, add a step to call the real-time sequence
you just created from the stimulus profile.

8. Save the stimulus profile.

9. Click Run.

Once you have created a stimulus profile, you can deploy it to a real-time target
based on your system definition. This profile is then run on the real-time target, and
the current state of the profile is displayed in the Profile window on the host
computer.

Recording Commands VeriStand Sends to the Target

Use the Macro Recorder tool to record commands, such as the setting of channel or
parameter values, model execution states, and fault or alarm values, that VeriStand
sends to the target and save them to a macro (.nivsmacro) file.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.

Note You can also use the Macro Recorder VIs to access the Macro

Recorder and create macro files programmatically from LabVIEW. Use the
Execution API to access the Macro Recorder from any .NET-compatible
programming language.

1. In the Workspace, select Tools > Macro Recorder to launch the tool.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

2. In the Macro Recorder tool, click Record to begin recording.

© National Instruments 151

VeriStand Feature Usage

3. Use controls on the Workspace to send commands to the target.
The Workspace Macro list displays each command you send.

4. Click Pause to pause recording.

Note The Macro Recorder does not record any commands you send
while it is paused. You can click Resume to continue appending
commands to the same macro recording.

5. Click Stop to finish recording.

6. Click File > Save As to save the macro file.

You can use the Macro Player tool to play back macro files you create using the
Macro Recorder tool.

Playing Back Commands Sent to the Target

Use the Macro Player tool to review the commands that VeriStand sent to the target
using the macro (.nivsmacro) file you recorded with the Macro Recorder tool.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.

Note You can also use the Macro Player VIs to access the Macro Player and
play back macro files programmatically from LabVIEW. Use the Execution
API to access the Macro Player from any .NET-compatible programming
language.

1. In the Workspace, select Tools > Macro Recorder to launch the tool.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

2. In the Macro Recorder tool, click File > Open and navigate to the macro file
you want to play back.

ni.com152

VeriStand Feature Usage

3. Select a Play Mode.
Play Mode Description

Ignore Timing Plays back as fast as possible.
Use Timing Plays back at the speed you recorded.

4. Click Play.
The Workspace Macro list highlights each command as it is played back.

5. Click Stop to stop playback.

Setting Model Parameter Values in the Workspace

Use model calibration controls in the Workspace to view and modify the values for
any model parameters in the system definition.

1. Open the Workspace.

2. Select Screen > Edit Mode to display the Workspace Controls palette and
alignment grid.

3. Click the Workspace Controls palette.

4. Select Model Calibration Control.
5. Choose one of the following control types and drag it onto the alignment grid.

Note Glyphs appear next to parameters to indicate whether their
status is unlocked () or locked (). The glyph appears on a
control to indicate when you have made changes to a parameter but
not applied them to the system.

Control
Type

Description Example

Medium
Control

Medium
controls are
the basic
numeric
controls for
modifying a
single

© National Instruments 153

VeriStand Feature Usage

Control
Type

Description Example

model
parameter
value.
VeriStand
applies
value
changes as
soon as you
enter them
in a
medium
control

Array
Control

Array
controls
help
manage the
elements of
parameters
in vector
form.
Click Apply
to commit
the
changes.
Click Reset
to replace
any value
changes
you have
not applied
with the
current
system
values.

List
Control

List
controls
provide
access to
multiple

ni.com154

VeriStand Feature Usage

Control
Type

Description Example

parameters.
Select the
parameters
in the Item

Properties
dialog box
for list
controls.
VeriStand
applies
value
changes as
soon as you
enter them.

6. Use the Item Properties dialog box to customize the control and click OK.

You can also lock the parameter value.

Importing and Managing Batches of Model Parameters in the Workspace

Use the Model Parameter Manager tool to import and apply model parameter values
defined in external .m or .txt files to a model.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.
Maintaining model parameter values in external files allows you to quickly switch
between batches of test parameters without manually entering the values. This tool
is also useful for managing multiple parameters from a single interface.
In order to set the value of a parameter, you must import or calculate the new values
and then apply the new values.

1. Deploy the system definition with models to the target.

Note You can only apply new values to deployed systems.

2. In the Workspace, select Tools > Model Parameter Manager to launch the tool.

© National Instruments 155

VeriStand Feature Usage

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

3. In the Model Parameter Manager tool, click Select Files.

4. In the Select Calibration Files to Load dialog box, click Add File.

5. Browse to the file(s) that contain parameter values, and click OK.

Note You can import parameter values from multiple model
parameter files. However, only one file can define a specific
parameter. Otherwise, VeriStand requires you to select the value to
apply.

6. In the Select Calibration Files to Load dialog box, click OK to import the
values from the files as new values.

7. In the Model Parameter Manager, review the New Value column for errors.

Note If an error glyph () appears next to a Parameter, ensure your
files use supported syntax.

8. Double-click a file in the Selected Files column to edit the contents of the file.

9. Click Calc. New Values to read or calculate new parameters values from files
you loaded.

Note This is useful for resetting parameters to their initial values.

10. Click Apply New.

Supported Formatting for Model Parameter Files

You need to format .txt and .m files correctly to use them in the Model Parameter

Manager tool.
The following table displays the file types and how they should be formatted.

ni.com156

VeriStand Feature Usage

File
Type

Description Example
Formatting

Limitations

.txt Support for simple text files that
conform to the model parameter
file format that several other
VeriStand features support.

Refer to Supported Syntax in Model
Parameter Files for more
information about this type of file.

a 10
b a
* 2

The Model Parameter Manager
imports and sets the result of the
expression rather than the expression
itself.

The Model Parameter Manager sets
the value of b to 20, not a * 2.

Changes to the value of a do not affect
b because the original expression is
no longer valid.

.m Support for .m model parameter
files that perform one or both of the
following actions:

■ Assigns constant values to
parameters.
■ Defines parameter values
as the result of simple
expressions that include
other parameters or variables
defined in the .m file.

This feature only supports simple
assignments and expressions, not
the entire .m file syntax.

temp = 1;
b = (temp
* 3) / 2;

■ Expressions must depend on
other parameters or variables.
■ The names of parameters and
variables used in expressions
must start with a letter and
contain only alphanumeric
characters or underscores.

Otherwise the Model Parameter
Manager displays an error glyph ().

Setting a Parameter Value Manually

Use the Model Parameter Manager tool to set a parameter value manually.

If the Model Parameter Manager tool is not in the Tools menu, add it.
To set the value of a parameter manually, you must set and then apply new values.

1. Deploy the system definition with models to the target.

Note You can only apply new values to deployed systems.

2. In the Workspace, select Tools > Model Parameter Manager to launch the tool.

© National Instruments 157

VeriStand Feature Usage

https://veristand.chm::/model_param_file_format.html
https://veristand.chm::/model_param_file_format.html

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

3. Double-click a parameter to launch the Edit Calibration Value dialog box.

4. Enter the new value you want to apply to the parameter in the New Value
table.

5. Click OK.

6. Click Copy System Values to copy over any new values you have not applied.

7. Click Apply New.

Exporting Parameter Values

Use the Model Parameter Manager tool to export parameter values to reproduce
certain behaviors in your model.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.

1. Deploy the system definition with models to the target.

Note You can only apply new values to deployed systems.

2. In the Workspace, select Tools > Model Parameter Manager to launch the tool.

Note The name of this menu item might differ depending on how
you named it in the Tools Properties dialog box.

3. Click Save Values to save the current system values to a new or existing model
parameter file.

VeriStand exports values in the format that corresponds to the file extension you
choose.

ni.com158

VeriStand Feature Usage

Displaying Waveform Data in a Graph

Use a waveform graph control to display data from one or more waveforms in the
system definition file to monitor and verify acquired data.
Before you begin, set up timing and logging properties for waveform acquisitions.
You can only graph waveforms with a double-precision floating-point data type.

1. Open the Workspace.

2. Select Screen > Edit Mode to display the Workspace Controls palette and
alignment grid.

3. Click the Workspace Controls palette.

4. Select Graph > Waveformand drag the waveform graph onto the alignment
grid.

5. In the Waveform Graph Settings dialog box, select the waveforms to display in
the graph and the conditions that you want to stream data.

To configure the x-axis to represent absolute time, right-click a waveform graph and
uncheck Ignore Time Stamps.

Note By default, the waveform graph ignores the absolute time
associated with samples in a waveform and plots relative time on the x-
axis. This behavior is useful if the data has no time correlation, or if you
want to graph multiple waveforms from two or more systems that are not
time synchronized.

Enhancing Your Workspace to View Data

Use other tools, such as the Alarm Monitor, TDMS File Viewer, and XNET Bus

Monitor, to view data in the Workspace.

Before you begin, verify that you have the tool in your Workspace Tools menu. If you
do not, refer to Adding a Standard or Custom Tools Menu Item.

1. In the Workspace, select Tools.
2. Depending on your goal, use any of the following tools.

© National Instruments 159

VeriStand Feature Usage

Goal Tool

Manage alarms high limit, low limit, corresponding procedure name,
delay duration, trip value, priority, state, and mode information.

Alarm Monitor

View the current values for several channels at a time. Channel Data Viewer
View the contents of a .tdms file. TDMS File Viewer
View and log messages sent by an NI-XNET device. XNET Bus Monitor
Perform custom tasks specified by a LabVIEW VI. Custom VI Tool

Viewing the Console Output of a Real-Time Target

Use the Console Viewer tool to display the console output for a real-time target to
monitor or access the target remotely.
The console output includes information about system definition deployment, CPU
usage, and debugging messages. You can use the Console Viewer tool to access a
target regardless of whether a system is deployed to the target.

Note You cannot use the Console Viewer on NI Linux Real-Time targets.
Instead, connect your NI Linux Real-Time targets to a computer using a
serial port to view the output.

1. In the VeriStand Editor, click Tool Launcher > View Console.

2. In the Console Viewer tool, enter the IP address for the real-time target you
want to access.

3. Click Connect.

Configuring and Executing Host-Side Logging

Use the Data Logging control to adjust log times, better format data files, select start
and stop times, and more at run time.

1. Open the Workspace.

2. Select Screen > Edit Mode to display the Workspace Controls palette and
alignment grid.

3. Click the Workspace Controls palette.

ni.com160

VeriStand Feature Usage

4. Select Logging > Logging Control and drag the control onto the alignment grid.

5. Complete any of the following configuration goals in the Edit Settings dialog
box.
Goal Description How to configure

Specify
channels to log

Designate the channels to log data from. Use the Channels
page.

Start and stop a
log session with
triggers

Configure the Data Logging control to start and
stop logging during a log session based on triggers.
A trigger is a condition-based formula, such as
EngineTemp>5000.
When you configure a start trigger, the Data
Logging control waits after a log session begins for
the start trigger to evaluate to TRUE before logging.
You can also configure a stop trigger. When you
configure a stop trigger, the Data Logging control
stops logging when the stop trigger evaluates to
TRUE.

Use the Start

Trigger and Stop

Trigger pages.

Capture custom
information
about a log
session

Capture specific information from an operator at
the start of a log session using properties. Any
captured properties are added as metadata to all
log files generated during the log session.
For example, you can prompt an operator to enter
information, such as the their name, the unit under
test, and the test set point before running a log
session.

Use the Properties
page.

Automate post-
processing of
log data

Configure the Data Logging control to
automatically run post-processing actions for log
files produced by the control during a log session.
This allows you to automate post-processing
actions, such as passing log files to Excel or
generating a PDF report from the log files.

Use the Post-

Processing page.
See Running a
Command Line
Script and Loading
a File in DIAdem.

Download log
files produced
by targets

Configure the Data Logging control to
automatically download files produced by a target
and to include these files in post-processing.

Use the Target Logs
page.
See Including Log
Files Produced on a
Target in Post-
Processing.

© National Instruments 161

VeriStand Feature Usage

Running a Command Line Script

Execute a command line script for each file the control generates during a log
session to complete tasks such as passing log files to a batch file or to an executable,
like Excel, for additional post-processing.

1. Click Edit settings on the data logging control.

2. Select Post-Processing.

3. From the Action to take at end of log session dull-down menu, select Run

Command Line Script.
4. Enter the command line script you want to run.

Loading a File in DIAdem

Load each data file generated during a log session in DIAdem to complete a variety
of tasks such as generating graphs and tables.
This feature requires NI DIAdem. For more information about NI DIAdem, visit
ni.com/diadem.

1. Click Edit settings on the data logging control.

2. Select Post-Processing.

3. From the Action to take at end of log session drop-down, select Load File in

DIAdem.
4. Configure the options on this page to meet your needs.

Automating Post-Processing in DIAdem with a
VBScript
Automate the post-processing actions in DIAdem to analyze and process data by
running a VBScript (.VBS).

1. Click Edit settings on the data logging control.

2. Select Post-Processing.

3. Select Run script.

ni.com162

VeriStand Feature Usage

4. In Script path, specify the path to the VBScript file you want to run.

Generating a PDF or HTML Report with DIAdem
Use a pre-configured DIAdem report file (.TDR) to automatically generate a PDF or
HTML report from log files.
A DIAdem report file can display graphs, texts, and images based on the data from
the loaded log files.

1. Click Edit settings on the data logging control.

2. Select Post-Processing.

3. From the Report generation options drop down menu, select Generate HTML

report or Generate PDF report.

4. Specify the Report template path to the report template and the Report

export path where you want to save the PDF or HTML report.

Including Log Files Produced on a Target in Post-
Processing
Automatically download files produced by a target to include these files in post-
processing.

You must start and stop the logs on the targets from outside of the Data Logging
control.

1. Click Edit settings on the data logging control.

2. Select Target Logs.

3. Click Download target log files to host.

4. Click Add to add channels.
5. Select the targets from which you want to download files.

6. Specify the location to which to download the files in Destination and click
OK.

7. Select Include downloaded target-log files in post processing.

© National Instruments 163

VeriStand Feature Usage

When you stop logging, the log control downloads all files closed by the target
during logging. If you choose to use DIAdem for post-process, the log files merge in
DIAdem below the host-side log files.

Logging and Documenting Sessions

Control when a session log executes and document your observations about the
session.

Note You can also launch the File History dialog box from the control to
view past log sessions and the files associated with them.

1. Add and configure the Logging Control on the Workspace.
2. Complete any of the following goals.

Goal Description How to Operate

Start a log
session

The log session starts when you click Start Logging or
based on a start trigger.

Click Start

Logging on the
Data Logging
control.

Stop a log
session

The log session stops when you click Stop Logging, after a
specified amount of time has elapsed, or based on a stop
trigger.

Click Stop

Logging on the
Data Logging
control.

Capture
notes about
a log
session

Add notes to a log session to document observations, such
as errors or peculiar behaviors, at the time they occur.
The note saves the information you enter and a timestamp
of when you click Enter Note.

Click Enter Note

on the Data

Logging control
while logging.

View the
results of a
log session

View information about past log sessions and any files
generated during those log sessions with the File History
dialog box.

Note If you do not have a specified application
for viewing TDMS files, you can view the file in
the TDMS Filer Viewer workspace tool. To do

Click History on
the Data Logging
control while
logging.

ni.com164

VeriStand Feature Usage

Goal Description How to Operate
so, right-click the file and select View File in

TDMS File Viewer.

Each log session has a unique SessionGUID that appears as
a root file property in the TDMS log files and user notes
files generated during the log session. You can use the
SessionGUID to link all files generated during the same log
session when analyzing data.

Running VeriStand Operations Using the Command Line
Use the command line to execute processes in VeriStand, such as deploying or
closing a project.

Commands can be used while VeriStand is open or closed.

1. Open a command prompt.
2. Change directories to the location of the VeriStand executable.
3. Execute one of the following commands using the following syntax:

VeriStand.exe /<command>.

Note You can use either a slash or a dash before each command.
Commands are not case sensitive. For example, /deploy and -DePloY
are equivalent commands.

Command Description

connect Connects to a deployed system on the gateway. This command
executes after commands for creating the project, opening the
project, and modifying the system definition. This command is
ignored if deploy is also specified. An error returns if a system is not
deployed but a project is open.

disconnect Disconnects from a deployed system on the gateway.
deploy Deploys the system to the gateway and connects to it. This

command executes after commands for creating the project,
opening the project, and modifying the system definition.

© National Instruments 165

VeriStand Feature Usage

Command Description
editScreen Turns operate mode off to unlock the screen for editing. This can be

used to reverse the operateScreen or operateOnly commands while
VeriStand is running.

gateway <IP address
or hostname>

Specifies the given IP address or hostname as the gateway.

help Opens the VeriStand manual to Running VeriStand Operations
Using the Command Line.

noDeployKeys Disables the keyboard shortcuts for deploy (F6) and undeploy (F7).
This command does not disable the Operate menu or the deploy
and undeploy commands.

nivsprj <file path
to .nivsprj file>

Opens the specified project. If the project does not exist, VeriStand
creates it using the default project template. If VeriStand has a
different project open, a dialog box will ask you to save and close it.openProject <file

path to .nivsprj file>
operateScreen Turns operate mode on to lock the screen. When operate mode is

on, you cannot resize, move, or edit the controls in the screen
document. This command disables the screen document unlock
button.

operateOnly

openDocument <file
path to
legacy .nivsproj file>

Converts a legacy .nivsproj VeriStand project into a .nivsprj file and
opens it.

sysDef <file path
to .nivssdf system
definition file>

Loads the system definition into an open or specified project. If you
create a new project with the nivsprj or openProject commands, the
specified system definition is used instead of the default template.
This command does not work if the gateway is currently connected
or connecting. This command executes before the connect
command.

undeploy Removes deployed system from the gateway. This command works
on connected and disconnected systems.

Using NI-XNET Interfaces
Use NI-XNET interfaces to communicate and interact with applications that require
real-time, high-speed manipulation of hundreds of Controller Area Network (CAN),
Local Interconnect Network (LIN), and FlexRay frames and signals.

ni.com166

VeriStand Feature Usage

Popular application types to use the NI-XNET platform include hardware-in-the-loop
(HIL) simulation, rapid control prototyping, bus monitoring, and automation
control.
The NI-XNET platform includes a series of high-performance CAN, LIN, and FlexRay
communication protocol interfaces used by automotive and industrial networks.

Depending on your goal, complete any of the following tasks.
Goal Task

Add an NI-XNET database Create a standardized file for embedded system communication
in a FIBEX (.xml), CANdb (.dbc), NI-CAN (.ncd), or LDF (.ldf) format.

Edit an NI-XNET database Use the NI-XNET Database Editor to configure a basic network,
define frames and exchanged signals, and assign frames to
Electronic Control Units (ECUs).

Import NI-XNET frames Import incoming or outgoing frames from an NI-XNET database.
Use NI-XNET frame IDs Use frame IDs to prioritize event-triggered frames, filter log file

frames, and filter CAN data replay file frames.
Access timing and ID
information for incoming NI-
XNET frames

Create Frame Information channels to track timestamps and
frame IDs.

Log incoming NI-XNET frames Create TDMS (.tdms) or NI-XNET log (.ncl) files to record incoming
frame data during an NI-XNET session.

Replay logged NI-XNET CAN
frame data

Add and replay TDMS (.tdms) or NI-XNET log (.ncl) files on a CAN
bus.

Configure cyclic NI-XNET CAN
frame faulting

Configure outgoing cyclic frames of NI-XNET CAN interfaces by
adding Skip Cyclic Frames and Transmit Time channels.

Configure cyclic redundancy
checks (CRCs) and counters
for outgoing NI-XNET CAN
frames

Specify the bytes for outgoing frames of NI-XNET CAN interfaces
to include in CRCs and add counters that increment each time the
frame transmits across the bus.

NI-XNET Overview
Use sessions, clusters, and frames to set up your NI-XNET interfaces.

© National Instruments 167

VeriStand Feature Usage

Note Refer to the NI-XNET Hardware and Software Help that installs
with your hardware for more detailed documentation about NI-XNET
interfaces.

Sessions

An NI-XNET session represents a connection between your NI CAN, FlexRay, or LIN
hardware and hardware products on the external network. Sessions include the
following configuration components:

■ Port—A port in NI-XNET refers to the physical connector on an NI hardware
device.
■ Interface—An interface represents the software CAN, FlexRay, or LIN
connector on an NI hardware device. Use the interface name as an alias for
your ports so you can avoiding changing your application if the physical
hardware configuration changes.
■ XNET Database—An XNET database is a standardized file that describes
embedded communication. XNET database file formats include CANdb (.dbc)
for CAN, FIBEX (.xml) for FlexRay, and LIN Description File (.ldf) for LIN. For the
NI-XNET interface to communicate with hardware products on the external
network, NI-XNET must understand the communication in the actual
embedded system.
You can edit NI-XNET databases directly from VeriStand by launching the NI-
XNET Database Editor from System Explorer.
■ Session Mode—A session mode specifies the data type (signals or frames),
direction (input or output), and how your application and network transfer
data. VeriStand supports the following NI-XNET session modes:

■ Signal Input Single-Point
■ Signal Output Single-Point
■ Frame Input Single-Point
■ Frame Output Single-Point
■ Frame Input Stream

ni.com168

VeriStand Feature Usage

Note Refer to the NI-XNET Hardware and Software Help that
installs with your hardware for more information about session
modes.

Clusters

A cluster is a description of a single network, such as a CAN bus, within an XNET
database. For importing frames, each port in VeriStand is associated with a single
cluster within an XNET database. A cluster can contain an arbitrary number of
frames.

Frames

A frame is a message that transmits across an embedded network. In VeriStand,
frames are either inputs (incoming frames) or outputs (outgoing frames), and are
classified according to their transmission characteristics. For example, event-
triggered frames transmit only when a specific event occurs. Frames also contain
information such as ID numbers and timing data that you can access through Frame
Information channels in VeriStand.
You can import frames into VeriStand in either signal or raw data format. Signal
format frames contain signals and raw data format frames contain channels. These
terms refer to the basic data exchange unit on the network.
The specific format and characteristics of frames vary based on the communication
protocol you use. Refer to the NI-XNET Hardware and Software Help for detailed
information about frame formats.

Adding NI-XNET Databases
Create a standardized file for embedded system communication in a FIBEX (.xml),
CANdb (.dbc), NI-CAN (.ncd), or LDF (.ldf) format.

Note Refer to the NI-XNET Hardware and Software Help for detailed
information about NI-XNET databases.

© National Instruments 169

VeriStand Feature Usage

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > XNET Databases in the configuration tree.

4. Click Add Database File and choose where you want to add the database
from.
Database location How to add

A registered NI-XNET
database 1. Click Registered XNET Database.

2. Select an Existing Alias from the drop-down menu.

A database on disk
1. Click New XNET Database.

2. Enter an Alias.

3. Click the Path folder.

4. In the Select a File or Folder window, select a database file.

5. Click OK.

5. Click OK.

Note If OK is disabled, confirm that you selected a valid database
file and that the database does not already appear under XNET
Databases.

6. Save the system definition file.

Editing NI-XNET Databases
Use the NI-XNET Database Editor to configure a basic network, define frames and
exchanged signals, and assign frames to Electronic Control Units (ECUs).

Before you begin, add an NI-XNET database.

The NI-XNET Database Editor creates and maintains embedded network
databases.

ni.com170

VeriStand Feature Usage

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > XNET Databases in the configuration tree.

4. Select the database you want to edit and click Launch XNET Database Editor
.

Note The editor cannot open LIN description files (.ldf) or FIBEX
databases with LIN content.

5. Use the editor to make changes to the database.

6. Select File > Save to save the database file and close the editor.

7. Select the database again and click Refresh Databases .

Note VeriStand will ask you to delete any signals removed from the
database or multiplexed signals that changed in the database.
Import the changed multiplexed signals again for VeriStand to read
them correctly.

8. Save the system definition file.

Importing NI-XNET Frames
Import incoming or outgoing frames from an NI-XNET database.
Before you begin, add an NI-XNET database and port.
Frames are the messages transmitted across an embedded network. These
messages are sorted into clusters within an NI-XNET database. You can import
frames from the database to VeriStand.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Hardware > Chassis > NI-XNET in the configuration tree.

© National Instruments 171

VeriStand Feature Usage

4. Expand an NI-XNET LIN, FlexRay, or CAN port.

5. Expand Incoming or Outgoing.

6. Right click a frame type you want to import and select Import Frames.

7. In the Import NI-XNET Frames dialog box, click the XNET Frames tab, and
select the frames you want to import.
You can also use the options on the Import Settings and General Options tabs
to temporarily modify the default settings for importing frames. For example,
you can import the frames in signal or raw data format, create information
channels for the frames, or allow disable and trigger channels for frame
transmission.

Note Configure default settings for importing frames on the XNET
page of the Options dialog box.

8. Click OK.
9. Save the system definition file.

Using NI-XNET Frame IDs
Use frame IDs to prioritize event-triggered frames, filter log file frames, and filter
CAN data replay file frames.
The frames that transmit across the network are assigned unique identifiers. You
can use these frame IDs for more than just identifying the frame.

Note Refer to the NI-XNET Hardware and Software Help for more
information about frame identifiers.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Depending on your goal, complete any of the following tasks.

ni.com172

VeriStand Feature Usage

Goal Tasks

Prioritizing the order that
event-triggered outgoing
frames transmit.

1. Add a CAN, FlexRay, or LIN port.
2. Click the port you added.

3. On the port configuration page, click the Transmission

Order tab.

4. Under Pending Transmit Order, click By Identifier.

Filtering specific frame IDs
to include or exclude from
the log file.

1. Set up logging for incoming NI-XNET frames.
2. Click the XNET logging file you added.

3. Use the XNET Data Logging Configuration page to
configure filtering in the Data Logging Settings section.

Filtering CAN data replay
file frames to specify
frame IDs to include or
exclude from replay.

1. Add a CAN data replay file.
2. Click the data replay file you added.

3. In the File Replay IDs section, use the File Replay

Configuration page to configure filtering.

4. Save the system definition file.

Accessing Timing and ID Information for Incoming NI-XNET Frames
Create Frame Information channels to track timestamps and frame IDs.
Before you begin, import an incoming XNET frame.
Frame information channels store incoming NI-XNET frame information. You can
create the following types of Frame Information channels.

■ Receive Time—Contains the timestamp of the most recent frame.
■ Time Difference—Contains the difference between the two most recent
Receive Time timestamps.
■ Frame ID—Contains the ID number that identifies the frame. This channel is
for raw data format frames only.

1. Launch the VeriStand Editor.

© National Instruments 173

VeriStand Feature Usage

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET in the
configuration tree.

4. Select an NI-XNET LIN, FlexRay, or CAN port.

5. Click Incoming and select a frame.

6. Click Add Information Channels .

7. Expand Frame Information to view the channels.

8. Optional: Specify a dedicated start value for a channel.
Channel type How to specify start value

Receive Time
1. Select a channel.

2. On the Receive Time configuration page, enter an initial value.

Time Difference
1. Select a channel.

2. On the Time Difference configuration page, enter an initial value.

Note Raw data format frames also include Frame ID channels.
VeriStand reads the value for this channel from the XNET database.
You cannot modify it or specify an initial value through System

Explorer. However, you can use frame IDs to prioritize event-
triggered frames and to include or exclude frames from a data log
file.

9. Save the system definition file.

After creating Frame Information channels, you can use them like other channels in
VeriStand. For example, you can map them to other channels or to controls and
indicators in the VeriStand Editor or Workspace.

Use the XNET page of the Options dialog box to configure VeriStand to create Frame
Information channels when you import NI-XNET frames. You can also use the Import

ni.com174

VeriStand Feature Usage

NI-XNET Frames dialog box to automatically create channels on a one-time basis
when you import frames.

Logging Incoming NI-XNET Frames
Create TDMS (.tdms) or NI-XNET log (.ncl) files to record incoming frame data during
an NI-XNET session.
When you deploy and run the project, VeriStand logs the frame data you specify to
the log file when the trigger condition you specify is met. You can add multiple log
files to a single system definition file. A single log file can store data from multiple
clusters within an XNET database. If you do not configure filters on the log file, it
simply stores everything that is received on the port. You can also replay the log file
with a CAN interface across a CAN bus.

Note Refer to the NI-XNET Logfile Specification, available in the NI-
XNET\Documentation directory, for more information about the .ncl file
format.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET in the
configuration tree.

4. Select an NI-XNET LIN, FlexRay, or CAN port.

5. Click Incoming > Raw Frame Data Logging.

6. Click New Raw Frame Data Logging .

7. In the Add NI-XNET Logging File dialog box, configure the data logging file.

1. Enter a XNET data logging file name.
2. Select a file type from the drop-down.
3. For TDMS files, enter a group name and channel name for storing the

logged data.
4. Select a destination for the log file.

© National Instruments 175

VeriStand Feature Usage

Note You can choose a destination on either the host
computer or real-time target. For real-time targets, the
destination automatically populates.

8. Click OK.
The new file appears under Raw Frame Data Logging in the configuration tree.

9. On the XNET Data Logging Configuration page, enter a Buffer time [s] that is
large enough to avoid a buffer overflow while reading data.

Note The larger the buffer, the more memory is required for data
logging. To avoid additional dynamic memory allocation, determine
the bus load for your session before starting a data logging
operation.

10. Optional: Select a filter from the drop-down to configure filtering of the frames
to log.
Filtering uses frame IDs to include or exclude specific frames from the log file.

11. Click Trigger and File.
12. Configure when data logging starts, stops, and the operation that performs

when logging restarts after a stop.
For example, on a trigger channel, you can specify to start logging when value
becomes zero and to stop logging when it is not zero.

13. Save the system definition file.

Monitoring Incoming NI-XNET Frame Logging

Check the status of your logging of incoming NI-XNET frames by using the Error,
Finished Files, and Status channels.

Before you begin, you must add a raw frame data logging file.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

ni.com176

VeriStand Feature Usage

3. Click Targets > Controller > Hardware > Chassis > NI-XNET in the
configuration tree.

4. Select an NI-XNET LIN, FlexRay, or CAN port.

5. Click Incoming > Raw Frame Data Logging and select a log file.
6. Depending on your goal, click a channel.

Goal Channel

Review the most recent logging error. Error
Determine what files are ready for use by other processes. Finished Files
Find the current status of the data logging process. Status

You can monitor these channels from the VeriStand Editor and Workspace, or
map them to other channels within the project.

Raw Frame Data Logging FAQs

Answers to common questions on using raw frame data logging in VeriStand.

When should I use raw frame data logging for NI-XNET CAN interfaces?

Raw frame logging for CAN interfaces is useful when you need the exact timestamps
of when messages are sent and received from the hardware. You can use a program
such as DIAdem for post-processing of the data. Additionally, you can use the log
files you create to replay the frames.

How does raw frame logging affect processor load?

The processor load added by raw frame logging depends on the bus and the
controller. However, raw frame logging is a background process. It should not
interrupt higher priority items, such as the Primary Control Loop (PCL) or models.

Are timestamps added to the log files?

Timestamps are added to log files, but the type of timestamps added depends on
the file format of your log file.
Log file format Type of timestamp

NI-XNET (.ncl) Contains timestamps from the NI-XNET hardware.

© National Instruments 177

VeriStand Feature Usage

Log file format Type of timestamp
TDMS (.tdms) Contains timestamps from the NI-XNET hardware and from the VeriStand System

Time channel.

How can I view the raw frame data in real time?

You can use the NI-XNET Bus Monitor to display CAN, FlexRay, or LIN network data.

Replaying Logged NI-XNET CAN Frame Data
Add and replay TDMS (.tdms) or NI-XNET log (.ncl) files on a CAN bus.
Before you begin, add a CAN port.

You can replay the frames within the file in the same order and timing as they were
initially received. You can also filter specific frames from the file. A data replay file
can be any valid TDMS or NI-XNET log file that contains CAN data.

Note VeriStand can only replay TDMS files that contain specific header
information. To ensure your files contain the correct information, use
VeriStand to create TDMS files you want to replay.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET > CAN in the
configuration tree.

4. Click a port.

5. Click Outgoing > Data Replay.

6. Click Add a Replay File to display the Select an XNET Data File dialog box.

7. Click the Path folder to select a log file that contains CAN data and click OK.

8. Under Data Replay, select the log file to display the File Replay Configuration
page.

ni.com178

VeriStand Feature Usage

9. Under File Replay Settings, specify a trigger channel for triggering the replay
of the file.

Note Replay starts as soon as the value of the trigger channel is not
zero. You can select a channel that triggers multiple replays of the
file.

10. (TDMS only) Specify the group name and channel name for the TDMS channel
that contains the data to replay.

11. Specify the cache # of frames and loop rate (Hz).
12. Under file replay IDs, specify the replay behavior.

The default behavior is to replay the entire file. You can configure this
behavior to include or exclude specific frame IDs.

Note If you select Include Frame IDs, you cannot specify IDs of
single-point frames that already appear as outgoing frames under
the port. If you select one of the other behavior options, you cannot
have any outgoing, single-point frames specified under the port.
Specifying a single-point frame as both an output and a frame to
replay causes a run-time error.

13. Save the system definition file.

Note After you deploy and run the project, VeriStand also deploys the
data replay file. If a data replay file with the same name already exists on
the target when you deploy the project, VeriStand overwrites the existing
file.

Monitoring Replay Status

Check the status of your replaying logged NI-XNET CAN frame data using the Error,
Pending Frames, and Status channels.
Before you begin, you must add a data replay file.

1. Launch the VeriStand Editor.

© National Instruments 179

VeriStand Feature Usage

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET > CAN in the
configuration tree.

4. Click a port.

5. Click Outgoing > Data Replay and click a log file.
6. Depending on your goal, click a channel.

Goal Channel

Review the most recent replay error. Error
Determine whether data is replaying as expected Pending Frames
Find the current status of the replay process. Status

You can monitor these channels from the Workspace or map them to other channels
within the project.

Configuring NI-XNET CAN Cyclic Frame Faulting
Configure outgoing cyclic frames of NI-XNET CAN interfaces by adding Skip Cyclic
Frames and Transmit Time channels.
Before you begin, import an outgoing CAN cyclic frame.
In embedded networks, cyclic frames are frames that transmit at regular intervals.
You can add the following frame fault channels:

■ Skip Cyclic Frames—Skips transmission of a specified number of cyclic
frames across the bus.
■ Transmit Time—Specifies the amount of time that must elapse between
subsequent transmissions of a cyclic frame.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET > CAN in the
configuration tree.

ni.com180

VeriStand Feature Usage

4. Click a port.

5. Click Outgoing > Cyclic.

6. Select a frame and click Add Faulting Channels .
VeriStand creates a Frame Faulting section under the frame in the
configuration tree.

7. Click Frame Faulting.
8. Depending on your goal, complete the following tasks.

Goal Tasks

Skip the transmission
of a certain number of
frames.

1. Click Skip Cyclic Frames to display the Skip Cyclic Frames

Configuration page.

2. Specify the Skip N cycles for the number of cycles to skip .

3. Specify the Trigger channel to use to start skipping channels.

Note Skipping begins when this channel does not
equal zero.

Specify an amount of
time that must elapse
between frame
transmissions.

1. Click Transmit Time to display the Transmit Time

Configuration page.

2. Specify the time that must elapse in the Transmit time [sec]

field, or select Use trigger channel to set transmit time? and
specify a trigger channel from which to get the time.

Note VeriStand uses the value of the channel as the
transmit time, in seconds.

9. Save the system definition file.

After creating Frame Faulting channels, you can use them like other channels in
VeriStand. For example, you can map them to other channels or to controls and
indicators in the VeriStand Editor or Workspace.

Use the XNET page of the Options dialog box to configure VeriStand to always create
faulting channels when you import NI-XNET frames. You can also use the Import NI-

© National Instruments 181

VeriStand Feature Usage

XNET Frames dialog box to automatically create channels on a one-time basis when
you import frames.

Configuring Cyclic Redundancy Checks (CRCs) and Counters for
Outgoing NI-XNET CAN Frames
Specify the bytes for outgoing frames of NI-XNET CAN interfaces to include in CRCs
and add counters that increment each time the frame transmits across the bus.
Before you begin, import an outgoing CAN frame.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller > Hardware > Chassis > NI-XNET > CAN in the
configuration tree.

4. Click a port.

5. On the CAN Port Configuration page, click the Automatic Frame Processing
tab.

6. Click the Installed automatic frame processing binary files drop-down to select
a file to use for frame processing.

Note VeriStand supports CRC-8 and CRC-16 length polynomials.

7. Configure the CRC.

1. In the Polynomial field, enter a generator polynomial for the CRC.
This field requires a decimal number. VeriStand converts this number to
binary form to create the polynomial.

2. In the Initial CRC field, enter an initial value to use for the CRC
calculation.
This field requires a decimal number. VeriStand converts this number to
binary form.

3. In the Final XOR field, enter a value to XOR with the calculated CRC.

ni.com182

VeriStand Feature Usage

4. Optional: If you want to reverse the order of the bits in the CRC before
writing data into the data stream, select Reflected.

8. In the configuration tree, under the CAN port, right-click an outgoing frame
and select Add Automatic Frame Processing Data.

9. Expand Automatic Frame Processing to view the configuration pages for the
CRC and counter.

10. Click CRC to display the CRC Configuration page, and configure CRC settings.

1. Under CRC Settings, specify the first included byte and last included
byte for the CRC.

2. In the Storage offset [byte] field, specify a number of bytes to offset the
byte where CRC data is stored.

Note The CRC is always the last byte in the data. Set this value
to n-1, where n is the number of bytes in the data, to avoid
dropping frame data from the CRC.

3. Optional: If you want to specify a trigger channel to trigger writing data,
click Use alternate channel?.

11. Select Counter to display the XNET Counter Configuration page, and
configure the counter.

1. Under Counter Settings, enter the Width [bit] of the counter.
The maximum width is 8.

2. Specify the Initial value to start the counter.

3. Optional: If you want to specify offsets for counter data, enter a Storage

offset [byte] and a Bit offset [bit].

4. Optional: If you want to specify a trigger channel to use to trigger writing
data, click Use alternate channel?.

12. Save the system definition file.

© National Instruments 183

VeriStand Feature Usage

NI-XNET Bus Monitor
Use the NI-XNET Bus Monitor to display and log CAN, FlexRay, or LIN network data as
either last recent data or historical data view.
Use the Workspace to launch the NI-XNET Bus Monitor.
To identify more detailed frame information, assign a network database to the NI-
XNET Bus Monitor. You can display the message name and comment information in
the Monitor view or ID Log view if you find a received frame in the database.
In addition to the network data, the NI-XNET Bus Monitor can provide statistical
information. For offline data analysis, you can stream all received network data to
disk in two log file formats.
You can launch the NI-XNET Bus Monitor from Measurement and Automation
Explorer (MAX) or from the Windows Start menu.
For more information about the NI-XNET Bus Monitor, refer to the NI-XNET Tools
and Utilities Help.

How VeriStand Applies Scaling Factors to NI-XNET Signals
In NI-XNET software, you can assign a scaling factor to a signal.
When VeriStand reads values from a signal that has a scaling factor, VeriStand scales
the raw, prescaled values according to the scaling factor. For example, if you assign a
scaling factor of 0.1 to a signal and Veristand reads a value of 3 from the signal, it
scales the value to 0.3.
Conversely, VeriStand converts values to prescaled values before writing to signals.
For example, if you write a value of 0.3 to a signal that has a scaling factor of 0.1,
VeriStand writes a value of 3 to the bus.

Integrating and Executing Models
Use models to mathematically represent real-world systems in your VeriStand
project.

Before you begin, determine if VeriStand supports your model.
Simulate both the plant and controller to create a closed-loop control system within
a software model. Use models for signal generation, signal analysis, and control. For
more information on using models in VeriStand, refer to Models FAQs.

ni.com184

VeriStand Feature Usage

1. Select a compiler—Download compiler tools to convert models made in other
modeling environments.

2. Prepare your model for use.

■ Use a model from C/C++—Create a model in C or C++ that NI software can
load and execute through the VeriStand Model Framework.
■ Use a model from MathWorks Simulink® Software—Compile models from
Simulink software into a .dll or .so file.
■ Use a model from LabVIEW VIs—Convert LabVIEW VIs into
compiled .lvmodel or .lvmodelso files.

3. Add and configure the model—Connect a model to other parts of the system
and run the model on a hardware target.

4. Control and monitor model execution—Use model execution channels to
interact with models.

If you have problems after integrating your model with VeriStand, refer to Common
Issues with Models in VeriStand.

Supported Model Types and Modeling Environments

VeriStand supports compiled models from MathWorks Simulink® software, C/C++,
and LabVIEW VIs.
Refer to the following table to determine the model types VeriStand supports.
Model type How to compile Support considerations

MathWorks
Simulink

Compile this model
using MathWorks
Real-Time
Workshop®.

This model runs on the following target types in the specified
compiled formats:

■ Windows PC—.dll
■ Phar Lap ETS RT targets—.dll
■ NI Linux Real-Time targets—.so

In the Simulink software, you can convert models that use
only a fixed step-size ordinary differential equation (ODE)
solver into compiled models. Additionally, you must turn off
data logging in the Simulink application software. Refer to

© National Instruments 185

VeriStand Feature Usage

Model type How to compile Support considerations
Simulink documentation for information on changing ODE
solver and data logging settings.

C/C++ Compile this model
using the VeriStand
Model Framework.

For example models, navigate to
<RootDrive>:\VeriStand\<xxxx>\ModelInterface\custom\exam
ples.

Note <RootDrive> is the drive where NI software
installs and <xxxx> is the VeriStand version
number.

LabVIEW VI Compile this model
using the following:

■ LabVIEW
development
system that is
the same year
version as your
VeriStand
installation.
■ LabVIEW
Application
Builder

If this model is compiled as a .lvmodel, it runs on the
following target types:

■ Windows PC
■ Phar Lap ETS RT targets

Note The VI cannot contain code with
unsupported Windows function calls.

If this model is compiled as a .lvmodelso, it runs on Linux x64
and Linux ARM.

Note You must install additional software to
enable LabVIEW models for targets running a Linux
Real-Time OS. Refer to Creating Models in LabVIEW
for Use in VeriStand for more information about
how to use LabVIEW models with Linux. VeriStand
is not supported on x64 Intel-based cDAQ
controllers running NI Linux Real-Time.

Refer to VeriStand Version Compatibility for a list of software you can use with each
VeriStand distribution.

Note VeriStand does not install features for compiling models. For more
information, see Support for Compiling Models.

ni.com186

VeriStand Feature Usage

http://www.ni.com//r/simulink-ode
http://www.ni.com//r/simulink-ode
http://www.ni.com/r/appbuilder
http://www.ni.com/r/appbuilder
http://www.ni.com/r/appbuilder
http://www.ni.com/r/exiivr
http://www.ni.com/r/exiivr
http://www.ni.com/r/exxymi

Support for Compiling Models

VeriStand and the Model Interface Toolkit do not provide support for compiling
compatible models.
Use the VeriStand Model Framework or LabVIEW Model Support to compile models
to use in VeriStand. These components are available in NI Package Manager and
install support for compiling compatible models.

■ VeriStand Model Framework—Provides tools for compiling models designed
in C/C++ or third-party modeling environments such as MathWorks Simulink®

software.
■ LabVIEW Model Support—Provides tools for generating models from
LabVIEW VIs.

Note If you install VeriStand or the Model Interface Toolkit without these
components, environments like LabVIEW and Simulink software do not
support compiling compatible models.

VeriStand Model Framework

The VeriStand Model Framework is used to design and compile models created in
third-party modeling environments and C/C++.
VeriStand and the LabVIEW Model Interface Toolkit allow you to run simulation
models written in C/C++. To enable your models to interact with this NI software,
you must design them to work with the VeriStand Model Framework. The framework
includes files that allow your model to interact with VeriStand and the Model
Interface Toolkit.
When you run your VeriStand application, the application executes functions
defined in VeriStand Model Framework files. These functions call your model code
to execute the model.

Model Framework Components
The model framework includes files that define properties, identify functions for
export, implement an interface, and create interdependent structures.
Use the following table to locate files in the Model Framework to help implement
your model code.

© National Instruments 187

VeriStand Feature Usage

File Description Installed location

ni_modelframework.h A header file that
includes the following
components:

■ Type
definitions to
define
properties—
such as inports,
outports,
parameters, and
signals—of your
model's
outward-facing
components.
■ Functions
that the
VeriStand Model
Framework
exports to your
compiled
model.

<RootDrive>\VeriStand\<xxxx>\ModelInterface\

ni_modelframework.c Implements the
common interface
between your test
application and your
model code.

<RootDrive>\VeriStand\<xxxx>\ModelInterface\custom\src

template.c A template for your
model code. Use this
file to create code that
maintains
interdependent
structures between
your model and
ni_modelframework.c.

<RootDrive>\VeriStand\<xxxx>\ModelInterface\custom\examples

ni.com188

VeriStand Feature Usage

Note <RootDrive> is the drive where NI software installs and <xxxx> is the
VeriStand version number.

Model Code Components
The files model.h and model.c are used to implement your models.
Create the following two files to implement your C/C++ model:

■ model.h—Contains the type definitions for your model parameters.

Note You must name the file model.h and include all user-visible
parameters in your model.

■ model.c—Contains your model code. Make a copy of template.c and modify
the copy to ensure you maintain interdependent structures, such as headers,
imported and exported symbols, and functions that NI software recognizes,
between your model code and ni_modelframework.c.

Note You can name this .c file anything.

Model Framework and Model Code Interaction
When you run your VeriStand or Model Interface Toolkit test application, the
application executes functions that the VeriStand Model Framework files define.
These functions call functions in your model code, which convert user-defined data
types, initialize your model, and increment a time step in VeriStand.
The following illustration shows how NI software, the Model Framework API, and
code in your model interact.

© National Instruments 189

VeriStand Feature Usage

Your test application calls a function that the Model Framework exports. The
exported function calls a function in your model code. As the model executes, the
test application can interact with the model in the following ways:

■ Writing data to model inports
■ Reading data from model outports
■ Allowing you to adjust model parameter values
■ Allowing you to probe model signals

FMI Early Access Support

The Functional Mockup Interface (FMI) is an API standardization for exchanging
dynamic system models.
You can use FMI to decouple modeling environments from model consumers. This
decoupling helps create tool-agnostic, portable solutions between modeling and
simulation environments.
The FMI standard defines two model interaction patterns:

ni.com190

VeriStand Feature Usage

1. Model Exchange—The package contains the mathematical representation of
the model and the simulation environment solves the equations of the model

2. Co-Simulation—The model contains the solver for the model and can directly
provide outputs based on inputs and time slice.

FMI also defines the distribution packaging of the model and decouples the
interface description from the actual model binaries. You can have support for
several platforms, like Windows 32-bit and 64-bit, Linux 32-bit and 64-bit, and
source code, in the same package. A model that implements this interface is called a
Functional Mockup Unit (FMU).

Model Configuration and Execution Support

VeriStand enables configuration and execution of FMI 2.0 CoSimulation models on
Windows and NI Real-Time Linux 64-bit systems. This support requires FMUs to have
the proper executable binaries available.

Supported modeling environments include:

■ AVL Boost
■ FMU SDK
■ Wolfram SystemModeler
■ MapleSim
■ Altair Activate

Note NI can validate other modeling environments on request if provided
with sample models.

Model Configuration

You can use the same general model import and configuration steps in System

Explorer to import FMUs into VeriStand.
The following table displays how a variable appears based on its causality when a
FMU is imported into VeriStand.

FMU Variable Causality VeriStand Node Type

input inport

© National Instruments 191

VeriStand Feature Usage

FMU Variable Causality VeriStand Node Type
output outport
parameter parameter that can be imported as a channel or accessed through Model

Parameter Manager
caluculatedParameter not visible
independent not visible
local signal

The rate of the model is defined by the stepSize attribute in the DefaultExperiment.
Decimation must be configured based on the rate at which the VeriStand Engine is
running.

Model Execution

The following table displays the model execution target architectures that FMI Early
Access supports on the NI platform.

NI Target Architecture Folder in .zip Early Access Support

PXI Linux linux64 ✓
Linux64 cRIO linux64 —
linuxArm arm-linux-gnueabi —
Win win32 ✓
Pharlap win32 —
sources sources —

Note Linux64 cRIO is expected to work by default due to its similar OS to
PXI Linux.

FMI Support Limitations

Early Access FMI support has several limitations.

■ All FMI numeric data types are supported but cast to doubles internally.
■ String variables are not accessible.

ni.com192

VeriStand Feature Usage

■ A DefaultExperiment section with a non-zero stepSize is mandatory. Models
without the DefaultExperiment section will fail to run.

Note An example of a working stepSize is <DefaultExperiment
stepSize="0.01"/>.

■ Changing stepSize in VeriStand is not supported. The only way to change
stepSize is by modifying the modelDescription.xml file inside the FMU.
■ FMU logging is not supported.

Note Minimal logging to the console will be done in the case of
fmi2Fatal results.

Models FAQs
Answers to common questions on models in VeriStand.

Which modeling environments produce models that are compatible with
VeriStand?

VeriStand can run models from several environments after the models are compiled
to work with the VeriStand Model Framework.

What versions of The MathWorks, Inc. software and the LabVIEW
Development System are compatible with my version of VeriStand?

Refer to VeriStand Version Compatibility for a list of software you can use with each
VeriStand distribution.

What determines the rate a model runs?

The rate at which a model runs is a function of the system rate and a model-specific
decimation of the system rate, where actual model rate = Primary Control Loop
rate / decimation. You can use VeriStand to set the model timing.

© National Instruments 193

VeriStand Feature Usage

http://www.ni.com/r/exy5ez
http://www.ni.com/r/exxymi

How do I control the latency of models and the rest of my system?

The Primary Control Loop (PCL) of the VeriStand Engine provides two execution
modes. The default mode, Parallel, applies a one-cycle delay between when a
model executes and when the data it produces is available to the system.
Alternatively, Low Latency mode ensures data from models is available to the rest
of the system on the same iteration of the PCL as it is generated.

How do I make my models execute in a particular order?

Multiple models in a system execute in parallel unless you define an execution
order. If you want one model to wait until a second model finishes executing before
the first model runs, you must define an execution order. Execution orders ensure
data can transfer between models during the same iteration of the PCL.

How can I improve the performance of my system as it relates to models?

Avoid importing parameters and signals that the system does not use. The presence
of many parameters and signals can have a negative impact on the performance of
the system even if the model is not running.

Choosing Compiler Tools for a Model
Download compiler tools to convert models made in other modeling environments.
Before you begin, install the VeriStand Model Framework on the computer you are
compiling the model. The framework adds tools you will use during the compile
process.

1. Determine what real-time operating system (RTOS) your target runs.

Note If you want to create a compiled model that runs on Windows,
skip this step.

2. Based on the model type and the RTOS your target runs, refer to the following
table to determine which tools you need to compile the model.

ni.com194

VeriStand Feature Usage

http://www.ni.com/r/exxjax

Model type Windows Phar Lap Linux

C/C++ Microsoft Visual C++ Microsoft Visual C++ C/C++ Development Tools for
NI Linux Real-Time, Eclipse
Edition

LabVIEW
■ LabVIEW
development
system that is the
same year version
as your VeriStand
installation.
■ LabVIEW
Application Builder

■ LabVIEW
development
system that is the
same year version
as your VeriStand
installation.
■ LabVIEW
Application Builder

■ LabVIEW development
system that is the same
year version as your
VeriStand installation.
■ LabVIEW Application
Builder
■ C/C++ Development
Tools for NI Linux Real-
Time, Eclipse Edition

MathWorks
Simulink®

Software

Microsoft Visual C++ Microsoft Visual C++ C/C++ Development Tools for
NI Linux Real-Time, Eclipse
Edition

3. Optional: For Simulink models, complete the following steps to select the
compiler in the MathWorks MATLAB® software.
RTOS Steps

Windows You do not need to select a compiler when you install Visual Studio
2017.

Phar Lap ETS
1. Run mex -setup in the MATLAB software.
2. Select the option number for a compatible version of Microsoft

Visual C++.

NI Linux Real-
Time

You do not need to select a compiler when you install C/C++
Development Tools for NI Linux Real-Time, Eclipse Edition.

4. Determine which tool versions are compatible with your version of VeriStand.

After determining your compiler tools, compile your model.

■ C/C++—Create a model in C or C++ that NI software can load and execute
through the VeriStand Model Framework.

© National Instruments 195

VeriStand Feature Usage

http://www.ni.com/r/appbuilder
http://www.ni.com/r/appbuilder
http://www.ni.com/r/exxymi

■ LabVIEW VIs—Convert LabVIEW VIs into compiled .lvmodel or .lvmodelso
files.
■ MathWorks Simulink Software—Compile models from Simulink software
into a .dll or .so file.

Using Models from MathWorks Simulink® Software
Compile models from Simulink software into a .dll or .so file.
Before you begin, learn how VeriStand imports models from Simulink software.

1. Choose a compiler—Download compiler tools to convert models made in
other modeling environments.

2. Based on your target RTOS, determine your required compiled model output
type.

■ Windows—.dll
■ Phar Lap ETS—.dll
■ NI Linux Real-Time—.so

3. Build a compiled model—Use Simulink software to convert your model for use
on real-time targets.

After compiling the model, add it to a system definition.

How VeriStand Imports Models from MathWorks Simulink® Software

VeriStand identifies inports, outports, parameters, and signals in models you
created in Simulink software according to their configuration in Simulink.
A simple model in Simulink might contain the following components.

When you add this model to a system definition in VeriStand, its components appear
as shown in the following table.

ni.com196

VeriStand Feature Usage

Component in model Type of component in VeriStand

Raw_Sine Signal
Sine_Gain Parameter
In1 Inport
Out1 Outport

Note In models compiled in Simulink R2010b software or later, VeriStand
organizes named components of bus objects, such as signals, into folders
that match the hierarchy of the bus. For models compiled in versions of
the Simulink software earlier than R2010b, VeriStand represents bus
objects as a single vector of components.

Signal Importing

Model signals are excluded when you convert a model into a compiled model unless
you define a signal as a test point in the application you use to compile the model.
VeriStand supports model references. However, you cannot access or map the
signals in submodels when you execute them in VeriStand.
Certain optimizations you enable in Simulink can make a signal unavailable in
VeriStand. You can disable these options for the entire model to make all signals
available for probing, but the memory footprint of the model increases as a result.
Alternatively, you can mark individual signals as test points in Simulink to maintain
a reduced memory footprint while keeping the test-point signals available for
probing.

Note If you mark new signals as test points, you must recompile your
model.

Parameter Importing

Compiled models contain one of two types of parameters in VeriStand:

■ Global parameters, by default, applies to the current model and to any
global parameters with the same name in other models on the target. This

© National Instruments 197

VeriStand Feature Usage

parameter is similar to a workspace variable in MathWorks MATLAB® software.
If you set inline parameters in the Simulink software, MathWorks Real-Time
Workshop® software converts MATLAB workspace variables to global
parameters in the compiled model.
■ Local parameters only apply to the specific model and block or subsystem
that they belong to. If you do not set inline parameters in Real-Time
Workshop, block parameters remain block parameters in the compiled model.

A Simulink model can contain only one type of parameter. However, a system
definition can contain a model with global parameters and a model with block
parameters.

VeriStand supports model references to submodels, but you cannot access
parameters in submodels. Submodels execute in a VeriStand system, but their
parameters are not available for mapping.

In Simulink, you can inline parameters. In VeriStand, inlined parameters are not
available for configuration. However, even if you inline a parameter in Simulink, you
still can allow users to influence the parameter by configuring a variable that affects
the parameter to be tunable.
For example, consider a model with the following characteristics:

■ Contains a constant configured with an expression (x + 3).
■ Contains a sine wave block whose amplitude and frequency parameters are
inlined, and therefore unavailable in VeriStand.
■ Adds the result of the constant to the output from the sine wave block.

Although the parameters of the sine wave block are unavailable, you can influence
the operation by specifying that the x variable is tunable in Simulink. After you add
the model to VeriStand, when x is tunable, it will appear in the Parameters list in
System Explorer. You can change the value of x as the model executes.

Inport and Outport Importing

Top-level Simulink inports and outports become VeriStand inports and outports.
Submodel inports and outports in Simulink import only if you place VeriStand
inport and outport blocks within the submodel in Simulink.

ni.com198

VeriStand Feature Usage

http://www.ni.com/r/simulink-tunable
http://www.ni.com/r/simulink-tunable

Note If you want to run a Simulink model on a desktop computer without
compiling it, you must use the VeriStand inport and outport block.

Compiling a Model in MathWorks Simulink® Software

Use Simulink software to convert your model for use on real-time targets.
Before you begin, choose a compiler.

1. Launch Simulink software and load the model you want to convert.

2. Select Simulation > Model Configuration Parameters.

3. In the Model Configuration Parameters dialog box, click Solver and configure
the following:

1. Stop time: inf

2. Type: Fixed-step

4. Click Code Generation.
5. If the model specifies any .c or .h files, specify the locations of the source files

and directories.

6. Click Browse and select a compiler for your target from the list based on your
target's real-time operating system (RTOS).
RTOS Compiler

Phar Lap ETS NIVeriStand_Pharlap.tlc
Windows NIVeriStand.tlc
NI Linux Real-Time ARM-based targets NIVeriStand_Linux_ARM_32.tlc
NI Linux Real-Time Intel x64-based targets NIVeriStand_Linux_64.tlc

7. Click OK.

8. In the Category section, click Build.

The MATLAB software command window displays the status of the build process
and indicates when the Simulink Coder software has completed compiling the
model.

© National Instruments 199

VeriStand Feature Usage

After compiling the model, add it to the system definition.

Conversion Process for Models from MathWorks Simulink® Software

Before you can run a Simulink model on a real-time target, it must be converted into
a compiled model.
The following image depicts the Simulink conversion process at a high level.

Steps of the Simulink Conversion Process

The Simulink software performs the following steps when you compile a model:

1. The MathWorks, Inc. Real-Time Workshop® software converts your model and
any submodels into a C/C++ code version of the same model.

2. A compiler, Microsoft Visual C++, or the Wind River GNU Toolchain, compiles
the C/C++ code model into a file named ModelName.dll, ModelName.out, or
ModelName.so, where ModelName is the name of the model.

3. The Real-Time Workshop software places the compiled model file in one of
the following directories located in the current working directory:
RTOS Directory

Phar Lap ETS <ModelName>_NIVeriStand_rtw
NI Linux Real-Time <ModelName>_NIVeriStand_Linux_ARM_32_rtw

<ModelName>_NIVeriStand_Linux_64_rtw

Note A text file, <ModelName>_portsReadme.txt, is also generated,
which specifies the lengths and positions of all model inport and
outport array data.

Using Models from C and C++
Create a model in C or C++ that NI software can load and execute through the
VeriStand Model Framework.

ni.com200

VeriStand Feature Usage

Before you begin, you should understand the VeriStand Model Framework.

1. Choose a compiler—Download compiler tools to convert models made in
other modeling environments.

2. Create a model header file—Create a model.h header file that contains the
type definitions for model properties and all user-visible parameters in your
model.

3. Adapt the template to model code—Use the template.c file that the VeriStand
Model Framework installs as a starting point for your model code.

4. Create a makefile to compile model code—Create a makefile for the compiler
and operating system your model will use.

Locate example .c and model.h files and makefiles in
<RootDrive>\VeriStand\<xxxx>\ModelInterface\custom\examples.

Note <RootDrive> is the drive where NI software installs and <xxxx> is the
VeriStand version number. If you have problems locating the files, check NI
Package Manager to make sure that the VeriStand Model Framework was
installed.

After compiling the model, add it to a system definition.
For more information on simulating models in LabVIEW with the Model Interface
Toolkit, open LabVIEW and select Help > LabVIEW Help. Click Contents and browse
to Toolkits > Model Interface Toolkit.

Creating a Model Header File

Create a model.h header file that contains the type definitions for model properties
and all user-visible parameters in your model.

1. Create a header file and name it model.h.
2. Create code in the file similar to the following code.

#ifndef MODEL_h
define MODEL_h
typedef struct {
 double a[2][2];

© National Instruments 201

VeriStand Feature Usage

 double b11;
 double c12;
 double idleRPM;
 double redlineRPM;
 double temperature_timeConstant;
 double temperature_roomTemp;
 double temperature_operatingTempDelta;
 double temperature_redlineTempDelta;
} Parameters;
#endif

The example code contains definitions for both scalar and vector double
parameters.
For information about defining parameters whose data type is something
other than double, refer to the TO DO comments in the template.c file
installed by the VeriStand Model Framework.

3. Save the file.

After creating a model header file, adapt the template to your model code.

Adapting the C Template to Model Code

Use the template.c file that the VeriStand Model Framework installs as a starting
point for your model code.
Before you begin, create a model header file.

1. Browse to <RootDrive>\VeriStand\<xxxx>\ModelInterface\custom\examples,
create a copy of template.c, and give the copy a new name.

Note <RootDrive> is the drive where NI software installs and <xxxx>
is the VeriStand version number.

2. Modify the following files.
File Description

template.c copy Lists the code you must customize, which is marked with TO DO
comments. This file also contains information about how to
instantiate and access parameters.

ni.com202

VeriStand Feature Usage

File Description
ni_modelframework.h Lists definitions for properties of outward-facing components of

your model, such as inports, outports, parameters, and signals.

Note This file is located in the
RootDrive:\VeriStand\xxxx\ModelInterface\ directory.

After you adapt the template, create a makefile to compile the model.

Creating a Makefile and Compiling Model Code

Create a makefile for the compiler and operating system your model will use.
Before you begin, adapt the C template to your model code and determine which
real-time (RT) operating system your RT target runs.

For your model code to work with the VeriStand Model Framework, create an
appropriate makefile to compile your model code.

1. Create a makefile (.mak) that generates a dynamic link library (.dll) for
Windows and NI ETS targets.
For examples of makefiles designed to compile models that work with the
VeriStand Model Framework, refer to the example .mak and .mk files installed
in the <RootDrive>\VeriStand\<xxxx>\ModelInterface\custom\examples
directory.

Note <RootDrive> is the drive where NI software installs and <xxxx>
is the VeriStand version number. For more information on compiling
a .dll for ETS target, refer to Verify Your DLL Is Executable in LabVIEW
Real-Time on NI PharLap ETS.

2. Place your model code components in the same directory as the makefile.
3. Place your model framework components, ni_modelframework.h and

ni_modelframework.c, in the same directory as the makefile.
4. Run the makefile to compile your model code.

© National Instruments 203

VeriStand Feature Usage

https://www.ni.com/r/exxjax
https://www.ni.com/r/exjr6s
https://www.ni.com/r/exjr6s

Using Models from LabVIEW VIs
Convert LabVIEW VIs into compiled .lvmodel or .lvmodelso files.
Before you begin, verify VeriStand supports your hardware target, prepare your
LabVIEW VIs for conversion, and choose your compiler tools.
In order to generate compiled models from LabVIEW VIs, you need the following
products:

■ LabVIEW development system that is the same year version as your
VeriStand installation.
■ LabVIEW Application Builder

You can convert LabVIEW VIs or simulation subsystems you create using the
LabVIEW Control Design and Simulation Module. The converted files add system
simulation, closed-loop control, and other functionality to VeriStand applications.

1. In LabVIEW, select Tools > NI VeriStand > Generate Model from VI.

2. On the Generate NI VeriStand Model from VI dialog box, enter the Source VI

Path where you saved the source file.

3. Enter a Destination Folder where you want to save the generated model.

4. Optional: If your source file is a simulation subsystem, click Next.

1. Specify a model time step (sec) that indicates the interval between the
times the ODE Solver evaluates the model and updates the model
output.

Note For your compiled model to run in real-time, the model
time step (sec) value must equal the controller period
multiplied by the model Decimation, or the model Decimation
divided by the Target Rate. These two methods are
represented by the following equations.

■ model time step (sec) = Controller Period * Decimation
where Controller Period = 1/Target Rate
■ model time step (sec) = Decimation/Target Rate

ni.com204

VeriStand Feature Usage

https://www.ni.com/docs/bundle/veristand-2020-r6-feature/page/GUID-40D2E1E1-59FD-4B20-B77C-EB20060E45F7.html#GUID-40D2E1E1-59FD-4B20-B77C-EB20060E45F7__COMPILER
http://www.ni.com/r/appbuilder

In System Explorer, use the Controller Configuration page to
specify the Target Rate and the Model Configuration page to
specify the Decimation.

2. Specify the ODE Solver.

5. Click Build.

Note If you experience errors when converting a VI, refer to LabVIEW
VI Model Conversion Preparation.

If you deploy the compiled .lvmodel or .lvmodelso to a real-time target, VeriStand
automatically copies required .dlls to the target. However, if you manually copy the
file to a new location, such as a different host computer, you must move the
following support files to maintain relative paths:

■ A .depvs file that LabVIEW creates to reference the dependencies.
■ Any LabVIEW .dll located in a subdirectory named data in the destination
folder where LabVIEW generates the compiled model.

Note You must install additional software to enable LabVIEW models for
targets running a Linux Real-Time OS (.lvmodelso files). For more
information about how to use LabVIEW models with Linux, see Creating
Models in NI LabVIEW for Use in NI VeriStand.

LabVIEW VI Model Hardware Target Support

Verify your hardware target will support a LabVIEW VI compiled into a VeriStand
model.
Use the following table to determine if your hardware target supports a VeriStand
model file type.

Note For a list of real-time targets and the real-time operating systems
(RTOS) that each runs, see Real-Time Controllers and Real-Time Operating
System Compatibility.

© National Instruments 205

VeriStand Feature Usage

http://www.ni.com/r/exiivr
http://www.ni.com/r/exiivr
http://www.ni.com/r/exxjax
http://www.ni.com/r/exxjax

Computer type RTOS Supported VeriStand model file type

Windows — .lvmodel
Real-Time Target Phar Lap ETS .lvmodel

NI Linux Real-Time .lvmodelso

On applicable real-time targets, .lvmodelso and .lvmodel files are supported if the
source LabVIEW VI does not contain code with Windows function calls that are not
supported by the RTOS.
For targets running a Linux Real-Time OS, you must install additional software to
enable LabVIEW models. For more information, refer to Creating Models in NI
LabVIEW for Use in VeriStand.

LabVIEW VI Model Conversion Preparation

You must assign front panel controls and indicators in LabVIEW VIs to the connector
pane so VeriStand can identify them as inports, outports, and parameters when you
add the compiled .lvmodel or .lvmodelso to a system definition.
Use the following table to build the LabVIEW VI connector pane according to how
you want each control or indicator to work in VeriStand.
Desired VeriStand
component

VI connector pane assignment Is LabVIEW default value imported
to VeriStand?

Inport Required input No
Outport Any output No
Parameter Optional or recommended input Yes

Supported LabVIEW Data Types

Assign the following supported data types to the controls and indicators in the
connector pane.

■ Numerics
■ Booleans
■ 1D arrays of numerics
■ 1D arrays of Booleans
■ Clusters containing the previous data types

ni.com206

VeriStand Feature Usage

http://www.ni.com/r/exiivr
http://www.ni.com/r/exiivr

If you use an unsupported data type, LabVIEW returns an error when you try to
convert the VI to a compiled model. Controls and indicators not assigned to the
connector pane can have other data types.

Global and Local Parameters

A compiled model you add to a system definition can contain global parameters and
block parameters.

If you want a LabVIEW VI front panel control to become a local parameter in
VeriStand, place that control in a cluster shell before you compile. To make a
LabVIEW VI front panel control a global parameter in VeriStand, do not place the
control in a cluster.

Considerations for LabVIEW VIs with Array Terminals

If a LabVIEW VI contains an array control or indicator you want to include in the
model, enter a value in the nth element of the array, where n is the desired number
of elements. Right-click the array control and select Data Operations > Make Current

Value Default. Otherwise, the array appears in VeriStand with a single element.

Controlling and Monitoring Model Execution
Use model execution channels to interact with models.
Before you begin, add a model to the system definition.
Use model execution channels to accomplish tasks such as manually starting the
execution of a model rather than allowing it to execute upon deployment. When you
add a model to your VeriStand project, model execution channels are created.
Depending on your goal, map a model execution channel to model controls on the
Workspace to control or monitor the state of the model after deployment.

Note You can find execution channels for a model in the configuration
tree by clicking Targets > Controller > Simulation Models > Models,
selecting a model, and clicking Execution.

© National Instruments 207

VeriStand Feature Usage

Goal Model execution channel

Run, pause, or stop the simulation Model Command
Save the model state to file or restore the model state to file
View the model execution status Model Status
View the time in the model Model Time
View how long the current time step of the model has been running Time Step Duration

You can also use system channels to monitor the system while it is deployed and
running.

Model Command

Use the Model Command channel to change the model execution state at run time.
If you configured your model to be initially paused, you can use this channel to start
it. If your model gets into a desirable state for testing purposes, you can pause the
model, save that state to a file, and then restore the state later.
Refer to the following table to determine what values VeriStand associates with
each status.
Value Status

0 Start the model.

Note If the model is paused, it starts from the current state.

1 Pause the model.
2 Reset the model.
3 Prompt to save the model state to file after setting the model to idle.

Note The model must be running or paused when you set this command.
Otherwise, VeriStand ignores the command.

4 Prompt to restore the model state from file after setting the model to idle.

Note The model must be running or paused when you set this command.
Otherwise, VeriStand ignores the command.

ni.com208

VeriStand Feature Usage

Model Status

Use the Model Status channel to monitor how the model is operating at run time.
The Model Status channel returns the model's state, such as running, resetting, and
stopped.
Refer to the following table to determine what values VeriStand associates with
each status.
Value Status

0 Running
1 Paused
2 Resetting
3 Idle
4 Stopped
5 Restoring
6 Saving

Model Time

Use the Model Time channel to verify that the model is running at the correct rate.
You can compare the model time to the value of the System Time system channel to
determine if the model is executing slower or faster than real time.
The following equation describes how the VeriStand Engine determines the rate to
execute each model.
model rate = Primary Control Loop (PCL) rate / model decimation
If the rate for a model is incorrect, adjust its decimation and monitor the model time
again.

Time Step Duration

Use the Time Step Duration channel to monitor how long a model takes to execute.
If a model takes a long time to execute, the PCL might run slower than the target
rate or the model might not run on schedule during the next PCL iteration. If a
system contains multiple models and you need to determine which one delayed the
system, monitor the Time Step Duration execution channel for each model. During
each PCL iteration, a model executes one time step, so this channel allows you to
see if a model executes longer than the expected rate, given the following equation.

© National Instruments 209

VeriStand Feature Usage

model rate = PCL rate / decimation

Note The Windows operating system supports only millisecond
resolution. This channel does not provide exact timing for microsecond
values and instead provides an approximation that averages to the
requested time over the course of the timing interval. Windows does not
support resolutions under one millisecond and rounds them up to one
millisecond.

Common Issues with Models in VeriStand
If your model crashes or does not execute as expected, isolate the issue and
determine if its source is within the model or due to your system definition.
To identify the source of an issue, replace your model in the system definition with a
simple model, and then redeploy the system definition. If the simple model
executes as expected, the source of the issue is within your model. However, if the
simple model also experiences issues, the source of the issue is due to settings for
your system definition.
The following table lists common model issues and solutions.
Issue Solutions

Model is
crashing

Models often crash when an inport receives a value of 0 and the model attempts to
divide by the inport value. This issue will occur during deployment if the initial
state of the model is to run and the default value for an inport is 0. Depending on
your system, complete the following troubleshooting solutions:

■ Change the default value for the inport.
■ Rewrite the model to remove the possibility of dividing by 0.
■ Change the initial state of the model to be paused in System Explorer and
implement a start-up procedure that ensures that the inport values are
acceptable before you start the model.

Model runs
too fast or
slow

If your model is unstable because it runs too fast or too slow, ensure the actual
model rate matches the rate at which the model was compiled to run. If the rates
do not match, adjust the settings that determine the actual model rate until the
following expressions are correct:

ni.com210

VeriStand Feature Usage

Issue Solutions

actual model rate = compiled model rate

actual model rate = PCL rate / decimation

Adjust the model timing by configuring the following settings where specified:

■ Compiled loop rate—Displays on the Model Configuration page, in
Simulation model info.
■ Model decimation—Set on the Model Configuration page, in the
Decimation control.
■ PCL rate—Set on the Controller Configuration page with the Target Rate
control.

Model
generated
data is
delayed

If other parts of your system that are mapped to your model do not receive data
when you expect, consider adjusting the following system definition settings:

■ PCL execution mode—Change the execution mode to low latency if data
from models must be available for mapping during the same PCL iteration
the model generates the data. The default mode, parallel, applies a one-
cycle delay between when a model executes and when the data it produces
is available for mapping.
■ Execution order—Multiple models in a system execute in parallel unless
you define an execution order. If you map an outport from one model to an
inport of a second model and you want the second model to wait until the
first model finishes executing before it runs, you must define the execution
order.

Decreased
system
performance

If you suspect that models are causing your system to run slower than you desire,
consider the following solutions to improve performance:

■ Import only parameters and signals your system requires. Importing
many parameters and signals can have a negative impact on the
performance of the model even if the model is not running.
■ If you do not need data from models to be available to the rest of the
system on the same iteration of the PCL, set the PCL execution mode to
parallel instead of low latency. Parallel mode causes a one-cycle delay
between when a model executes and when the data it produces is available
to the system, but increases the execution speed of the entire system.

© National Instruments 211

VeriStand Feature Usage

If you continue experiencing issues with your model, contact NI Support.

Maximizing System Performance
Increase the efficiency of VeriStand by following best practices for your system
definition, controllers, hardware, models, and reflective memory.
Complete the following steps to optimize the performance of a VeriStand system.

Depending on your goal, complete any of the following tasks.
Goal Task

Streamline the system
definition

Decrease the complexity of your system definition by removing
unused hardware I/O channels, maximizing the Convert Clock rate for
multiplex sampling DAQ devices, and using hardware timing.

Configure the BIOS
settings of the controller

Increase the performance of your real-time controller by enabling
turbo boost and reducing the number of enabled cores.

Configure the Ethernet
settings of the controller

Increase the performance of your real-time controller by using line
interrupt packet detection.

Select hardware for
performance

Increase the performance of your VeriStand system by using hardware
timing, simultaneous sampling, USB CAN devices, PXIe devices, and
not using Real-Time Hypervisor.

Improve model
performance

Increase model performance by consolidating small models and
preallocating arrays for LabVIEW models.

Optimize reflective
memory

Improve the use of your reflective memory usage by reducing the
dynamic data size, creating channel mappings between targets, and
using data channels selectively with non-VeriStand systems.

Streamlining the System Definition
Decrease the complexity of your system definition by removing unused hardware
I/O channels, maximizing the Convert Clock rate for multiplex sampling DAQ
devices, and using hardware timing.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Depending on your goal, complete any of the following tasks.

ni.com212

VeriStand Feature Usage

http://www.ni.com/product-documentation/54303/en/

Goal Tasks Rationale

Remove all
unused
hardware I/O
channels.

1. Click Targets > Controller >
Hardware > Chassis > DAQ
in the configuration tree.

2. Select a DAQ device and
delete any unused
hardware I/O channels.

Unused hardware resources slow
performance. VeriStand must read and
write every I/O channel in the system
definition regardless of whether or not
the system uses the channel data.

Maximize the
rate of the
Convert Clock
on DAQ
devices that
use
multiplexed
sampling.

1. Click Targets > Controller >
Hardware > Chassis > DAQ
in the configuration tree.

2. Click a DAQ device and, in
the Conversion rate drop-
down, select Maximum.

Multiplexing can cause delays if the
Convert Clock does not run fast enough.
Changing the rate of the Convert Clock
to maximum minimizes the delay.
Relevant DAQ devices include the M
Series, E Series, and some X Series.

Note Using the maximum
possible Convert Clock rate
also reduces the accuracy of
measurements.

Use hardware
timing instead
of software
timing.

1. Click Targets > Controller in
the configuration tree.

2. In the Primary Control
Loop timing source drop-
down, select Automatic.

3. Click Hardware > Chassis in
the configuration tree.

4. In the Chassis master
hardware synchronization
device drop-down, select
DAQ or FPGA.

With hardware timing, a digital signal,
such as a clock on your device, controls
the rate at which signals are generated.
With software timing, the software and
operating system controls the rate
instead of the measurement device. A
hardware clock can run faster—and is
more accurate—than a software loop.

4. Save the system definition file.

© National Instruments 213

VeriStand Feature Usage

Configuring the BIOS Settings of the Controller
Increase the performance of your real-time controller by enabling turbo boost and
reducing the number of enabled cores.
To configure the BIOS settings for VeriStand, complete any of the following tasks.
Task Rationale

Enable Turbo Boost Enabling Turbo Boost for Intel Core™ processors allows active processor
cores to run faster than the base operating frequency for short durations
while other cores are idle.

Note Enabling Turbo Boost can also increase application jitter.

Reduce the number
of enabled cores.

When you activate Turbo Boost, the maximum frequency of a specific
processing core depends on the number of active cores. Manually
reducing the number of cores ensures the active cores receive the
maximum increase in clock frequency. If your system does not contain
asynchronous components, enable only one core to provide the greatest
frequency boost.
For example, the Intel Core i7-820QM quad-core processor used in an NI
PXIe-8133 embedded controller has a base clock frequency of 1.73 GHz. If
an application requires only one CPU core, Turbo Boost automatically
increases the clock frequency of the active CPU core on the Intel Core
i7-820QM processor to 3.06 GHz.

Enable two cores for
VeriStand systems
with asynchronous
components, such as
an asynchronous
custom device.

Enabling two cores allows you to assign the asynchronous components to
another CPU while still providing greater clock frequency to both active
cores.

For more information, refer to Top Eight Features of the Intel Core i7 Processors for
Test, Measurement, and Control.

Configuring the Ethernet Settings of the Controller
Increase the performance of your real-time controller by using line interrupt packet
detection.

ni.com214

VeriStand Feature Usage

https://www.ni.com/r/exhfjv
https://www.ni.com/r/exhfjv

Most NI Real-Time targets offer three options for packet detection: Line Interrupt,
Polling, and Message Signal Interrupt. Line Interrupt provides the fastest
performance as the device driver gets immediately notified when the target receives
data.

Note Line Interrupt introduces the most jitter of the options.

1. Open NI MAX.

2. In the Packet Detection setting of the controller, select Line Interrupt.

Note If Line Interrupt is not available, select Polling and change the
Polling Interval to 1 millisecond. Polling at a high rate provides high
performance while introducing less jitter than interrupt, but
increases CPU utilization.

Optimizing Hardware Performance
Increase the performance of your VeriStand system by using hardware timing,
simultaneous sampling, USB CAN devices, PXIe devices, and not using Real-Time
Hypervisor.

1. Add a hardware device.
2. To optimize your hardware performance, complete any of the following tasks.

Task Rationale

Use controllers that support
hardware timing.

Software timing slows the system significantly and
adds to CPU usage. Using controllers that support
hardware timing allows for better system performance.

Choose DAQ devices that use
simultaneous sampling.

Simultaneous sampling provides better performance
than multiplexed sampling.

Use a USB CAN device instead of
XNET ports or channels for bus
monitoring only.

Using a USB CAN device on the host computer reduces
the number of channels in the system. The fewer
channels VeriStand reads, the better the performance.

Use PXIe devices and controllers. PXIe devices generally contain newer technology and
run at faster rates than other devices.

© National Instruments 215

VeriStand Feature Usage

Task Rationale
Do not use NI Real-Time
Hypervisor for systems that
require high performance.

Real-Time Hypervisor comes with dramatic real-time
performance penalties. Switching to a real-time only
PXI controller can potentially double the performance.

Improving Model Performance
Increase model performance by consolidating small models and preallocating
arrays for LabVIEW models.
To optimize your model performance, complete any of the following tasks.
Task Rationale

Consolidate small models
into one large model.

Several small models use more memory than one large model.

Preallocate arrays for
LabVIEW models instead of
using Build Array functions.

Each Build Array function uses a shared resource. This may delay the
model execution because both models cannot use the shared
resource simultaneously. Preallocating arrays avoids potential
delays.
To preallocate an array, use a Case structure and the First Call?
function. Replace the elements of the array at run time with the
Replace Array Subset function.

Optimizing Reflective Memory
Improve the use of your reflective memory usage by reducing the dynamic data size,
creating channel mappings between targets, and using data channels selectively
with non-VeriStand systems.
Before you begin, add a reflective memory network.

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. To optimize your reflective memory performance, complete any of the
following tasks.

ni.com216

VeriStand Feature Usage

Goal Tasks Rationale

Reduce the
dynamic data
size of the
data sharing
network to 0.

1. Click Data Sharing Network.

2. On the Data Sharing Network
configuration page, enter the
Dynamic Data Size as 0.

Dynamic Data Size specifies the
number of channels in reflective
memory to reserve for dynamically
mapping channel data at run time.
Reflective memory can negatively
impact performance. Reducing the
number of channels to 0 avoids
decreasing performance.

Note This is only
recommended for
systems that do not
execute stimulus profiles
or perform data logging
that references channels
across multiple targets.

Create
channel
mappings
between
targets in the
system
definition file.

1. Create channel mappings
between targets.

2. Prevent reflective memory
used by VeriStand from
overlapping with any non-
VeriStand traffic on the bus.

1. Click Configure Mappings

.

2. In the System

Configuration Mappings
dialog box, click the
Network drop-down and
select Reflective

Memory Network .

3. Click OK.

4. Click Data Sharing

Network > Reflective

Memory Network.

5. On the Reflective

Memory Network

Rather than using data channels to
read and write data between targets
in a system definition, create
channel mappings between targets.
When you configure channel
mappings, VeriStand uses optimized
reflective memory.

© National Instruments 217

VeriStand Feature Usage

Goal Tasks Rationale
Configuration page,
enter a Start Memory

Address and Maximum

End Address Block to
limit the range of
addresses the systems
can use.

When sending
data from a
VeriStand
system to a
non-
VeriStand
system,
manually
select
channels to
add to
reflective
memory and
read those
channels
from the non-
VeriStand
system.

1. Click Controller > Hardware >
Chassis > Data Sharing >
Reflective Memory.

2. Click Export Channels.

3. In the Export Channels to

Reflective Memory dialog box,
select channels to export and
click OK.

4. Click Data Sharing Network >
Reflective Memory Network.

5. On the Reflective Memory

Network Configuration page,
click Export memory table to

file.

VeriStand adds the channels you
export to the direct memory access
(DMA) block write for the target. This
reduces CPU usage.
After selecting the channels to
export, you must configure the non-
VeriStand systems to read the
memory addresses of the exported
channels. The Export memory table
to file option creates a text file that
contains the memory addresses
when you deploy the system
definition file.

When a
VeriStand
system must
read data
from a non-
VeriStand
system, add
data channels
to only the
targets that
require the
data.

■ Click Controller > Hardware >
Chassis > Data Sharing >
Reflective Memory.
■ Click Add Data Channel.

Data channels allow you to specify
the reflective memory addresses a
VeriStand target reads. However, you
should only add data channels you
intend to use. VeriStand reads the
memory addresses one at a time.
The more addresses VeriStand reads,
the slower the performance.

ni.com218

VeriStand Feature Usage

4. Save the system definition file.

Data Logging Options
Log data with tools such as the Embedded Data Logger, Stimulus Profile Editor, and
DAQ devices.
Use the following table to determine the best data logging option for your needs.

Note If you need to log data from varying sources, use DIAdem to combine
and time correlate all of your data logs. For more information, refer to
Viewing Time Correlated NI VeriStand Data Logs.

Option Location Rate Strengths Weaknesses Use cases

Embedded
Data Logger

Target Medium
■ Adds
structured
metadata to
your log files
and allows you
to organize
logged
channels in
groups.
■ Configures
dynamic start
and stop
trigger
conditions. By
using the
Embedded
Data Logger
via a channel
in the system
definition, you
can trigger
logging
through
mappings to
outputs from
models, real-

■ Limits
logging rate
to the rate of
the PCL.
■ Requires
configuration
of the
Embedded
Data Logger
before
deploying.
You cannot
change
configuration
at run time.

■ Log more
data than the
bandwidth of
the
connection
between a
host and
target allows.
■ Disconnect
the host from
the target
after
deploying a
system
definition
and continue
to log data.

© National Instruments 219

VeriStand Feature Usage

http://ni.com/r/nivsdatalog

Option Location Rate Strengths Weaknesses Use cases
time
sequences,
procedures,
etc.
■ Retains
logging data if
you lose
connection to
the target.

NI-XNET
Raw Frame
Data
Logging

Target Logs as
data
arrives

■ Logs
potentially at
rates faster
than the PCL.
■ Allows you
to specify
whether to log
all frames or
specific frames
by ID.
■ Retains
logging data if
you lose
connection to
the target.
■ Configures
dynamic start
and stop
trigger
conditions. As
you can
control when
to start and
stop NI-XNET
raw frame
data logging
via a channel
in the system
definition, you

■ Logs data
in a low-level
format, so
you must
perform
post-
processing of
the data to
covert it to
readable
units.
■ Cannot
change
configuration
at run time.

Log frame data
during an NI-XNET
session.

ni.com220

VeriStand Feature Usage

Option Location Rate Strengths Weaknesses Use cases
can trigger
logging
through
mappings to
outputs from
models, real-
time
sequences,
procedures,
etc.

Logging
waveform
acquisition
from a DAQ
device

Target High,
potentially
up to the
rate the
DAQ board
can run.

■ Produces
smaller log
files.
■ Log
potentially at
rates faster
than the PCL.
■ You will not
lose logging
data if you
lose
connection to
the target.

■ Logs via
waveforms,
and you
cannot scale
or calibrate
waveforms
as you might
channels.
■ Limited
start and
stop trigger
functionality.
■ Cannot
change
configuration
at run time.

Log waveform
acquisitions from a
DAQ device.

Logging
with the
Stimulus
Profile
Editor

Host Medium
■ Allows
advanced
triggering
functionality.
■ Capture
responses of
your unit
under test
(UUT) to a
real-time test.

■ Limited to
logging
results from
tests you
execute in
the Stimulus
Profile Editor.
■ The host
must be
connected to

Save the responses
of a UUT to specific
scenarios.

© National Instruments 221

VeriStand Feature Usage

Option Location Rate Strengths Weaknesses Use cases
the target to
log.
■ Logging
bandwidth
limited to the
bandwidth of
the
connection
between the
host and the
target.

VeriStand
Editor
logging
specification
file

Host Medium
■ Reconfigure
your logging
settings and
add new
specification
files at run
time.
■ Provides
dynamic
configuration
options.
■ Automates
post-
processing of
your log data.

■ Logging
bandwidth
limited to the
bandwidth of
the
connection
between the
host and the
target.
■ The host
must be
connected to
the target to
log.

■ Configure
and execute
host-side
data logging
from the
VeriStand
Editor.
■ Automate
post-
processing
actions.

Data
Logging
workspace
control

Host Medium
■ Reconfigure
logging
settings at run
time.
■ Provides
dynamic
configuration
options.
■ Automates
post-

■ Logging
bandwidth
limited to the
bandwidth of
the
connection
between the
host and the
target.
■ The host
must be

■ Perform
dynamic
logging on a
host.
■ Record
behaviors
during a test
without
undeploying
a system
definition.

ni.com222

VeriStand Feature Usage

Option Location Rate Strengths Weaknesses Use cases
processing of
your log data.

connected to
the target to
log.

VeriStand Add-ons
Customize and extend the VeriStand environment with add-ons.
You can use LabVIEW to create various types of custom add-ons and plug-ins.
Add-on features for VeriStand include:

■ Custom user interface objects for the Workspace

■ Custom devices that add support for additional hardware interfaces
■ Real-time engine functions

The following table lists different types of add-ons.
Type of add-on Description

Installed by
another NI
product

Purchase software packages that add specialized features to VeriStand. For
example, the ECU Measurement and Calibration Toolkit adds the XCP or CCP
Master custom device and workspace controls to VeriStand.

Available for
download

Download VeriStand Add-ons from NI and the VeriStand community. For
example, you can download the Embedded Data Logger and add the custom
device to a system definition.

User created Use LabVIEW to create various types of custom add-ons for VeriStand. VeriStand
installs a full palette of VeriStand VIs and the VeriStand .NET APIs. You can
access both from LabVIEW.

Note To develop add-ons, you must install matching versions of
LabVIEW and VeriStand. For example, you must use LabVIEW 2020 to
develop add-ons for VeriStand 2020.

System Requirements for Common Add-ons

Certain add-ons require additional LabVIEW modules, toolkits, or features not
included with the Base Development System, such as the Application Builder.

© National Instruments 223

VeriStand Feature Usage

http://www.ni.com/r/vsaddons

The following table lists common add-ons you can develop using LabVIEW and any
additional features they require.

Add-on Requirements

Custom devices Application Builder1

Custom timing and sync devices
Custom FPGA configuration files and bitfiles

■ Application Builder
■ LabVIEW FPGA Module

Custom Workspace tools —

Custom Workspace controls and indicators2

Compiled models
■ Application Builder
■ LabVIEW Control Design and Simulation
Module

1 The Application Builder is included with the LabVIEW Professional Development System. If you
use the LabVIEW Base Development System or Full Development System, you can purchase the
Application Builder.
2 For more information on how to use LabVIEW to create custom workspace objects, refer to
Creating Custom Workspace Objects for VeriStand.

Logging Target Data with the Embedded Data Logger
Use the VeriStand Embedded Data Logger custom device to log data on a target
instead of the host.

Before you begin, download the Embedded Data Logger from GitHub.
Use the Embedded Data Logger to log more data than the connection bandwidth
between the target(s) and the host allows. For example, to log data on several real-
time targets, use the Embedded Data Logger instead of streaming the data from
each target back to the host.
The Embedded Data Logger also allows you to log data after you disconnect the
host machine. This is useful if you want to deploy your system definition to a real-
time target, disconnect your host computer, and let the target run over several days.

ni.com224

VeriStand Feature Usage

http://www.ni.com/r/rdlv21
http://www.ni.com/r/exncgr
http://www.ni.com/r/vsembeddeddatalogger

1. Launch the VeriStand Editor.

2. In the Project Files pane, double-click a system definition file (.nivssdf).
System Explorer opens.

3. Click Targets > Controller in the configuration tree.

4. Right-click Custom Devices and click National Instruments > Embedded Data

Logger.
5. Add a log file.

1. Right click Embedded Data Logger and select Add Log File.
2. Edit the settings of the log file on its configuration page.

6. Specify the channels you want to log in each log file by group.

1. Click Channel Groups.

2. Click Add Channel Group.

3. Click Add Channels.

4. In the Select Channels window, specify the channels you want to log in
the channel group.

5. Click OK.

7. Save the system definition file.

Creating Custom Devices
Extend the functionality of VeriStand by packaging LabVIEW code into a form that
you can add to the system definition file and deploy to a target.
Before you begin, you should determine if you have the necessary experience to
create a custom device. You can also check the VeriStand Add-ons page or with your
hardware vendor for pre-built custom devices.

You can use a custom device to execute on real-time systems and perform
deterministic hardware-in-the-loop and real-time test procedures. With a custom
device, you can control the configuration, execution, and user interface of a project.
Custom devices appear in the System Explorer configuration tree.

© National Instruments 225

VeriStand Feature Usage

http://www.ni.com/r/ex9hcx

A custom device can run either inline or in parallel (asynchronously) with the
VeriStand Engine's Primary Control Loop, and can function as a timing and sync
device. All custom devices communicate with the VeriStand Engine using
configurable channels and properties.

1. Learn about the custom device framework.
2. Plan the custom device.
3. Implement the custom device.
4. Benchmark and debug the custom device.
5. Build the custom device from source distributions in a LabVIEW project.
6. Distribute the custom device to any computer running a corresponding

version of VeriStand.

Custom Device FAQs

Answers to common questions about creating a custom device.

Am I qualified to create a custom device?

Creating a custom device requires specific knowledge and skills. The following table
displays the specialized experience areas you need to successfully create a custom
device.

Note You can gain this experience through taking NI educational courses
and earning certifications.

Experience area Description

LabVIEW Application
Development

To develop a custom device, you must thoroughly understand LabVIEW
programming and application architectures. NI recommends a Certified
LabVIEW Developer (CLD) level of expertise before beginning
development of a custom device.

LabVIEW Real-Time
Application
Development

As custom devices execute within real-time systems, you must be familiar
with programming for real-time operating systems (RTOS) and
specialized LabVIEW development techniques for developing real-time
applications.

ni.com226

VeriStand Feature Usage

http://www.ni.com/r/custed

Experience area Description
VeriStand Background To develop a custom device, you must fully understand the VeriStand

Engine.

When do I need a custom device?

VeriStand supports most real-time testing applications. Before pursuing a custom
device, you should first try to meet your needs with the built-in functionality. If you
cannot meet your needs using the built-in VeriStand features, you can extend the
functionality with a custom device. The following table lists situations where a
custom device is best suited.

Situation Rationale

Integrating VeriStand
with third-party
hardware

If the hardware you need to integrate with VeriStand is not natively
supported, you may be able to integrate it by creating a custom device.

Implementing a
measurement or
generation mode that
VeriStand does not
support

If VeriStand does not support the measurement or generation mode you
need for your hardware type, you may be able to implement it using a
custom device.

For example, VeriStand supports single-point hardware-timed analog
acquisition using DAQmx. However, VeriStand does not support force or
torque measurements for analog DAQ channels. You can implement this
measurement mode as a custom device.

Implementing
additional features
that VeriStand does
not support

A VeriStand project may require a feature that VeriStand does not provide.
You can extend VeriStand to meet your needs through a variety of
methods. Custom devices are best suited for implementing features that
require or use VeriStand channel data on the execution host.

For example, the Embedded Data Logger allows you to log VeriStand
channels to a TDMS file without first sending channel data back to the
Workspace, as with high-speed streaming. However, if you need to display
the previous test results on the workspace while running a new test, a
custom workspace object may be more appropriate than a custom device.

If you do not need the full range of custom device functionality, you can fulfill your
requirements by converting a LabVIEW VI into a compiled model. Other alternatives

© National Instruments 227

VeriStand Feature Usage

include utilizing workspace tools, implementing custom FPGA bitfiles, and exploring
the various LabVIEW and .NET APIs that ship with VeriStand.

When do I need a hardware custom device?

Before you begin developing a custom device to interact with unsupported or third-
party hardware, NI recommends you evaluate the data requirements of the device
and the availability of device drivers and APIs. To support third-party hardware, a
custom device must call a hardware or instrument driver. If a hardware or
instrument driver does not exist, you will need to either create the driver yourself or
ask the vendor for that device for a driver.
Answering the following questions can help you determine whether a custom device
is feasible for a specific hardware device:

■ Does a LabVIEW instrument driver exist for the device?

Note You can search for instrument drivers on the Instrument Driver
Network and NI Hardware Drivers pages.

■ Is a hardware driver/API available for the device and easy to use?
■ If necessary, is the hardware driver executable in LabVIEW Real-Time
Module?

Note Refer to Verify Your DLL Is Executable in LabVIEW Real-Time for
more information about testing DLLs for real-time support.

■ Can you meet the hardware requirements by passing LabVIEW 64-bit
double-precision floating point numbers to and from the custom device
during steady state operation?

Note If the hardware driver returns a vector, structure, or any non-
DBL data, you cannot pass the data directly from the custom device
to VeriStand. You must coerce the data or design an alternative
communication mechanism to pass data from the custom device to
the rest of the system.

ni.com228

VeriStand Feature Usage

http://www.ni.com/r/exjqrh
http://www.ni.com/r/exjqrh
http://www.ni.com/r/expsdt
http://www.ni.com/r/exjr6s

Custom Device Framework

Follow the custom device framework to ensure your LabVIEW code interacts
correctly with VeriStand.
The custom device framework consists of type definitions, specifically named
controls and indicators, template VIs, and a LabVIEW API. These items form the
rules, or framework, that allow your code to interact with VeriStand.
The following table describes the components of the framework.
Component Description

Custom Device XML
file

The Custom Device XML file enables you to define parts of the custom
device in System Explorer, specify which VIs to call, and select the
dependencies to deploy to an RT target.

Custom Device API
Library

The Custom Device API library is a LabVIEW library that contains type
definitions, template VIs, and the LabVIEW API a custom device needs to
interact with VeriStand.

Custom Device
Library

The Custom Device library is a LabVIEW library that contains the
configuration and engine VIs for a custom device. The configuration and
engine VIs may optionally be distributed in different LabVIEW libraries.

Build Specifications The Build Specifications in a custom device LabVIEW project includes the
Configuration and Engine source distributions.

Custom Device XML File

The Custom Device XML file enables you to define parts of the custom device in
System Explorer, specify which VIs to call, and select the dependencies to deploy to
an RT target.
When VeriStand launches, it uses the Custom Device XML file in the <Common
Data>\Custom Devices directory to determine how to load, configure, display, and
run custom devices. This XML file provides basic information about a custom device,
including the type of custom device, paths to its VIs and dependencies, and pages,
glyphs, buttons, and menu items associated with the custom device.
Every custom device must have a Custom Device XML file in the directory. A properly
formatted XML file correctly implements the tags defined by the Custom Device XSD
file located in the same directory. The XML file must have its custom device type
defined in its title before the device name. The following are examples of properly
named XML files:

© National Instruments 229

VeriStand Feature Usage

■ Custom Device <Device Name>.xml
■ SLSC Module <Device Name>.xml
■ Timing and Sync <Device Name>.xml

Note You must restart VeriStand to recognize new or changed Custom
Device XML files. After you restart, VeriStand will report errors in the XML.

The <Common Data>\Custom Devices directory also includes Custom Device XML
files for the custom devices that install with VeriStand. You can use these XML files
for reference when structuring your XML.

Caution Do not directly edit the contents of the included Custom Device
XML files. Edits to the file can break the custom devices.

Custom Device XML Tags
XML tags define settings for a custom device.
These elements, and non-standard element types, are defined in the Custom
Device.xsd schema located in the <Common Data>\Custom Devices directory. You
can open the file in an XML or text editor to read the schema and view the hierarchy.
For an example of how to implement tags in your XML file, refer to the pre-built
custom device XML files that install with VeriStand.

Caution Do not directly edit the contents of the included Custom Device
XML files. Edits to the file can break the custom devices.

The following table displays the XML tags you can use in a custom device XML file.

Element Required? Element
type

Min/Max
occurrences

Description

<CustomDevice> Yes complex 1/1 Opening tag for a custom device
definition.

↳<XSDVersion> No VersionType 0/1 Specifies the version of the
Custom Device.xsd file the XML
is using. The version must

ni.com230

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

match the version of VeriStand
you are using.

↳↳<AddMenu> Yes LocString 1/1 Specifies the device name to
display in the shortcut menu
when an operator right-clicks
the Custom Devices node in
System Explorer.

↳↳<Dependency> No Dependency 0/1 Specifies the path to a
dependency file, such as a DLL
or VI, that the custom device
requires and that you want to
deploy to the target along with
the custom device.

↳↳<Version> Yes xs:string 1/1 Specifies version information for
the custom device.

↳↳<Type> Yes xs:string 1/1 Specifies the device type or
execution mode of the custom
device:

■ Asynchronous
■ Inline HW Interface
■ Inline Model Interface
■ Inline Timing and Sync
■ Asynchronous Timing
and Sync

↳↳<MaxOccurrence> Yes xs:int 1/1 Specifies the maximum number
of instances of the custom
device to allow in a system
definition file.

↳↳<MainPageGUID> Yes xs:string 1/1 Specifies the GUID of the
configuration page to associate
with the top-level custom device
item.

↳↳<TimingSource> No complex 0/1 Configures a custom timing
source for the Primary Control
Loop.

© National Instruments 231

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳<HasTimingSourceCapability> Yes* xs:boolean 1/1 Enables or disables the use of
the timing source VI you specify
as the timing source for the
Primary Control Loop.

↳↳↳<Paths> No complex 1/1 These elements are obsolete.
Use <SourceDistribution>
instead.

↳↳↳↳<Source> Yes* Path 1/1
↳↳↳↳<RealTimeSystemDestination> Yes* xs:string 1/1
↳↳↳<SourceDistribution> No complex 0/1 Contains information about the

source distribution for the
timing source VI.

↳↳↳↳<Source> Yes* complex 1/
unbounded

Contains information about the
files in the source distribution.

↳↳↳↳↳<SupportedTarget> Yes* Target 1/
unbounded

Specifies the target operating
system(s) on which the custom
device runs.

↳↳↳↳↳<Location> Yes* Path 1/1 Specifies the location of the
timing source VI on the host
computer.

↳↳↳↳↳<RealTimeSystemDestination> Yes* xs:string 1/1 Specifies the destination path
for the timing source VI on the
target.

↳↳↳↳↳<Version> No xs:string 0/1 Specifies version information for
the source distribution.

↳↳<InitializationVI> Yes complex 1/1 Contains information about the
Initialization VI that runs when
you add the custom device to
the system definition file.

↳↳↳<Type> Yes xs:string 1/1 Specifies how the VI runs:

■ Action—Specifies that
the VI runs silently in the
background.
■ VI—Specifies that the VI
runs in an interactive
mode with the front panel
visible.

ni.com232

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳<Execution> No xs:string 1/1 Specifies additional information
about the execution of the VI:

■ Silent—Specifies that
the VI runs silently in the
background.
■ Modal—Specifies that
the VI runs in a modal
window.
■ Floating—Specifies that
the VI runs in a floating
window.
■ Default—Specifies that
the VI runs in the default
mode for the <Type> you
specify.

↳↳↳<Position> No xs:string 1/1 Specifies where to position the
front panel window, if
displayed, on VI launch:

■ Centered—Specifies to
center the window on the
default monitor.
■ Mouse pointer—
Specifies to position the
origin of the window on
the mouse pointer.

↳↳↳<Item2Launch> Yes Path 1/1 Specifies the VI to launch as the
Initialization VI.

↳↳<CustomDeviceVI> Yes complex 1/1 Contains information about the
RT Driver VI that runs on the
target.

↳↳↳<Source> No Path 0/1 These elements are obsolete.
Use <SourceDistribution>
instead.

↳↳↳<RealTimeSystemDestination> No xs:string 0/1

© National Instruments 233

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳<SourceDistribution> No complex 0/1 Contains information about the
source distribution for the RT
driver VI.

↳↳↳↳<Source> Yes* complex 1/
unbounded

Contains information about the
files in the source distribution.

↳↳↳↳↳<SupportedTarget> Yes* Target 1/
unbounded

Specifies the target operating
system(s) on which the custom
device runs.

↳↳↳↳↳<Source> Yes* Path 1/1 Specifies the location of the RT
driver VI on the host computer.

↳↳↳↳↳<RealTimeSystemDestination> Yes* xs:string 1/1 Specifies the destination path
for the RT driver VI on the target.

↳↳<Dependencies> Yes complex 1/1 Contains information about
dependencies of the custom
device.

↳↳↳<Dependency> No complex 0/
unbounded

Contains information about a
specific dependency.

↳↳↳↳<SupportedTarget> No Target 0/1 Specifies the target operating
system(s) on which the custom
device runs.

↳↳↳↳<Source> Yes* Path 1/1 Specifies the location of the
dependency on the host
computer.

↳↳↳↳<RealTimeSystemDestination> Yes* xs:string 1/1 Specifies the destination path
for the dependency on the
target.

↳↳↳↳<ForceDownload> No xs:boolean 0/1 Specifies whether to force the
download of the dependency.

↳↳↳↳<Version> No xs:string 0/1 Specifies version information for
the dependency.

↳↳<Pages> Yes complex 1/1 Contains information about
System Explorer configuration
pages associated with the
custom device.

↳↳↳<Page> Yes complex 1/
unbounded

Contains information about a
specific page.

ni.com234

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳↳<Name> Yes LocString 1/1 Specifies the name of the page.
↳↳↳↳<DisallowRenaming> No xs:boolean 0/1 Disallows renaming of the item

with which the page is
associated.

↳↳↳↳<DeleteProtection> No xs:boolean 0/1 Disallows deleting the item with
which the page is associated.

↳↳↳↳<AllowMultiSelection> No xs:boolean 0/1 Allows an operator to select the
item with which the page is
associated during a multi-select
operation.

↳↳↳↳<ExcludeFromAlphabeticalOrder> No xs:boolean 0/1 Excludes the item with which
the page is associated from
being sorted alphabetically with
other items in the same section.

↳↳↳↳<Copy> No xs:string 0/1 Configures copying of the item:

■ Copy—Enables copying.
■ Disabled—Disables
copying.

↳↳↳↳<Paste> No xs:string 0/1 Configures pasting of the item:

■ Create—Pastes by
creating a new instance of
the item.
■ CreateIfNotExists_GUID
—Pastes only if an item
with the same GUID does
not already exist.
■ CreateIfNotExists_Name
—Pastes only if an item
with the same name does
not already exist.
■ Replace—Pastes by
replacing an item.

© National Instruments 235

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

■ Dialog—Prompts the
operator with a dialog
before pasting.

↳↳↳↳<ParentGUIDs> No complex 0/1 Contains information about the
GUIDs of possible parent items.
When <Paste> is
CreateIfNotExists_GUID,
VeriStand checks any GUIDs
listed here in addition to the
page GUID.

↳↳↳↳↳<ParentGUID> No xs:string 0/
unbounded

Specifies the GUID of a parent
item.

↳↳↳↳<GUID> Yes xs:string 1/1 Specifies the page GUID.
↳↳↳↳<Glyph> Yes Path 1/1 Specifies the default icon that

appears next to the item in
System Explorer.

↳↳↳↳<InactiveGlyph> No Path 0/1 Specifies the icon that appears
next to the item in System

Explorer when the item is
inactive.

↳↳↳↳<BrokenGlyph> No Path 0/1 Specifies the icon that appears
next to the item in System

Explorer when the item is
broken.

↳↳↳↳<Item2Launch> Yes Path 1/1 Specifies the VI to launch as the
page.

↳↳↳↳<RunTimeMenu> No complex 0/1 Contains information about the
shortcut menu an operator can
access by right-clicking the item
at run time.

↳↳↳↳↳<MenuItem> Yes* complex 1/
unbounded

Contains information about a
specific shortcut menu item.

↳↳↳↳↳↳<GUID> Yes* xs:string 1/1 Specifies the GUID for the menu
item.

↳↳↳↳↳↳<Type> Yes* xs:string 1/1 Specifies the type of the menu
item:

ni.com236

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

■ Action—Specifies that
the item launches a VI that
runs silently in the
background.
■ VI—Specifies that the
item launches a VI and
displays the front panel so
the operator can interact
with the VI.
■ Separator—Specifies
that the item is a menu
separator.
■ Custom—Specifies that
the menu item has a
custom type.

↳↳↳↳↳↳<Execution> No xs:string 0/1 Specifies additional information
about the execution of the VI
associated with the menu item.

■ Silent—Specifies that
the VI runs silently in the
background.
■ Modal—Specifies that
the VI runs in a modal
window.
■ Floating—Specifies that
the VI runs in a floating
window.
■ Default—Specifies that
the VI runs in the default
mode for the <Type> you
specify.

↳↳↳↳↳↳<Position> No xs:string 0/1 Specifies where to position the
front panel window, if
displayed, on VI launch.

© National Instruments 237

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

■ Centered—Specifies to
center the window on the
default monitor.
■ Mouse pointer—
Specifies to position the
origin of the window on
the mouse pointer.

↳↳↳↳↳↳<Behavior> No xs:string 0/1 Specifies whether the menu
item does nothing (None) or
launches a VI (OpenFrontPanel).

↳↳↳↳↳↳<MinNrOfChilds> No xs:int 0/1 Specifies a minimum number of
children for the menu item.

↳↳↳↳↳↳<Name> Yes* LocString 1/1 Specifies the name of the menu
item.

↳↳↳↳↳↳<Item2Launch> Yes* Path 1/1 Specifies the VI to launch when
an operator selects the menu
item.

↳↳↳↳↳↳<Dependency> No Dependency 0/1 Specifies the path to a
dependency file.

↳↳↳↳↳↳<CustomPopulation> No Path 0/1 Specifies a file to associate with
the menu item if <Type> is
Custom.

↳↳↳↳<ButtonList> No complex 0/1 Contains information about
buttons that appear in the
System Explorer when an
operator displays the page.

↳↳↳↳↳<Button> Yes* complex 1/
unbounded

Contains information about a
specific button.

↳↳↳↳↳↳<ID> Yes* xs:string 1/1 Specifies a unique ID to
associate with the button.

↳↳↳↳↳↳<Glyph> Yes* Path 1/1 Specifies the icon that appears
on the button.

↳↳↳↳↳↳<Type> No xs:string 0/1 Specifies the type of the button:

■ Action—Specifies that
the item launches a VI that

ni.com238

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

runs silently in the
background.
■ Dialog—Specifies that
the button displays a
dialog with which the
operator can interact.
■ Page—Specifies that the
button displays a new
configuration page.
■ Notification—Specifies
that the button sends a
notification to the
currently loaded
configuration page. This
option passes the button
ID to the page.
■ Separator—Specifies
that the button is actually
a separator on the button
toolbar.

↳↳↳↳↳↳<ReferencedGUID> Yes xs:string 0/1 Specifies a GUID to reference
when an operator clicks the
button.

↳↳↳↳↳↳<ButtonText> No LocString 0/1 Specifies text to display on the
button.

↳↳↳↳↳↳<Caption> Yes* LocString 1/1 Specifies a caption for the
button. Captions appear in
Context Help.

↳↳↳↳↳↳<TipStrip> Yes* LocString 1/1 Specifies a tip to display when
an operator hovers over the
button.

↳↳↳↳↳↳<Documentation> Yes* LocString 1/1 Specifies the description that
appears in Context Help.

↳↳↳↳↳↳<Dependency> No Dependency 0/1 Specifies the path to a
dependency file.

© National Instruments 239

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳↳<ActionVIOnDelete> No Path 0/1 Specifies a VI to run when an
operator deletes the item
associated with the page from
System Explorer.

↳↳↳↳<ActionVIOnLoad> No Path 0/1 Specifies a VI to run when
VeriStand loads the item
associated with the page.

↳↳↳↳<ActionVIOnSystemShutdown> No Path 0/1 Specifies a VI to run when
VeriStand shuts down.

↳↳↳↳<ActionVIOnSave> No Path 0/1 Specifies a VI to run when an
operator saves the system
definition file.

↳↳↳↳<ActionVIOnDownload> No Path 0/1 Specifies a VI to run when an
operator downloads the custom
device to the target.

↳↳↳↳<ActionVIOnPaste> No Path 0/1 Specifies a VI to run when an
operator pastes the item
associated with the page.

↳↳↳↳<ActionVIOnTargetTypeChange> No Path 0/1 Specifies a VI to run when an
operator changes the type of
target on which the custom
device runs.

↳↳↳↳<ActionVIOnDeleteRequest> No Path 0/1 Specifies a VI to run when a
delete request is received for the
item associated with the page.

↳↳↳↳<ActionVIOnCompile> No Path 0/1 Specifies a VI to run when the
item associated with the page is
compiled.

↳↳↳↳<Help> No complex 0/1 Contains information about
help content for the item
associated with the page.

↳↳↳↳↳<Item2Launch> Yes* Path 1/1 Specifies the file to launch when
an operator selects the Help
option for the item.

↳↳↳↳↳<FileType> Yes* xs:string 1/1 Specifies the help file type. Valid
values are chm or other.

ni.com240

VeriStand Feature Usage

Element Required? Element
type

Min/Max
occurrences

Description

↳↳↳↳↳<Section> No xs:string 0/1 Specifies a section of the help
file to display when an operator
selects the Help option.

↳↳↳↳<AdditionalInformation> No xs:string 0/1 Specifies additional information
to store with the item.

↳↳<CustomXML> No xs:string 0/1 Contains custom XML that you
add to the file. Code you enter
between <CustomXML> tags is
not validated against the
Custom Device.xsd file.

*Required sub-tags of optional parent tags are only required if you use the parent tag.

Custom Device Non-Standard XML Element
Types
Non-standard element types are defined in the Custom Device.xsd schema.

Dependency

The Dependency element type describes a dependency of the custom device, such
as a DLL or VI, that the custom device requires and that you want to deploy to the
target with the custom device.

Element Required? Element
type

Min/Max
Occurrences

Description

<Type> Yes xs:string 1/1 Specifies if the path you specify is relative
or absolute. Valid values are Absolute, To
Base, To Common Doc Dir, or To
Application Data Dir.

<Path> Yes xs:string 1/1 Specifies the path to the dependency on
the host computer.

<Behavior> No xs:string 0/1 Specifies whether the path is Static or
Dynamic.

© National Instruments 241

VeriStand Feature Usage

LocString

The LocString element type specifies English and localized strings to display in
menu items.

Element Required? Element
type

Min/Max
Occurrences

Description

<eng> Yes xs:string 1/1 VeriStand does not currently use this string.
The <loc> string appears in the shortcut
menu.

<loc> Yes xs:string 1/1 Specifies a string for a custom shortcut menu.
You can use two colons (::) to separate
elements and create nested menu items.

Path

The Path element type describes a path to a file and whether the path is relative or
absolute.

Element Required? Element
type

Min/Max
Occurrences

Description

<Type> Yes xs:string 1/1 Specifies whether the path you specify is
relative or absolute. Valid values are
Absolute, To Base, To Common Doc Dir, or To
Application Data Dir.

<Path> Yes xs:string 1/1 Specifies the path to the file.

Target

The Target element type describes the target to which you want to deploy the
custom device.

Element type Enumerations

xs:string
■ All
■ Pharlap
■ Windows

ni.com242

VeriStand Feature Usage

Element type Enumerations
■ Linux_32_ARM
■ Linux_x64
■ PharlapWindows

VersionType

The VersionType element type specifies version information.

Attribute Required? Attribute type

Major Yes xs:unsignedInt
Minor Yes xs:unsignedInt
Fix Yes xs:unsignedInt
Build Yes xs:unsignedInt

Custom Device API Library

The Custom Device API library is a LabVIEW library that contains type definitions,
template VIs, and the LabVIEW API a custom device needs to interact with VeriStand.
The components of the library allows the custom device to communicate seamlessly
in the VeriStand Engine. You can find the library in the labview\vi.lib\NI
VeriStand\Custom Device API directory.
The following table displays the template VIs included in the Custom Device API
library. You can access most of the VIs in this library from the Custom Device palette
and subpalettes in LabVIEW. The connector panes of these VIs are configured to
work with VeriStand, and the front panels and block diagrams include
documentation to help you configure VIs that fit the needs of your custom device.

Note If you add any VIs created from the following templates to a custom
device project, you must define the item in the Custom Device XML file
using valid Custom Device XML tags.

Template VI Usage

Initialization VI Template.vit Initialization VI.
Page Template.vit Main Page VI or additional Page VI.

© National Instruments 243

VeriStand Feature Usage

Template VI Usage
Asynchronous Custom Device Driver VI
Template.vit

RT Driver VI for an asynchronous custom device.

Inline Custom Device Driver VI Template
(HW Interface).vit

RT Driver VI for an Inline Hardware Interface custom
device.

Inline Custom Device Driver VI Template
(Model Interface).vit

RT Driver VI for an Inline Model Interface custom device.

Timing Source Initialization VI
Template.vit

Timing Source Initialization VI for the Primary Control
Loop. For VeriStand to call this VI, you must select the
custom device as the Master Custom Device on the
Controller configuration page.

RunTimeMenu Custom Item 2 Launch.vit Runs when the user selects a custom shortcut menu
item.

RunTimeMenu Custom Population.vit Creates a custom shortcut menu.
RunTimeMenu Dependency.vit Shows, removes, enables, or disables items in a custom

shortcut menu.
ActionVIOnCompile Template.vit Runs when an item is compiled.
ActionVIOnDelete Template.vit Runs when a user successfully deletes an item.
ActionVIOnDownload Template.vit Runs when the custom device downloads to the target.
ActionVIOnDeleteRequest Template.vit Runs when a user attempts to delete an item.
ActionVIOnLoad Template.vit Runs when VeriStand loads a system definition

containing a custom device in System Explorer.
ActionVIOnPaste Template.vit Runs when a user pastes an item in System Explorer.
ActionVIOnSave Template.vit Runs when a user saves the system definition file.
ActionVIOnShutdown Template.vit Runs when the VeriStand system shuts down.

Custom Device Library

The Custom Device library is a LabVIEW library that contains the configuration and
engine VIs for a custom device. The configuration and engine VIs may optionally be
distributed in different LabVIEW libraries.
Custom device library VIs configure the initialization behavior of the custom device,
its interaction with the VeriStand Engine, and the user interface for the custom
device in System Explorer.

ni.com244

VeriStand Feature Usage

Note Custom devices also include a separate library, called the Custom
Device API library, which contains the type definitions, template VIs, and
the LabVIEW API that a custom device needs to interact with VeriStand.

The Custom Device library contains the following sets of VIs to modify your custom
device.

VIs for Configuring the Custom Device

The configuration of a custom device defines how you add and configure the custom
device within the system definition file. Together, these VIs form the
Configuration.llb for the custom device.

Note In a custom device, pages are the configuration pages that appear
when you select the custom device or various sub-items of the device in
System Explorer. The configuration page that an operator sees is the front
panel of a page VI.

VI Description

Initialization VI Prepares the custom device for first use. This VI defines the initial list of channels
and/or sections that appear in System Explorer, as well as sets their initial
properties.

The VI runs in the background every time an operator adds the custom device to
the system definition file. It reads information from the Custom Device XML file
and uses the data to add an instance of the custom device to System Explorer.
The instance runs in the execution mode you specify and loads the correct
dependency files. If the operator adds multiple instances of the device to the
same system definition file, this VI runs for each new instance.

Main Page VI Runs when the operator selects the custom device in System Explorer. The front
panel of this VI serves as the configuration page for the custom device. You can
modify this VI to add additional controls and indicators to the configuration
page, and to configure responses to user events, such as when the operator
enters a new item property value.

Extra Page VIs Provides custom configuration pages for the sections and channels that appear
under the custom device in System Explorer. You can configure these VIs in the

© National Instruments 245

VeriStand Feature Usage

VI Description
same way you configure the Main Page VI. Every extra page you configure must
have an entry in the <Pages> section of the Custom Device XML file.

If you do not specify an extra page for a section or channel, VeriStand displays a
default section or channel page when you select the item. You can use the Set
Item GUID VI to change the page associated with an item at run time.

Action VIs Allows the custom device to perform custom actions when specific events occur,
such as when the system definition is loaded in System Explorer.

Shortcut
Menus

Appears in a shortcut menu when a custom device item is right-clicked in the
System Explorer. These may also appear as toolbar buttons.

VIs for Customizing the Custom Device Engine

The custom device engine defines the real-time behavior of the custom device on
the target. The RT Driver VI runs on the target regardless of the target's operating
system.
You can have more than one RT Driver VI depending on the needs of your custom
device. For example, if your custom device must support multiple real-time
operating systems, you can add additional RT Driver VIs for each additional
operating system the custom device must support.

VI name Description

RT Driver VI Runs after the operator deploys the system definition file. You can add code to this VI
to handle any run-time requirements of the custom device. Use this code to
configure initialization, steady-state, and shutdown behavior for the custom device
engine. This VI handles timing information and the exchange of data between the
custom device and the rest of the VeriStand system.

Custom Device Build Specifications

The Build Specifications in a custom device LabVIEW project includes the
Configuration and Engine source distributions.
The Configuration source distribution contains the source files that specify the
configuration of the custom device when added to a VeriStand system definition. It
also defines the user interface for the custom device in System Explorer.

ni.com246

VeriStand Feature Usage

This build specification must include the following items:

■ Initialization VI
■ Main Page VI
■ Custom Device XML file
■ Any additional page VIs
■ Any VIs the custom device configuration calls dynamically

The Engine source distribution contains the source files that configure how the
custom device runs on the target. This build specification minimally includes the RT
Driver VI. This specification also can include additional driver VIs and a timing
source VI.
Both build specifications always include the Custom Device library, even though
they do not both include every VI within that library.

Optional Source Distributions

In most cases, the standard Engine source distribution can work for a variety of
targets. You can create a separate Engine distribution for each target. For example,
your custom device project can contain all of the following source distributions:

■ Configuration
■ Engine (Windows)
■ Engine (Phar Lap)
■ Engine (Linux x64)
■ Engine (Linux ARM)

After you configure the source distributions, you can choose between distributing
the source files manually or using the LabVIEW Application Builder to build an
installer.

Planning a Custom Device

It is important to plan the major components of a custom device before writing any
LabVIEW code.
Before you begin planning, you should understand the custom device framework.
Understand the following components of a custom device.

© National Instruments 247

VeriStand Feature Usage

Note If the custom device must interact with unsupported or third-party
hardware, consider the availability of drivers and other resources to
determine the feasibility of the custom device.

Component Description

Channels and
waveforms

The inputs and outputs of the custom device.

Properties Configuration data for the custom device.
Hierarchy The organization and appearance of the custom device in System

Explorer.
Pages The configuration pages that appear in System Explorer.
Device Type The execution mode of the custom device in terms of interaction with the

rest of VeriStand.

After planning your custom device, you can implement the custom device.

Custom Device Channels and Waveforms

A custom device uses channels and waveforms to exchange data with the rest of the
VeriStand system.
Waveforms differ from channels in that VeriStand always sends channel data to the
host computer, but VeriStand only streams waveform data upon request. You should
acquire signals as waveforms when you need to read at rates faster than the rate at
which the system runs.
Channels perform single-point acquisition, an immediate, non-buffered operation
that occurs at the rate at which the system runs. All channels are either 64-bit
floating point numbers (LabVIEW DBLs) or waveforms. No other data types are
currently supported. However, as you write code for a custom device, you can use
LabVIEW's various data conversion functions to convert other types of data to 64-bit
floating point numbers. For example, if the LabVIEW API for a third-party device calls
for Boolean data to enable a channel or filter, you can use a DBL channel with the
assumption that 0 = FALSE and !0 = TRUE.

Note You can also use the Register Custom Device Engine Events VI to
configure engine events and design a communication mechanism to

ni.com248

VeriStand Feature Usage

handle data of different types. Alternatively, you can use other remote
communication methods, such as TCP and UDP.

You can create input and output channels. Input channels get data from the rest of
the VeriStand system. Output channels send data to the rest of the system. An
operator can map each input channel to a single data source. However, an output
channel can map to any number of sinks, such as simulation model inputs.
There are three common use cases for a custom device channel:

1. Handling data generated by the custom device after deployment.
2. Handling data generated elsewhere in the VeriStand system and used by the

custom device after deployment.
3. Implementing dynamic properties.

Best practice is to implement channels with general use-cases in mind. For example,
if you are writing a custom device to interface with third-party hardware, consider
adding custom device channels for every physical channel of the hardware device
and give the custom device operator the ability to remove channels while
configuring the custom device in the system definition file.

Custom Device Item Properties

Custom device item properties store and communicate state information about a
custom device item, such as a section or channel.
A custom device item is anything that appears in System Explorer, such as a
channel within a custom device or the custom device itself. Use properties to
transfer configuration and state information from the configuration to the engine
after an operator deploys the system definition file to the target. After deployment,
the engine can read properties on the target, but it cannot write properties or
exchange properties with the host computer.
For example, if you are creating a custom device for third-party hardware and you
need to implement a range option for the channels you will use to communicate
with the hardware, you should implement the range setting as a property. You can
then customize the page VIs for those channels to accept a value for range, allowing
you to define the value when configuring the channels in System Explorer. When the
custom device is deployed, VeriStand will read the value for range and set the range
of that channel when the system definition is deployed. After it is deployed, you can
no longer change the value for range.

© National Instruments 249

VeriStand Feature Usage

Unlike a channel, which must be a 64-bit floating point number, a property can be
any standard LabVIEW data type. However, property names are case-sensitive
strings. VeriStand saves property names and values with the system definition file. If
you save and close the file or project, VeriStand retains the properties the next time
you access the system definition file.

Custom Device Hierarchy

A logically configured hierarchical structure allows operators to efficiently use your
custom device.
The hierarchy of a custom device is its appearance in System Explorer. The top level
of the custom device hierarchy is the device itself, which appears under Custom
Devices section of the configuration tree. Under the device, you can add any number
of sections and channels to build the hierarchy.
Sections are groups of items in the hierarchy. You can group similar channels in a
section. For example, you can group input channels into a Inputs section.

Note All items in the hierarchy must be either sections or channels.

The following example shows the hierarchy of a typical power supply custom
device.

Custom Device Pages

In a custom device, pages are the configuration pages that appear when you select
the custom device or various sub-items of the device in System Explorer.

ni.com250

VeriStand Feature Usage

The configuration page that an operator sees is simply the front panel of a page VI.
Every custom device must include a Main Page VI that runs when the operator
selects the top-level custom device item in the configuration tree. Sub-items of the
custom device, such as sections and channels, appear with simple default
configuration pages that allow a user to set descriptions for the associated items.

Extra Pages

You can create additional pages with extended functionality and use those pages in
place of the default pages.
Plan an extra page for each item in a custom device that you want to customize
differently. For example, if you want to use the same custom configuration page for
all channels in a custom device, you only need to create one extra page.

The following table displays the items VeriStand requires to override a default page
with an extra page in the custom device.

Required item Description How to create

Page VI Defines the functions and
appearance of the extra page.
The front panel of the page VI
serves as the configuration
page in System Explorer.

Use the page template in the Custom Device API
library.

Globally
Unique
Identifier
(GUID)

Links to the extra page using
an ID. When you associate an
extra page with a channel or
section, you override the
default page by referencing
the GUID of the extra page.

Use the GUID Generator VI in the
labview\vi.lib\NI Veristand\Custom Device
Tools\Custom Device Template Tool directory.

You can set the GUID of an extra page by using
the GUID terminal of either the Add Custom
Device Section VI or Add Custom Device Channel
VI.

For more information on how to use the GUID
Generator VI, refer to the topic on adding extra
pages after creating the custom device project.

XML
Declaration

Associates the GUID with the
page VI in the custom device
XML.

Edit the custom device XML to declare the extra
page and its GUID. For more information, refer to
the topic on adding extra pages after creating
the custom device project.

© National Instruments 251

VeriStand Feature Usage

Required item Description How to create
Build
Specification

Specifies the extra page and
any of its dynamically called
dependencies.

Edit the Configuration build specification to
include the extra page and any of its dynamically
called dependencies in the initialization library.

For more information, refer to the topic on
adding extra pages after creating the custom
device project.

Custom Device Types

The type of a custom device refers to its execution mode, which defines how the
device interacts with the VeriStand Engine.
Depending on your requirements, you can create custom devices that run inline or
in parallel with the Primary Control Loop (PCL). You also can create timing and sync
devices.

Note Timing and sync devices are the same as regular custom devices,
but you can configure them as the hardware synchronization master to
drive RTSI0. They appear in System Explorer under Hardware > Chassis >
Timing and Sync.

The following table displays the pre-defined custom device types that are included
in VeriStand.
Device type Basic

architecture
Data
interface

Timing Benefits Caveats Use cases

Asynchronous Two loops,
one for
receiving
commands
and one for
data transfer

FIFOs Variable Unlikely to affect
timing of the rest
of the VeriStand
system, can run
faster or slower
than the PCL

1-cycle
latency
due to
FIFOs

Shared
resources,
background
processes, non-
deterministic
hardware/
protocols,
system health
monitoring,
logging, offline
analysis

ni.com252

VeriStand Feature Usage

Device type Basic
architecture

Data
interface

Timing Benefits Caveats Use cases

Inline
Hardware
Interface

State
machine
with two-
phase
execution

Channel
references

Inline Sends data to
engine before
other
components
execute, receives
data from engine
after other
components
execute

Can
adversely
affect PCL
timing

Most hardware,
deterministic
operation, two-
phase
operations (for
example,
stimulus-
response)

Inline Model
Interface

State
machine
with one-
phase
execution

Channel
references

Inline Sends data to
engine with low
latency

Can
adversely
affect PCL
timing

Low latency
calculations,
such as PID,
interpolation,
and so on

Inline Timing
and Sync

State
machine
with two-
phase
execution

Channel
references

Inline Same as Inline
Hardware
Interface, can
function as
hardware
synchronization
master device to
drive RTSI 0 line

Can
adversely
affect PCL
timing

Inline hardware
synchronization
master device

Asynchronous
Timing and
Sync

Single loop FIFOs Variable Same as
Asynchronous,
but can function
as hardware
synchronization
master device to
drive RTSI 0 line

1-cycle
latency
due to
FIFOs

Asynchronous
hardware
synchronization
master device

Note Both inline and asynchronous custom devices have advantages and
limitations. Consider launching asynchronous loop(s) within an inline
custom device to take advantage of the best features of both while
overcoming many of their limitations.

© National Instruments 253

VeriStand Feature Usage

Custom Device Type Selection

Choose the type of custom device that most closely resembles the functionality you
want to configure. For example, if you want to read and write data to and from a
hardware device at the same rate as the PCL, select an inline hardware interface
custom device type. However, if you have a serial hardware device, you should
select an asynchronous custom device, as serial devices are slow and could affect
the PCL timing. Understanding the execution steps of the PCL also can help you
select the appropriate custom device type.

Note Consider using an inline mode or hardware interface custom device
and, if an asynchronous loop is required, launch an asynchronous loop
within that device. Inline model and hardware interface custom devices
give you more control and allow you to access channels outside of the
custom device.

Custom Device Type Configuration

You configure the custom device type by selecting the appropriate template VI from
the Custom Device API library. The type of custom device you select will determine
the architecture of the RT Driver VI, but the VIs for configuring the custom device
remain the same across all types.
A custom device is not limited to a single device type, and you can alter the code in
the template VIs to fit your needs. For example, you can create both inline and
asynchronous engines for the same custom device, and use the Set Custom Device
Drivers VI to switch between them. However, you must maintain the connector
pane, controls, and indicators that the tool and templates include to ensure correct
interaction with VeriStand.

Asynchronous Custom Devices
An asynchronous custom device executes in a parallel loop with the VeriStand
Engine's Primary Control Loop (PCL) and uses RT FIFOs to exchange channel data
with the rest of VeriStand.

ni.com254

VeriStand Feature Usage

You can create a standard asynchronous custom device from a template in the
Custom Device API library. This also applies to the Asynchronous Timing and Sync
device type, which is an asynchronous device that you add to the system definition
file as a timing and sync device.

Timing of an Asynchronous Custom Device

The rate at which an asynchronous custom device executes depends on how you
configure it. By default, the asynchronous custom device RT Driver VI template uses
a While Loop, meaning your asynchronous custom device will execute as fast as
possible. You can change the default While Loop to a Timed Loop, and then
configure the Timed Loop to use a specific timing source, such as the timing source
for a hardware device.

You can synchronize an asynchronous custom device with the Primary Control Loop
by using the Device Clock control as the timing source of your Timed Loop. Device
Clock is a timing sourced ticked for every iteration of the Primary Control Loop after
custom device FIFOs have been updated. If you synchronize your device with the
PCL, the dt of your Timed Loop will be in ticks of the PCL. So if you set the dt as 3,
your Timed Loop will execute every 3 ticks of the PCL.

Decimation of an Asynchronous Custom Device

You can use Set Custom Device Decimation VI in the initialization code of your
asynchronous custom device to change the decimation rate of your device. In an
asynchronous custom device, the decimation affects when the Primary Control
Loop reads and writes the FIFOs it uses to communicate with the custom device. For
example, if you set the Decimation parameter of Set Custom Device Decimation VI to
4, the Primary Control Loop reads and writes the FIFOs on every fourth iteration.

Latency Due to FIFOs in Asynchronous Custom Device

Because asynchronous devices run in parallel with the PCL and pass channel data
via RT FIFOs, there is a minimum of one cycle delay from when data leaves the PCL
and when it enters the custom device, and vice versa. Additionally, asynchronous
devices might not always execute at the same time with respect to the other

© National Instruments 255

VeriStand Feature Usage

components of the VeriStand. For example, the first iteration might execute before
the PCL processes alarms, the second and third iterations after, and so on.
Using the Asynchronous Custom Device Driver
Template
Use the asynchronous custom device driver template to build the RT Driver VI for a
custom device.

You can use most of the Custom Device API VIs when building an asynchronous RT
Driver VI. The Asynchronous Device Properties VIs and Asynchronous Device
Channels VIs configure functionality exclusive to asynchronous custom devices.
An asynchronous custom device uses a two-loop architecture, one loop for receiving
commands and one for transferring data, with sections of code for initialization and
cleanup before and after the loops, respectively. The template VI uses a While Loop
for data transfer, but you also can use a Timed Loop.
In general, you use a While Loop if timing is not important or if you want the loop to
run as fast as it can. You use a Timed Loop if you need the loop to execute
deterministically or run pseudo-synchronously with the Primary Control Loop.

1. Navigate to the labview\vi.lib\NI VeriStand\Custom Device API directory and
open Asynchronous Custom Device Template.vit.

2. Modify the following code to set up your controls and initialization for the
custom device.

Controls—The input controls are specially named controls that the VeriStand Engine
will use to provide the asynchronous custom device loops with data. To function, the
name of each control must match the following names.

ni.com256

VeriStand Feature Usage

■ Device Clock—Device Clock specifies the name of a timing source that is ticked for
every iteration of the Primary Control Loop after Custom Device FIFOs have been
updated.
If you change the data loop of your custom device to a Timed Loop, you can use
Device Clock as the timing source of the Timed Loop to closely synchronize your
asynchronous custom device with the Primary Control Loop. Device Clock is only
populated if you set the Use Device Clock input of the Set Loop Type VI to True in one
of the VIs for configuring the custom device.
■ Initialization Status Notifier—You can use this optional input to send the VeriStand
Engine the final status of the custom device initialization process. If this control
exists on the custom device front panel, the VeriStand Engine will wait for a status
update before starting up. If the custom device reports an error, that will abort the
execution of the current configuration in the VeriStand Engine.
■ Device Reference—Device Reference is an auto-populated reference to the custom
device. Use it to read configuration properties, get a list of channels, etc.
■ Device Outputs FIFO—The array of outputs sent to the system on the Device
Outputs FIFO corresponds one-to-one to the Outputs array the Get Custom Device
Channel List VI returns. By default, the VeriStand Engine reads the Device Outputs
FIFO every iteration of the PCL.
■ Device Inputs FIFO—The array of inputs received from the system on the Device
Inputs FIFO corresponds one-to-one to the Inputs array the Get Custom Device
Channel List VI returns. The VeriStand engine pushes data to the Device Inputs FIFO
every iteration of the PCL. If the FIFO is full, the new data packet will overwrite the
oldest data packet.
■ Status Notifier—Notifies the engine of the last state of the custom device and
indicates when the device completes execution. If you do not use this control, the
device returns a default No Error value when it completes execution. By default,
VeriStand does not check this error until shutdown, but you can use an output
channel to send more immediate status values to the system.

Initialization Code—The template includes initialization code to do the following:

1. Register custom engine events.
2. Get the number of input and output channels and set up data buffers for the RT

FIFOs.
3. Read a final error status for the asynchronous custom device.

If you use a Timed Loop for your data loop, you can also add code here to configure the
Timed Loop.

© National Instruments 257

VeriStand Feature Usage

3. Modify the following code to set up your command loop, data loop, and
cleanup code for the custom device.

Command Loop—The command loop allows you to send commands to and receive
data from your custom device that you can not easily do using a DBL channel value. By
using the Send Custom Device Message VI in a LabVIEW VI or calling a
corresponding .NET method, you can use, for example, a custom workspace object or
NI TestStand automation script to send a command to your custom device, which can
then execute a response to that command.
For example, a generic custom device for logging. If you need to change configuration
data, such as the file path to which to save log files, at run time, you could create a
custom workspace control to send this data to the command loop of the device, and
then configure the command loop to update the configuration data when the data is
received.
The command loop contains the following three events:

1. Message (Byte Array)—Receives and sends data as a byte array of 8-bit unsigned
integer values.

2. Message (String)—Receives and sends data as a string.
3. Shut Down—The VeriStand Engine sends this command to indicate that the

custom device should shut down.

For an example custom device that uses Send Custom Device Message VI in a LabVIEW
VI to communicate directly with the custom device, refer to the labview\examples\NI
Veristand\Custom Devices\Communication Example directory.
Data Loop—Use this loop to read input data from the Device Inputs FIFO, update the
data, and send the updated data via the Device Outputs FIFO to the rest of VeriStand.

ni.com258

VeriStand Feature Usage

The template data loop contains code that reads the input data, adds it to a random
number, and writes it back to the output channels. The data loop also executes
shutdown if it receives a shut down notification from the command loop.
Cleanup Code—Use the optional Status Notifier control to publish the final error state
of your device regardless of errors. If a Status Notifier control is present in the RT driver
VI, VeriStand this as an indication that the device has shut down. Otherwise the
VeriStand provides default status notification for the device.

Inline Hardware Interface Custom Devices
An inline hardware interface custom device executes inline with the VeriStand
Engine's Primary Control Loop (PCL) and enables you to read and write data from
and to a hardware device.
You can create a standard inline hardware interface custom device from a template
in the Custom Device API library. This also applies to the Inline Timing and Sync
device type, which is an inline hardware interface device that you add to the system
definition file as a timing and sync device.
An inline hardware interface custom device executes as a state machine, or action-
engine. The device contains a Case structure, and the PCL calls each case at a
specific time with respect to other components of the VeriStand Engine. Within the
device, an uninitialized Feedback Node handles iterative data transfer between
states.

Note You can use additional Feedback Nodes or other storage
mechanisms, such as functional global variables, in an inline custom
device.

The inline hardware interface custom device is similar to the inline model interface
custom device. An inline hardware interface custom device has two cases, or steps,
that execute within an iteration of the PCL. An inline model interface custom device
has only one step that executes within a PCL iteration.

© National Instruments 259

VeriStand Feature Usage

Using the Inline Hardware Interface Custom
Device Driver Template
Use the inline hardware interface custom device driver template to build the RT
Driver VI for a custom device.
The block diagram of the Inline Custom Device Driver VI Template (HW Interface).vit
template VI contains a case structure with five cases to which you can add code to
customize the device.
The following image displays the execution order of those cases with respect to the
Primary Control Loop (PCL).

1. Navigate to the labview\vi.lib\NI VeriStand\Custom Device API directory and
open Inline Custom Device Driver VI Template (HW Interface).vit.

2. Modify the following code to set up the Initialization case that executes before
the PCL starts running.

Note Because the Initialize case executes before the PCL starts, you
cannot read or write channel values in this case.

ni.com260

VeriStand Feature Usage

Get Custom Device Channel List VI—Gets a list of all the input and output of channels of
the custom device.

Get Channel Data Reference VI—Compiles a list of channel data references for the
channels. In this case, you can also read device configuration information from
properties that use a reference to the device.

Note The Get Channel Data Reference VI does not appear on the Functions
palette but belongs to the Custom Device API library. To avoid causing
system instability or errors, do not call this VI or the Set Channel Data
Reference VI outside of an inline RT Driver VI.

3. Modify the Start case that executes after initialization but before the PCL starts
running.
If necessary, you can use this case to start device tasks, such as DAQ tasks, or
to wait for start triggers. Because the Start case executes before the PCL starts,
you cannot read or write channel values in this case.

Note If you use a start trigger in the Start case, you should specify a
timeout for waiting on the trigger. Failing to specify a timeout can
cause your system to wait indefinitely if the start trigger does not
occur as expected.

4. Modify the following code to set up a the Read Data from HW case that
executes at the beginning of each iteration of the PCL before other
components such as faults, alarms, and procedures.

© National Instruments 261

VeriStand Feature Usage

Read Hardware Channels—You can replace this flat sequence structure or the code
inside it with the code necessary to obtain data from a hardware device. For example,
you can use a hardware device's API calls to request an A/D sample.
Set Channel Value by Data Reference VI—Writes the data to a specified channel, making
the data available to the other components of VeriStand for the remainder of the PCL
iteration.

5. Modify the following code to set the Write Data to Hardware case that
executes at the end of each iteration of the PCL after other components such
as faults, alarms, and procedures.

Write Input Data to Hardware Channels—You can replace the code in this flat sequence
structure with the code necessary to send data to a hardware device.

6. Modify the Close case that executes after the PCL finishes executing.
Use this case to close references and release resources. Because the close
case executes after the PCL terminates, you cannot read or write channel
values in this case.

ni.com262

VeriStand Feature Usage

Inline Model Interface Custom Devices
An inline model interface custom device executes inline with the VeriStand
Engine's Primary Control Loop (PCL), which processes data acquired from hardware
inputs and sends the processed values to hardware outputs without latency.
You can create an inline model interface custom device from a template in the
Custom Device API library.
An inline model interface custom device executes as a state machine, or action-
engine. The device contains a Case structure, and the PCL calls each case at a
specific time with respect to other components of the VeriStand Engine. Within the
device, an uninitialized Feedback Node handles iterative data transfer between
states.
The inline model interface custom device is very similar to the inline hardware
interface custom device. An inline model interface custom device has one case, or
step, that executes within an iteration of the PCL, while an inline hardware interface
custom device has two steps that execute within a PCL iteration.Using the Inline Model Interface Custom Device
Driver Template
Use the inline model interface custom device driver template to build the RT Driver
VI for a custom device.
The block diagram of the Inline Custom Device Driver VI Template (Model
Interface).vit template VI contains a case structure with four cases to which you can
add code to customize the device.
The following image displays the execution order of those cases with respect to the
Primary Control Loop (PCL).

© National Instruments 263

VeriStand Feature Usage

1. Navigate to the labview\vi.lib\NI VeriStand\Custom Device API directory and
open Inline Custom Device Driver VI Template (Model Interface).vit.

2. Modify the following code to set up the Initialization case that executes before
the PCL starts running.

Note Because the Initialize case executes before the PCL starts, you
cannot read or write channel values in this case.

Get Custom Device Channel List VI—Gets a list of all the input and output of channels of
the custom device.

Get Channel Data Reference VI—Compiles a list of channel data references for the
channels. In this case, you can also read device configuration information from
properties that use a reference to the device.

Note The Get Channel Data Reference VI does not appear on the Functions
palette but belongs to the Custom Device API library. To avoid causing
system instability or errors, do not call this VI or the Set Channel Data
Reference VI outside of an inline RT Driver VI.

3. Modify the Start case that executes after initialization but before the PCL starts
running.
If necessary, you can use this case to start device tasks, such as DAQ tasks, or
to wait for start triggers. Because the Start case executes before the PCL starts,
you cannot read or write channel values in this case.

ni.com264

VeriStand Feature Usage

Note If you use a start trigger in the Start case, you should specify a
timeout for waiting on the trigger. Failing to specify a timeout can
cause your system to wait indefinitely if the start trigger does not
occur as expected.

4. Modify the following code to set up the Execution case that executes in the
middle of the PCL iteration.

This case reads input data, executes the model, and then writes output data
to the rest of VeriStand. Model refers to a mathematical function. You may
need to average channel data, or you can execute a LabVIEW or other model
using the LabVIEW Model Interface Toolkit.

5. Modify the Close case that executes after the PCL finishes executing.
Use this case to close references and release resources. Because the close
case executes after the PCL terminates, you cannot read or write channel
values in this case.

If your custom device needs to read or write channel data for multiple channels at a
time, consider using block data references in your code.Implementing Channel Block Reading and
Writing in Inline Custom Devices
Modify an inline model interface custom device to use block data references to read
and write channel data.
Before you begin, create an inline model interface custom device.

© National Instruments 265

VeriStand Feature Usage

In an inline custom device, you can read or write channel data for multiple channels
at a time using block data references. Block reading and writing is useful for custom
devices with a large number of channels, as this technique runs faster than channel-
by-channel access. Block reading and writing also simplifies your code, as
referencing, reading and writing to a large number of channels individually can
become large and complex.

Use the following VIs from the Custom Device API library to work with block
references:

■ Get Channel Block Data References VI
■ Get Channel Values by Block Data Reference VI
■ Set Channel Values by Block Data Reference VI

1. Modify the Initialize case to obtain block data references.

Get Custom Device Channel List VI and Get Channel Block Data References VI—
Replaces the For Loop and Get Channel Data Reference VI that attains Read Access
channel data references in the inline model interface custom device template.
Get Custom Device Channel List VI and Get Channel Block Data References VI work
together as follows:

1. Get Custom Device Channel List VI returns an array of all the input channel
references of the custom device.

2. Get Channel Block Data References VI uses this array to generate Block Data Refs
for the input channels, or an array of 32-bit data references, and sets the Access
to Read, allowing you to use the references to get channel data.

3. Get Channel Block Data References VI also returns the initial channel values as
Values Array, which is used later in the Execute Model case.

ni.com266

VeriStand Feature Usage

4.

Get Custom Device Channel List VI and Get Channel Block Data References VI—
Replaces the For Loop and Get Channel Data Reference VI that attains Write Access
channel data references in the inline model interface custom device template. Works
similarly for output channels.
Get Custom Device Channel List VI and Get Channel Block Data References VI work
together as follows:

1. Get Custom Device Channel List VI returns an array of all the output channel
references of the custom device.

2. Get Channel Block Data References VI uses this array to generate Out Block Refs
for the input channels, or an array of 32-bit data references, and sets the Access
to Write, allowing you to use the references to write data to the channels.

3. Get Channel Block Data References VI also returns the initial channel values as
Values Array, which is used later in the Execute Model case.

Block Data Refs and Values Array—Stored in a cluster for use in the Execute Model case.
The refs and array are of both the input and output channels.

2. Modify the Execute Model case to read and write channel data with block
references.

Get Channel Values by Block Data Reference VI—Uses the stored In Block Refs of the
input channels to simultaneously get the value for each input channel.

Do Model Calculation Flat Sequence Structure—Sums all values in the Input Values
array and saves them to the Output Values array.

Input Values and Output Values—Bundles arrays.

© National Instruments 267

VeriStand Feature Usage

Set Channel Values by Block Data Reference VI—Uses the Block Data Refs of the output
channels to simultaneously write the updated values, which are contained in Output
Values array to the output channels.

Timing and Sync Custom Devices
A timing and sync custom device is any device that has the capability to drive the
RTSI 0 line to serve as the chassis master hardware synchronization device for a
system.
The RTSI 0 line is a digital line that sends a clock signal to synchronize all hardware
I/O devices in the system. You can plan and build a timing and sync custom device
from a LabVIEW project. You must modify the VIs of the project to conform to the
custom device framework and build the device for distribution to VeriStand.
When you distribute the device, operators can add the device to VeriStand by
copying the contents of the Build directory you create into the <Common
Data>\Timing and Sync directory on their host computer. VeriStand parses this
directory for timing and sync devices when it launches.
After an operator has added the custom timing and sync device to the directory,
they can add the device to the system definition file and configure the device as the
chassis master hardware synchronization device. Timing and sync devices appear in
System Explorer under Hardware > Chassis > Timing and Sync.

Inline Custom Devices with Asynchronous Loops
The RT Driver VI of an inline custom device can communicate channel data with
VeriStand while launching an asynchronous loop(s) to handle nondeterministic
operations.
One example of a nondeterministic operation is writing data to a log file. The RT
Driver VI of the inline custom device communicates with the asynchronous loop(s)
using RT FIFOs.
The following table displays the advantages and limitations of using this
architecture when compared to inline and asynchronous custom devices.

ni.com268

VeriStand Feature Usage

Device Type Advantages Limitations

Inline custom
devices

Allow you to read and write data to and
from VeriStand in each iteration of the
Primary Control Loop (PCL).
Allow you to access VeriStand system
channels outside of your custom device.

Can introduce latency into the PCL
as inline custom devices run inline
with the PCL.

Asynchronous
custom devices

Allow you to execute large operations
without introducing latency into the
PCL.

While you can synchronize the loop
to the PCL, making the custom
device pseudo-synchronous,
pseudo-synchronous loops are not
guaranteed to iterate once per
iteration of the PCL nor are they
guaranteed to iterate
deterministically with respect to the
PCL.

Inline custom
devices with
asynchronous
loops

Allow you to read and write data to and
from VeriStand in each iteration of the
Primary Control Loop (PCL).
Asynchronous loop(s) handle
nondeterministic operations, such as
writing data to a log file, without
introducing latency into the PCL.

Data must be consumed from the RT
FIFOs at a fast enough rate or the
mechanism will overflow.

Example: Embedded Data Logger

The Embedded Data Logger is an inline hardware interface custom device that reads
and writes data to and from VeriStand in each iteration of the PCL. The Embedded
Data Logger launches an asynchronous loop to log the data it receives to a file to
avoid causing latency in the PCL that is associated with file I/O.
The following table displays actions the Embedded Data Logger takes to operate
under this architecture.

Note You can find the Embedded Data Logger source code on GitHub.

Action Description

Initializing RT
FIFOs and

The Initialize case of the Embedded Data Logger RT Driver VI creates two RT
FIFOs and launches an asynchronous loop. One RT FIFO communicates channel

© National Instruments 269

VeriStand Feature Usage

http://www.ni.com/r/vsembeddeddatalogger

Action Description
launching an
asynchronous
loop

data from the Embedded Data Logger RT Driver VI to the asynchronous loop. The
other RT FIFO communicates state information from the asynchronous loop to
the Embedded Data Logger RT Driver VI.

The following diagram illustrates how the Embedded Data Logger and
asynchronous loop execute with respect to the PCL and how the Embedded Data
Logger communicates to the asynchronous loop via RT FIFOs.

Reading the
status of the
asynchronous
loop in the
inline custom
device

One of the RT FIFOs created in the Initialize case passes status information from
the asynchronous loop to the Embedded Data Logger RT Driver VI. You can see
how the Embedded Data Logger RT Driver VI reads data from the RT FIFO by
examining the Read Data from HW case. In this case, the Embedded Data Logger
checks the RT FIFO for a change in the error value.

Sending
channel data
from the inline
custom device
to the
asynchronous
loop

The other RT FIFO sends channel data from the Embedded Data Logger RT Driver
VI to the asynchronous loop. This communication takes place in the Write Data to
HW case, specifically in the Sample Group Data VI that executes in this case. This
VI is responsible for getting the values of the channels to log from the PCL and
writing them to the RT FIFO so the asynchronous loop can access them.

Implementing a Custom Device

Develop a custom device to fit your requirements.
Before you begin, you should plan your custom device.

ni.com270

VeriStand Feature Usage

1. Depending on your goal, complete any of the following tasks to configure the
appearance and components of your custom device.
Goal Task

Add custom device
channels and
waveforms

Add channels and waveforms to a custom device by using the
appropriate VI within a Custom Device Library VI that runs on the
host computer.

Add custom device item
properties

Use VIs on the Item Properties palette to get and set properties
of custom device items.

Add custom device
pages

Add pages to a custom device by creating the extra page VIs and
GUIDs, adding the extra pages to the custom device build
specifications, and defining the pages in the Custom Device XML
file.

Implement a custom
device hierarchy

Implement a flat or nested hierarchy for your custom device.

Add custom glyphs,
shortcut menus, and
toolbar buttons

Use elements in the Custom Device XML to configure custom
user interface components, such as glyphs, toolbar buttons, and
shortcut menus.

Add custom error codes Build custom error codes for your custom device using the
General Error Handler VI or the Error Code File Editor.

Automate responses to
user actions

Use action VI templates with the custom device XML file to
automate responses to user actions.

2. Depending on your goal, complete any of the following tasks to customize the
custom device engine by completing the following tasks.
Goal Task

Sync an asynchronous custom
device with the PCL

Configure an asynchronous custom device to run
synchronously with VeriStand by configuring the custom
device to use the same timing source as the Primary
Control Loop (PCL).

Read and write waveforms in
the custom device engine

Use waveforms in custom devices to publish waveform
data or read waveform data from other sources in the
VeriStand Engine.

3. Use tools to benchmark and debug the custom device.

After implementing your custom device, build the custom device.

© National Instruments 271

VeriStand Feature Usage

Adding Custom Device Channels and Waveforms

Add channels and waveforms to a custom device by using the appropriate VI within
a Custom Device Library VI that runs on the host computer.
Before you begin, you should understand custom device channels and waveforms.

Typically, you add channels in the Initialization VI so they appear when an operator
adds the custom device to the system definition.

Note Channels can also be added when an operator takes an action, such
as using a shortcut menu or toolbar button.

1. Open a Custom Device Library VI that runs on the host computer.
2. Based on the data exchange mechanism you want the custom device to use,

add a VI from the Configurations VIs palette.
Mechanism VI Type

Channel Add Custom Device Channel VI
Waveform Add Custom Device Waveform VI

3. Modify the following code in the VI.

Note The following image displays the Add Custom Device Channel
VI customized to add two input channels and one output channel.
The customizing process for the Add Custom Device Waveform VI is
very similar.

ni.com272

VeriStand Feature Usage

Device Item Ref in—Provides each instance of the Add Custom Device Channel VI with
the reference to the custom device to which to add the channels.

Channel cluster—Defines the various properties of the channel, including the type,
units, default value, faultability, and scalability of the channel. In this example, two
input channels and one output channel will be created.
Channel Name—Specifies the name of the new channel. In this example, the channel
names are A, B, and A+B. Each channel must have a unique name. If the name you
specify already exists, this VI overwrites the existing channel settings.

With this configuration, the custom device will create three channels, A, B, and
A+B, when you add it to a system definition.

Adding Custom Device Item Properties

Use VIs on the Item Properties palette to get and set properties of custom device
items.
Before you begin, you should understand custom device item properties.
While you can call Item Properties VIs from any VI within the custom device, you
should call them from VIs that run before the engine is deployed, such as in a page
VI or your Initialization VI. You cannot pass property information from the
configuration to the engine after the engine is deployed.
The following image displays the hierarchy of a custom device modified to set and
read properties.

© National Instruments 273

VeriStand Feature Usage

This custom device contains several hardware input channels, each with two item
properties. They are Filter Setting and Input Range. The custom device has the
following functionality regarding its properties:

■ When a user selects a channel from the system definition, the configuration
page for that channel initializes Filter Setting and Input Range. However, if the
properties already have set values, the configuration page displays the values
of the properties.
■ The configuration page allows operators to enter new values for each
property.
■ When an operator deploys the custom device, the RT Driver VI gets the value
for each item property so the RT Driver VI can use the values.

To implement this functionality, you have to modify your custom device code.

1. Modify the following code to set up the Initialization case to initialize the item
properties Filter Setting and Input Range in a page VI for a selected channel.
When an operator selects a custom device channel in System Explorer, the
page VI associated with that channel or section runs. The page VI then uses a
reference to the selected channel or section to get and set the properties for
that channel. If the properties are already initialized, the page VI gets the
current values for the properties and displays them on the front panel.

ni.com274

VeriStand Feature Usage

Node Ptr—Reference to the channel an operator selects in System Explorer.

Get Item Property VIs—Gets the values for the Filter Setting and Input Range properties
of the selected channel and then populates the controls on the configuration page with
that data. If a value does not already exist, Get Item Property VI initializes the property
with Default Value. In this example, the default values are False for Filter Setting and 1
for Input Range.

Note The names of properties are case sensitive strings. To reduce the risk
of error, consider storing property names as global variables.

Get Item Description VI and Get Item Data VI—Get the description and name of the
channel or section, and send that information to indicators on the front panel. These
VIs are part of the template page VI.

2. Modify the following code to set up the cases that detect a change of an item
property value in a page VI.
The page VI contains two Value Change event cases, one for the Input Range
control and one for the Filter Setting control. If an operator changes the value
of the item property using one of these controls, the page VI detects the
change in value and the Set Item Property VI sets the new value. The following
table shows these cases.
Control Basic Architecture Purpose

Input Range Determine the appropriate range of
each channel.

© National Instruments 275

VeriStand Feature Usage

Control Basic Architecture Purpose

Filter Setting Determines whether to filter each
channel

3. Modify the following code to set up a RT Driver VI to get the property values of
Filter Setting and Input Range for each channel.

Device Reference and Get Item Property VI—References custom device and gets the
Device Name item property to pass to the Get Item Reference by Name VI.

Get Item Reference by Name VI—Searches under the custom device for the Hardware
Inputs section and outputs the reference to that section.

Get Item Children VI—Returns an array containing all the references for all of the
children, or items, under the Hardware Inputs section. In the hierarchy, channels

ni.com276

VeriStand Feature Usage

ADDataFromCh<1...8> appear under Hardware Inputs, so the Get Item Children VI
returns an array of references for the channels.
Get Item Property VIs—Returns the values for the Filter Setting and Input Range
properties of each channel using the array of channel references.

Adding Custom Device Pages

Add pages to a custom device by creating the extra page VIs and GUIDs, adding the
extra pages to the custom device build specifications, and defining the pages in the
Custom Device XML file.
Before you begin, you should understand custom device pages.

1. Create a page VI with the required reference using the template VI included in
the Custom Device API library.

1. Open the LabVIEW project for your custom device.

2. In Project Explorer, browse to My Computer > Custom Device API.lvlib >
Templates > Subpanel Page VI > Page Template.vit.

3. Right-click Page Template.vit and select New from Template.
4. From the front panel of the new VI, save the VI in the folder containing

the other VIs for your custom device, such as RT Driver VI and Main Page
VI.

5. Close the VI.

6. In Project Explorer, drag the new VI to the Custom Device library.

2. Declare the page in the XML file of the custom device.

1. Open the LabVIEW project for your custom device.

2. In Project Explorer, browse to My Computer > Custom Device

<Name>.xml and open the XML file of your custom device.
3. Under the Pages section of the XML file, locate the Page section for the

main page of your custom device.
The declarations for the main page should be the first listed under the
Pages section. The name of the main page corresponds to the name of
the custom device.

© National Instruments 277

VeriStand Feature Usage

4. Copy the information between the Page tags, including the <Page> and
</Page> declarations, and paste it between the <Pages> and </Pages>
declarations.

5. Replace the information between the <eng> and <loc> decelerations
with the name of the new page.
For example, if you saved your page VI as ExtraPage.vi, enter ExtraPage.

6. Replace the information between the Path tags with the file path to the
new page.

Note You should only need to replace the last token in the
path, <Name> Main Page.vi, with your page VI.

7. Change the GUID between the <GUID> tags.

Note To reduce the risk of error when working with GUID
string constants, consider using a LabVIEW global variable that
is read only or creating a combo box control and saving it as a
type definition.

8. Save and close the XML file.

Note Every item with a unique page VI must have a page entry in the
Custom Device XML file and a unique GUID. However, items with
different GUIDs can reference the same page VI. If you want to create
several configuration pages that are only slightly different, you can
use the same page VI for each item by configuring the VI to check the
associated item GUID at run time. For example, you can add a Case
structure to the page VI with a case for each GUID.

3. Add the page to the build specifications.

1. Open the LabVIEW project for your custom device.

2. In Project Explorer, expand Build Specifications, and double-click
Configuration.

3. In the Category menu, select Source Files.

ni.com278

VeriStand Feature Usage

4. In Project Files, expand <Name> Custom Device.lvlib.

5. Select the new page VI, and click Add Item.
The VI is added to the Always Included section.

6. In the Category menu, select Source Files Settings.

7. In Project Files, expand the <Name> Custom Device.lvlib.
8. Select the new page VI, and from the Destination drop down box, select

<Name> Configuration LLB.

9. Click OK to close the build specification.
10. Save the LabVIEW project.

4. Restart VeriStand.

If your new page is not created properly, you will receive a custom device page error
when adding your custom device to the system definition:

Implementing a Custom Device Hierarchy

Implement a flat or nested hierarchy for your custom device.
Before you begin, you should understand custom device hierarchies.
A flat hierarchy is a hierarchy in which all of the channels appear under one section
in the configuration tree. A nested hierarchy includes additional sections under the
main section, allowing you to organize your channels.

1. Use the following table to determine the type of hierarchy you want in your
custom device.
Hierarchy type Use case

Flat Best suited for custom devices with a low number of channels.
Nested Best suited for custom devices with many channels. A nested hierarchy

makes the device easier to understand and operate for users.

2. Optional: Modify the following code to create a flat hierarchy.

© National Instruments 279

VeriStand Feature Usage

The Device Item Ref—Reference to the custom device, and specifies that each of the
Add Custom Device Channel VIs will place the channels they create under the main
section of the custom device in System Explorer.
Add Custom Device Channel VI—Creates an input channel named SMBTrig under the
main section of the custom device.

Add Custom Device Channel VIs—Creates eight input channels named ADEnCh<1...8>
and eight output channels named ADDataFromCh<1...8> under the main section of the
custom device.

All channels will appear under the main custom device section when an
operators adds the custom device to the system definition file. The following
image displays what this hierarchy will look like in System Explorer.

ni.com280

VeriStand Feature Usage

3. Optional: Modify the following code to create a nested hierarchy.

Add Custom Device Section VIs—Creates two sections, Hardware Enables and
Hardware Inputs, under the main section in System Explorer.

Add Custom Device Channel VI—Uses the Section Ptr reference to create eight
channels, ADEnCh <1...8>, under the Hardware Enables section.

Add Custom Device Channel VI—Uses the Section Ptr reference to create eight
channels, AddDataFromCh <1...8>, under the Hardware Inputs section.

Add Custom Device Channel VI—Creates SMBTrig to use Device Item Ref in. Therefore,
SMBTrig will appear under the main custom device section.

© National Instruments 281

VeriStand Feature Usage

All channels will appear under the main custom device section when an
operators adds the custom device to the system definition file. The following
image displays what this hierarchy will look like in System Explorer.

Adding Custom Glyphs, Shortcut Menus, and Toolbar Buttons

Use elements in the Custom Device XML to configure custom user interface
components, such as glyphs, toolbar buttons, and shortcut menus.
Before you begin, you should understand the custom device XML and the custom
device specific XML tags.

1. Open the LabVIEW project for your custom device.

2. In Project Explorer, browse to My Computer > Custom Device <Name>.xml
and open the XML file of your custom device.

3. Depending on your goal, complete any of the following tasks to configure the
user interface of your custom device.

ni.com282

VeriStand Feature Usage

Goal Description Task

Adding
glyphs

A glyph is
the icon that
appears next
to an item
System
Explorer.

Within the <Page> tags for an item, you can use the <Glyph> tag to
configure a custom glyph to display for the item. You can use any PNG
file as a glyph.
A collection of glyphs that install with VeriStand is available in the
<Application Data>\System Explorer\Glyphs directory.

Adding
toolbar
buttons

A Toolbar
button
appears in
the toolbar
of System

Explorer.
These
buttons only
appear when
displaying
the
configuration
page
associated
with the
button.

Within the <Page> tags for an item, you can use the <ButtonList> tag to
configure the toolbar buttons that appear with the item's configuration
page. Each <Button> must include a unique <ID> string that identifies
the button. The toolbar button displays by default.
However, in each page VI, you can use the Disable Dynamic Button VI
and the Enable Dynamic Button VI to dynamically disable and enable a
button for that page based on its unique ID. These VIs are useful when
you want the toolbar button to appear only when certain conditions are
true.
These VIs are located in the labview\vi.lib\NI VeriStand\Custom Device
API directory.
The following is an example framework you can use to implement a
toolbar button.

© National Instruments 283

VeriStand Feature Usage

Goal Description Task

Adding
shortcut
menus

A shortcut
menu for an
item is the
menu that
appears
when you
right-click
the item in
System
Explorer.

Within the <Page> tags for an item, you can use the <RunTimeMenu> tag
to configure the shortcut menu for the item. Each <MenuItem> you add
under <RunTimeMenu> includes an <Item2Launch> section that
specifies a VI to run when an operator selects the menu item.
The Custom Device API library includes a template for this VI,
RunTimeMenu Custom Item 2 Launch.vit, in the labview\vi.lib\NI
VeriStand\Custom Device API directory.
The following is an example framework you can use to implement a
shortcut menu.

ni.com284

VeriStand Feature Usage

Goal Description Task

4. Save and close the XML file.

Adding Custom Error Codes in a Custom Device

Build custom error codes for your custom device using the General Error Handler VI
or the Error Code File Editor.

1. Create the error code file in LabVIEW.
2. Move the error code file to the VeriStand errors folder located at

<Base>\National Instruments\Shared\Errors\English.

If VeriStand encounters your custom error code, it will display the message you
defined in the file.

Automating Responses to User Actions with Action VIs

Use action VI templates with the custom device XML file to automate responses to
user actions.
Before you begin, you should understand the action VI templates and the custom
device XML file.

© National Instruments 285

VeriStand Feature Usage

Action VIs are dynamically called VIs that execute when a user performs a specific
action in a custom device. For example, you can use an action VI to notify a user of
the implications of removing a specific custom device item before they delete it.

1. Create a new VI from an action VI template.

1. From the custom device LabVIEW project, navigate to Custom Device

API.lvlib > Templates > Action VI.

2. Right-click the action VI you want to customize and select New from

Template.
3. Save the new action VI to the same directory as the custom device

project.

2. Declare the action VI in the Custom Device XML.
You declare the action VI within the declaration for a specific page. The action
VI executes when a user performs the triggering action on that page.

1. From the custom device LabVIEW project, open the custom device XML
file.

2. Locate the <Page> tags for the custom device item from which you want
to call the action VI.

3. Declare the action VI anywhere beneath the <Item2Launch> tag.
The following image gives an example of how to declare the action VI.

3. Customize the action VI to meet your needs.

ni.com286

VeriStand Feature Usage

4. Add the action VI to the Configuration build specification of the custom
device.

1. From the custom device LabVIEW project, double-click Build

Specifications > Configuration.
2. Select Source Files from the Category menu.
3. Under the Project Files menu, locate the action VI and move it to the

Always Included list.

4. In the Category menu, select Source File Settings.
5. In the Project Files menu, select the action VI.
6. From the Destination pull-down menu, select the Configuration .llb file.

7. Click OK to save the new settings.

Action VI Templates
VeriStand contains eight action VI templates that are triggered by different actions.
The following table displays the action VI templates provided by VeriStand in the
Custom Device API library.
Action VI Description

ActionVIOnLoad Executes when VeriStand loads a custom device item into memory.
This template helps create action VIs that launch background
processes. For example, if your custom device requires large
amounts of data, you can customize this template to start a
daemon that runs processes or gathers data in the background.

ActionVIOnDeleteRequest Executes when a user tries to delete an item from the custom
device. This template helps create action VIs that prevent a user
from deleting a custom device item or warn a user of the
implications of deleting a custom device item.

The template has the following unique parameters.

■ Item Ref—The reference to the custom device item whose
XML declaration calls this action VI.
■ Refs that are about to get deleted—A 1D array of references
to the items to be deleted. However, the 1D array will only
contain one reference, as users can only delete one item at a
time in the System Explorer window.

© National Instruments 287

VeriStand Feature Usage

Action VI Description
■ Discard reason—An output you can use to capture the
user's reason for deleting the item.
■ Discard delete request?—Allows you to discard the delete
request. After the action VI finishes executing, VeriStand will
evaluate this output to determine whether or not to delete
the item. If True, VeriStand will not delete the item. If False,
VeriStand will delete the item.
■ Additional items to delete—An array of references to
additional items you want to delete. For example, if other
custom device items depend on the item the user wants to
delete, you can use this output to automatically delete those
items.

ActionVIOnDelete Executes after a user deletes an item from the custom device. You
can customize this template to alert users which channel mappings
break when they delete the custom device item. You can also
customize this template to reconfigure hardware.

For example, if the user deletes a page that specifies custom
configuration data for your hardware, you can customize the
template to return the configuration to default settings.

ActionVIOnSystemShutdown Executes when System Explorer closes. You can customize this
template to close hardware connections or to close daemons you
launch from an ActionVIOnLoad action VI.

The template has the following unique parameters.

■ Device Item Ref—Reference to the custom device item
whose XML declaration calls this action VI.
■ Unload SDF?—Indicates whether or not the system
definition file was unloaded. Unload SDF? is always True.
■ Saved?—Indicates whether or not a user saved the system
definition file before closing System Explorer.
■ Path—Path on disk to the system definition file.
■ System Explorer Shutdown?—Indicates whether or not
System Explorer closed. This parameter is always True.

ActionVIOnSave Executes when a user saves the system definition file. For example,
you can customize this template to log each time the custom
device is saved.

ni.com288

VeriStand Feature Usage

Action VI Description
ActionVIOnDownload Executes when a user deploys the system definition file containing

the custom device to a real-time target. This action VI does not
execute if a user deploys the system definition to a Windows target.

This template helps create action VIs that finalize the target
configuration after you deploy the system definition. You can also
customize this template to deploy any additional files or
dependencies your custom device requires. For example, if your
custom device reads and writes to shared variables, you can deploy
those variables.

The template has the following unique parameters.

■ Device Item Ref in—Reference to the custom device item
whose XML declaration calls this action VI.
■ ftp session—Open FTP session used to download the
system definition to the target. You can use this open session
to move additional files to the target.
■

System Definition Dir—Path to the system definition file on
disk.
■ IP Address—IP address of the target.
■ ftp session out—Open FTP session used to download the
system definition file to the target.

ActionVIOnPaste Executes when a user pastes a custom device item. This template
helps create action VIs that check channel properties. For example,
if the user pastes a page that configures a target, you can create an
action VI to ensure that the new page does not attempt to
reconfigure the target.

You can also customize this template to prompt a user to enter new
values for the pasted item. For example, if a user pastes a page that
will conflict with existing pages, you can prompt the user to enter
new values for the page.

The template has the following unique parameters.

■ Ptr in—Reference to the custom device item whose XML
declaration calls this action VI.
■ Parent—Reference to the parent of the custom device item
whose XML declaration calls this action VI.

© National Instruments 289

VeriStand Feature Usage

Action VI Description
■ All Ptrs—Array of references to the items the user pasted.
You can only select one item to copy. This array only contains
one reference that matches the Ptr in reference.

ActionVIOnCompile Executes when VeriStand compiles the system definition file.

Note If you deploy the system definition, then undeploy
it, and then redeploy it without making changes, this
template does not execute because the system
definition does not recompile.

You can customize this template to finish configuring your
hardware. The system definition file compiles when a user deploys
the system definition, so you can configure your hardware based on
the final settings from the system definition.

You can also customize the template to quickly gather host-side
settings. For example, often the custom device RT Engine VI uses
properties set in the system definition. You can customize this
template to read the values on the host side, which is much faster
than reading them from the real-time target. You can then gather
the properties into a single cluster, convert that cluster to a data
variant, and write the variant as a single item property.

Synchronizing an Asynchronous Custom Device with the Primary Control Loop

Configure an asynchronous custom device to run synchronously with VeriStand by
configuring the custom device to use the same timing source as the Primary Control
Loop (PCL).

Before you begin, you should understand asynchronous custom devices and the
VeriStand Engine.

VeriStand can use a DAQ device as the timing source for the PCL. You can configure
the RT Driver VI of your asynchronous custom device to use the same timing source.
When you synchronize your custom device to the PCL, your custom device will not
delay PCL if it finishes late.

1. Set up an asynchronous custom device.

ni.com290

VeriStand Feature Usage

2. Modify the following code to add and configure the Set Loop Type VI in the
Initialization VI.
You can add and configure the Set Loop Type VI in any VI for configuring the
custom device, such as a page VI. For example, if you want a user to be able to
specify whether or not to synchronize the custom device to the PCL, you could
add and configure the Set Loop Type VI in the Main Page VI of the custom
device.

Loop type—Specifies that the custom device will use a Timed Loop.

Set Loop Type VI—When Use Device Clock (Timed Loops only) input is True, VeriStand
passes the timing source from the PCL to the Device Clock control in the RT Driver VI.

3. Modify the following code to configure the RT Driver VI to use the PCL Timing
Source.
Before configuring your asynchronous RT Driver VI you must change the
device's Data Loop from the default While Loop to a Timed Loop. You can do
this by right-clicking the While Loop and selecting Replace with Timed Loop.

© National Instruments 291

VeriStand Feature Usage

Device Clock—Specifies the name of a timing source that is ticked for every iteration of
the PCL after the Custom Device FIFOs have been updated. VeriStand passes this
timing source to the custom device. By wiring Device Clock to Source Name, the Timed
Loop will run according to the same timing source as the PCL.
Get Custom Device Decimation VI—Returns the decimation factor of the custom device,
or how many iterations of the PCL occur between calls to the custom device. This
decimation factor serves as the Period of the Data Loop Timed Loop. The default value,
1, specifies no decimation, meaning the PCL will call the custom device on every
iteration.
This configuration allows you to use the Set Custom Device Decimation VI in one of the
VIs for configuring your custom device, such as Initialization VI or a page VI, to specify a
decimation.

Note For asynchronous custom devices, the decimation only affects when
the Primary Control Loop reads and writes the FIFOs it uses to
communicate with the custom device.

Get Asynchronous Driver VI Timed Loop Name VI—Returns the System Explorer path to
the custom device as a string. This string serves as the unique Structure Name of the
Data Loop Timed Loop, ensuring the VeriStand Engine synchronizes the start of this
Timed Loop with the start of the PCL.
Get Timed Loop Priority VI—Outputs the priority of the Timed Loop. The priority can be
low, medium, or high.

Convert Timed Loop Priority VI—Converts this enumeration value to a numeric value
that the Priority terminal of the Timed Loop input node accepts.

Reading and Writing Waveforms in the Custom Device Engine

Use waveforms in custom devices to publish waveform data or read waveform data
from other sources in the VeriStand Engine.
Before you begin, add a waveform to your custom device.

1. Open your waveform custom device in LabVIEW.
2. Use the VIs on the Waveform Data palette to open a write session to the

waveform in the RT Driver VI of your custom device.

ni.com292

VeriStand Feature Usage

VI Description

Get Waveform
Data Reference

Generates a data reference to a specific waveform. If you want to write
multiple waveforms, call this VI once per waveform and build an array of
data references.

Open Waveform
Session

Opens a write session for one or multiple waveforms. You should specify
the delta t (dt), or time interval in seconds between any two points in
the signal. For example, the dt of a 10 kHz waveform is 0.0001 seconds.

Start
Waveform(s)

Provides a start time (t0) that defines when the first sample is written.
Readers of the waveform in the VeriStand Engine and on the host
computer will receive this value. If you want to read data from another
waveform or from the DAQmx API, the t0 is provided. However, if you
want to read waveform data from an FPGA, you must calculate the t0
yourself.

Write
Waveform(s)

Writes an array of waveform samples. Call this VI repeatedly as you
generate data for the waveform. You can write as much or as little data
at a time as you want. If you opened a write session for multiple
waveforms, this VI writes to each waveform simultaneously.

Close Waveform
Session

Closes the write session.

3. Use the VIs on the Waveform Data palette to implement a read session from
the waveform in the RT Driver VI of your custom device.
VI Description

Get Waveform Data
Reference

Generates a data reference to a specific waveform. If you want to
read multiple waveforms, call this VI once per waveform and build
an array of data references.

Open Waveform
Session

Opens a read streaming session for one or multiple waveforms.

Read Waveform(s) Returns an array of values from the waveform whenever any
waveform source publishes data. Call this VI repeatedly to read
data as it is published.

Close Waveform
Session

Closes the waveform streaming session.

For an example of a custom device that reads and writes waveforms, on a computer
with LabVIEW installed, browse to the labview\examples\NI Veristand\Custom

© National Instruments 293

VeriStand Feature Usage

Devices\Waveform Analysis and Generation directory and open Waveform Analysis
and Generation Custom Device Project.lvproj.
After you have set up your custom device, review the other considerations for
reading and writing waveforms in a custom device engine.

Other Considerations for Reading and Writing
Waveforms in a Custom Device Engine
When reading and writing waveforms in a custom device, you should try to avoid
data loss, identify the value source when reading from multiple waveforms, and
calculate the start time of a read operation.

Avoiding Data Loss When Reading and Writing Data

VeriStand uses queues to transfer data between custom devices and the Waveform
Processing Loop (WPL), which transfers the waveform data through the system. By
default, VeriStand automatically calculates the size of the queue used to hold
waveform data. The calculations, described as follows, depend on whether you
open a read or write session with the Open Waveform Session VI:

■ Write sessions—The queue size is three elements, so the custom device can
write three times without the WPL reading from the queue before data loss
occurs.
■ Read sessions—The queue size is three times the number of waveforms
being read. For example, if you read from ten waveforms, the queue size is 30.

If you notice data loss, you can specify a larger, custom queue size for the VeriStand
Engine to use. When you open a read or write session with the Open Waveform
Session VI, use the elements of the Communication Properties input cluster to
define a custom queue size. If the CPU cannot read or write as quickly as the custom
device requires, changing the queue size will not resolve data loss, only delay it.

For read sessions, you can monitor the WPL Overflow Count system channel to
determine if a queue overflows. For write sessions, use the timed out? output of the
Write Waveform(s) VI to indicate when data loss occurs.

ni.com294

VeriStand Feature Usage

Identifying the Source of Values When You Read from Multiple Waveforms

If you open a read session for multiple waveforms, the Read Waveform(s) VI
executes whenever any waveform returns data, and the VI returns data from only
that waveform. You can identify which waveform the data came from during a
particular execution using the Data reference element that the VI returns in a cluster
output called Properties. Compare the Data reference to the data references you
generated before you opened the waveform session.

Calculating the Start Time of a Read Operation

When you read from a waveform with the Read Waveform(s) VI, the VI returns a
cluster that includes a t0 at start element. t0 at start is the start time of the first
sample in the waveform, not the start time of the first sample in the current array of
read values. You can calculate the start time of the first sample read during a
particular read operation using the following equation:

current t0 = t0 at start + (dt * offset from start (samples))
 where t0 at start is the start time of the first sample in the waveform,
 dt is the time between samples, and
 offset from start (samples) is the number of samples by which the
first sample in the array of read values is offset from the first sample in the
waveform.

Note The Read Waveform(s) VI returns dt, offset from start (samples), and
t0 at start in a cluster output.

Custom Device Benchmarking and Debugging

You can use tools provided by LabVIEW and VeriStand to benchmark and debug your
custom device.
You should perform benchmarking on a system that is similar to the target. Other
components of the VeriStand system, such as models, calculated channels, alarms,
and procedures, affect the ultimate execution speed of the system.
The following table displays various tools you can use to benchmark and debug
VeriStand custom devices.

© National Instruments 295

VeriStand Feature Usage

Tool Purpose Granularity Location Details

LabVIEW
Debugging
Tools

Debugging N/A LabVIEW You can merge debugged VIs into the Custom
Device Framework manually. Timing can
differ between standalone VIs and VIs in the
Custom Device Framework. This tool is not
available after VeriStand integration.
For more information, refer to the
Debugging Techniques topic in LabVIEW
Help.

Console
Viewer

Benchmarking
(CPU) and
debugging

Low VeriStand A VeriStand workspace tool that displays
system definition details, CPU usage, and
debugging messages. The tool takes periodic
snapshots and prints messages sent by the
Print Debug String VI.
This tool is only available on PharLap real-
time (RT) targets. CPU spikes and transients
might not appear.

Custom
Error Codes

Debugging N/A LabVIEW
and
VeriStand

You can define custom error codes in
LabVIEW and distribute the codes to
VeriStand with a custom device. Copy the
custom errors.txt file to VeriStand in the
<Base>\National
Instruments\Shared\Errors\English directory
and add the file as a dependency in custom
device and Custom Device XML file.
For RT targets, deploy the errors.txt file to
the error directory on target to display error
descriptions in Console Viewer.
For more information, refer to the Defining
Custom Error Codes to Distribute throughout
Your Application topic in the LabVIEW Help

Print Debug
String VI

Debugging NA LabVIEW This VI prints messages to the RT console
and the VeriStand data log. This tool works
on Windows and RT targets.

NI
Distributed
System
Manager

Benchmarking
(CPU and RAM)

Medium Installs
with
LabVIEW.

The manager works with network variables
and manages remote target settings and the
status of the Shared Variable Engine. This
tool takes periodic snapshots.

ni.com296

VeriStand Feature Usage

Tool Purpose Granularity Location Details
To use this tool, you must install System
State Publisher on the RT target. CPU spikes
and transients might not appear.

System
Channels

Benchmarking
and debugging

High VeriStand Useful system channels include:

■ HP Count
■ HP Loop Duration
■ LP Count
■ Model Count

You can use these channels with alarms or
procedures.

NI Real-
Time
Execution
Trace
Toolkit

Benchmarking
and debugging

Very High Installs
with
LabVIEW
Real-Time
Module.

This toolkit creates execution trace logs for
low-level debugging. These logs provide
detailed information on thread and VI
timing.
Interacts with the following system
channels:

■ Detailed Tracing Flag
■ Thread Tracing Flag
■ Trace Buffer Size
■ Trace Enabled Flag
■ VI Tracing Flag

For more information, refer to Debugging
Threads in VeriStand.

Building a Custom Device

Build a custom device for distribution to VeriStand.
Before you begin, you should start implementing your custom device. It will take
several iterations of implementing and building to create your custom device.
The process for building the source distribution for a custom device is the same as
the process for building any source distribution in LabVIEW. When you build a
custom device, the Build Specifications item in the LabVIEW project must include
source distributions called Configuration and Engine.

© National Instruments 297

VeriStand Feature Usage

http://www.ni.com/r/trace
http://www.ni.com/r/trace
http://www.ni.com/r/trace
http://www.ni.com/r/trace
http://www.ni.com/r/trace
http://www.ni.com/r/exwvtz
http://www.ni.com/r/exwvtz

Note For more information on building source distributions, refer to the
LabVIEW Help by selecting Help > LabVIEW Help in LabVIEW.

1. Open your LabVIEW project.
2. Create a Configuration source distribution.

1. In Project Explorer, right-click Build Specifications and select New >
Source Distribution.

2. In the My Source Distribution Properties dialog box, click Information,
and enter the Build specification name as Configuration.

3. Enter a Destination directory.

4. Click Source Files and determine which files to include and exclude.
All dependency files that the custom device accesses on the target must
exist in the LabVIEW project and appear in the Always Included list for
the appropriate source distribution. You should include any
dynamically-loaded dependencies, such as pages and the Initialization
VI.

Note You must include the Custom Device XML file in the
Configuration source distribution.

5. Click Destinations and set the Destination type to LLB.

6. Click Additional Exclusions, and disable Modify project library file after

removing unused members.

Note This option can cause an error when you load the
custom device in VeriStand.

7. Click OK.

3. Create an Engine source distribution.

1. In Project Explorer, right-click Build Specifications and select New >
Source Distribution.

ni.com298

VeriStand Feature Usage

2. In the My Source Distribution Properties dialog box, click Information,
and enter the Build specification name as Engine.

3. Enter a Destination directory.

Note Use the same Destination directory as the Configuration
source distribution. Using one directory makes it easier to distribute
the custom device.

1. Click Source Files and determine which files to include and exclude.

2. Click Destinations and set the Destination type to LLB.

3. Click Additional Exclusions, and disable Modify project library file after

removing unused members.

4. Click OK.

4. Save the LabVIEW project.

5. Right-click Build Specifications and select Build All.

After building the custom device, distribute it.

Distributing Custom Devices

Package a custom device to manually distribute it to VeriStand.
Before you begin, you must build the custom device.

Note For information on building installers, refer to the LabVIEW Help.

1. On your development machine, create a top-level directory to contain the
custom device files.

2. Within the new directory, create two sub-directories and label them Build and
Source.

3. Copy the source distributions you built from the custom device project into
the Build directory.
Include both the LLBs and the Custom Device XML file.

© National Instruments 299

VeriStand Feature Usage

4. Copy the LabVIEW project you used to create the custom device into the
Source directory, along with any supporting files and dependencies.

5. On the same level as the Build and Source directories, create a readme file
that includes any instructions an operator needs to install, license, use, and/or
modify the custom device.

6. Create a ZIP file from the top-level directory.

You now can distribute the custom device ZIP file to any operator using a
corresponding version of VeriStand. The operator can add the custom device to
VeriStand by copying the contents of the Build directory into the <Common
Data>\Custom Devices directory or, for timing and sync devices, the <Common
Data>\Timing and Sync directory on their host computer. VeriStand parses these
directories for custom devices when it launches.

Note The path to the shared directory varies based on your operating
system.

To enable an operator with LabVIEW access to modify and rebuild the custom
device, you can provide the files in the Source directory.

Customizing an FPGA Target
To run a project on an FPGA target, you need a bitfile (.lvbitx) and an FPGA
configuration file (.fpgaconfig).
VeriStand includes bitfiles and FPGA configuration files for many FPGA targets. The
default bitfiles and configuration files are sufficient for many applications. If you
want to use additional digital I/O lines, use more than two PWM outputs, or have
digital filtering built into the FPGA target, you must create a custom bitfile and
configuration file.

Note Install the LabVIEW FPGA Module to create these files.

1. Copy the sample FPGA VI and project—Create a template by making a copy of
a sample FPGA VI and project.

2. Customize the FPGA VI—Modify an FPGA VI to match your hardware device.

ni.com300

VeriStand Feature Usage

3. Compile the FPGA VI into a bitfile—Prepare to use your FPGA VI in an FPGA
target by compiling the VI into a bitfile.

4. Create an FPGA configuration file—Create an FPGA configuration file for the
host computer.

Copying the Sample FPGA VI and Project

Create a template by making a copy of a sample FPGA VI and project.

To develop an FPGA VI and project, you must install matching versions of LabVIEW
and VeriStand. For example, you must use LabVIEW 2020 to develop for VeriStand
2020.

1. Browse to the <Common Data>\FPGA\Templates directory.
2. Create a copy of NI VeriStand IO PXI-7854R.lvproj in the same directory and

open the copy in LabVIEW.

Note If you are using a CompactRIO FPGA target, create a copy of NI
VeriStand FPGA IO cRIO.lvproj instead.

3. In Project Explorer, under My Computer, expand FPGA Target (PXI-7854R).

4. Optional: To define a target other than PXI-7854R, add it to the project.

1. Right-click My Computer and select New > Targets and Devices from the
shortcut menu.

2. In the Targets and Devices dialog box, select the New target or device.

3. Select the device type from the list and click OK.

4. In Project Explorer, under the FPGA Target (PXI-7854R), drag NI

VeriStand FPGA DMA IO.vi to the new target.

5. Under the FPGA Target (PXI-7854R) target, drag the DMA_WRITE FIFO
and DMA_READ FIFO to the new target.

6. Right-click the new target and select New > FPGA I/O to add the
connectors available on the new target.

© National Instruments 301

VeriStand Feature Usage

Note The FPGA VI displays broken wires from any FPGA I/O
Nodes with undefined channels. For more information on
adding I/O to a project, refer to the LabVIEW FPGA Module
Help.

5. In Project Explorer, double-click NI VeriStand FPGA DMA IO.vi.

6. In the NI VeriStand FPGA DMA IO VI, select File > Save As.

7. Enable Substitute copy for original and click Continue.

8. Rename the VI and click Save.

9. In Project Explorer, save the project.

After creating your FPGA VI and project, customize the VI.

Customizing an FPGA VI

Modify an FPGA VI to match your hardware device.
Before you begin, copy a sample FPGA VI and project and learn about FPGA
customization guidelines and defaults.

1. Open the FPGA VI in LabVIEW.
2. Add or remove FPGA I/O items depending on the device and the needs of the

project.
By default, the sample FPGA VI only uses the first 40 lines on connectors 1 and
2. You can add more FPGA I/O items to this project if you want to expose
addition I/O lines on your target.

Note For FPGA targets with no analog inputs or outputs, you can
remove the analog I/O items from the project and the corresponding
FPGA I/O Nodes from the FPGA VI.

Similarly, the default sample FPGA VI defines the digital lines on connector 0
as 8 PWM inputs and 8 PWM outputs. You may need more or fewer PWM
channels. You can add other custom I/O not defined in the sample FPGA VI.

ni.com302

VeriStand Feature Usage

3. Optional: If the FPGA VI displays broken wires to FPGA I/O nodes, update the
corresponding I/O nodes with the correct pins available on the target.

4. Optional: If the number of packets in either the DMA_READ or DMA_WRITE
FIFO is greater than 15, update the FIFO size.

1. In Project Explorer window, right-click a FIFO I/O item and select
Properties.

2. In the FPGA FIFO Properties dialog box under General, change the
Number of Elements, and click OK.

5. Save the FPGA VI.

After customizing the FPGA VI, compile the VI into a bitfile.

FPGA VI Customization Guidelines and Defaults

When modifying an FPGA VI, be aware of the guidelines and defaults.

Guidelines

Use the following guidelines to avoid creating errors.

■ Do not modify, remove, or rename block diagram objects in the gray areas
of the sample FPGA VI.
■ Do not modify the read or write code except to change the number of
packets or to change the size of the array constant for the DMA read operation
of the DMA_WRITE FIFO.
■ Ensure that the name of each control is unique within the VI.
■ Do not use the following control/indicator names: Loop Rate (usec), Write to
RTSI, Use External Timing, Reset, Start, or Generate IRQ.

Note For more information on creating FPGA VIs and bitfiles for an FPGA
target, refer to the LabVIEW Help by selecting Help > LabVIEW Help in
LabVIEW.

© National Instruments 303

VeriStand Feature Usage

Defaults

The process of creating a custom FPGA VI differs depending on the hardware devices
you are using. The default project defines the following FPGA I/O items for the
PXI-7854R device:

■ analog input channels 0–7
■ analog output channels 0–7
■ digital lines 0–39 on connectors 1 and 2
■ digital lines 0–15 on connector 0

VeriStand uses direct memory access (DMA) FIFOs to transfer data between the host
computer and FPGA target. The DMA_READ FIFO sends data read from the FPGA
inputs to the host computer. The DMA_WRITE FIFO transfers data from the host
computer to the FPGA outputs. The data is stored in packets that each can contain
up to 64 bits. For example, you can pack four 16-bit signed (I16) integer values into a
single 64-bit packet. You can pack values of different data types together in the
same packet. If you add a channel to the FPGA VI, you also must add the channel to
a packet that is written to the FIFO.

Note Use the Join Numbers function or Split Number function to
construct packets.

Compiling a Custom FPGA VI into a Bitfile

Prepare to use your FPGA VI in an FPGA target by compiling the VI into a bitfile.
Before you begin, create a customized FPGA VI.

FPGA VIs define the analog, digital, and pulse width modulation (PWM) inputs and
outputs of an FPGA target. A bitfile contains the information that FPGA targets need
to function as the FPGA VI specifies.

Note For more information on compiling FPGA VIs, refer to the LabVIEW
Help by selecting Help > LabVIEW Help in LabVIEW.

1. Open LabVIEW.

ni.com304

VeriStand Feature Usage

2. In Project Explorer, right-click the FPGA VI, and select Compile.

The compiler places the bitfile in an FPGA Bitfiles subdirectory relative to the project
file directory. By default, the bitfile name is <name of project>_<name of FPGA
VI>.lvbitx.
After creating a bitfile, create an FPGA configuration file.

Creating a Custom FPGA Configuration File

Create an FPGA configuration file for the host computer.
Before you begin, compile your custom bitfile.
For each FPGA bitfile, VeriStand requires an FPGA configuration file. The FPGA
configuration file is an XML file that the host computer uses to determine the DMA
FIFO properties and how the FPGA device appears in System Explorer.

1. Navigate to the <Common Data>\FPGA directory and create a copy of an
existing default configuration file.

2. Modify the FPGA configuration file using XML tags.
3. Save the file to the <Common Data>\FPGA directory using the .fpgaconfig file

extension.
If you choose to save the file in a different directory, save a copy of the NI
VeriStand FPGA DMA.xsd file, NI VeriStand FPGA DMA.xsl file, and the
associated .lvbitx file in the same directory. If these files are not saved in the
same directory, VeriStand cannot load the FPGA configuration file.

Note FPGA configuration files must have at least one space in the
file name.

FPGA Configuration File XML Tags

Use XML tags and structure to customize an FPGA configuration file.
The first line of the FPGA configuration file includes the XML version. All other tags
inside the file must be enclosed in <FPGADMAChannelData> tags.
<?xml version="1.0"?>
<FPGADMAChannelData>

© National Instruments 305

VeriStand Feature Usage

<!-- Insert tags here -->
</FPGADMAChannelData>

XML schema files (.xsd) are definition files that constrain an XML file to a certain
format. You can add a schema file to most XML editing tools when writing an XML
file. Use the NI VeriStand FPGA DMA.xsd schema file in the <Common Data>\FPGA
directory to minimize syntax and formatting errors when you create an FPGA
configuration file.
The following table displays the XML tags you can use in the FPGA configuration file.
To see how to implement these tags, refer to the example FPGA Configuration File
Structure.
Tag Required? Parent tag Number

of child
tags

Description

FPGADMAChannelData Yes — — Contains all channel
definitions.

Version Yes FPGADMAChannelData 1 Defines which version of
the channel tags you used
to create the FPGA
configuration file. For
example, if you used the
tags defined in this table,
you must set the Version
tag to 2.0.

Bitfile No FPGADMAChannelData 1 Specifies the name of the
corresponding bitfile
(.lvbitx). The bitfile must
be saved in the same
directory as the FPGA
configuration file. The
default value is <name of
FPGA configuration
file>.lvbitx.

Categories No FPGADMAChannelData 1 Contains multiple category
definitions and describes
the hierarchy of the
channels visible in System

ni.com306

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

Explorer. You cannot nest
<Categories>.

Category Yes Categories 0 or
more

Defines a single level of the
configuration tree
hierarchy in System

Explorer. You can nest
<Category>. If you do not
specify <Category>
elements, the
configuration tree
hierarchy is inferred based
on the <Category> tags
contained within
individual channels.

Name Yes Category 1 Defines the name of
<Category> in System

Explorer configuration
tree. <Name> must be
unique within its set of
siblings.

Description No Category 1 Specifies the description of
<Category> in System

Explorer.
Symbol No Category 1 Defines the symbol for

<Category> in the System

Explorer window
configuration tree.

You can select from the
following values:

■ Default
■ AI
■ AO
■ DI
■ DO

© National Instruments 307

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

■ PWM In
■ PWM Out

DMA_Read Yes FPGADMAChannelData 1 Contains packet
definitions. Specifies the
content of the DMA_Read
FIFO.

DMA_Write Yes FPGADMAChannelData 1 Contains packet
definitions. Specifies the
content of the DMA_Write
FIFO.

Packets Yes DMA_XXX* 1 Defines the number of
unsigned 64-bit packets
contained in the DMA FIFO.
If the number of <Packet>
elements is less than the
number specified in
<Packets>, VeriStand
ignores the last <Packet>.

Packet No DMA_XXX 1 or
more

Specifies the content of a
single unsigned 64-bit
channel in the DMA FIFO.
You do not have to use all
of the available bits in a
packet. You also can
specify an empty packet
using the <Packet/> tag
with no closing tag. An
empty <Packet> element
specifies a packet that is to
be ignored.

You might want to use an
empty packet for the first
DMA_Read packet because
the first bit of the first
DMA_Read packet contains
a Late Status field by

ni.com308

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

default. If you specify an
empty packet for the first
DMA_Read packet, this
unusable Late Status bit
does not appear in System

Explorer. If you want the
Late Status bit to be visible
in System Explorer, specify
it as a Boolean channel in
the first DMA_Read packet.

I8 No Packet 0 or
more

Specifies a signed 8-bit
channel in the DMA FIFO.

U8 No Packet 0 or
more

Specifies an unsigned 8-bit
channel in the DMA FIFO.

I16 No Packet 0 or
more

Specifies a signed 16-bit
channel in the DMA FIFO.

U16 No Packet 0 or
more

Specifies an unsigned 16-
bit channel in the DMA
FIFO.

I32 No Packet 0 or
more

Specifies a signed 32-bit
channel in the DMA FIFO.

U32 No Packet 0 or
more

Specifies an unsigned 32-
bit channel in the DMA
FIFO.

I64 No Packet 0 or
more

Specifies a signed 64-bit
channel in the DMA FIFO.

U64 No Packet 0 or
more

Specifies an unsigned 64-
bit channel in the DMA
FIFO.

Boolean No Packet 0 or
more

Specifies a Boolean
channel in the DMA FIFO.

FXPI32 No Packet 0 or
more

Specifies a fixed-point
signed 32-bit channel in
the DMA FIFO. Use this
data type if the word

© National Instruments 309

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

length you specify in
<FXPWL> is less than or
equal to 32 bits. The
channel occupies the full
32 bits in the packet, but
only use the bits
corresponding to the word
length.

FXPU32 No Packet 0 or
more

Specifies a fixed-point
unsigned 32-bit channel in
the DMA FIFO. Use this
data type if the word
length you specify in
<FXPWL> is less than or
equal to 32 bits. The
channel still occupies the
full 32 bits in the packet,
but only the bits
corresponding to the word
length are used.

FXPI64 No Packet 0 or
more

Specifies a fixed-point
signed 64-bit channel in
the DMA FIFO. Use this
data type if the word
length you specify in
<FXPWL> is greater than 32
bits. The channel still
occupies the full 64 bits in
the packet, but only the
bits corresponding to the
word length are used.

FXPU64 No Packet 0 or
more

Specifies a fixed-point
unsigned 64-bit channel in
the DMA FIFO. Use this
data type if the word
length you specify in
<FXPWL> is greater than 32
bits. The channel still

ni.com310

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

occupies the full 64 bits in
the packet, but only the
bits corresponding to the
word length are used.

PWM No Packet 0 or
more

Specifies a pulse width
modulation (PWM)
channel in the DMA FIFO.
Consists of two 32-bit
numbers, totaling 64 bits.
The lower 32 bits represent
the low time of the PWM
channel. The higher 32 bits
represent the high time of
the PWM channel.

Void No Packet 0 or
more

Specifies unused bits in
the middle of a packet.

Size Yes Void 1 Specifies the number of
bits to ignore in a packet.

Name Yes any data type 1 Defines the name of the
channel in System

Explorer. This tag must be
unique within its category.

Description No any data type 1 Specifies the description of
the channel in System

Explorer.
Category No any data type 1 Specifies the full path of

the category where the
channel should appear. If
you do not specify
<Category>, the default is
Input for channels in the
DMA_Read FIFO and
Output for channels in the
DMA_Write FIFO.

© National Instruments 311

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

InitialValue No any data type 1 Specifies the value of the
channel until its value is
set. The default value is 0.

Use <InitialValue> for
output channels.

Scale No any data type 1 Specifies the range of the
scale in engineering units.
For PWM and fixed-point
data types, the default
value is 1. For all other
data types, the default
value is the full positive
range of the data type.

For example, the full
positive range of the
signed 8-bit data type is
127, and the full positive
range of the unsigned 8-bit
data type is 255.

Offset No any data type 1 Specifies the offset of the
scale in engineering units.
The default value is 1.

Unit No any data type 1 Specifies the units of the
channel. If you do not
specify the units, the
channel has no units.

Symbol No any data type 1 Defines the symbol of the
channel in System

Explorer. You can select
from the following values:

■ Default
■ AI
■ AO
■ DI

ni.com312

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

■ DO
■ PWM In
■ PWM Out

FXPWL No any fixed-point data
type

1 Specifies the fixed-point
word length.

FXPIWL No any fixed-point data
type

1 Specifies the fixed-point
integer word length. The
default value is 0.

PWMPeriod No PWM 1 Specifies the pulse width
modulation (PWM) period
for output channels. The
default value is 100000.

Parameters No any data type 1 Specifies the parameters
associated with the parent
channel.

any data type except
for Void

Yes Parameters 1 or
more

Defines a parameter
associated with the parent
channel and specifies the
data type of that
parameter. <Parameters>
accepts the same data
types as <Packet>.
However, Void is not a
valid data type for
<Parameters>.

If you use the Boolean data
type, or the signed or
unsigned 8-bit, 16-bit, 32-
bit, or 64-bit data types,
the associated FPGA VI
control must be of the
same data type. If you use
the fixed-point or PWM
data types, the data type
of the associated FPGA VI

© National Instruments 313

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

control must correspond
as follows:

■ FXPI32 — I32
■ FXPI64 — I64
■ FXPU32 — U32
■ FXPU64 — U64
■ PWM — U64

Name Yes any data type except
for Void

1 Defines the name of the
parameter on the channel
configuration page in
System Explorer.

ControlName No any data type except
for Void

1 Specifies the name of the
associated control in the
corresponding FPGA VI.
The default is the same as
<Name>. The control
referenced in the
parameter must exist in
the FPGA VI.

InitialValue No any data type except
for Void

1 Specifies the parameter
value when System

Explorer loads the FPGA
configuration file. The
default value is 0.

You can change parameter
values in System Explorer.
You cannot change
parameter values at run
time.

Scale No any data type except
for Void

1 Specifies the range of the
scale in engineering units.
For PWM and fixed-point
data types, the default
value is 1. For all other

ni.com314

VeriStand Feature Usage

Tag Required? Parent tag Number
of child
tags

Description

data types, the default
value is the full positive
range of the data type.

For example, the full
positive range of the
signed 8-bit data type is
127, and the full positive
range of the unsigned 8-bit
data type is 255.

Offset No any data type except
for Void

1 Specifies the offset of the
scale in engineering units.
The default value is 1.

* DMA_XXX denotes both DMA_Read and DMA_Write.

DMA Scale and Offset

Scale and offset are useful for converting the DMA FIFO value (DFV) to a usable value
that corresponds to a real-world measurement.
The following table displays equations that show how scale and offset convert DFV
to voltage value (VV) for read channels of different data types, and VV to DFV for
write channels of different data types.
Data type Read or Write Equation

I8, U8, I16, U16, I32, U32, I64, U64,
Boolean

Read VV = DFV × scale ÷ P + offset

I8, U8, I16, U16, I32, U32, I64, U64,
Boolean

Write DFV = VV − offset × P ÷ scale

FXPI32, FXPU32,FXPI64, FXPU64 Read VV = FXPV × scale + offset
FXPI32, FXPU32,FXPI64, FXPU64 Write FXPV = VV − offset ÷ scale
PWM Read VV = HT ÷ LT + HT × scale + offset
PWM Write HT = VV − offset ÷ scale × PWMperiod

LT = PWMperiod − HT
VV —Represents voltage value.
DFV —Represents DMA FIFO value.
P —Represents the positive range of the data type.

© National Instruments 315

VeriStand Feature Usage

Data type Read or Write Equation
FXPV —Represents the converted fixed-point value.
HT —Represents high time.
LT —Represents low time.

Example FPGA Configuration File Structure

An FPGA configuration file needs to be structured correctly in XML to function
properly.
The following code displays an example of how to implement the FPGA
configuration file XML tags.
<?xml version='1.0'>
<?xml-stylesheet type="text/xsl" href='NI VeriStand FPGA DMA.xsl'?>
<FPGADMAChannelData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "NI VeriStand FPGA DMA.xsd">
 <Version>2.0</Version>
 <Bitfile>FPGADMABitfile.lvbitx</Bitfile>

 <Categories>
 <Category>
 <Name>TopLevel1</Name>
 <Description>Description</Description>
 <Symbol>Default</Symbol>
 <Category>
 <Name>NestedCategory1</Name>
 <Description>Category with AI Symbol contained in TopLevel1</
Description>
 <Symbol>AI</Symbol>
 </Category>
 <Category>
 <Name>NestedCategory2</Name>
 <Description>Category with DI Symbol contained in TopLevel1</
Description>
 <Symbol>DI</Symbol>
 </Category>
 </Category>
 </Categories>

 <DMA_Read>
 <Packets>5</Packets>
 <Packet/>

ni.com316

VeriStand Feature Usage

 <Packet>
 <I8>
 <Name>Signed8Channel</Name>
 <Description>Description of channel</Description>
 <Category>TopLevel1\NestedCategory1</Category>
 <InitialValue>25</InitialValue>
 <Scale>128</Scale>
 <Offset>5</Offset>
 <Unit>Volts</Unit>
 <Symbol>AI</Symbol>
 </I8>
 <U8>
 <Name>Unsigned8Channel</Name>
 <Description>Description of channel</Description>
 <Category>TopLevel1\NestedCategory2</Category>
 <InitialValue>25</InitialValue>
 <Scale>128</Scale>
 <Offset>5</Offset>
 <Unit>Volts</Unit>
 <Symbol>AI</Symbol>
 </U8>
 <I16>
 <Name>Signed16Channel</Name>
 </I16>
 <Boolean>
 <Name>BooleanChannel</Name>
 </Boolean>
 <Void>
 <Size>7</Size>
 </Void>
 </Packet>
 <Packet>
 <FXPI32>
 <Name>Fixed Point Channel 1</Name>
 <Scale>2</Scale>
 <Offset>5</Offset>
 <Unit>Volts</Unit>
 <Symbol>AI</Symbol>
 <FXPWL>20</FXPWL>
 <FXPIWL>5</FXPIWL>
 </FXPI32>
 </Packet>
 <Packet>
 <PWM>

© National Instruments 317

VeriStand Feature Usage

 <Name>PWM In 0</Name>
 <Description>PWM input</Description>
 <Category>Input\PWM</Category>
 <Scale>100</Scale>
 <Unit>%</Unit>
 <Symbol>PWM In</Symbol>
 <PWMPeriod>40000</PWMPeriod>
 </PWM>
 </Packet>
 <Packet>
 <U8>
 <Name>Channel with one parameter</Name>
 <Parameters>
 <I16>
 <Name>UI Parameter name</Name>
 <ControlName>Name of Control</ControlName>
 <InitialValue>25</InitialValue>
 <Scale>100</Scale>
 <Offset>0</Offset>
 </I16>
 </Parameters>
 </U8>
 </Packet>
 </DMA_Read>

 <DMA_Write>
 <Packets>4</Packets>
 <Packet>
 <U8>
 <Name>Unsigned8Out</Name>
 <Category>TopLevel2</Category>
 <Symbol>DO</Symbol>
 </U8>
 </Packet>
 </DMA_Write>
</FPGADMAChannelData>

ASAM XIL API - Generic Simulator Interface
VeriStand includes a Generic Simulator Interface for the Framework, MAPort and
EESPort based on the 2.1 version of the ASAM XIL Standard

ni.com318

VeriStand Feature Usage

The Association for Standardization of Automation and Measuring Systems (ASAM)
is an organization that facilitates interoperability between measurement and
automation testing tools from different vendors.
Use the MAPort to read and write data and to capture and generate signals in the
simulation model. The EES port provides a general API for electrical error
simulation. The Framework is an abstraction layer above the testbench.

Note Although the EESPort and MAPort use the 2.1 version of the ASAM
XIL API, they have their functionality implemented for the 2.0.1 API
version. The TargetScript in MAPort also implements the 2.1 API.

Locate example VeriStand ASAM XIL testbench and framework files in <Common
Data>\Examples\DotNet4.6.2\ASAM XIL.

Accessing the VeriStand ASAM XIL Testbench
To access the VeriStand ASAM XIL testbench in your C# application, you must create
a vendor-specific testbench.
Use the following values as an example on how to create a testbench for VeriStand:
ITestbenchFactory testbenchFactory = new TestbenchFactory();
ITestbench testbench = testbenchFactory.CreateVendorSpecificTestbench(
vendorName:"National Instruments",
productName:"NI VeriStand ASAM XIL Interface",
productVersion:"2020");

Implementation Differences and Limitations with the ASAM XIL
Interface
VeriStand's ASAM XIL implementation deviates from the ASAM XIL standard in areas
such as signal generation and capturing.

Implementation Differences

The following table displays implementation differences.

© National Instruments 319

VeriStand Feature Usage

https://www.ni.com/r/asam

Process Implementation differences

Signal
Generation

■ ConditionWatcher definitions cannot be saved in the STI format when a
SignalDescriptionSet contains ConditionWatchers as StopTriggers.
■ Signal generation operations cannot write to model parameters.
■ Signal generation processes create temporary real-time sequence files
in the temporary directory.

Capturing
■ When Capture.DurationUnit is set to eSAMPLES, VeriStand ASAM XIL
assumes the data capture rate was set during capture creation.
■ Capture.Stop() may take longer than expected to complete execution.
The function only returns a value after flushing log data into files and
finishing post-processing.
■ Capture.Fetch() might not return the latest samples because of
buffering.
■ VeriStand logs data to TDMS despite what capture result writer you
choose. The data is later processed by either an MDF or in-memory
capture result writer.

Miscellaneous
■ Condition Watchers conditions support the syntax, operators, and
expression functions that VeriStand real-time sequences support.
■ Signal generation and capturing are not supported when the gateway is
running on a machine other than localhost.

Limitations

The following table displays known limitations.

Process Limitation

Capturing Capture sessions ignore data logging errors. ASAM XIL API users will not receive an
error notification. Instead, the capture will immediately enter the eFINISHED state and
cease logging data. Untriggered captures also cause this state change. Capture results
and .mdf files contain logging data until when the error occurred.

ni.com320

VeriStand Feature Usage

ASAM XIL Framework C# Access
To access the VeriStand ASAM XIL framework in your C# application, you must create
a vendor-specific framework.
Use the following values to create a framework for VeriStand.

Note To run this code, you must reference the
ASAM.XIL.Implementation.FrameworkFactory assembly in order to have
access to the FrameworkFactory class. This assembly installs with
VeriStand.

IFrameworkFactory frameworkFactory = new FrameworkFactory();
IFramework framework = frameworkFactory.CreateVendorSpecificFramework(
vendorName:"National Instruments",
productVersion: "2020");

Configuring the ASAM XIL Framework
The ASAM XIL framework is the central class you use to manage and configure
testbench ports, record data, and stimulate variables.
You can use the ASAM XIL framework to complete tasks such as logging variables
and stimulating values for variables. You can also create units, data types, and
framework variables, and map framework variables to testbench variables.
To configure the ASAM XIL framework, create the following XML configuration files:

■ Port configuration XML file—Configures one or more VeriStand ASAM XIL
testbench ports.
■ Framework configuration XML file—Defines your ports, port configuration
files, and mapping files.
■ Framework mapping XML file—Defines the labels for the testbench and
framework variables and then map them together.

Locate example VeriStand ASAM XIL testbench and framework files in <Common
Data>\Examples\DotNet4.6.2\ASAM XIL.

© National Instruments 321

VeriStand Feature Usage

ASAM XIL Port Configuration Tag Reference
Use specific XML elements and complex elements in the port configuration XML file
to configure one or more VeriStand ASAM XIL testbench ports.
The following table displays the XML elements you can use in a VeriStand ASAM XIL
port configuration XML file.

Tool Required? Element Type Min/Max
Occurrences

Description

<NIVSPortConfig> Yes Top-level 1/1 The type of configuration
file.

<Version> Yes VersionType 1/1 The version of the port
configuration file.

<Project> Yes NonEmptyStringType 1/1 The path to the VeriStand
project you want to
connect to through the
ASAM XIL Interface.

<ShowWorkspace> No xs:boolean 0/1 Specifies whether to
display the workspace
when a project is
deployed.

<ShowVeriStandScreen> No xs:boolean 0/1 Specifies whether to
display the VeriStand
screen when a project is
deployed.

<UndeployVeriStandProjectOnDisconnect> No xs:boolean 0/1 Specifies whether to
undeploy the running
VeriStand project when
the port is disconnected.

<EESPortConfig> No EESPortConfigType 0/1 A container for the
EESPort configuration
options.

<HWTriggerChannelList> No HWTriggerChannelListType 0/1 The list of channels you
want to use to fire
EESPort hardware
triggers.

<HWTriggerChannel> No HWTriggerChannelType 0/
unbounded

The path to the channel
you want use as a
hardware trigger. You can

ni.com322

VeriStand Feature Usage

Tool Required? Element Type Min/Max
Occurrences

Description

only set one hardware
trigger channel per
target.

Note The
hardware
trigger only
occurs if the
channel value
changes from
0 to any other
value.

<SWTriggerChannelList> No SWTriggerChannelListType 0/1 A list of channels you
want to use to fire
EESPort software
triggers.

<SWTriggerChannel> No SWTriggerChannelType 0/
unbounded

A path to the software
channel you want to
trigger. You can only set
one software trigger
channel per target.

Note The
software
trigger only
occurs if the
channel value
changes from
0 to any other
value. Set the
AutoReset
attribute of
this element
to true to
automatically
set the
channel back
to zero after

© National Instruments 323

VeriStand Feature Usage

Tool Required? Element Type Min/Max
Occurrences

Description

the trigger
fires. If
AutoReset is
set to false,
you must
manually set
the channel
value back to
zero.

<MAPortConfig> No MAPortConfigType 0/1 The container for the
MAPort configuration
options.

<LogFilePath> No NonEmptyStringType 0/1 Specifies the path of the
temporary TDMS log file
that is created during
capturing.

<TaskList> No TaskListType 0/1 A list of user-defined
tasks.

<Task> No TaskType 0/
unbounded

Specifies the task name
and frequency. Use the
format <TaskN>, where N
is the frequency of the
task in Hz.

<LogPostProcessPeriodMS> No xs:int 0/1 The length, in
milliseconds, of the post-
processing period.

Note

■ If you call
Fetch ()
before post-
processing
completes,
Fetch
()returns an

ni.com324

VeriStand Feature Usage

Tool Required? Element Type Min/Max
Occurrences

Description

empty
result.
■ If post-
processing
occurs
periodically,
a new TDMS
file is
created for
each
period,
which adds
overhead to
the
operation

<ChannelDataTypeOverrideList> No ChannelDataTypeOverrideListType 0/1 A list of channels that
you want to override the
default data type. In
VeriStand, channels are
double-precision,
floating-point numerics
by default.

<ChannelDataTypeOverride> No ChannelDataTypeOverrideType 0/
unbounded

A container for the
channel name and data
type. Channel names
inside this container
must be unique.

<ChannelName> Yes* NonEmptyStringType 0/1 The name of the channel
for which you want to
change the data type.

<DataType> Yes* DataTypeType 0/1 The data type you want
the channel value to
change to.

*Required child elements of optional parent elements are only required if you use the parent element.

© National Instruments 325

VeriStand Feature Usage

Types
■ VersionType—Specifies version information.
Attribute Required? Attribute Type

Major Yes xs:unsignedInt
Minor Yes xs:unsignedInt
Fix Yes xs:unsignedInt
Build Yes xs:unsignedInt

■ NonEmptyString—Restricts the element to allow only non-empty strings.
Restrictions Minimum Length

xs:string 1

■ DataTypeType—Restricts the element to only allow int, uint, bool and float
data types. Only scalars, vectors, and matrices are allowed from the data
types.

Creating Real-Time Test Scenarios with Stimulus Profiles and
Real-Time Test Sequences
Use the VeriStand Stimulus Profile Editor to create specific test scenarios for use in
your real-time test applications.
In addition to using the Stimulus Profile Editor environment, you can use the
LabVIEW VIs on the Stimulus Profile palette in LabVIEW to execute and control
stimulus profile and real-time sequence files programmatically. VeriStand includes
examples of using these VIs in the <LabVIEW>\examples\VeriStand\API\Execution
API\Sequences directory.

1. Create a stimulus profile—Use stimulus profiles to act as the test executive
that defines the stimuli to apply to a unit under test (UUT).

2. Create a real-time sequence—Use real-time sequences to define specific tasks
for a unit under test (UUT).

ni.com326

VeriStand Feature Usage

3. View test results—Enable the Stimulus Profile Editor to automatically open
stimulus profile test results.

4. Log-real-time test data—Use stimulus profiles to log real-time test data to the
host computer while a test executes on a target.

5. Use stimulus profile arguments to communicate with the VeriStand Editor—
Send commands to the VeriStand Editor through a stimulus profile to specify
a VeriStand project, a system definition, VeriStand Gateway IP address, or
connect to a target from the system definition.

If you want to script your test sequences in Python, you can use the VeriStand
Python Integration Package as an alternative to the Stimulus Profile Editor. This
open-source package allows you to execute Python scripts as if they were VeriStand
real-time sequences. To learn more about this feature, view the VeriStand Python
Documentation.

Navigating the Stimulus Profile Editor Environment
Use the Stimulus Profile Editor to create, modify, and execute stimulus profiles and
real-time sequences.
The Stimulus Profile Editor is a highly customizable environment consisting of
various elements that you can show, hide, resize, or rearrange to suit your needs.
The editor is a separate executable from System Explorer, VeriStand Editor, or
Workspace. It allows you to develop your test profiles in parallel with the system
definitions and user interfaces that they interact with. However, a stimulus profile
must be associated with a deployed VeriStand system definition in order to execute.

In the Stimulus Profile Editor, you can start multiple concurrent stimulus profile
executions. Each stimulus profile execution performs sequential execution of one or
more real-time sequences.

To open the Stimulus Profile Editor, use the VeriStand Editor and click Tool

Launcher > Stimulus Profile Editor.

Use the following sections of the Stimulus Profile Editor to modify your code.

© National Instruments 327

VeriStand Feature Usage

http://www.ni.com/r/NIVS_Python
http://www.ni.com/r/NIVS_Python
http://www.ni.com/r/NIVS_Python_Docs
http://www.ni.com/r/NIVS_Python_Docs

Ribbon—Perform actions such as editing the environment and running profiles and
sequences.

File menu—Perform actions such as creating, saving, and opening profiles and sequences.

Real-time sequence code.

Stimulus profile—Acts as the test executive that defines the stimuli to apply to a unit under
test (UUT).

Real-time sequence—Defines specific tasks for a UUT.

Variables pane—displays all the variables the selected real-time sequence has access to at run
time and uses in expressions.

Property Browser—Displays the editable properties of stimulus profile steps, real-time
sequences, primitives, and references. Select an item in the code of a stimulus profile or real-
time sequence to configure that item.
Context Help—Displays suggested help for an item that you hover over.

ni.com328

VeriStand Feature Usage

Status Bar—Displays the Project/System definition that you launched the editor from and the
Gateway IP Address. By default, VeriStand associates stimulus profiles with the system
definition file of the project that you create them. You can Browse to a different project or
system definition from the editor.
References pane—Contains a list of all the real-time sequences that the selected real-time
sequence references.

Warning and Errors list—Lists any errors, warnings, or messages in a stimulus profile or real-
time sequence file. Click an error, warning, or message to display a description.

Sequences palette—Contains real-time sequences you add to a stimulus profile or real-time
sequence.

Primitives palette—Contains programming building blocks, such as statements and variables,
you can add to a real-time sequence.

Creating a Stimulus Profile Editor Layout

Customize the individual sections of the Stimulus Profile Editor environment and
save that layout for later use.
Before you begin, you should familiarize yourself with the Stimulus Profile Editor
environment.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, modify the layout by dragging sections to other
parts of the editor, close sections, or use the View tab to show or hide a
section.

3. In the View tab, click Save Layout.

4. Enter a Layout File Name and click OK.

Note You can save as many layouts as you need, but you cannot
rename or delete a layout after you save it.

© National Instruments 329

VeriStand Feature Usage

To access a saved layout, in the View Tab, click Available Layouts and select the
layout you want to apply.

Creating Stimulus Profiles
Use stimulus profiles to act as the test executive that defines the stimuli to apply to
a unit under test (UUT).

Before you begin, you should familiarize yourself with the Stimulus Profile Editor
environment.
In real-time test, a stimulus is a physical or logical input that incites a reaction from
the UUT. A typical stimulus might be a change in temperature, voltage, power, or
any other variable that might affect the behavior of the UUT.
A stimulus profile contains specific tasks, called real-time sequences, that deploy
to the UUT and execute in real-time. Stimulus profiles execute on the host computer
and control some actions of the VeriStand environment. For example, stimulus
profiles can open and close projects and user interface windows and log the results
of test scenarios to TDMS files.

Stimulus profiles appear on the VeriStand Editor in the Project Files tab with the file
extension .nivsstimprof. A single VeriStand project can contain multiple stimulus
profiles that define different test scenarios. You can execute multiple stimulus
profiles concurrently, and each stimulus profile can contain multiple real-time
sequences.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click File > New > Stimulus Profile.
The profile organizes your code into the Setup, Main, and Clean Up blocks.

3. Drag steps from the Steps palette to the appropriate block of the stimulus
profile.
For example, you might launch a user interface as part of your Setup code and
close the user interface as part of your Clean Up code. The Main block typically
contains calls to real-time sequences, which are programs that define specific
tasks to execute on the UUT. This block might also contain steps that
configure data logging to TDMS.

ni.com330

VeriStand Feature Usage

4. For each step you add, click the step in the stimulus profile code and use the
Property Browser to configure the step.

5. Click Compile.

1. Resolve any Warnings and Errors.

Note A stimulus profile can run with warnings, but not errors.
You can save the profile and resolve errors later.

6. Save the stimulus profile.

After you configure and save the stimulus profile and any real-time sequences it
calls, you can run the profile. Deploy its associated system definition to run the
stimulus profile.

Calling a Real-Time Sequence from a Stimulus Profile

Call a real-time sequence file from within a stimulus profile to define a specific task
to execute on a unit under test (UUT).
Before you begin, create a stimulus profile.

1. Open the stimulus profile from which you want to call the sequence in the
Stimulus Profile Editor.

2. In the Steps palette, expand Real-Time Sequences.
3. Select Real-Time Sequence Call and drag it to the stimulus profile code.

4. In the Property Browser, enter a File Path where the real-time sequence
(.nivsseq) file is located.

5. Use the Parameters section of the Property Browser to map the sequence
input parameters to channels.

Note If the stimulus profile you are using is saved in the same
directory as a real-time sequence,you can drag the real-time
sequence file from the Sequences palette directly to the stimulus
profile code to create a Real-Time Sequence Call step that calls that
sequence.

© National Instruments 331

VeriStand Feature Usage

If you make any changes to a real-time sequence called by a Real-Time Sequence
Call step, select the step, and in the Property Browser, click Update Parameters.
This will refresh the parameter mappings for the sequence call based on the current
contents of the specified sequence. This ensures that parameter mappings exist for
all parameters, that the data types of all parameter mappings match the data types
in the corresponding sequence, and any parameter mappings that have no
corresponding entry in the sequence are deleted.
VeriStand also supports CSV files as real-time sequences. The process for calling
real-time sequences defined in CSV files is the same as the process for
calling .nivsseq files. However, you cannot view the real-time sequence defined by a
CSV file in the Stimulus Profile Editor. If you want to make edits to the real-time
sequence, you must use a text editor.

Updating Model Parameters During a Stimulus Profile Test

Use the Update Model Parameters from File step in a stimulus profile to apply
model parameter values defined in a text file to a simulation model that is deployed
and running on a target.
By using this step to automate model parameter value updates, you can update
your model at known points within the execution of the stimulus profile.

1. Create a stimulus profile that is associated with the system definition file that
contains the model you want to update.

2. In the Steps palette, click to VeriStand Control > Workspace and drag the
Update Model Parameters from File step to the stimulus profile code.

3. In the Property Browser, configure the Update Model Parameters from File
step.

Note The Update Model Parameters from File step also supports .m
files generated by the Model Parameter Manager workspace tool.

1. Enter a Source path to a text file (.txt) that conforms to the model
parameter file format.

2. Confirm that the Target property shows the target that the model is
deployed to.

ni.com332

VeriStand Feature Usage

3. Confirm that the Delimiter property is set to the delimiter that the
Source file uses to separate parameter/value pairs.

4. If you are using an alias file to define model parameters, enter the path
to the file in the Alias File property.

5. If you are using temporary variables within the Source file, enable Allow

Temporary Variables

4. Deploy the system definition.
5. Compile and run the stimulus profile.

When the Update Model Parameters from File step executes, the model parameters
update to the values in the Source file.

Stimulus Profile Steps

Use steps to call real-time sequences, configure data logging operations, and
interact with other elements of VeriStand, such as the project or Workspace.
A step is an element of a stimulus profile that performs a specific action.

Subpalette Description

Real-Time Sequences Steps Call real-time sequences from a stimulus profile.
Logging Steps Log data from channels in a system definition.
VeriStand Control Steps Interact with VeriStand, including the Workspace and the VeriStand

project.
Other Steps Add functionality to a stimulus profile.

Real-Time Sequences Steps

Call real-time sequences from a stimulus profile.

Palette Object Description

Real-Time Sequence Call Calls a real-time sequence, executes the sequence on the specified
Target, and returns information about whether the sequence execution
passes or fails.

Real-Time Sequence
Group

Groups Real-Time Sequence Call steps so that each sequence within the
group executes in parallel.

© National Instruments 333

VeriStand Feature Usage

Real-Time Sequence Call Step
Calls a real-time sequence, executes the sequence on the specified Target, and
returns information about whether the sequence execution passes or fails.

You can call a real-time sequence from any section of a stimulus profile (Setup, Main,
or Clean Up) or from within a Real-Time Sequence Group.

Property/
Section

Description

File Path Specifies the path to the real-time sequence to execute. You can specify a real-time
sequence file (.nivsseq) or a properly formatted CSV file.

Target Name Specifies the name of the target on which the sequence executes. The target must
be defined in the system definition file associated with the stimulus profile.

Timeout
[ms]

Specifies the amount of time in milliseconds within which the real-time sequence
must complete each timestep. A zero or negative value indicates an infinite
timeout. If the sequence does not complete a timestep within the specified amount
of time, the VeriStand Engine aborts sequence execution and returns an error.

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

Pass/Fail
Evaluation

Includes properties you can use to configure pass/fail evaluation for the sequence:

■ Type—Specifies the type of pass/fail evaluation to perform. This step
evaluates the return variable for the real-time sequence to determine
whether the sequence passes or fails. You can select from the following
options:

■ AlwaysPass—(Default) The evaluation always passes, regardless of the
value of the return variable.
■ Boolean—Evaluates a Boolean value for pass/fail status. True is pass,
unless you invert the evaluation.
■ NumericBoundsCheck—Evaluates an integer value relative to specified
high and low boundaries.

■ Parameters—Defines parameters for the pass/fail evaluation. The options
that appear depend on the Type of evaluation you specify. AlwaysPass
evaluations have no parameters to define, because they always pass. You can
set the following parameters:

ni.com334

VeriStand Feature Usage

Property/
Section

Description

■ Invert—[Type: Boolean] If TRUE, inverts a Boolean evaluation so that
FALSE is pass and TRUE is fail.
■ Type—[Type: NumericBoundsCheck] Specifies the type of bounds check:

■ Inbounds—The evaluation passes if the value is within the specified
bounds.
■ OutOfBounds—The evaluation passes if the value is outside the
specified bounds.

■ High—[Type: NumericBoundsCheck] Specifies the high limit of the
bounds. A value is within bounds if it is less than or equal to this value and
greater than or equal to the Low value.
■ Low—[Type: NumericBoundsCheck] Specifies the low limit of the
bounds.

Group
Number

Defines the group associated with this real-time sequence. Valid group numbers
include 0 to 27. A group number of -1 does not refer to any group.

Parameters Contains properties that define the parameter assignments for the real-time
sequence. When you specify the File Path to the real-time sequence, this section
updates to display all the parameters defined in the sequence.

■ Parameter Assignment—Specifies the value to assign to a real-time
sequence parameter. You can specify a constant value or a channel in the
system definition file.
■ Update Parameters—Refreshes the Parameter Assignments for the
sequence call based on the current contents of the specified sequence. This
ensures parameter assignments exist for all parameters and that the data
types of all parameter assignments match the data type of the corresponding
sequence. This also deletes any parameter assignments that have no
corresponding entry in the sequence.
Use this option if you make any changes to the real-time sequence after you
configure the Real-Time Sequence Call step.

Real-Time Sequence Group Step
Groups Real-Time Sequence Call steps so that each sequence within the group
executes in parallel.

© National Instruments 335

VeriStand Feature Usage

This step does not complete until each real-time sequence in the group executes.

Property/Section Description

Sequence Group
Name

Specifies the name of the sequence group.

Description Specifies a description for the current item. This text appears in the
Context Help when you hover over the item in the Stimulus Profile Editor.

Logging Steps

Log data from channels in a system definition.

Palette Object Description

Channel Group Groups channels in a logging configuration.
Start Logging Starts logging data from the system definition channels you specify to a TDMS

file.
Stop Logging Stops a currently running logging configuration.

Channel Group Step
Groups channels in a logging configuration.
TDMS files arrange log data into groups of channels. The Channel Group Name you
specify and the Channels you add to the group correspond to the group and
channels that appear in the TDMS file. You can create multiple channel groups
under a single logging configuration to create multiple groups in one TDMS file.

Note You must use this step as a child of a Start Logging step.

Property/Section Description

Channel Group
Name

Specifies the name of the channel group.

Channels Specifies the channels that belong to the channel group. Click the search
button to display an interactive system definition hierarchy tree. Place check
marks next to the channels you want to add to the channel group.

ni.com336

VeriStand Feature Usage

Property/Section Description
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Start Logging Step
Starts logging data from the system definition channels you specify to a TDMS file.
When you add this step to a stimulus profile, VeriStand automatically creates a
Channel Group step to associate with the logging configuration. You can add
multiple channel groups under a single logging configuration.

Property/
Section

Description

Configuration
Name

Specifies the name of a specific data logging operation. You use this name to
identify and control the operation. For example, to start and stop data logging,
both the Start Logging step and the Stop Logging step must use the same
Configuration Name.

File Path Specifies the name and location of the log file to save data to. The Stimulus
Profile Editor creates log files in the TDMS file format.

You can enter an absolute or relative path. VeriStand treats relative paths as
relative to the directory that contains the ATML results file for the stimulus
profile.

Timestamp
Filename

If True, specifies to append a timestamp to the data log filename that indicates
when the file is created.

Replace
Existing File

If True, specifies to overwrite an existing file at the location specified by File
Path. If False, specifies to append data to the existing log file.
If you choose to append data to an existing TDMS file, VeriStand logs new data
for existing channels under the existing channel and group names, and the file
only shows the initial creation date in the file header. The TDMS file does not
retain the timestamps of subsequent logging operations that append data to an
existing file.

Log Rate [Hz] Specifies the rate in hertz at which to log data. VeriStand logs at the closest
possible rate to this value that does not exceed the rate at which a target
produces data. The default is 100.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

© National Instruments 337

VeriStand Feature Usage

Property/
Section

Description

Triggered
Logging

Includes properties you can use to configure a trigger that starts logging:

■ Trigger Condition—Specifies the condition under which to register start
and stop triggers:

■ none—(Default) No trigger is specified. Logging starts when this step
executes and continues until a stop logging command is received or the
stimulus profile stops executing.
■ in_limits—Registers a start trigger when the Trigger Channel value
enters the bounds specified by High Limit and Low Limit and a stop
trigger when the channel value leaves the bounds.
■ out_of_limits—Registers a start trigger when the Trigger Channel value
leaves the bounds specified by High Limit and Low Limit and a stop
trigger when the channel value re-enters the bounds.

■ Trigger Channel—Path to the channel, as specified in the system
definition file, to watch for the specified Trigger Condition.
■ High Limit—High limit for trigger limit analysis.
■ Low Limit—Low limit for trigger limit analysis.
■ Pre-Trigger Duration—The number of seconds of data to retain in the
buffer in case a start trigger occurs. When the start trigger occurs, any
buffered data is included in the log.
■ Post-Trigger Duration—The duration in seconds to continue logging
data after a stop trigger occurs.

File
Segmenting

Includes properties you can use to control if and when a log file is split into
separate files:

■ Segment Options—Specifies whether and how the log file is segmented:

■ DoNotSegment—Does not segment the log file, regardless of how
large it gets.
■ OnStartTrigger—Starts a new log file each time a start trigger occurs.
■ SizeLimit—Starts a new log file when the current file reaches a
specified size.

ni.com338

VeriStand Feature Usage

Property/
Section

Description

■ Segment Size—[Segment Options: SizeLimit] Specifies the maximum
size of a log file segment, in bytes.

Stop Logging Step
Stops a currently running logging configuration.

To stop logging, the Configuration Name must match the name you specified in the
Start Logging step.

Property/Section Description

Configuration
Name

Specifies the name of a specific data logging operation. You use this name to
identify and control the operation. For example, to start and stop data
logging, both the Start Logging step and the Stop Logging step must use the
same Configuration Name.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

VeriStand Control Steps

Interact with VeriStand, including the Workspace and the VeriStand project.
For example, you can use Control steps to open and close the project, open and
close the Workspace, and access Workspace tools.

Palette object Description

Launch NI VeriStand Launches the VeriStand executable.

Subpalette Description

Project Steps Open, communicate with, or close a VeriStand project (.nivsprj) file.
Workspace Steps Interact with the Workspace and Workspace tools.

Launch NI VeriStand Step
Launches the VeriStand executable.

© National Instruments 339

VeriStand Feature Usage

The Stimulus Profile Editor runs as a separate executable from the main VeriStand
application. Ensure VeriStand is running to execute tests. However, you can edit
stimulus profiles and real-time sequences without running VeriStand.

Property/Section Description

Timeout Specifies the time in seconds to wait for VeriStand to launch before returning a
timeout error.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Project Steps
Open, communicate with, or close a VeriStand project (.nivsprj) file.

Palette object Description

Open VeriStand Project Opens the VeriStand project (.nivsprj) file you specify.
Close Active VeriStand
Project

Closes the active VeriStand project (.nivsprj) file.

Control Active VeriStand
Project

Sends a command to the active VeriStand project (.nivsprj) file. The
project must be open for it to receive commands.

Open VeriStand Project Step
Opens the VeriStand project (.nivsprj) file you specify.
A stimulus profile must be associated with an open and deployed project to execute
real-time sequences. Use this step to open a project file directly from a stimulus
profile. You can then use the Control Active VeriStand Project step to deploy the
project.
Property/
Section

Description

Show Project If TRUE, specifies to display the project in the VeriStand Editor.
Project Path Specifies the path to the project file. This can be an absolute or relative path.

Relative paths must be relative to the directory that contains the stimulus profile.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

ni.com340

VeriStand Feature Usage

Property/
Section

Description

Security Includes the following properties:

■ Username—(Optional) Specifies the username to use to access the
project. If the project has only one defined user, such as the Administrator,
and that user has no password, you do not need to enter the username.
■ Password—(Optional) Specifies the password associated with the
Username. Not all usernames have associated passwords. If a username
does have an associated password and you leave this property empty,
VeriStand prompts you to enter the password when this step executes.

Close Active VeriStand Project
Closes the active VeriStand project (.nivsprj) file.

Property/Section Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Control Active VeriStand Project Step
Sends a command to the active VeriStand project (.nivsprj) file.

Property/
Section

Description

Command Specifies the command that the step sends to the project:

■ Run—Runs the project.
■ Deploy—Deploys the system definition file associated with the project to
the target.
■ Connect—Connects the project on the host computer to a target. This
option only establishes a connection to a target. It does not deploy the
system definition.
■ Disconnect—Disconnects the project from the target. This option does not
stop execution of the system definition file on the target.

© National Instruments 341

VeriStand Feature Usage

Property/
Section

Description

■ Undeploy—Undeploys the system definition file associated with the
project from the target. Undeploying the system definition file stops
execution on the target.

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

Workspace Steps
Interact with the Workspace and Workspace tools.

Palette object Description

Close VeriStand Workspace Closes the VeriStand workspace.
Open VeriStand Workspace Opens the VeriStand Workspace and loads the screen (.nivsscreen)

file associated with the currently active VeriStand project.
Update Model Parameters
from File

Updates parameter values for a simulation model to the values
specified in a text (.txt) file.

Subpalette Description

Workspace Tools Steps Opens and communicates with Workspace tools directly from a stimulus
profile.

Close VeriStand Workspace
Closes the VeriStand workspace.

Property/Section Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Open VeriStand Workspace

Opens the VeriStand Workspace and loads the screen (.nivsscreen) file associated
with the currently active VeriStand project.

ni.com342

VeriStand Feature Usage

Open the Workspace to see the affects of the test on channel values while the
stimulus profile executes.

Property/Section Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Update Model Parameters from File Step
Updates parameter values for a simulation model to the values specified in a text
(.txt) file.

Use this step to synchronize parameter value updates with real-time sequences
without stopping the execution of a stimulus profile.

Property/
Section

Description

Source Specifies the path to the text file that contains the new model parameter values. The
source file contains a set of key/value pairs that represent model parameter names
and the corresponding values to assign each parameter.

This file must be a .txt file, and must follow the expected model parameter file
format.

This step also provides limited support for .m files that follow the exact format
generated by the Model Parameter Manager Workspace tool.

Target Specifies the name of the target, as it appears in the system definition file, on which
the model executes. This step can only update model parameters on one target at a
time.

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

Advanced Includes the following properties:

■ Alias File—Specifies the path to an alias file to define mappings for aliased
parameter names in the source file. Alias files allow you to easily reuse the
same source file for multiple models. For example, you can write a source file
with parameter names a, b, and c, and then use an alias file to map a, b, and c
to parameters in the current model.
Alias files must be .txt files that use the same Delimiter as the source file.

© National Instruments 343

VeriStand Feature Usage

Property/
Section

Description

■ Delimiter—Specifies the delimiter used to separate model parameter names
and values in the source file and, if used, parameter aliases and names in the
alias file:

■ Tab (Default)
■ Equals

■ Comma

■ Allow Temporary Variables—If True, specifies to allow temporary variables
in the source file. For example, the following snippet defines a temporary
variable, tempX, and then uses tempX in an expression that defines a model
parameter value:

tempX 0.5
{parameter} 10 * tempX

Note Model parameter names and alias names are case-sensitive.
You will not receive error messages for variables that do not map
to model parameters. Instead, the step discards the corresponding
value when updating model parameters. This step assumes that
keys in the source file that do not match a model parameter name
or an alias defined in the alias file are temporary variables.

Workspace Tools Steps

Opens and communicates with Workspace tools directly from a stimulus profile.

Palette object Description

Open Workspace Tool Opens the workspace tool specified by VI Path.
Send Workspace Tool
Message

Sends a message or command to a workspace tool VI, as well as data
required by the case in the tool that handles the command.

Open Workspace Tool Step

Opens the workspace tool specified by VI Path.

ni.com344

VeriStand Feature Usage

Property/Section Description

Initialization Time Specifies the time in milliseconds to allow for the workspace tool to initialize
after it loads. The stimulus profile does not proceed to the next step until the
initialization time elapses.

VI Path Specifies the path to the workspace tool VI.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Send Workspace Tool Message
Sends a message or command to a workspace tool VI, as well as data required by
the case in the tool that handles the command.

The tool at the VI Path you specify must be capable of receiving messages.
Property/
Section

Description

VI Path Specifies the path to the workspace tool VI.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.
Message
Details

Includes the following properties:

■ Command—Specifies the message or command to send to the workspace
tool. The tool VI must include code to handle the command you send. This
property expects a string.
■ Data—Specifies data to send to the workspace tool. This can be any data
that the code that handles the Command accepts, but must be a string with
a format that the tool can process.
■ Timeout [ms]—Specifies the amount of time in milliseconds to wait for a
response from the workspace tool before timing out.

Other Steps

Add functionality to a stimulus profile.
Examples include displaying a message to the user, replaying a previously recorded
macro (.nivsmacro) file, or grouping steps to better organize and reuse code.

© National Instruments 345

VeriStand Feature Usage

Palette object Description

Command Shell Invokes the Windows Command Prompt, calls the application specified by
Filename, and passes that application the specified arguments.

Group Groups steps with no impact on execution.
Macro Player Replays a previously recorded macro (.nivsmacro) file.
Message Box Displays a pop-up message to the stimulus profile operator.

Subpalette Description

FTP Steps Interact with files on an FTP server, such as a real-time target.

Command Shell Step
Invokes the Windows Command Prompt, calls the application specified by
Filename, and passes that application the specified arguments.

You can configure whether the rest of the stimulus profile waits for the Command

Prompt to return before completing execution.

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

Command
Prompt

Includes the following properties that configure interaction with the Command

Prompt:

■ Filename—The name of the application to pass arguments to. You can enter
a system command (for example, cmd notepad), a system variable, or the
fully-qualified path to the executable.
■ Arguments—The arguments to pass to the called application.
■ Hide command shell—If True, runs the application in an inaccessible
Command Prompt window.

Note If Redirect Standard Error and Redirect Standard Output are
both False, the stimulus profile ignores a True value for this option
and always shows the Command Prompt.

Execution Includes the following properties that configure step execution:

ni.com346

VeriStand Feature Usage

Property/
Section

Description

■ Wait to Complete—If True, blocks execution of the remainder of the
stimulus profile until the Command Prompt returns.

Note The Command Prompt does not return until all applications
it calls are properly closed.

■ Wait Timeout—Specifies the time in milliseconds to wait for the Command
Prompt to return before returning a timeout error. The default is -1 to specify
an infinite timeout.
■ Redirect Standard Error—If True, writes the standard error output of the
Command Prompt to the ATML test results file for the stimulus profile.
■ Redirect Standard Output—If True, writes the standard output of the
Command Prompt to the ATML test results file for the stimulus profile.

Macro Player Step
Replays a previously recorded macro (.nivsmacro) file.

Property/Section Description

VeriStand Macro
File

The path to the macro file to play back.

Playback Mode Specifies the speed at which to play back the macro file:

■ Ignore Timing—(Default) Plays back the macro file as fast as possible.
■ Use Timing—Plays back the macro file at the speed at which it was
recorded.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Message Box Step
Displays a pop-up message to the stimulus profile operator.

© National Instruments 347

VeriStand Feature Usage

Property/Section Description

Message The message that the pop-up displays to the operator.
Dialog Title The text that appears in the title bar of the pop-up.
Default Text The text that appears on the button the operator uses to close out of the pop-

up. For example, OK.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Group
Groups steps with no impact on execution.

You can use groups to organize your code. Because a Group is a single item, using
groups makes it easy to move or duplicate a set of steps.

Property/Section Description

Group Name The name of the group.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

FTP Steps
Interact with files on an FTP server, such as a real-time target.

Palette object Description

FTP Download Downloads files from an FTP server, such as a real-time target.
FTP Upload Uploads a file to an FTP server, such as a real-time target.

FTP Download
Downloads files from an FTP server, such as a real-time target. .

ni.com348

VeriStand Feature Usage

Note Some versions of Microsoft Windows block incoming FTP traffic by
default. If prompted by the OS, allow VeriStand to use port 21 (FTP) to
transfer data.

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

FTP Server Includes the following properties that configure access to the FTP server:

■ URL—The address of a file or directory on the FTP server.

Note The address cannot contain any characters that define the
protocol. For example, 10.0.72.66/samplefile.txt is a valid address,
but ftp://10.0.72.66/samplefile.txt is not.

■ Is Folder?—If TRUE, specifies that URL is a folder. If FALSE, specifies that
URL is a specific file.
■ Filter—If the path to the files to transfer is a folder, specifies a regular
expression to use to filter the files in the folder by filename.

Note This step only acts on the files that match the regular
expression. The match is not case-sensitive.

■ Username—Specifies the username to use to access the FTP server.
■ Password—Specifies the password for Username.
■ Timeout—Specifies the time in seconds to wait for a response from the FTP
server before returning a timeout error.
■ Passive Connection—If TRUE, specifies that this step initiates a connection
on the FTP data port. If FALSE, specifies that this step listens for a connection
on the FTP server.
■ SSL—If TRUE, specifies that data transmission is encrypted using an SSL
protocol.

FTP Transfer Includes the following properties that configure details of the file transfer:

© National Instruments 349

VeriStand Feature Usage

Property/
Section

Description

■ Destination—The destination directory for downloaded files. If you do not
specify a destination, this step downloads files to the directory that contains
the stimulus profile.
■ Binary—If TRUE, transmits data in binary form. If FALSE, transmits data as
text.
■ Behavior—Specifies the action to take if a file of the same name already
exists in the Destination directory.

■ Overwrite—Overwrites the existing file. This option does not change the
creation date of the file, but it does change the most recent access date.
■ Skip—Skips the file completely and does not include it in the download.
■ Unique—Downloads the file and appends a number to the filename to
create a unique name.

■ Buffer Length—The size of the buffer, in bytes, to use for streaming data.
The minimum is 2.

Proxy Includes the following properties for configuring a proxy server:

■ Enable Proxy—If TRUE, specifies to transmit data through a proxy server.
■ Proxy URL—Specifies the URL of the proxy server.
■ Proxy Username—Specifies the username for the proxy server.
■ Proxy Password—Specifies the password for the Proxy Username.

Port Includes the following property that configures which port the proxy server uses:

■ Proxy Port—Specifies the port the FTP proxy uses. If Enable Proxy is FALSE,
this value is ignored.

FTP Upload
Uploads a file to an FTP server, such as a real-time target.

Note Some versions of Microsoft Windows block incoming FTP traffic by
default. If prompted by the OS, allow VeriStand to use port 21 (FTP) to
transfer data.

ni.com350

VeriStand Feature Usage

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

FTP Server Includes the following properties that configure access to the FTP server:

■ URL—The address of a file or directory on the FTP server.

Note The address cannot contain any characters that define the
protocol. For example, 10.0.72.66/samplefile.txt is a valid address,
but ftp://10.0.72.66/samplefile.txt is not.

■ Username—Specifies the username to use to access the FTP server.
■ Password—Specifies the password for Username.
■ Timeout—Specifies the time in seconds to wait for a response from the FTP
server before returning a timeout error.
■ Passive Connection—If TRUE, specifies that this step initiates a connection
on the FTP data port. If FALSE, specifies that this step listens for a connection
on the FTP server.
■ SSL—If TRUE, specifies that data transmission is encrypted using an SSL
protocol.

FTP Transfer Includes the following properties that configure details of the file transfer:

■ Source—The path to the source file(s) to upload. This can be a file or a
folder containing multiple files.
■ Is Folder?—If TRUE, specifies that URL is a folder. If FALSE, specifies that
URL is a specific file.
■ Filter—If the path to the files to transfer is a folder, specifies a regular
expression to use to filter the files in the folder by filename.

Note This step only acts on the files that match the regular
expression. The match is not case-sensitive.

■ Binary—If TRUE, transmits data in binary form. If FALSE, transmits data as
text.
■ Behavior—Specifies the action to take if a file of the same name already
exists in the Destination directory.

© National Instruments 351

VeriStand Feature Usage

Property/
Section

Description

■ Overwrite—Overwrites the existing file. This option does not change the
creation date of the file, but it does change the most recent access date.
■ Skip—Skips the file completely and does not include it in the download.
■ Unique—Downloads the file and appends a number to the filename to
create a unique name.

■ Buffer Length—The size of the buffer, in bytes, to use for streaming data.
The minimum is 2.

Proxy Includes the following properties for configuring a proxy server:

■ Enable Proxy—If TRUE, specifies to transmit data through a proxy server.
■ Proxy URL—Specifies the URL of the proxy server.
■ Proxy Username—Specifies the username for the proxy server.
■ Proxy Password—Specifies the password for the Proxy Username.

Port Includes the following property that configures which port the proxy server uses:

■ Proxy Port—Specifies the port the FTP proxy uses. If Enable Proxy is FALSE,
this value is ignored.

Creating Real-Time Sequences
Use real-time sequences to define specific tasks for a unit under test (UUT).
Before you begin, you should familiarize yourself with the Stimulus Profile Editor
environment.
Real-time sequences deploy to the target and can deterministically execute.
Sequences test the UUT by reading from and writing to channels defined in the
system definition file. These sequences can include a wide variety of programming
constructs, including while loops, for loops, variables, and conditional statements.
Real-time sequences appear on the VeriStand Editor in the Project Files tab with the
file extension .nivsseq. A real-time sequence cannot execute on its own and must
belong to a stimulus profile.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

ni.com352

VeriStand Feature Usage

2. In the Stimulus Profile Editor, click File > New > Real-Time Sequence.
The sequence organizes your code into the Setup, Main, and Clean Up blocks.
The Primitives palette contains programming building blocks, such as
statements and variables, you can use to define the task the real-time
sequence completes.

3. Create the variables your sequence code can access.

1. Drag variables from the Primitives palette to one of the following
sections of the Variables pane.
Section Description

Return
Variable

The value the real-time sequence returns after it executes.

Parameters The inputs and outputs that the sequence accepts when called and
can pass out to other sequences or the stimulus profile.

Local
Variables

Variables you want to access from statements within the current
sequence.

Channel
References

References that allow you to read/write system definition channels
directly from a real-time sequence.

Note Channel references bind to specific system
definition channels when added to a real-time
sequence. The sequence that contains them is bound to
that system definition file. If you want to write a
sequence that you can reuse across multiple system
definition files, use Parameters.

Note Use Double or Boolean primitives to create parameters
that you want to map to system definition channels. All
channels in VeriStand are 64-bit floating point numbers
(doubles), but many can also accept Boolean values.

2. To add channel references, right-click Channel References and click
Insert Channels.

4. Map parameters to system definition channels.

© National Instruments 353

VeriStand Feature Usage

1. Select a parameter in the Variables pane.

2. In the Property Browser, give the parameter a unique Identifier.

3. Next to Default Assignment, click Browse and navigate to the
appropriate channel or click View aliases in the window to select a
channel by its alias.

5. If you want to use Local Variables in statements or expressions, use the
Property Browser to configure a unique Identifier and a Default Value for
those variables

6. If you want to call another sequence from an expression in the current
sequence, add the new sequence to the References pane.
You can drag variables from the Variables pane or sequences from the
Sequences palette directly to the sequence code to automatically create
expressions that act on those elements. In the case of sequences, VeriStand
also creates references to the sequence.

7. Use expressions, structures, and other primitives to build the sequence code.
Select any item in the sequence code to configure it in the Property Browser.

8. Click Compile.

1. Resolve any Warnings and Errors.

Note A sequence can run with warnings, but not errors. You
can save the profile and resolve errors later.

9. Save the sequence.

After creating the real-time sequence, add a call for the real-time sequence to a
stimulus profile. A sequence cannot execute independently of a stimulus profile.
Run the stimulus profile to run the sequence.

Declaring Variables in a Real-Time Sequence

Declare and define the variables a real-time sequence can access and act on.
Before you begin, create a real-time sequence.

ni.com354

VeriStand Feature Usage

Real-time sequences can contain four different sections of variables that appear in
the Variables pane.
Section Description

Return Variable The value the real-time sequence returns after it executes.
Parameters The inputs and outputs that the sequence accepts when called and can pass out

to other sequences or the stimulus profile.
Local Variables Variables you want to access from statements within the current sequence.
Channel
References

References that allow you to read/write system definition channels directly from
a real-time sequence.

Note Channel references bind to specific system definition channels
when added to a real-time sequence. The sequence that contains
them is bound to that system definition file. If you want to write a
sequence that you can reuse across multiple system definition files,
use Parameters.

1. Open a real-time sequence.

2. Declare a Return Variable.

1. Determine the data type you want the sequence to return:

■ Boolean—Returns a true/false value that indicates if the sequence
passes.
■ Void Return Value—If you do not need to perform a pass/fail
evaluation on the sequence.

2. In the Primitives palette, drag a data type from the Variables folder to
the Return Variable section of the Variables pane.

3. In the Variables pane, select the variable and use the Property Browser
to configure its name and, for a Boolean, default value.

3. Declare a Parameter.

1. To conserve memory, select the smallest possible data type that can
hold the value you want to pass into or out of the sequence.

© National Instruments 355

VeriStand Feature Usage

Note Use Double or Boolean primitives to create parameters
to map to system definition channels. All channels in
VeriStand are 64-bit floating point numbers (doubles), but
many can also accept Boolean values.

2. In the Primitives palette, drag a data type from the Variables folder to
the Parameters section of the Variables pane.

3. In the Variables pane, select a variable and use the Property Browser to
configure its Default Assignment, or the channel it maps to.

4. Declare a Local Variable.

1. To conserve memory, select the smallest possible data type that can
hold the value you want to pass into or out of the sequence.

2. In the Primitives palette, drag a data type from the Variables folder to
the Local Variables section of the Variables pane.

3. In the Variables pane, select a variable and use the Property Browser to
configure its Default Value.

5. Declare a Channel Reference.

1. In the Variables pane, right-click the Channel References section and
click Insert Channels.

2. Use the configuration tree to select the channels you want to add as
Channel References and click OK.

After you declare variables, you can include them in expressions that you add to the
sequence code. When you begin entering an Expression in the Property Browser,
VeriStand automatically includes the names of defined variables to the list of values
that appears.

Using CSV Files as Real-Time Sequences

Use Comma Separated Values (.csv) files within stimulus profiles to stimulate, fault,
and evaluate channels.

1. Format your CSV file.

ni.com356

VeriStand Feature Usage

2. Call the CSV file from a stimulus profile file as a real-time sequence or by
reference from another real-time sequence file.

CSV files that you call as real-time sequences return a Boolean return value. This
Boolean is false if the CSV file evaluates a channel that fails to meet any expected
value defined within the CSV file. Otherwise, the Boolean returns true. CSV files that
do not evaluate channels for pass/fail requirements always return true.

CSV File Formatting for Stimulus Profiles

Format your CSV file column headers to define inputs, values to assign to those
inputs, and timestamps to update the input values.
Based on your use case, use the following column headers in your CSV file.
Use Case Column header Description

All timestamp Specifies the relative time from the start of the test,
in milliseconds. This column specifies when to
execute the action that a row defines, such as when
to update a parameter value.

Stimulating ParameterName Specifies the name of an input parameter for the
real-time sequence. This column contains the values
to set for the parameter at the specified timestamp.
ParameterName can be any string, but the name you
specify effects how VeriStand creates the default
channel assignment for the parameter. As with a
standard real-time sequence file, you must assign
channels in your system to each input parameter you
specify. You can specify an unlimited number of
parameters.

Faulting #FLT_STATE#ParameterName Specifies a fault state for ParameterName at the
specified timestamp. Valid values are 0 (no fault) and
1 (fault). You must use this header together with
#FLT_VALUE#ParameterName.

Faulting #FLT_VALUE#ParameterName Specifies the value to force ParameterName to when
#FLT_STATE#ParameterName is 1. You must use this
header together with #FLT_STATE#ParameterName.

Evaluating #EXP(+tol;-tol;ms
delay)#ParameterName

Specifies the expected pass/fail value for the
ParameterName channel. VeriStand compares the
actual values of ParameterName to the values in this
column to determine whether to pass or fail the test.

© National Instruments 357

VeriStand Feature Usage

Use Case Column header Description
+tol and -tol are absolute values that specify the
tolerance of the test, or the range above and below
the expected value within which ParameterName
must be to pass.
ms delay is the delay in milliseconds to add to each
timestamp value before updating the expected value
of ParameterName. If you specify a delay on a value
at a particular timestamp, VeriStand waits for
timestamp + ms delay before updating the expected
value from the one at the previous timestamp.

Note For all headers that include a ParameterName, VeriStand replaces
any characters that would make the name invalid, according to the
following rules.
Use Case Column header

+ Plus
- Minus
All other invalid characters _ (underscore)

For all headers that include a ParameterName, VeriStand creates a default channel
assignment based on the format of ParameterName. If ParameterName is a fully
qualified channel path or channel alias, VeriStand uses the full channel or alias as
the default channel assignment. Otherwise, VeriStand treats ParameterName as a
partially qualified alias and creates a fully qualified alias using ParameterName as
the alias name. This new alias is the default channel assignment.

CSV File Formatting Examples

Format CSV files to run as real-time sequences or subroutines within a sequence in a
stimulus profile.
The following table displays examples of CSV files based on the goal. The formatting
of the CSV file depends on whether you want to stimulate, fault, and/or evaluate a
channel.

ni.com358

VeriStand Feature Usage

Goal Example

Stimulating
a Channel

The following CSV file stimulates a channel with the alias channelX by updating the value of the
channel every 100 milliseconds.

timestamp,channelX
0,0
100,5
200,10
300,20
400,30
500,40

Stimulating
Multiple
Channels

The following CSV file stimulates two channels, channelX and channelY, by updating the channel
values every 100 milliseconds.

timestamp,channelX,channelY
0,0,-50.5
100,5,-49
200,10,-46
300,20,-40
400,30,-28
500,40,-4

Faulting a
Channel

The following CSV file alternates between faulting and clearing a fault on channelX every 100
milliseconds, and forces the value of channelX to 100 whenever it faults the channel.

timestamp,#FLT_STATE#channelX,#FLT_VALUE#channelX
0,0,0
100,1,100
200,0,0
300,1,100
400,0,0
500,1,100

Evaluating a
Channel

The following CSV file tests channelX for an expected value, and updates the expected value every 100
milliseconds. In this example, the actual value of channelX can be within .05 of the expected value for
a passing test, but no delay in reaching the value is allowed.

timestamp,#EXP(.05;.05;0)#channelX
0,0
100,1
200,0

© National Instruments 359

VeriStand Feature Usage

Goal Example
300,-1
400,0
500,1

Note Because you can specify delay on evaluation tasks, multiple evaluations can run at
different intervals. If you evaluate multiple channels, VeriStand runs each channel
evaluation in a separate, parallel task.

Stimulating,
Faulting,
and
Evaluating a
Channel

The following CSV file stimulates channelX, faults channelY, and evaluates channelZ every 100
milliseconds.

timestamp,channelX,#FLT_STATE#channelY,#FLT_VALUE#channelY,#EXP(.05;.05;50)#channelZ
0,0,0,0,0
100,1,1,100,10
200,0,0,0,0
300,-1,1,100,-10
400,0,0,0,0
500,1,1,100,10

Note VeriStand runs the channel evaluation in one task and the faulting and stimulation
in a separate, parallel task.

Calling a Real-Time Sequence from Another Sequence

Call real-time sequences by reference to run multiple sequences in parallel.
You can add references to real-time sequences or CSV files that you call as
sequences, and then call those references from expressions within an existing
sequence.

1. Create a real-time sequence to serve as the calling file.

2. In the References pane, select References.

3. On the Home tab of the ribbon, click Reference.
4. Use the File dialog box to navigate to the real-time sequence (.nivsseq) or CSV

file you want to reference.

ni.com360

VeriStand Feature Usage

Note If the real-time sequence or CSV file is saved in the same
directory as the sequence you are editing, you can also drag the real-
time sequence or CSV file from the Sequences pane to References to
create the reference.

After you add the reference, you can use an expression to call the referenced real-
time sequence.

Generating Errors in a Real-Time Sequence

Configure a real-time sequence to return user-defined error codes and messages in
the stimulus profile test results file.

1. Create a real-time sequence.
2. Add a Generate Errors primitive to the sequence code.

Note This primitive also allows you to stop the sequence and skip to
the clean-up tasks or to immediately abort the sequence without
performing clean-up tasks.

3. If you need to clear or access an error later in the sequence, create an
expression in the Property Browser that implements a function.
Goal Function

Clear the last error so it does not appear in the test results file. clearlasterror
Return the numeric error code of the last error. getlasterror

The test results file displays the error information in the section that corresponds to
the sequence that generated the error. The following example shows how an error
appears in the test results file:
Outcome: Error: 55. Details: <append>========================= VeriStand:
Alert! The Engine Temperature is outside the critical range. Shutting down the
engine.

© National Instruments 361

VeriStand Feature Usage

Adding and Editing Expressions in a Real-Time Sequence

Use expressions to access and act on the variables you define for a real-time
sequence.
Expressions are the building blocks of real-time sequence code.

1. Depending on your goal, complete the following tasks.
Goal Tasks

Create a new, empty expression Drag an Expression primitive from the Expressions
palette to the sequence code.

create an expression that
automatically includes a variable.

Drag a declared variable from the Variables pane to the
sequence code.

create an expression that
automatically includes a
sequence

Drag a real-time sequence from the Sequences palette
or the References pane to the sequence code.

2. In the Property Browser, build the expression as a mathematical operation.

Note As you begin typing in the Expression field, a type-ahead
menu appears with valid functions or variables you can include in
the expression. You can connect these functions and variables with
operators.

If the new expression contains a variable that is not already declared in the
sequence, declare the variable.

Expression Functions

Use functions when editing expressions in the Property Browser.

Note All function names must be lowercase.

Function Description Return type

abs(x) Returns the absolute value of x. Returns a value
of the same type
as the input.

ni.com362

VeriStand Feature Usage

Function Description Return type
abstime() Returns the current date and time in seconds relative to 12:00

a.m., Friday, January 1, 1904, Universal Time [01-01-1904
00:00:00].

Double

acos(x) Returns the inverse cosine of x in radians. Double
acosh(x) Returns the inverse hyperbolic cosine of x. Double
acot(x) Returns the inverse cotangent of x in radians. Double
acoth(x) Returns the inverse hyperbolic cotangent of x. Double
acsc(x) Returns the inverse cosecant of x in radians. Double
acsch(x) Returns the inverse hyperbolic cosecant of x. Double
arraysize(x) Returns the number of elements in x, where x is an array. Int64
asec(x) Returns the inverse secant of x in radians. Double
asech(x) Returns the inverse hyperbolic secant of x. Double
asin(x) Returns the inverse sine of x in radians. Double
asinh(x) Returns the inverse hyperbolic sine of x. Double
atan(x) Returns the inverse tangent of x in radians. Double
atan2(y,x) Returns the arctangent of y/x in radians. Double
atanh(x) Returns the inverse hyperbolic tangent of x. Double
ceil(x) Rounds x to the next higher integer (smallest integer ≥ x) and

returns the rounded value.
Double

clearfault(x) Clears any fault set on x. x must be a reference to a channel
and should not be a reference to a local variable. If x
references a local variable, clearfault performs no operation.

Void

clearlasterror(x) Clears the last error set by the Generate Error primitive so the
error does not appear in the test results file.

Void

cos(x) Returns the cosine of x, where x is in radians. Double
cosh(x) Returns the hyperbolic cosine of x. Double
cot(x) Returns the cotangent of x (1/tan(x)), where x is in radians. Double
coth(x) Returns the hyperbolic cotangent of x (1/tanh(x)). Double
csc(x) Returns the cosecant of x (1/sin(x)), where x is in radians. Double
csch(x) Returns the hyperbolic cosecant of x (1/sinh(x)). Double
deltat() Returns the duration of the current system timestep in

seconds. To perform equality or comparison operations, use
deltatus instead.

Double

© National Instruments 363

VeriStand Feature Usage

Function Description Return type
deltatus() Returns the duration of the current system timestep in

microseconds.
Int64

exp(x) Returns the value of e raised to the x power. Double
expm1(x) Returns one less than the value of e raised to the x power

((e^x) – 1).
Double

fault(x,c) Faults x with a value of c. x must be a reference to a channel
and should not be a reference to a local variable. If x
references a local variable, fault performs no operation.

Boolean

fix(x) Rounds x to the nearest integer between x and zero and
returns the rounded value.

Double

floor(x) Truncates x to the next lower integer (largest integer ≤ x) and
returns the truncated value.

Double

getlasterror() Returns the numeric error code of the last error set by the
Generate Error primitive.

Int32

hypot(x,y) Returns sqrt((x * x) + (y * y)) without overflowing if x and y are
large values.

Double

isnan(x) Determines whether x is NaN. Returns true if x is NaN.
Otherwise, returns false.

Boolean

iteration() Returns the number of iterations since the virtual machine
started.

Int64

ln(x) Returns the natural logarithm of x (to the base of e). Double
lnp1(x) Returns the natural logarithm of (x + 1). Double
log(x) Returns the logarithm of x to the base of 10. Double
log10(x) Returns the logarithm of x to the base of 10. Double
log2(x) Returns the logarithm of x to the base of 2. Double
max(x,y) Compares x and y and returns the larger value. Returns a value

of the same type
as the input with
the largest data
type.

min(x,y) Compares x and y and returns the smaller value. Returns a value
of the same type
as the input with
the largest data
type.

ni.com364

VeriStand Feature Usage

Function Description Return type
mod(x,y) Returns the remainder of x/y, when the quotient is rounded

toward –Infinity.
Returns a value
of the same type
as the input with
the largest data
type.

pow(x,y) Returns x raised to the y power. Double
pow10(x) Returns 10 raised to the x power. Double
pow2(x) Returns 2 raised to the x power. Double
quotient(x,y) Returns floor(x/y), the number of times y evenly divides into x. Returns a value

of the same type
as the input with
the largest data
type.

rand(max) Returns a floating-point number between 0 and the
maximum value.

Double

recip(x) Returns 1/x. Double
rem(x,y) Returns the remainder of x/y, when the quotient is rounded

toward zero.
Returns a value
of the same type
as the input with
the largest data
type.

round(x) Rounds x to the nearest integer and returns the rounded
value.

Double

sec(x) Returns the secant of x (1/cos(x)), where x is in radians. Double
sech(x) Returns the hyperbolic secant of x (1/cosh(x)). Double
seqtime() Returns the number of elapsed seconds since the virtual

machine started. To perform equality or comparison
operations, use seqtimeus instead.

Double

seqtimeus() Returns the number of elapsed microseconds since the virtual
machine started.

Int64

sign(x) Returns 1 if x is greater than 0, returns 0 if x is equal to 0, and
returns –1 if x is less than 0.

Returns a value
of the same type
as the input.

sin(x) Returns the sine of x, where x is in radians. Double
sinh(x) Returns the hyperbolic sine of x. Double
sqrt(x) Returns the square root of x. Double

© National Instruments 365

VeriStand Feature Usage

Function Description Return type
tan(x) Returns the tangent of x, where x is in radians. Double
tanh(x) Returns the hyperbolic tangent of x. Double
tickcountms() Returns the current value of the millisecond counter. Int64
tickcountus() Returns the current value of the microsecond counter. Int64
ythroot(x,y) Returns x^(1/y), the yth root of x. Double

Expression Syntax

Use expression syntax similarly to the syntax used in text-based programming
languages.
Your expression syntax must conform to the allowed functions and operator
precedence in the Expression component of the Property Browser.
The expression syntax is summarized below using Backus-Naur Form (BNF
notation). The summary includes non-terminal symbols: identifier, number, array-
size, floating-point-type, integer-type, left-hand-side, assignment-operator, and
function.

Note Italicized symbols are terminal symbols given exactly as how you
should reproduce them. The symbol # denotes any number of the term
following it.

assignment:

■ expression
■ left-hand-side assignment-operator assignment

expression:

■ expression binary-operator expression
■ unary-operator expression
■ expression unary-operator
■ expression ? expression : expression
■ (expression)
■ identifier

ni.com366

VeriStand Feature Usage

■ constant
■ function-name (argument-list)

left-hand-side:

■ identifier
■ identifier array-subscription

array-subscription:

■ [assignment]

assignment-operator: one of

■ = += –= *= /= >>= <<= &= ^= |= %= **=

binary-operator: one of

■ + – * / ^ != == > < >= <= >> << && || & | % **

unary-operator: one of

■ – ! ++ –– ~

argument-list:

■ expression
■ expression , argument-list

constant:

■ pi
■ true
■ false
■ number

non-digit: one of

■ _ a~z A~Z

digit: one of

■ 0 1 2 3 4 5 6 7 8 9

nonzero-digit: one of

© National Instruments 367

VeriStand Feature Usage

■ 1 2 3 4 5 6 7 8 9

binary-digit: one of

■ 0 1

hex-digit: one of

■ 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

identifier:

■ non-digit [non-first-character]

non-first-character:

■ non-digit [non-first-character]
■ digit [non-first-character]

number:

■ integer-constant
■ float-constant

integer-constant:

■ decimal-constant
■ binary-constant
■ hex-constant

decimal-constant:

■ nonzero-digit #digit

binary-constant:

■ 0b #binary-digit
■ 0B #binary-digit

hex-constant:

■ 0x #hex-digit
■ 0X #hex-digit

float-constant:

ni.com368

VeriStand Feature Usage

■ fraction exponent-part
■ decimal-constant exponent-part

fraction:

■ #digit . digit #digit

exponent-part:

■ e [sign] #digit
■ E [sign] #digit

sign: one of

■ + -

Expression Operator Precedence

Operators in real-time sequence expressions have an order to when they execute.
The following table lists the order of precedence for operators from highest to
lowest. Operators on the same line have the same precedence.
Operator Description

** Exponentiation
-, !, ~, ++, and –– Unary negation, logical not, bit complement, pre- and post-increment, pre- and

post-decrement
*, /, % Multiplication, division, modulus (remainder)
+ and – Addition and subtraction
>> and << Arithmetic shift right and shift left
>, <, >=, and <= Greater, less, greater or equal, and less or equal
!= and == Inequality and equality
& Bit and
^ Bit exclusive or
| Bit or
&& Logical and
|| Logical or
? : Conditional evaluation

© National Instruments 369

VeriStand Feature Usage

Operator Description
= op= Assignment, shortcut operate and assignop can be +, –, *, /, >>, <<, &, ^, |, %, or

**.

The assignment operator = is right associative (groups right to left), as is the
exponentiation operator **. All other binary operators are left associative.
The numeric value of TRUE is 1, and FALSE is 0 for output. The logical value of 0 is
FALSE, and any nonzero number is TRUE. The logical value of the conditional
expression
<lexpr> ? <texpr>: <fexpr>

is <texpr> if the logical value of <lexpr> is TRUE and <fexpr> otherwise.

Calling a Real-Time Sequence from an Expression

Use expressions to call real-time sequences from within other real-time sequences.

1. Add a reference to the real-time sequence you want to call.
2. Enter the sequence alias, which appears to the right of the file name in the

References pane, into the Expression component of the Property Browser.
3. In parentheses following the alias, list each parameter of the sequence.

For example, if the alias is Sequence, and the sequence contains the
parameters Parameter1 and Parameter2, the expression must contain:
Sequence(Parameter1, Parameter2)

The process for calling CSV files from an expression is the same as for real-time
sequence (.nivsseq) files. You must add a reference to the CSV file, and each channel
in the CSV file requires a parameter in the function call.

Note If you are evaluating a channel in a CSV file for pass/fail
requirements, you must list two parameters in the function call, one for the
evaluated channel, and one for the channel where you want to store the
results.

ni.com370

VeriStand Feature Usage

Performing Division with Expression Functions and Operators

Use the division operator or quotient function to divide expression functions and
operators.
The division operator (/) method divides all numbers as doubles and results in a
double quotient, regardless of the data type of the dividend or divisor.

Note If the dividend, divisor, and result are all of type I32, the division
operator performs an integer division and returns a result of data type I32.

The quotient function method rounds the result of the division towards minus
infinity.

Depending on your goal, use a division method with your expression function or
operator.
Goal Method

Perform an integer division and want the result as a double Division Operator (/)
Perform an integer division and want the result as an integer rounded
towards minus infinity

Quotient Function

Divide U64 integers

The result of the function (operator) is either the data type of the dividend or the
divisor. This is determined by the largest data type, according to this order: Double >
U64 > I64 > U32 > I32.
If the result is passed to another data type, VeriStand performs an implicit cast. An
implicit cast converts one data type to another. For example, if a double is converted
to an integer, the resulting number is rounded toward zero. This may lead to
unexpected values.
The following table shows the results of different functions in the case of division by
zero.
Function/Operator Double Integer (I32, I64, U32, U64)

mod(x,y) Nan The sequence is aborted with error -8
quotient(x,y) -Inf/Nan/Inf
rem(x,y) Nan
/ -Inf/Nan/Inf

© National Instruments 371

VeriStand Feature Usage

Function/Operator Double Integer (I32, I64, U32, U64)
% Nan

Faulting Channels in a Real-Time Sequence

Use a software fault insertion by using the fault(x,c) and clearfault(x) functions.
A software fault insertion allows you to test the behavior of a system when a
channel reaches a certain value. Use the following functions to perform a software
fault insertion.

■ The fault(x,c) function faults the channel referenced by the specified
parameter (x) to the specified value (c).

Note While the fault is active, it overrides any attempts to set the
value of the faulted channel, whether from mappings or from the
VeriStand Editor or Workspace.

■ The clearfault(x) function clears any faults from the specified channel (x).
Once cleared, any mappings resume.

1. Create a real-time sequence.
2. Add expressions that call the fault(x,c) and clearfault(x) functions.

In the following real-time sequence, the parameter ao0 is mapped to the system
definition channel PXI FPGA AO0. The real-time sequence faults the value of PXI
FPGA AO0 to -10.0, waits five seconds, and then clears the fault.

ni.com372

VeriStand Feature Usage

Variables for Reading and Writing Channels in a Real-Time Sequence

Use parameter and channel reference variables to read or write system definition
channels.
There are key differences between how parameters and channel references access
channels. Use the following table to determine the best variable type to read or
write channels in your real-time sequence.
Variable Use case Limitations

Parameter Use parameters to create real-time
sequences that you can use across multiple
system definition files.

Parameters are difficult to manage if
a stimulus profile contains nested
real-time sequences or real-time
sequences that access many
channels.

Channel
Reference

Use channel references if you do not need to
use a real-time sequence with multiple
system definition files. In general, channel
references are easier to manage than
parameters.

Channel references bind a real-time
sequence to a specific system
definition file.

To illustrate how channel references are easier to manager than parameters,
consider a real-time sequence, SeqA, that calls another sequence, SeqB. The
stimulus profile, MyProfile, manages both sequences. You need to read a channel,
named MyChannel, from SeqB.
The following illustration contrasts how reading MyChannel with a channel
reference differs from reading MyChannel with a parameter.
Parameters Channel Reference

■ Add a parameter
and assign
MyChannel to it.
■ Add the
parameter to the
real-time sequence
code.

■ Add a channel reference for
MyChannel.
■ Add the channel reference to
the real-time sequence code to
read or write the system
definition channel.

Note You do not need to
configure the channel■ Add a parameter

and assign it to
MyChannel.

© National Instruments 373

VeriStand Feature Usage

Parameters Channel Reference
reference in SeqA or
MyProfile.

■ Call SeqB and
declare the
MyChannel
parameter in the
real-time sequence
call.

■ Configure the
parameter
assignments so that
the appropriate
SeqA parameter is
assigned to
MyChannel.

Real-Time Sequence Primitives

Use real-time sequence primitives to define variables, create expressions, and add
structures such as loops and conditional statements to your real-time sequence
code.
A primitive is a programming element you can use in a real-time sequence.

Subpalette Description

Advanced Primitives Configure advanced operations in the real-time sequence code.
Expressions Primitives Assign values to and perform operations on variables in a real-time

sequence.
Miscellaneous
Primitives

Add cosmetic and informational elements to real-time sequence code.

Structures Primitives Add programming structures, such as loops and conditional
statements, to the real-time sequence code.

Variables Primitives Create and configure variables that a real-time sequence can access and
act on.

Advanced Primitives

Configure advanced operations in the real-time sequence code.

ni.com374

VeriStand Feature Usage

Palette object Description

Yield A statement that causes the real-time sequence to pause while the Primary
Control Loop iterates and then resumes executing the real-time sequence.

Yield Primitive
A statement that causes the real-time sequence to pause while the Primary Control
Loop iterates and then resumes executing the real-time sequence.
In a multi-tasking real-time sequence, this statement causes the current task to
complete the current step and yield control of the CPU to the next task, if one exists.

Property/Section Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Expressions Primitives

Assign values to and perform operations on variables in a real-time sequence.

Palette object Description

Assignment A simple expression statement that assigns a value to a variable.
Expression A statement that can operate on variables in a real-time sequence.

Assignment Primitive
A simple expression statement that assigns a value to a variable.
For example, VarName = 150 is an assignment that sets the value of a variable,
VarName, to 150.

Property/Section Description

Expression Specifies the expression to evaluate. You can include real-time sequence
variables, supported functions, and operators in an expression.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

© National Instruments 375

VeriStand Feature Usage

Expression Syntax
A statement that can operate on variables in a real-time sequence.
For example, VarName * 2 is an expression that multiplies the value of a variable,
VarName, by 2. Expressions are the building blocks of real-time sequence code, and
must follow the expected syntax.

Property/Section Description

Expression Specifies the expression to evaluate. You can include real-time sequence
variables, supported functions, and operators in an expression.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Miscellaneous Primitives

Add cosmetic and informational elements to real-time sequence code.
The primitives on this palette do not affect the execution of sequence code.

Palette object Description

Block Organize your real-time sequence code.
Comment Document in your real-time sequence code.
Generate Error Create and return a user-defined error code and message in the stimulus profile

test results file.

Block
Organize your real-time sequence code.
A block is a list of functional statements to execute. Because a block is itself a single
statement, you also can use blocks to easily duplicate or move related statements.
The predefined sections of a real-time sequence, Setup, Main, and Clean Up, are
examples of code blocks. Blocks have no effect on the execution of the code.

Property/Section Description

Name The name of the block.

ni.com376

VeriStand Feature Usage

Property/Section Description
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Comment
Document in your real-time sequence code.
Comments have no effect on the execution of the code.

Property/Section Description

Comment The text of the comment.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Generate Error
Create and return a user-defined error code and message in the stimulus profile test
results file.
You can also configure this primitive to stop the sequence and skip to the clean-up
tasks or to immediately abort the sequence without performing clean-up tasks. Only
the most recent error appears in the test results file because the most recent error
overwrites any previous error that occurred.

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Error Code Specifies the numeric value to return.
Message Specifies a string that you want to append to the Error Code in the test results

file.
Action to Take Specifies how to proceed through the remainder of the real-time sequence:

■ ContinueSequenceExecution—Continues normal execution of the real-
time sequence.

© National Instruments 377

VeriStand Feature Usage

Property/
Section

Description

■ StopSequence—Halts execution and runs the tasks under the Clean Up
node.
■ AbortSequence—Immediately halts execution without running tasks
under the Clean Up node.

The test results file displays the error code and message in the section that
corresponds to the sequence that generated the error. The following example shows
how an error appears in the test results file:
Outcome: Error: 55. Details: <append> ========================= NI VeriStand:
Alert! The Engine Temperature is outside the critical range. Shutting down the
engine.

Structures Primitives

Add programming structures, such as loops and conditional statements, to the real-
time sequence code.

Subpalette Description

Conditional
Statements

Use the Conditional statements to execute different code under different,
specified conditions.

Loops Use Loops to add structures that repeat a section of real-time sequence code
a specified number of times or while a specified condition is TRUE.

Multitasking
Primitives

Use the Multitasking primitives to divide real-time sequence code into
multiple tasks that execute in parallel.

Conditional Statements
Use the Conditional statements to execute different code under different, specified
conditions.

Palette object Description

If Else A statement that defines an expression to evaluate to determine whether to
execute one section of code or another.

ni.com378

VeriStand Feature Usage

Subpalette Description

Switch Statement
Primitives

Use the Switch Statement primitives to create different cases of code to
execute based on the value of a test expression.

If Else
A statement that defines an expression to evaluate to determine whether to execute
one section of code or another.
When you add an If Else statement to your real-time sequence code, the editor
automatically generates Then and Else blocks under the statement. If the Test

Expression evaluates to TRUE, the statement executes the code under the Then
block. If the expression evaluates to FALSE, the statement executes the code under
the Else block.
To specify the code that each block executes, drag expressions and other primitives
to the blocks and configure them as you would any other section of sequence code.

Property/Section Description

Test Expression Specifies the expression to evaluate to determine the code to execute.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Switch Statement Primitives
Use the Switch Statement primitives to create different cases of code to execute
based on the value of a test expression.

Palette object Description

Case Statement A functional statement under which you add code that executes if a test
condition is met.

Switch A statement that defines an expression to evaluate to determine which section
of code, or Case Statement, to execute.

Case Statement
A functional statement under which you add code that executes if a test condition is
met.

© National Instruments 379

VeriStand Feature Usage

A case statement executes if its Case Value matches the value of the Test

Expression for the Switch statement that contains the case.
To specify the code that the case executes, drag expressions and other primitives to
the case and configure them as you would any other section of sequence code.

Property/Section Description

Case Value The value to check against the Test Expression for the Switch statement. If the
two values match, this case executes.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Switch Primitive
A statement that defines an expression to evaluate to determine which section of
code, or Case Statement, to execute.

The Switch statement executes the case with the Case Value that matches the value
of the Test Expression. If no cases match the test value, a default case executes
instead. When you add a Switch to your real-time sequence code, the editor
automatically creates a Cases section for the test cases and a DefaultCase, which is
another Case Statement.
Build your test code by adding additional cases to the Cases section. You can then
add code to define the execution of each case, including the default.

Property/Section Description

Test Expression Specifies the expression to evaluate to determine the code to execute.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Loops
Use Loops to add structures that repeat a section of real-time sequence code a
specified number of times or while a specified condition is TRUE.

ni.com380

VeriStand Feature Usage

Palette object Description

DoWhile Loop A collection of statements that execute once and then continue executing for as
long as the Repeat While expression evaluates to TRUE.

For Loop A collection of statements that execute continuously for a specified number of
loop iterations.

ForEach Loop A collection of statements that executes one time for each element in the array
specified by the Array Expression.

While Loop A collection of statements that execute continuously for as long as the Repeat

While expression evaluates to TRUE.

DoWhile Loop
A collection of statements that execute once and then continue executing for as long
as the Repeat While expression evaluates to TRUE.

Configure the code that executes in the loop by dragging expressions and other
primitives to the loop and configuring them as you would any other section of
sequence code.

Property/Section Description

Repeat While Specifies the expression to evaluate to determine if the loop continues to
execute. The loop executes as long as this expression evaluates to TRUE.

Auto Yield If TRUE, specifies that the loop automatically yields control of the CPU to the
next task at the end of each iteration.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

For Loop
A collection of statements that execute continuously for a specified number of loop
iterations.
Configure the code that executes in the loop by dragging expressions and other
primitives to the loop and configuring them as you would any other section of
sequence code.

Property/Section Description

Iteration Count The number of iterations the loop executes.

© National Instruments 381

VeriStand Feature Usage

Property/Section Description
Loop Variable Specifies the identifier, or name, for the variable that holds the current

iteration count for the loop. You can use this variable in other expressions
within the real-time sequence.

Auto Yield If TRUE, specifies that the loop automatically yields control of the CPU to the
next task at the end of each iteration.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

ForEach Loop
A collection of statements that executes one time for each element in the array
specified by the Array Expression.
Configure the code that executes in the loop by dragging expressions and other
primitives to the loop and configuring them as you would any other section of
sequence code.

Property/Section Description

Loop Variable Specifies the identifier, or name, for the variable that holds the current
iteration count for the loop. You can use this variable in other expressions
within the real-time sequence.

Array Expression Defines the array of items that the loop iterates over.
Auto Yield If TRUE, specifies that the loop automatically yields control of the CPU to the

next task at the end of each iteration.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

While Loop

A collection of statements that execute continuously for as long as the Repeat While
expression evaluates to TRUE.
Configure the code that executes in the loop by dragging expressions and other
primitives to the loop and configuring them as you would any other section of
sequence code.

ni.com382

VeriStand Feature Usage

Property/Section Description

Repeat While Specifies the expression to evaluate to determine if the loop continues to
execute. The loop executes as long as this expression evaluates to TRUE.

Auto Yield If TRUE, specifies that the loop automatically yields control of the CPU to the
next task at the end of each iteration.

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Multitasking Primitives
Use the Multitasking primitives to divide real-time sequence code into multiple
tasks that execute in parallel.

Palette object Description

MultiTask A structure that branches real-time sequence code execution into one or more
child tasks.

Stop Task Stops a Task in a MultiTask structure.
Task A block of code in a MultiTask structure.

MultiTask Structure
A structure that branches real-time sequence code execution into one or more child
tasks.
On each time step, the MultiTask structure iteratively executes code from each child
task until the task either terminates or yields execution to the next time step.
MultiTask structures have two child tasks by default, but you can add more Task
primitives from the Multitasking palette.

Property/Section Description

Description Specifies a description for the current item. This text appears when you hover
over the item in the Stimulus Profile Editor.

Stop Task
Stops a Task in a MultiTask structure.

© National Instruments 383

VeriStand Feature Usage

When a task stops, any subsequences executing in that task immediately execute
their Clean Up block and any sub-tasks stop.

Property/Section Description

Task Name Specify the task name.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Task
A block of code in a MultiTask structure.
On each time step, the MultiTask structure iteratively executes code from each child
Task that it contains. A Task cannot exist outside of a MultiTask structure. Configure
the code that executes as part of the task by dragging expressions and other
primitives to the task and configuring them as you would any other section of
sequence code.

Property/Section Description

Task Name Specify the task name.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Variables Primitives

Create and configure variables that a real-time sequence can access and act on.

Drag a variable to the Variables pane to configure its properties. You can drag most
variables directly to the sequence code to create an expression that sets the value of
a variable.

Palette object Description

Boolean A Boolean value.
Double A double-precision, floating point number.
Int32 A 32-bit signed integer.
Int64 A 64-bit signed integer.
UInt32 A 32-bit unsigned integer.
UInt64 A 64-bit unsigned integer.

ni.com384

VeriStand Feature Usage

Palette object Description
Void Return Value Returns void, or no value, when used as the return variable for a real-time

sequence.

Subpalette Description

Array Variables
Primitives

Use the Array Variables primitives to create variables that are arrays of
values of a certain data type.

Boolean Variable
A Boolean value.

If you want to configure pass/fail notification for a real-time sequence, use a
Boolean as the return variable.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

© National Instruments 385

VeriStand Feature Usage

Property/
Section

Description

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Double Variable
A double-precision, floating point number.
Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.

ni.com386

VeriStand Feature Usage

Property/
Section

Description

■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.
You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count
This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Int32 Variable
A 32-bit signed integer.
Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the

© National Instruments 387

VeriStand Feature Usage

Property/
Section

Description

mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.
You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count
This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Int64 Variable
A 64-bit signed integer.
Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

ni.com388

VeriStand Feature Usage

Property/
Section

Description

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.
You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count
This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

© National Instruments 389

VeriStand Feature Usage

UInt32 Variable
A 32-bit unsigned integer.
Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.
You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count
This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.

ni.com390

VeriStand Feature Usage

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

UInt64 Variable
A 64-bit unsigned integer.
Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

© National Instruments 391

VeriStand Feature Usage

Property/
Section

Description

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count
This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Void Return Value
Returns void, or no value, when used as the return variable for a real-time sequence.

Note You cannot use this variable for anything other than a return
variable.

Property/Section Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover

over the item in the Stimulus Profile Editor.

Array Variables Primitives
Use the Array Variables primitives to create variables that are arrays of values of a
certain data type.

Palette object Description

Boolean Array An array of Boolean values.
Double Array An array of double-precision, floating point numbers.
Imported Double Array An array of double-precision, floating point numbers imported from a file.

ni.com392

VeriStand Feature Usage

Palette object Description
Int32 Array An array of 32-bit signed integers.
Int64 Array An array of 64-bit signed integers.
UInt32 Array An array of 32-bit unsigned integers.
UInt64 Array An array of 64-bit unsigned integers.

Boolean Array Variable
An array of Boolean values.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

© National Instruments 393

VeriStand Feature Usage

Property/
Section

Description

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Double Array Variable
An array of double-precision, floating point numbers.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence

ni.com394

VeriStand Feature Usage

Property/
Section

Description

executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Imported Double Array Variable
An array of Boolean values.

To create this type of variable, right-click Local Variables in the Variables pane and
select Import Double Array from File. In the file dialog box that displays, select a file
whose data you want to import. The Import Double Array from File dialog box
displays, which you use to select which channels you want to import as local
variables, specify how much data to import, and preview the channel data. When
you click OK, the variable(s) appear in the list of local variables.

Note You cannot add this type of variable from a palette or drag it to the
Return Variable or Parameters sections in the Variables pane.

© National Instruments 395

VeriStand Feature Usage

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Properties Includes the following properties that allow you to select an import file or that
display information about the data that VeriStand will import from File Path:

■ File Path—Specifies the path of the file from which to import values. You can
change the import file after you create the variable; however, you cannot
change other properties you set in the Import Double Array from File dialog
box when you create the variable, such as the Number of Values
■ Channel—Displays the name of the channel in the import file that contains
data you want to import.
■ Channel Group—Displays the name of the group in the import file that owns
the Channel.
■ Subset Start Value—Displays the index of the first value imported from the
file.
■ Number of Values—Displays the number of values imported from the file,
starting at the Subset Start Value index.
■ Offset—Displays the amount by which channel values are offset along the y-
axis.
■ Scale—Displays the multiplier by which channel values are scaled along the
y-axis.

Units Specifies the units to associate with the variable value. If the channel has associated
units in the import file, VeriStand uses those units. You can change the Units after
you import the local variable.

Int32 Array Variable
An array of 32-bit signed integers.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system

ni.com396

VeriStand Feature Usage

Property/
Section

Description

definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Int64 Array Variable
An array of 64-bit signed integers.

© National Instruments 397

VeriStand Feature Usage

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.

ni.com398

VeriStand Feature Usage

Property/
Section

Description

Description Specifies a description for the current item. This text appears when you hover over
the item in the Stimulus Profile Editor.

UInt32 Array Variable
An array of 32-bit unsigned integers.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,
the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

© National Instruments 399

VeriStand Feature Usage

Property/
Section

Description

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

UInt64 Array Variable
An array of 64-bit unsigned integers.

Property/
Section

Description

Identifier Specifies the name of the variable. Use this string to identify the variable in
expressions.

Evaluation
Method

Specifies whether to evaluate the parameter by value or by reference. ByReference
is appropriate for most use cases, where parameters map to channels in a system
definition, because calling by reference allows changes to the value of the channel
to propagate across all sequences that use the parameter.

■ ByReference—When another real-time sequence calls this real-time
sequence as a subsequence, the calling sequence operates directly on the
mapped variable value. If the subsequence updates the parameter value, the
mapped variable in the calling sequence also is updated. If the calling
sequence updates the mapped variable value while the subsequence
executes from another task, the parameter value in the subsequence
updates as well. ByReference parameters can only be called by variables of
the same data type as the parameter.
■ ByValue—When another real-time sequence calls this real-time sequence
as a subsequence, the parameter maps a copy of the variable value. If the
calling sequence updates the mapped variable value while the subsequence
executes, the parameter value in the subsequence is not affected. If the
subsequence modifies the parameter value while the subsequence executes,

ni.com400

VeriStand Feature Usage

Property/
Section

Description

the value of the mapped variable in the calling sequence is not affected.
ByValue parameters can be called by variables of any logical data type.

Note This property only appears if you use the variable as a parameter.

Default
Assignment

Specifies the default channel in the system definition to assign to this parameter.
The real-time sequence uses the Default Assignment unless you override the
parameter value when you call the real-time sequence from a stimulus profile.

You can specify a channel by its alias or by the path to the channel in the system
definition, for example: Targets/Controller/System Channels/Model Count

This property only appears if you use the variable as a parameter.

Default Value Specifies the default or initial value of the local variable. This property only
appears if you use the variable as a local variable.

Units Specifies the units to associate with the variable value.
Description Specifies a description for the current item. This text appears when you hover over

the item in the Stimulus Profile Editor.

Viewing Stimulus Profile Test Results

Enable the Stimulus Profile Editor to automatically open stimulus profile test
results.
Each time you run a stimulus profile, VeriStand produces a test results file that
adheres to the Automatic Test Markup Language (ATML) standard.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. Click the Execution tab and click Show Test Result File.

After a stimulus profile finishes running, the ATML Test Report will open in a web
browser.
Alter the appearance of the test report by modifying its style sheet.

© National Instruments 401

VeriStand Feature Usage

Automatic Test Markup Language (ATML) Standard

ATML is a military and aerospace industry standard for sharing data between
different components of a test system and supports test program, test asset, and
unit under test (UUT) interoperability within an automatic test environment.
ATML accomplishes this through a standard XML schema for exchanging UUT test
and diagnostic information between components of the test system. ATML specifies
standards for test environments that encompass the total product life cycle. ATML
defines an integrated set of test-related information that supports the information
needs of test environments for testing applications.
ATML standards focus on the following areas:

■ Diagnostics
■ Instrument Description
■ Test Adapter
■ Test Configuration
■ Test Description
■ Test Results and Session Information
■ Test Station
■ UUT Description

Purpose

ATML is intended to accomplish the following objectives:

■ Facilitate the communication, sharing, and reuse of product design and test
information for the purpose of testing the product.
■ Facilitate test program set (TPS) portability and interoperability.
■ Facilitate instrument interchangeability.
■ Facilitate the development, integration, and use of test software and test
software development tools.
■ Support the application of integrated diagnostics.
■ Support modular software architectures based upon a framework that
supports reusable software products.

ni.com402

VeriStand Feature Usage

http://www.ni.com/r/atml

Test Results and Session Information

The ATML Test Results and Session Information schema provides the definition for
the data collected when you execute a test or tests of a UUT using test procedures in
an automated test environment, including the measured values, pass/fail results,
and accompanying data, such as test operator, station information, environmental
conditions, and so on. ATML Test Results is a component standard of IEEE 1636
Software Interface for Maintenance Information Collection Analysis (SIMICA).
VeriStand generates XML reports that conform to the approved version 6.0.1 of the
Test Results and Session Information schema the ATML standard defines. The
<Application Data>\Data Storage\ATML directory contains a copy of version 6.0.1 of
the schema.

Customizing ATML Test Result Appearance

Switch and edit style sheets to change the ATML report's fonts, colors, tables, and
more when it appears in a web browser or external viewer application.
When VeriStand finishes executing a real-time sequence, it generates an XML report
that conforms to the approved version of the Test Results and Session Information
schema the ATML standard defines. VeriStand applies a style sheet to that report to
define how a web browser displays the content of the report. When you open the
report in a web browser, the web browser uses this file to transform the XML report
into formatted HTML.
VeriStand contains two style sheets you can use. Both template XSL files are located
in the <Application Data>VeriStand\Data Storage\ATML directory.

■ TRML.xsl—Displays reports in a vertical, tabular, indented format with data
for each step in multiple rows. This is the default style sheet.
■ TR_Horizontal.xsl—Displays reports in a concise tabular format with expand
and collapse sections.

To switch between these style sheets, use the following steps.

1. In the <Application Data>\NI VeriStand\Data Storage\ATML directory, copy the
TR_Horizontal.xsl and paste it in the same directory as the XML report.

2. Open the XML report in a text editor.

© National Instruments 403

VeriStand Feature Usage

3. At the top of the XML report, change the code that reads <?xml-stylesheet
type="text/xsl" href="TRML.xsl"?> to <?xml-stylesheet type="text/xsl"
href="TR_Horizontal.xsl"?>.

4. Save the XML report.

Open the XML report in a web browser to view the changes.
You can edit the style sheet in a text editor to further modify the report's
appearance.

Logging Real-Time Test Data with the Stimulus Profile Editor
Use stimulus profiles to log real-time test data to the host computer while a test
executes on a target.
Before you begin, you should familiarize yourself with the Stimulus Profile Editor
environment.

Logging test data enables you to easily review and save the responses of a unit
under test (UUT) to specific scenarios. VeriStand saves logged data in the TDMS file
format, which you can later view and analyze using the TDMS File Viewer workspace
tool, other National Instruments software such as NI DIAdem, or Microsoft Excel. The
Stimulus Profile Editor provides support for both triggered and segmented logging
to help you manage large data sets and long test scenarios.

1. Create a stimulus profile that calls a real-time sequence.

2. Add a Start Logging step to the stimulus profile, before the Real-Time

Sequence Call step.

Note The step appears as Start Logging Configuration with a
Channel Group substep.

3. Click Start Logging Configuration in the stimulus profile code and use the
Property Browser to configure the following properties.
Property Description

Configuration
Name

The name you want to use to start and stop logging.

File Path The name and location for a resulting log file.

ni.com404

VeriStand Feature Usage

Property Description
Timestamp
Filename

Whether to append the start time of the logging operation to the name
of the log file.

Replace Existing
File

Whether to replace an existing file with the same filename. If you
disable this property, the Stimulus Profile Editor appends any new log
data to the existing file.
This property performs a basic append, so you will need to use the
channel data in the final file to determine where new data is
appended.

Note Consider adding a time channel to your log to easily
identify breaks in data logging.

Log Rate [Hz] The Stimulus Profile Editor logs data at the closest possible rate to this
value without exceeding the rate at which the target produces data.

Triggered Logging Configure trigger conditions to specify when data logging starts and
stop. If you do not configure triggers, the Stimulus Profile Editor
continuously logs all specified channel data beginning when the Start
Logging step executes.

4. Click the Channel Group step and configure the following properties.
Property Description

Channel Group Name The name of the channel group used in the TDMS file.
Channels Adds channels or aliases to the channel group.

5. If you want to log data in multiple channel groups, add additional Channel
Group steps under Start Logging Configuration.

6. Add a Stop Logging step after the Real-Time Sequence Call step, and set the
Configuration Name to the name you specified in the Start Logging step.

7. Save and run the stimulus profile.

The Stimulus Profile Editor logs data on channels using the triggers and file
segmenting you specified.

© National Instruments 405

VeriStand Feature Usage

Configuring Triggered Logging in Stimulus Profiles

Use triggered logging in stimulus profiles if you want to see channel data under
certain conditions, such as those that you might expect to cause the unit under test
(UUT) to fail.

When you use the Stimulus Profile Editor to log real-time test data, you can
configure start and stop triggers for logging. The editor logs channel data while the
start trigger condition is TRUE and the stop trigger condition is FALSE.
You can also configure pre-triggered and post-triggered data logging. This saves the
channel data immediately before a start trigger and after a stop trigger. For
example, if the start trigger represents a fault in the system, and the stop trigger
represents a return to expected values, it can be useful to see the behavior of the
system that lead to the fault and how well the system recovers.

1. Create a stimulus profile that logs real-time test data.
2. Select the Start Logging step for a logging configuration.

3. In the Property Browser, set the Trigger Channel to a channel you want to
watch for logging conditions.

Note This can be any channel in the system definition associated
with the stimulus profile.

4. Set the Trigger Condition and the corresponding High Limit and Low Limit
values.

Note You can set the Trigger Condition to in_limits or out_of_limits to
configure logging to start and stop when the value of Trigger

Channel either enters or leaves the value range specified by the
limits. For example, if you set Trigger Condition to in_limits, the
stimulus profile registers a start trigger when the value of Trigger
Channel is greater than or equal to the Low Limit and less than or
equal to the High Limit. It registers a stop trigger, and stops logging,
when the value of Trigger Channel leaves this window.

ni.com406

VeriStand Feature Usage

5. Depending on your desired result, configure the step to handle a situation
where multiple start triggers occur.
Desired Result Configuration

One file containing all logged
data.

Disable Replace Existing File.

One file containing only data
from the last occurrence of a
start trigger.

Enable Replace Existing File.

Separate files for each set of
logged data. 1. Enable Timestamp Filename.

Note You must enable timestamps on
segmented filenames to avoid
filename conflicts.

2. Set Segment Options to OnStartTrigger

6. If you want to specify an amount of channel data to log immediately before a
start trigger occurs, set a value for Pre-Trigger Duration.

Note When you execute the profile, the VeriStand Gateway
maintains a buffer that always contains this amount of data.

7. If you want to specify an amount of channel data to log after a stop trigger
occurs, set a value for Post-Trigger Duration.

8. Click Save.

Communicating with the VeriStand Editor Using Stimulus Profile
Arguments

Send commands to the VeriStand Editor through a stimulus profile to specify a
VeriStand project, a system definition, VeriStand Gateway IP address, or connect to
a target from the system definition.

Depending on your goal, use an argument to send a command to the VeriStand

Editor.

© National Instruments 407

VeriStand Feature Usage

Goal Argument Example

Specify the VeriStand project to run. /nivsprj /nivsprj "<Common
Data>\Examples\Stimulus Profile\Engine
Demo\Engine Demo.nivsprj"

Specify the system definition file to use. /sysdef /sysdef "<Common
Data>\Examples\Stimulus Profile\Engine
Demo\Engine Demo.nivssdf"

Specify the IP address of the VeriStand
Gateway.

gateway /gateway 10.0.38.64

Tell the VeriStand editor to connect to the
target defined by the system definition
file.

/connect /connect

Getting Started with the Stimulus Profile Editor Tutorial

Use tutorial examples to become familiar with the Stimulus Profile Editor.
Before you begin, learn how to navigate the stimulus profile editor.

1. Set up a basic test—Create a real-time sequence that turns on a car engine,
sets the engine speed to 2500 RPM, holds this speed for 20 seconds, and then
turns the engine off.

1. Reading and writing channels directly from a real-time sequence—Use
channel references, parameters, and variables to turn on a car engine,
set the engine speed to three different RPM values, measure how long
the engine takes to settle at each specified RPM, and turn the engine off.

2. Execute multiple parallel tasks—Create a stimulus profile and a real-time
sequence that incorporates multitasking, which executes multiple parallel
tasks.

3. Configure failure notification—Modify a real-time test by adding a return value
that reflects the success or failure of a warm-up task.

4. Log data to a file—Log channel data from a running stimulus test to a TDMS
file.

5. Call a CSV file as a real-time sequence—Use Comma Separated Values (.csv)
files within stimulus profiles to stimulate, fault, and evaluate channels.

ni.com408

VeriStand Feature Usage

6. Play back previously recorded test data—Create and run a stimulus profile
that plays back data from a previously recorded VeriStand macro file.

7. Update model parameter values during test execution—Call text files in a
stimulus profile to update the values of engine model parameters while a test
is running.

You can find complete examples of these tutorials in the <Common
Data>\Examples\Stimulus Profile\Engine Demo\Stimulus Profiles directory.

Deploying the Engine Demo

Deploy the engine demo's system definition before running a stimulus profile.

1. Launch VeriStand and double-click Engine Demo.

2. In the Engine Demo dialog box, click Create.

3. Select Operate > Deploy and wait for the system definition to deploy.

Setting up a Basic Stimulus Profile Editor Test

Create a real-time sequence that turns on a car engine, sets the engine speed to
2500 RPM, holds this speed for 20 seconds, and then turns the engine off.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a real-time sequence—Create a real-time sequence that starts, stalls,
and stops the engine demo.

3. Create a stimulus profile—Configure a stimulus profile to execute a real-time
sequence.

4. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

Creating a Basic Real-Time Sequence

Create a real-time sequence that starts, stalls, and stops the engine demo.
Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

© National Instruments 409

VeriStand Feature Usage

2. In the Stimulus Profile Editor, click New Real-Time Sequence.
3. Save the sequence as Engine Demo Basics tutorial.nivsseq in the <Common

Data> \VeriStand Projects\Engine Demo\Stimulus Profiles\Basic Engine Demo
directory.

4. Add blocks to organize your code.

1. In the Primitives palette, expand Miscellaneous and drag a Block into the
Setup section of the real-time sequence.

2. In the Property Browser Name field, enter Turn on engine.

3. Add a block to the Main section and name it Set engine speed to 2500
and wait.

4. Add a block to the Clean Up section and name it Turn off engine.

5. Create variables.

Note For an example of how to use channel references to access
channels, refer to Reading and Writing Channels Directly from a Real-
Time Sequence Tutorial.

1. In the Primitives palette, expand Variables and drag a Boolean into the
Parameters section of the Variables pane.

2. In the Property Browser next to Default Assignment, click Browse to
display the system definition channel tree.

3. Click View aliases to display the aliases defined in the system
definition.

4. Double-click EnginePower to assign this alias to the parameter.

5. In Identifier, enter EnginePower.

6. In Units, enter On/Off.

7. Select Double from the Primitives palette and drag it to Parameters to
add a double-precision numeric parameter after EnginePower.

8. In the Property Browser, name the new parameter DesiredRPM, map
the parameter to the corresponding alias, and enter the units as RPM.

ni.com410

VeriStand Feature Usage

6. Add variables to the sequence code and set their values.

1. In the Variables pane, drag EnginePower into the Turn on engine block.

2. In the Property Browser, edit the Expression to EnginePower = true.
This value will turn the engine on when the block executes.

3. Drag DesiredRPM into the Set engine speed to 2500 and wait block.

4. Set DesiredRPM to 2500.

5. Press <Ctrl> and drag DesiredRPM from the Set engine speed to 2500

and wait block into the Turn off engine block.

6. Set DesiredRPM to 0.

7. In the Variables pane, right-click EnginePower and select Copy.

8. Right-click Turn off engine and select Paste.
Leave the value as false to turn the engine off when the block executes.

7. Set the expression to wait before it executes.

1. In the Sequences palette, expand Real-Time Sequence Library >
Standard > Timing and drag Wait into the Set engine speed to 2500 and

wait block.

2. In the Property Browser, edit the Expression to replace Duration with 20.
This will hold the DesiredRPM value at 2500 for 20 seconds when this
step executes.

8. Set a return value.

1. In the Primitives palette, expand Variables and drag Void Return Value

into the Return Variable section of the Variables pane.

Note By default, the return value node is named Pass.

2. In the Property Browser, enter the Identifier as Output to change the
name of the return value node.

9. Save the real-time sequence.

The real-time sequence code will look like the following image.

© National Instruments 411

VeriStand Feature Usage

After creating this real-time sequence code, you must add it to a stimulus profile.

Creating a Basic Stimulus Profile

Configure a stimulus profile to execute a real-time sequence.

Before you begin, create a real-time sequence for the engine demo.

1. In the Stimulus Profile Editor, click the Start Page tab.

2. Click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo Basics tutorial.nivsstimprof in the

<Common Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Basic
Engine Demo directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

ni.com412

VeriStand Feature Usage

5. In the Steps palette, expand Real-Time Sequences and drag Real-Time

Sequence Call into Main.
The Real-Time Sequence Call calls the real-time sequence you specify in the
Property Browser.

6. Select the Real-Time Sequence Call step in the stimulus profile code to
specify the real-time sequence to call.
The Property Browser displays several properties you can use to configure the
step. Each step in a stimulus profile contains properties. These properties are
editable attributes that determine how the step executes.

7. In the Property Browser, browse the File Path to the real-time sequence you
created.
The Parameters section of the Property Browser displays the parameters in
the called real-time sequence as well the channels assigned to them. If you
use the parameters to read or write system definition channels, you must
assign those channels to the parameters in the stimulus profile. When you add
a real-time sequence call, the stimulus profiles uses the default assignment
for each parameter.

8. Click the Target Name pull-down and select Controller to execute the real-
time sequence on the Controller target.

9. Click the Pass Fail pull-down and select AlwaysPass.

10. Save the stimulus profile.

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

© National Instruments 413

VeriStand Feature Usage

Reading and Writing Channels Directly from a Real-Time Sequence Tutorial

Use channel references, parameters, and variables to turn on a car engine, set the
engine speed to three different RPM values, measure how long the engine takes to
settle at each specified RPM, and turn the engine off.
You can use channel references to read/write channels in a system definition
directly from a real-time sequence. Unlike a parameter, which you must assign to a
system definition channel, a channel reference automatically binds to a channel
when you add the channel reference to a real-time sequence. This makes channel
references easier to manage than parameters in stimulus profiles that access many
channels, especially when accessing channels in nested sequences.

Note Channel references bind to specific system definition channels, and
therefore a real-time sequence that contains channel references can only
be used with the system definition file that contains those channels.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a real-time sequence with a channel reference—Create a real-time
sequence that uses a channel reference to read/write a engine power channel
and a parameter to specify the value to read/write.

3. Create a real-time sequence with channel references and local variables—
Create a real-time sequence that uses channel references to measure how
long the engine takes to settle at a specified RPM.

4. Create a stimulus profile that calls a channel referencing sequence—Configure
a stimulus profile to turn on the engine and measure how long it takes the
engine to settle at various RPMs.

5. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

ni.com414

VeriStand Feature Usage

Create a Real-Time Sequence with a Channel
Reference
Create a real-time sequence that uses a channel reference to read/write a engine
power channel and a parameter to specify the value to read/write.
Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click New Real-Time Sequence.
3. Save the sequence as Set Engine Power tutorial in the <Common

Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Channel References directory.

4. Create variables.

1. In the Primitives palette, expand Variables and drag a Boolean into the
Parameters section of the Variables pane.

2. In the Property Browser, enter the Identifier, as OnOff.

3. Click the Evaluation Method pull-down, select ByReference.
This parameter specifies whether to turn the engine on or off. You set
the value when you call this sequence from the stimulus profile.

4. In the Variables pane, right-click Channel References and click Insert

Channels.

5. In the Select channels dialog box, expand Aliases, enable EnginePower,
and click OK.
This channel reference writes the value of the OnOff parameter to the
EnginePower channel.

6. In the Primitives palette under Variables, drag Void Return Value into
the Return Variable section of the Variables pane.
This variable returns no value. Instead, you call this sequence from a
stimulus profile to turn the engine on and off.

Note By default, the return value node is named Pass.

© National Instruments 415

VeriStand Feature Usage

The Variables pane will look like the following image.

5. Configure the real-time sequence to turn the engine on or off based on the
value of the OnOff parameter.

1. In the Variables pane, drag EnginePower into Main.

2. In the Property Browser, enter the Expression as EnginePower = OnOff.
This allows you to toggle the engine on or off by calling this sequence
from a stimulus profile.

6. Save the real-time sequence.

The real-time sequence code will look like the following image.

After creating this real-time sequence, create another real-time sequence.

Create a Real-Time Sequence with Channel
References and Local Variables
Create a real-time sequence that uses channel references to measure how long the
engine takes to settle at a specified RPM.
Before you begin, create a real-time sequence with a channel reference.

1. In the Stimulus Profile Editor, click the Start Page tab.

ni.com416

VeriStand Feature Usage

2. Click New Real-Time Sequence.
3. Save the sequence as Measure Set Preference tutorial in the <Common

Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Channel References directory.

4. Create variables.

1. In the Primitives palette, expand Variables, drag a Double into the Return

Variable section of the Variables pane, and enter its Identifier as
SettleTime

2. Create and configure the following Double parameters and local
variable.
Variable Type Name Evaluation Method Units

Parameter Setpoint ByValue rpm
Parameter Tolerance ByValue rpm
Parameter Timeout ByValue s
Local variable StartTime ByValue s

3. In the Variables pane, right-click Channel References and click Insert

Channels.

4. In the Select channels dialog box, expand Aliases, enable ActualRPM

and DesiredRPM, and click OK.

The Variables pane will look like the following image.

5. Add a setup expression for the set point of the engine.

© National Instruments 417

VeriStand Feature Usage

1. In the Primitives pane, expand Miscellaneous and drag Comment into
Setup.

2. In the Property Browser, enter the Comment as Set the desired set point
for the engine.

3. In the Variables pane, drag DesiredRPM into Setup.

4. In the Property Browser, enter the Expression as DesiredRPM =
Setpoint.

The Setup block of the sequence code uses the DesiredRPM channel reference
to change the value of the DesiredRPM channel to the specified Setpoint. You
specify the value of the Setpoint parameter when you call this sequence from
the stimulus profile. By configuring the real-time sequence this way, you can
call this sequence from the stimulus profile to measure the settle time of
various set points.

6. Add main expressions to measure how long it takes for the engine to settle at
its RPM set point.

1. In the Primitives pane, drag Comment into Main.

2. In the Property Browser, enter the Comment as Measure how long it
takes for the engine to settle at its RPM set point.

3. In the Variables pane, drag StartTime into Main.

4. In the Property Browser, enter the Expression as StartTime = abstime().

5. In the Sequences pane, expand Real-Tim Sequence Library > Standard >
Timing and drag WaitUntilSettled into Main.

6. In the Property Browser, enter the Expression as
WaitUntilSettled(ActualRPM, DesiredRPM + Tolerance, DesiredRPM -
Tolerance, 1.0, Timeout).

7. In the Variables pane, drag SettleTime into Main.

8. In the Property Browser, enter the Expression as SettleTime = abstime()
- StartTime.

The Main block of the sequence stores the absolute time at which the
sequence starts to the StartTime local variable. The code waits for the RPM, as
read from the ActualRPM channel, to settle into a range between the

ni.com418

VeriStand Feature Usage

DesiredRPM plus or minus the specified Tolerance for at least one second or
until it reaches the specified Timeout. When the RPM either settles or times
out, the code returns how long it took the engine to settle at the specified
RPM.

7. Save the real-time sequence.

The real-time sequence code will look like the following image.

After creating this real-time sequence, add it to a stimulus profile.

Creating a Stimulus Profile that Calls a Channel
Referencing Sequence
Configure a stimulus profile to turn on the engine and measure how long it takes the
engine to settle at various RPMs.
Before you begin, create a real-time sequence with channel references and local
variables.

1. In the Stimulus Profile Editor, click the Start Page tab.

2. Click New Stimulus Profile.
3. Save the sequence as Test Engine Set Points tutorial in the <Common

Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Channel References directory.

4. Add a setup step to call the sequence to turn on the engine.

1. In the Steps palette, expand Real-Time Sequences and drag Real-Time

Sequence Call into Setup.

© National Instruments 419

VeriStand Feature Usage

2. In the Property Browser, navigate to the Set Engine Power real-time
sequence as the Filename.

3. Under Parameters, click the OnOff pull-down and select True.

Note You do not need to configure any channel mappings
from the stimulus profile. The real-time sequence uses a
channel reference to change the value of the EnginePower
channel to the value specified by the OnOff parameter.

5. Add main steps.

1. Add a Real-Time Sequence Call into Main.

2. In the Property Browser, navigate to the Measure Set Point Response
real-time sequence as the Filename.

3. Under Parameters, enter the Setpoint as 2500, Timeout as 60, and
Tolerance as 100.

4. Add another Real-Time Sequence Call to the Measure Set Point
Response real-time sequence and enter the Setpoint as 6000, Timeout

as 60, and Tolerance as 100.

5. Add another Real-Time Sequence Call to the Measure Set Point
Response real-time sequence and enter the Setpoint as 3000, Timeout

as 60, and Tolerance as 100.

6. Add clean up steps.

1. Add a Real-Time Sequence Call into Clean Up.

2. In the Property Browser, navigate to the Set Engine Power real-time
sequence as the Filename.

3. Under Parameters, click the OnOff pull-down and select False.

7. Save the stimulus profile.

The stimulus profile code will look like the following image.

ni.com420

VeriStand Feature Usage

After creating the stimulus profile, run it.

Executing Multiple Parallel Tasks Using the Stimulus Profile Editor Tutorial

Create a stimulus profile and a real-time sequence that incorporates multitasking,
which executes multiple parallel tasks.

This real-time test turns on a car engine, sets the engine speed to 2500 RPM, and
holds this speed for 25 seconds. It then raises the engine speed to 8000 RPM and
holds this speed for another 25 seconds. In addition to controlling the engine speed,
the sequence monitors engine temperature. If the engine temperature exceeds 110
degrees, the engine shuts down and the sequence aborts.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a multitasking real-time sequence—Create a real-time sequence that
will warm-up and monitor the demo engine in separate tasks.

3. Create a stimulus profile—Configure a stimulus profile to execute a
multitasking real-time sequence.

4. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

Creating a Multitasking Real-Time Sequence

Create a real-time sequence that will warm-up and monitor the demo engine in
separate tasks.
Before you begin, you need to deploy the Engine Demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click New Real-Time Sequence.

© National Instruments 421

VeriStand Feature Usage

3. Save the sequence as Engine Demo Advanced tutorial in the <Common
Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Advanced directory.

4. Add blocks to organize your code.

1. In the Primitives palette, expand Miscellaneous and drag a Block into the
Setup section of the real-time sequence.

2. In the Property Browser Name field, enter Turn on engine.

3. Add a block to the Main section and name it Set engine speed to 2500
and wait.

4. Add a block to the Clean Up section and name it Turn off engine.

5. Create variables.

1. In the Primitives palette, expand Variables and drag a Boolean into the
Parameters section of the Variables pane.

2. In the Property Browser next to Default Assignment, click Browse to
display the system definition channel tree.

3. Click View aliases to display the aliases defined in the system
definition.

4. Double-click EnginePower to assign this alias to the parameter.

5. In Identifier, enter EnginePower.

6. In Units, enter On/Off.

7. Select Double from the Primitives palette and drag it to Parameters to
add a double-precision numeric parameter after EnginePower.

8. In the Property Browser, name the new parameter DesiredRPM, map
the parameter to the corresponding alias, and enter the units as RPM.

9. Add another Double primitive after DesiredRPM, name it ActualRPM,
and map it to the corresponding alias.

10. Add another Double primitive after ActualRPM, name it EngineTemp,
and map it to the corresponding alias.

11. Drag a Boolean primitive into the Local Variables section of the
Variables pane and name it WarmUpComplete.

ni.com422

VeriStand Feature Usage

Note Local variables are variables you use within the real-
time sequence as a way to hold values you get or set in
statements.

12. In the Primitives palette under Variables, drag Void Return Value into
the Return Variable section of the Variables pane.

Note By default, the return value node is named Pass.

The Variables pane will look like the following image.

6. Add variables to the sequence code and set their values.

1. In the Variables pane, drag EnginePower into the Turn on engine block.

2. In the Property Browser, edit the Expression to EnginePower = true.
This value will turn the engine on when the block executes.

3. Drag WarmUpComplete into Setup so that this variable is at the same
level in the tree as Turn on engine.
Adding WarmUpComplete to Setup initializes the variable to a known
value so that the real-time sequence can then write values to the
variable during execution.

4. Drag EnginePower into Turn off engine.
Leave the value as false to turn off the engine when the block executes.

5. Drag DesiredRPM into Turn off engine.
Leave the value as 0 to decrease the RPM to 0 when the block executes.

7. Enable Multitasking

© National Instruments 423

VeriStand Feature Usage

1. In the Primitives palette, expand Structures > Multitasking and drag
MultiTask into Main.

2. In the Property Browser, rename Task1 as EngineWarmUp and Task2 as
MonitorEngineTemperature.

3. Modify the EngineWarmUp task by adding the following code.

Note In the Sequences palette, expand Real-Time Sequence

Library > Standard > Timing to find WaitUntilSettled.

The EngineWarmUp task sets the engine speed (DesiredRPM) to 2500
RPM, and then waits until the RPM (ActualRPM) settles into a range
between 2450 and 9999999 RPM for 25 seconds. Then the task will raise
the engine speed to 8000 RPM and wait until the RPM settles into a
range between 7800 and 9999999 RPM for another 25 seconds. When
the task successfully completes, the task sets the WarmUpComplete
variable to true for the MonitorEngineTemperature task.

8. Modify the MonitorEngineTemperature task with the following code.

ni.com424

VeriStand Feature Usage

Note In the Primitives palette, expand Structures > Loops to find the
DoWhile Loop and Structures > Conditional to find If Else.

As long as the WarmUpComplete variable is false, the
MonitorEngineTemperature task monitors the engine temperature
(EngineTemperature) to ensure it does not exceed 110 degrees. If the engine
temperature exceeds 110 degrees, the engine shuts down and the sequence
aborts. If the engine temperature remains below 110 degrees, the sequence
completes its execution and turns off the engine.

9. Save the real-time sequence.

The real-time sequence code will look like the following image.

© National Instruments 425

VeriStand Feature Usage

After creating this real-time sequence, add it to a stimulus profile.

Creating a Multitasking Stimulus Profile

Configure a stimulus profile to execute a multitasking real-time sequence.

Before you begin, create a real-time sequence that performs multitasking.

1. In the Stimulus Profile Editor, click the Start Page tab.

2. Click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo Advanced tutorial in the <Common

Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Advanced directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

5. Create a step to call the sequence you created.

1. In the Steps palette, expand Real-Time Sequences and drag Real-Time

Sequence Call into Main.

2. Select the Real-Time Sequence Call step in the stimulus profile code to
specify the real-time sequence to call.

3. In the Property Browser, browse the File Path to the real-time sequence
you created.

4. Click the Target Name pull-down and select Controller to execute the
real-time sequence on the Controller target.

ni.com426

VeriStand Feature Usage

6. Save the stimulus profile.

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

Configuring Failure Notification Using the Stimulus Profile Editor Tutorial

Modify a real-time test by adding a return value that reflects the success or failure of
a warm-up task.

If the engine temperature does not exceed 110 degrees, the warm-up task
completes and the sequence returns true, which indicates that the warm-up task
succeeded. If the engine temperature exceeds 110 degrees, the engine shuts down
and the return value is false, which indicates that the warm-up task failed.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a real-time sequence to return a pass/fail value—Update an existing
sequence to pass a Boolean return value.

3. Create a stimulus profile to execute after a step fails—Define the actions a
stimulus profile performs to stop execution after a step fails.

4. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

When the Message Box step executes in the stimulus profile, a dialog box with the
message you specified appears in the Stimulus Profile Editor.

Creating a Real-Time Sequence to Return a Pass/Fail Value

Update an existing sequence to pass a Boolean return value.
Before you begin, deploy the engine demo's system definition.

© National Instruments 427

VeriStand Feature Usage

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. Click File > Open, navigate to <Common Data>\VeriStand Projects\Engine
Demo\Stimulus Profiles\Engine Demo Advanced, and double-click the Engine
Demo Advanced sequence.

3. Save the sequence as Engine Demo Return Value tutorial in the <Common
Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Return Value directory.

4. In the Primitives palette, expand Variables and drag Boolean to the Variables

pane under Return Value to change the value from a Void Return Value.

5. In the Property Browser, change the Identifier to WarmUpSucceeded.

6. From the Variables pane, drag WarmUpSucceeded into the sequence code
under MonitorEngineTemperature, inside Then.
If the Then section of the code executes, the return value will be false. This
indicates that the warm-up task failed because the engine temperature
exceeded 110 degrees.

7. Drag another WarmUpSucceeded into the sequence code under
MonitorEngineTemperature, inside Else, and modify it in the Property Browser
to be true.
If the Else section of the code executes, the return value will be true. This
indicates that the warm-up task succeeded because the engine temperature
remained below 110 degrees.

8. Save the real-time sequence.

The altered real-time sequence code will look like the following image.

After creating this real-time sequence, add it to a stimulus profile.

ni.com428

VeriStand Feature Usage

Creating a Stimulus Profile with Execution Behavior after Step Failure

Define the actions a stimulus profile performs to stop execution after a step fails.
Before you begin, create a real-time sequence that returns a pass/fail value.

1. In the Stimulus Profile Editor, click the Start Page tab.

2. Click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo Return Value tutorial in the

<Common Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine
Demo Return Value directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

5. Create a step to call the sequence you created.

1. In the Steps palette, expand Real-Time Sequences and drag Real-Time

Sequence Call into Main.

2. Select the Real-Time Sequence Call step in the stimulus profile code to
specify the real-time sequence to call.

3. In the Property Browser, browse the File Path to the real-time sequence
you created.

4. Click the Target Name pull-down and select Controller to execute the
real-time sequence on the Controller target.

6. Create pop-up dialog box.

© National Instruments 429

VeriStand Feature Usage

1. In the Steps palette, expand the Other and drag Message Box into Main.

2. In the Property Browser, enter the following into Message:
Because the Stop Execution on Fail checkbox is disabled, the Message
Box step executes despite the failure of the previous step.

3. Enter the following text into Dialog Title:
Checked/Unchecked - Stop Execution on Fail

4. In Default Text, enter OK.

Because the Message Box step executes after the Real-Time Sequence Call
step, you only see this message if the Real-Time Sequence Call step executes
without failure, or if Stop Execution on Fail is disabled.

7. Click Engine Demo Return Value tutorial.nivsstimprof and in the Property

Browser disable Stop Execution on Fail.

8. Save the stimulus profile.

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

Logging Data to a File using a Stimulus Profile

Log channel data from a running stimulus test to a TDMS file.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a stimulus profile to log data—Create a stimulus profile that logs RPM
and Temperature data as a TMDS file.

3. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

ni.com430

VeriStand Feature Usage

You can open the created TDMS file in the VeriStand Editor by clicking Tool

Launcher > TDMS File Viewer or by using the Workspace TDMS File Viewer tool.

Creating a Stimulus Profile to Log Data

Create a stimulus profile that logs RPM and Temperature data as a TMDS file.

Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo Logging tutorial.nivsstimprof in the

<Common Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine
Demo Logging directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

5. In the Steps palette, expand Logging and drag Start Logging into Main.
A Channel Group step automatically appears under Start Logging. This step
logs execution data for the channels you specify in each Channel Group that
appears under this step.

6. From the Steps palette, drag another Channel Group into Start Logging so it
contains two groups.

7. Click the Start Logging step and, in the Property Browser, configure it.

1. Enter the Configuration Name as Logging Configuration Demo.

© National Instruments 431

VeriStand Feature Usage

2. Browse the File Path to <Common Data>\VeriStand Projects\Engine
Demo\Stimulus Profiles\Engine Demo Logging, enter the File name as
Log File, and click Save.

3. Enable Replace Existing File.

4. Enter the Log Rate [Hz] as 100.

5. Click the Trigger Condition pull-down and select none.

6. Click the Segment Options pull-down and select DoNotSegment.

8. Click the first Channel Group and, in the Property Browser, configure it.

1. Enter the Channel Group Name as RPM.

2. Browse the Channels, expand Aliases, and enable ActualRPM and
DesiredRPM.

9. Click the second Channel Group and, in the Property Browser, configure it.

1. Enter the Channel Group Name as Temperature.

2. Browse the Channels, expand Aliases, and enable EngineTemp.

VeriStand logs data from the channels in the RPM and Temperature groups to
Log File.tdms.

10. In the Steps palette, expand Real-Time Sequences and drag Real-Time

Sequence Call into Main.
11. Configure the Real-Time Sequence Call.

1. In the Property Browser, browse the File Path to <Common
Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Engine Demo
Logging\Engine Demo Logging.nivsseq.

2. Click the Target Name pull-down and select Controller.

12. In the Steps palette, drag Stop Logging into Clean Up.

13. In the Property Browser of the step, enter the Configuration Name as Logging
Configuration Demo.

14. Save the stimulus profile.

ni.com432

VeriStand Feature Usage

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

Calling a CSV File as a Real-Time Sequence

Use Comma Separated Values (.csv) files within stimulus profiles to stimulate, fault,
and evaluate channels.
The stimulus profile you create in this tutorial executes a CSV file that turns on an
engine and increases the RPM to 2500 within 10 seconds. After this CSV file
completes its execution, the stimulus profile calls a sequence from the built-in
library of sequences that causes the system to wait until the RPM parameters settle.
Finally, the stimulus profile executes another CSV file that sets the engine RPM to
various values over the course of 70 seconds.
To run in a stimulus profile, a CSV file must define inputs, values to assign to those
inputs, and timestamps at which to update the input values. The CSV file must
include this data under specific column headers that VeriStand expects.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a stimulus profile to call the CSV file—Create a stimulus profile that
calls two Comma Separated Values (.csv) files like a real-time sequence.

3. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

© National Instruments 433

VeriStand Feature Usage

Creating a Stimulus Profile to call CSV Files

Create a stimulus profile that calls two Comma Separated Values (.csv) files like a
real-time sequence.
Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo CSV File Replay tutorial.nivsstimprof

in the <Common Data>\VeriStand Projects\Engine Demo\Stimulus
Profiles\Engine Demo CSV File Replay directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

5. Expand Real-Time Sequences and drag Real-Time Sequence Call step into
Main.

6. In the Property Browser, next to File Path, click Browse and select <Common
Data>\Examples\Stimulus Profile\Engine Demo\Stimulus Profiles\Engine
Demo CSV File Replay\WarmUp Phase 1.csv.

7. Click the Target Name pull-down and select Controller to execute the CSV file
on the Controller target.

8. In the Sequences palette, expand Real-Time Sequence Library > Standard >
Timing and drag WaitUntilSettled into Main.

9. In the Property Browser, configure the WaitUntilSettled sequence.

ni.com434

VeriStand Feature Usage

1. Click the Target Name pull-down and select Controller.

2. Click the Type pull-down and select AlwaysPass

3. Next to Signal, select Channel and click Browse to display the system
definition channel tree.

4. Click View aliases to display the aliases defined in the system
definition.

5. Double-click ActualRPM to assign this alias to the parameter.

6. Next to UpperLimit, select Constant and enter 500000.

7. Next to LowerLimit, select Constant and enter 2400.

8. Next to Timeout, select Constant and enter 120.

10. Drag another Real-Time Sequence Call step into Main.

11. In the Property Browser, configure the step to call WarmUp Phase 2.csv,
located in the same directory as WarmUp Phase 1.csv, and set the Target

Name to Controller.

12. Save the stimulus profile.

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

Playing Back Previously Recorded Test Data Using the Stimulus Profile
Editor

Create and run a stimulus profile that plays back data from a previously recorded
VeriStand macro file.
A macro file is a recording of the commands sent to the target.

© National Instruments 435

VeriStand Feature Usage

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Create a stimulus profile—Create a stimulus profile to call a macro file that
contains data from a previous engine test.

3. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

Creating a Stimulus Profile to Play a Macro File

Create a stimulus profile to call a macro file that contains data from a previous
engine test.

Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. In the Stimulus Profile Editor, click New Stimulus Profile.
3. Save the stimulus profile as Engine Demo Macro Player tutorial.nivsstimprof

in the <Common Data>\VeriStand Projects\Engine Demo\Stimulus
Profiles\Engine Demo Macro Player directory.

4. Add a step to launch the VeriStand Editor.

1. In the Steps palette, expand Other and drag Command Shell into Setup.

2. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

When the stimulus profile runs, this step opens the VeriStand Editor or
Workspace so you can watch the stimulus profile execute.

5. In the Steps palette, expand Other and drag Macro Player to Main.

6. In the Property Browser next to VeriStand Macro File, click Browse and select
<Common Data>\Examples\Stimulus Profile\Engine Demo\Stimulus
Profiles\Engine Demo Macro Player\Engine Demo Macro.nivsmacro.

ni.com436

VeriStand Feature Usage

7. Click the Playback Mode pull-down and select UseTiming to play back the
macro file using the timing information embedded in the file.

8. Save the stimulus profile.

The stimulus profile code will look like the following image.

After creating the stimulus profile, run it.

Updating Model Parameters During Test Execution Using the Stimulus
Profile Editor Tutorial

Call text files in a stimulus profile to update the values of engine model parameters
while a test is running.
Use the Update Model Parameters from File step in a stimulus profile to call text
files. This step has similar functionality to the VeriStand Editor Model Parameter
Manager tab and the Model Parameter Manager Workspace tool. The step can
update the parameters of a deployed and running model.
Using the step removes the manual process of launching the tool, updating values,
and applying those values. Also, because Update Model Parameters from File is a
step, it executes inline with the rest of your stimulus profile code. This ensures that
you can update your model at known points within the execution of the stimulus
profile.

1. Deploy the Engine Demo—Deploy the engine demo's system definition before
running a stimulus profile.

2. Update the stimulus profile to use a text file—Configure an existing stimulus
profile to use a text file to update model parameters without having to create
and run multiple profiles.

© National Instruments 437

VeriStand Feature Usage

3. Run the stimulus profile—Compile and run the stimulus profile to see the real-
time sequence interact with the Engine Demo.

Updating a Stimulus Profile to Use a Text File for Model Parameters

Configure an existing stimulus profile to use a text file to update model parameters
without having to create and run multiple profiles.
Before you begin, deploy the engine demo's system definition.

1. In the VeriStand Editor, click Tool Launcher > Stimulus Profile Editor.

2. Click File > Open, navigate to <Common Data>\VeriStand Projects\Engine
Demo\Stimulus Profiles\Engine Demo Return Value, and double-click the
Engine Demo Return Value stimulus profile.

3. Save the stimulus profile as Update Model Parameters tutorial in the
<Common Data>\VeriStand Projects\Engine Demo\Stimulus Profiles\Update
Model Parameters directory.

4. Optional: If you want to run the stimulus profile in the VeriStand Editor,
update the Setup step.

1. Right-click Open VeriStand Workspace and select Delete.

2. In the Steps palette, expand Other and drag Command Shell into the
Setup.

3. In the Property Browser, specify the full path to VeriStand.exe as the
Filename.

Note You can add arguments in the Property Browser for this
step to specify the VeriStand project, system definition file,
and VeriStand gateway IP address to connect to.

5. In the Steps palette, expand VeriStand Control > Workspace and drag Update

Model Parameters from File into Main, above the Real-Time Sequence Call.

6. In the Property Browser, set Source to <Common Data>\VeriStand
Projects\Engine Demo\Stimulus Profiles\Update Model
Parameters\OriginalParameterValues.txt

ni.com438

VeriStand Feature Usage

If you open this file in a text editor, you can see that it resets the three key
parameters for testing purposes back to their initial values.
a [-7/9 0.5; -2/3 0]
{environment temperature (C)} 25
{idle speed (RPM)} 900

In this code, a is the A matrix for the engine state-space model, {environment
temperature (C)} is the temperature of the environment in which the engine
operates, and {idle speed (RPM)} is the RPM the engine maintains while idle.

Note VeriStand expects parameter names to start with a letter and
contain only alphanumeric characters or underscores. If a parameter
name does not fit this convention, you can enclose it in curly braces
({ }) to indicate that the string is a model parameter.

7. Select the Prompt Operator step that appears after the Real-Time Sequence
Call and change the Message to Model parameters set to default values and
the Dialog Title to New Parameter Values.

8. Add a second Update Model Parameters from File after the Prompt Operator,
and set the Source to <Common Data>\VeriStand Projects\Engine
Demo\Stimulus Profiles\Update Model Parameters\ParameterUpdate1.txt.
This file changes the environment temperature and the idle speed of the
engine to very high values:
{environment temperature (C)} 75
{idle speed (RPM)} 2000

9. Right-click the Prompt Operator you configured and select Copy.

10. Right-click Main, and select Paste to add another operator prompt to the end
of section. Update its message to Environment temperature set to 75 and Idle
RPM set to 2000.

11. Copy the Real-Time Sequence Call and paste it after the prompt.
Because you are running the same test on each update of the model, you do
not need to configure the sequence.

© National Instruments 439

VeriStand Feature Usage

12. Add a third Update Model Parameters from File after the Prompt Operator,
and set the Source to <Common Data>\VeriStand Projects\Engine
Demo\Stimulus Profiles\Update Model Parameters\ParameterUpdate2.txt.
This file demonstrates some more advanced operations:
tempConversionFactor 0.5
{environment temperature (C)} 50 * tempConversionFactor
subscript subfile.txt

The first line declares a temporary variable, tempConversionFactor. The
second line uses this variable in a calculation. Temporary variables are local to
the file in which you create them.
The third line uses the subscript command to call another text file subfile.txt.
This subscript sets a few more parameter values. When you call a file as a
subscript, VeriStand inserts the contents of the subscript file into the calling
file at the line that contains the subscript call.

13. Create another Prompt Operator with the Message Environment temperature
reset to 25 C and the 'a' matrix (which controls RPM adjustments) changed to
model a different engine.

14. Copy and paste another call to the real-time sequence.

15. Optional: If you want to ensure you leave your system in a known state, add
another Update Model Parameters from File that calls
OriginalParameterValues.txt.

16. Click Update Model Parameters tutorial.nivsstimprof and in the Property

Browser disable Stop Execution on Fail.

17. Save the stimulus profile.

The stimulus profile code will look like the following image.

ni.com440

VeriStand Feature Usage

After updating the stimulus profile, run it. Each a time a test completes, click OK in
the operator prompt to advance to the next model update.

Note Some tests, such as the extreme conditions in
ParameterUpdate1.txt, fail quickly.

Running a Stimulus Profile

Compile and run the stimulus profile to see the real-time sequence interact with the
Engine Demo.

1. On the stimulus profile, expand Execution Results.
After each step executes, Execution Results displays the name of the step and
the result of the step execution.

2. Click Run to compile all the open and referenced real-time sequence files and
run the stimulus profile.
You can observe the user interface's graph to see the output change as the
real-time sequence executes.

Note The Warnings and Errors pane displays any errors, warnings,
or messages that you must resolve before the stimulus profile can
successfully execute.

The engine demo will run like in the following image.

© National Instruments 441

VeriStand Feature Usage

When the stimulus profile completes its execution, the ATML Test Report opens. This
report displays details about the stimulus profile execution. If you run the stimulus
profile again, the previous results are overwritten.

VeriStand Reference
VeriStand includes resources to help run your project, such as hardware support,
error codes to troubleshoot, and system channels to help monitor the condition of
your system.
Resource Description

Related Documentation Provides more information on help for VeriStand.
NI Hardware Support Contains support details for NI-XNET devices, NI-DAQ devices,

and NI FPGA targets.
VeriStand Directories and
Aliases

Contains directories and aliases used for project files, models,
and custom devices.

VeriStand Error Codes Lists error codes that VeriStand returns.
VeriStand File Extensions Lists file types and extensions that VeriStand uses.
System Channels Lists system channels available in System Explorer.

Related Documentation
Use the following documents for more help with VeriStand. Refer to ni.com/manuals
for updated documentation resources.
Document Description

VeriStand Readme Provides system requirements, installation instructions, and important
information about the version of VeriStand that you are installing. This
help file is installed with VeriStand. The readme.html file is located in
the X:\VeriStand\ directory.

VeriStand .NET API Help Documents several of the .NET APIs included with VeriStand. Use these
APIs to programmatically control various software operations from
any .NET-compatible programming language or environment, including
NI LabVIEW and NI TestStand™. You can access the file from the
Windows Start menu.

LabVIEW Help Provides information about LabVIEW palettes, menus, tools, VIs, and
functions. It also includes step-by-step instructions for using LabVIEW

ni.com442

VeriStand Feature Usage

Document Description
features, and documentation on LabVIEW Real-Time Module and
LabVIEW FPGA Module when you install those modules.

LabWindows/CVI Help Provides information about LabWindows and CVI windows, functions,
tools, and menus.

NI-DAQmx Help Provides information on using NI-DAQmx to program your National
Instruments device.

NI-XNET Hardware and
Software Help

Describes how to install and configure the NI-XNET hardware and
software. It also includes the NI-XNET LabVIEW and C API reference and
summarizes the CAN, FlexRay, and LIN standards.

Hardware
Documentation

Provides support for any hardware devices you want to use with a
project.

MathWorks Simulink®

software
documentation.

Provides support for Simulink tasks such as system-level design,
simulation, automatic code generation, and continuous test and
verification of embedded systems.

MathWorks MATLAB®

software
documentation.

Provides support for MATLAB tasks such as signal processing, event-
based modeling, and application deployment.

MathWorks Simulink
Coder® software
documentation.

Provides support generates and executes C and C++ code from
Simulink models and MATLAB functions.

NI Hardware Support
VeriStand supports NI-XNET devices, NI-DAQ devices, and NI FPGA targets.
For the best performance, use NI-DAQ devices that support hardware-timed single
point (HWTSP) I/O or on-demand sampling. Refer to DAQ Devices with Hardware-
Timed Single Point Sampling Mode Support for a list of NI-DAQ devices that support
HWTSP I/O. Refer to the custom device’s GitHub repository for a list of supported
modules.

Note VeriStand does not support HWTSP on cRIOs with DAQmx, such as
904x and 905x. For single-point I/O on these devices, use the Scan Engine
and EtherCAT custom device. Refer to the custom device’s GitHub
repository for a list of supported modules.

© National Instruments 443

VeriStand Feature Usage

http://www.ni.com/r/exqsrb
http://www.ni.com/r/exqsrb
https://www.ni.com/r/seecmodules

Hardware Feature NI-XNET Devices NI-DAQ Devices NI FPGA Targets

Custom FPGA VIs – – ✓1

Hardware timing – ✓ ✓
Analog I/O – ✓ ✓
Digital I/O – ✓ ✓
Pulse Width Modulation
(PWM) I/O

– ✓2 ✓

Auto-discovery of installed
devices and I/O modules

✓ ✓ ✓

1 Refer to the FPGA Targets with Built-in Support section for a list of NI FPGA targets for which
VeriStand provides bitfiles and FPGA configuration files.
2 Device support for PWM I/O includes:

■ Generating pulses—If HWTSP sample mode is enabled (default) for a counter output
channel, only X Series PCI and PXI devices support generating pulses with that channel.
However, if that property is disabled for a Counter Output (CO) channel, all DAQ devices
support generating pulses.
■ Measuring pulses—Only X Series PCI and PXI devices support measuring pulses with
counter input channels.

Supported Targets

VeriStand supports deploying a project to the following targets:

■ PXI/PCI—Any PXI controller with at least 256 MB of RAM.
■ CompactRIO/Single-Board RIO—Any CompactRIO or Single-Board RIO
device with at least 128 MB of RAM.
■ Desktop PC—Any PC running Windows 7, Vista, XP Service Pack 3 or later,
Server 2003 R2 (32-bit), or Server 2008 R2 (64-bit).

FPGA Targets with Built-in Support

VeriStand ships with bitfiles and FPGA configuration files for the following FPGA
targets:

■ NI cRIO-9103

ni.com444

VeriStand Feature Usage

Note The files provided for the NI cRIO-9103 are configured for the
NI 9215, NI 9263, NI 9411, and NI 9474 I/O modules.

■ NI PXI/PCI-7811R
■ NI PXI/PCI-7813R
■ NI PXI/PCI-7831R
■ NI PXI/PCI-7833R
■ NI PXI/PCIe-7841R
■ NI PXI/PCIe-7842R
■ NI PXI/PCIe-7851R
■ NI PXI/PCIe-7852R
■ NI PXI-7853R
■ NI PXI-7854R

All bitfiles use direct memory access (DMA) to transfer data.
You can use the LabVIEW FPGA Module to create custom FPGA bitfiles for these or
other FPGA targets.

Supported SCXI Modules

VeriStand supports adding the following SCXI DAQ modules to system definitions:

■ SCXI-1100
■ SCXI-1102
■ SCXI-1102B
■ SCXI-1102C
■ SCXI-1104
■ SCXI-1104C
■ SCXI-1112
■ SCXI-1120
■ SCXI-1120D
■ SCXI-1121

© National Instruments 445

VeriStand Feature Usage

■ SCXI-1122
■ SCXI-1124
■ SCXI-1125
■ SCXI-1126
■ SCXI-1127
■ SCXI-1128
■ SCXI-1140
■ SCXI-1141
■ SCXI-1142
■ SCXI-1143
■ SCXI-1160
■ SCXI-1161
■ SCXI-1162
■ SCXI-1162HV
■ SCXI-1163
■ SCXI-1163R
■ SCXI-1190
■ SCXI-1191
■ SCXI-1192
■ SCXI-1520
■ SCXI-1530
■ SCXI-1531
■ SCXI-1540
■ SCXI-1581

VeriStand Directories and Aliases
VeriStand uses directories and aliases for project files, models, and custom devices.
The following tables list paths to common VeriStand directories by operating
system. The heading before each table indicates how NI documentation refers to the
directory. For directories with aliases listed, the alias is the text that appears with a

ni.com446

VeriStand Feature Usage

relative path in an API or XML file. This text defines the directory that the path is
relative to.

Note The aliases in this topic refer to locations on disk and are not related
to aliases you define for channels in a system definition file.

<Common Data>

Alias: To Common Doc Dir

Operating system Path

Windows <Public Documents>\National Instruments\NI VeriStand <xxxx>

Note <xxxx> is the VeriStand version number.

<Application Data>

Alias: To Application Data Dir
For internal use only. Certain custom device development tools, including Custom
Device XML and the Device Properties VIs, can reference this directory. However, NI
recommends you avoid storing or modifying files in this directory.

Operating system Path

Windows <Application Data>\National Instruments\VeriStand

<Base>

Alias: To Base

Operating system Path

Windows <Program Files>\National Instruments\VeriStand <xxxx>

Note <xxxx> is the VeriStand version number.

© National Instruments 447

VeriStand Feature Usage

<Custom Device Engine Destination>

Alias: None

Operating system Path

Phar Lap/ETS C:\ni-rt\NIVeristand\custom devices\<custom device name>\

<Model Framework>

Alias: None

Operating system Path

Windows C:\VeriStand\<xxxx>\ModelInterface

Note <xxxx> is the VeriStand version number.

VeriStand Error Codes
VeriStand returns an error code when it encounters a problem while executing.
Use the following table to locate an error code message.

Note For more information on correcting VeriStand errors, refer to the
KnowledgeBase.

Error code Message

−307998 The switch load signal conditioning (SLSC) chassis name or IP address/hostname is
empty. Provide a SLSC chassis name or IP address/hostname.

−307997 There are SLSC chassis added to the system definition that are not supported.
Remove the SLSC chassis from the System Definition.

−307996 SLSC module not found in the specified slot. Check your SLSC hardware and make
sure the custom device is inserted in the correct slot.

−307995 VeriStand engine failed to retrieve data from the SLSC chassis status loop within the
specified timeout. The System Definition was undeployed.

−307994 The specified parameter cannot be found.
−307993 The parameter dimension does not match the parameter default value length.

ni.com448

VeriStand Feature Usage

http://www.ni.com/kb/

Error code Message
−307992 The specified operation cannot be completed. There is no project file currently open.
−307991 A real-time sequence parameter assignment has an invalid data type. Match the data

type of the value assigned to the parameter to the parameter's data type.
−307990 A system definition channel has been mapped to two or more real-time sequence

parameters that are not the same data type. A channel can only be mapped to
multiple parameters if they share the same data type.

−307989 The specified parameter assignment is not valid. The channel mapped to the
parameter could not be found in the system.

−307988 The compiler failed because the specified real-time sequence contains one or more
errors.

−307987 One or more real-time sequence parameters with a by-reference evaluation was not
mapped to. Assign a value to all real-time sequence parameters that have a by-
reference evaluation type.

−307986 The specified parameter assignment is not valid. The real-time sequence parameter
does not exist.

−307985 The sequence did not complete the timestep within the specified timeout. This could
be due to a sequence that contains too much processing or an infinite loop that does
not yield. Evaluate the timing of your sequence or increase the timeout.

−307984 The stimulus profile session is already deployed.
−307983 The sequence containing the specified variable is currently running. You cannot probe

a variable value while a sequence is running.
−307982 The stimulus profile session is not deployed.
−307981 The stimulus profile session does not contain a sequence with the specified name.
−307980 The specified stimulus profile session is locked. Unlock the stimulus profile session to

control sequences in the session.
−307974 Error provider received an unexpected configuration. Verify the error provider is

implemented correctly and the errors can be handled by the error provider.
−307973 Error provider received an electrical error with an unexpected number of signals.

Verify the error provider is implemented correctly and all errors contain the correct
number of signals.

−307972 Error provider received an electrical error that contains a signal it cannot handle.
Verify the error provider is implemented correctly and all errors contain the correct
signals.

−307971 A channel cannot have child items.

© National Instruments 449

VeriStand Feature Usage

Error code Message
−307970 An inline custom device attempted to access invalid data in the VeriStand Engine. The

inline custom device attempted to read or write data using an invalid reference or a
reference that did not have the read or write access required for that operation.

−307951 VeriStand requires that you compile a model (.mdl) before it can run on a real-time
(RT) target.

−307950 Unable to connect to the VeriStand Model Simulation Server.
−307949 The selected model (.mdl) is invalid. Verify that the model can be compiled and run

properly, that you have added an NIVeriStandSignalProbe block to it, and that the
stop time is set to inf.

−307948 Unable to establish a connection between the VeriStand Model Simulation Server and
client. The VeriStand MDL client version is incompatible with the currently loaded
VeriStand Model Simulation Server.

−307933 Attempted to write to a read-only property.
−307932 The formula type must depend on variables.
−307931 Model execution order group cannot be empty.
−307930 A node name cannot be an empty string.
−307929 The mapping definition is invalid. The source channel must be readable, the

destination channel must be writable, and both channels cannot be part of the
stimulus generator.

−307928 Found an existing FPGA target with the same RIO address configuration.
−307927 Invalid argument. The node reference is not a valid channel.
−307926 This node already exists in the system.
−307925 The specified node is not compatible with this operation.
−307917 A stimulus profile generator contains channel mappings for channels on a different

target than the target on which the generator will execute. A generator can only map
to channels on the target on which it will execute. Confirm that the generator is not
mapped to channels from different targets, or that the generator does not specify an
execution target that is different than one of the channel mappings.

−307916 A stimulus profile generator contains a Set Variable step that attempts to set a
variable on another target. A Set Variable step only can set a variable on the same
target as the generator containing the step.

−307915 The operation could not be completed. A stimulus profile is running.
−307914 The specified CSV file does not contain a Timestamp column. The file you specify must

have a Timestamp column that contains values in milliseconds.

ni.com450

VeriStand Feature Usage

Error code Message
−307913 The number of stimulus generators exceeds the maximum allowed. Reduce the

number of stimulus generators in the stimulus profile or increase the maximum
allowed using the Stimulus Configuration page of System Explorer.

−307912 The number of data points exceeds the maximum analysis buffer size. Reduce the
number of data points in the stimulus profile or increase the maximum analysis buffer
size using the Stimulus Configuration page of System Explorer.

−307911 Unable to start stimulus profile generation. One or more calibration files are not
found.

−307910 Unable to start stimulus profile generation. CAN logging requires that the CAN Bus
Monitor is running.

−307909 Unable to start stimulus profile generation. Stimulus profile file contains invalid
profile steps or incorrect timing.

−307908 The stimulus profile manager currently is reserved by a client.
−307907 Multi-point data does not have the correct timing. The data must start at time 0 and

increment at a multiple of Delta t value.
−307906 Timeout occurred while writing data to the analysis buffer.
−307905 Timeout occurred while writing data to the auxiliary buffer.
−307904 A stimulus profile failed to compile correctly. Verify that the stimulus profile links to

valid channels.
−307903 The number of data points exceeds the maximum auxiliary buffer size. Reduce the

number of data points in the stimulus profile or increase the maximum auxiliary
buffer size in the Stimulus Configuration page of System Explorer.

−307902 The specified stimulus profile is empty. It contains no compiled steps.
−307901 The number of compiled stimulus generator steps exceeds the maximum allowed.

Reduce the number of steps in the stimulus generator or increase the maximum
number of steps per generator using the Stimulus Configuration page.

−307900 The number of generator mappings exceeds the maximum allowed. Reduce the
number of mapped channels or increase the maximum number of mappings per
generator using the Stimulus Configuration page.

−307891 VeriStand only supports devices whose calibration password is the default value. Use
NI MAX or the NI System Configuration API to reset the calibration password on the
device to the default value.

−307889 A lookup table scale mapped to a channel(s) is empty. Remove the mapping or update
the scale to contain pairs of pre-scaled values and the corresponding values to which
to scale them, and then try to deploy the system definition again.

© National Instruments 451

VeriStand Feature Usage

Error code Message
−307887 A polynomial scale mapped to a channel(s) does not have coefficients defined.

Remove the mapping or update the scale to contain coefficients, and then try to
deploy the system definition again.

−307883 Cannot deploy project because the system definition file contains scales but the
project does not contain a channel calibration file (.nivscf). Delete the scales from the
system definition file and redeploy.

−307861 The data logging configuration is invalid. One or more specified channels does not
exist.

−307860 The specified trigger channel does not exist.
−307853 The VeriStand Gateway was unable to establish a connection with the target. Confirm

that the target is running and that the VeriStand Engine successfully started. If you still
cannot connect to the target, use MAX to reinstall the VeriStand Run-Time Engine on
the target. You may encounter this error if you attempt to connect to the target from a
LabVIEW project, because a LabVIEW project can update the start-up application for
the target. To deploy a system definition to a target, the VeriStand Run-Time Engine
(VeriStand.rtexe) must be the start-up application.

−307852 The specified dependent file is contained within a LabVIEW library file (LLB), but the
destination path on the target is not contained in an LLB. Individual files cannot be
copied out of an LLB. The destination path on the target must have an LLB as the
parent of the dependent file.

−307851 One or more system definition file dependency files differ from the originally
imported version. This might cause unexpected behavior or errors. Cancel the current
operation and resolve any conflicts in System Explorer.

−307850 The target cannot be reached. Verify that the Ethernet cable is connected to the real-
time (RT) target and that the RT target is enabled and running.

−307831 Unable to save file to the specified path.
−307830 The channel dimension does not match the channel default value length.
−307829 The specified node cannot be found.
−307828 This dependency does not refer to a valid item. The item may have been deleted.

Select a different dependency or re-add the invalid item and click Update

Dependencies.
−307827 The specified item is not an expected type inside the system storage hierarchy.
−307800 A procedure failed to compile correctly and cannot be executed.
−307785 No error provider exists to handle the error signals.
−307784 The STI file is not valid.
−307783 The data structure contains a dependencies cycle.

ni.com452

VeriStand Feature Usage

Error code Message
−307782 The channel cannot be found in the specified log file.
−307781 The channel group cannot be found in the specified log file.
−307780 The specified feature is supported only if the VeriStand Gateway is running on the

localhost machine.
−307755 The specified operation is not permitted while recording a macro.
−307754 Serialization error. Unable to save macro.
−307753 The specified operation is not permitted unless running a macro.
−307752 The specified operation is not permitted until a macro is loaded.
−307751 The specified operation is not permitted while playing a macro.
−307750 Deserialization error. Failed to load macro file.
−307749 A simulated DAQ device cannot be used as a Timed Loop timing source or as a chassis

master hardware synchronization device. In System Explorer, navigate to the Chassis

Configuration page and choose a different DAQ device from the Chassis master
hardware synchronization device pull-down menu. On the Controller Configuration
page, choose a different Primary Control Loop timing source. Or, if all DAQ devices are
simulated, disable hardware-timed single-point support for all of them or disable the
DAQ device.

−307748 The VeriStand Engine rebooted while running the system definition file. You must
reconnect to the execution host and possibly redeploy the system definition file.

−307747 The system definition file contains two targets that are using the same IP address.
Each target must have a unique IP address. Only one target can be a Windows target.

−307746 The maximum Windows target rate is 1 kHz. To achieve higher rates, use an NI-DAQ
device or NI FPGA target.

−307745 You must specify a VISA device address for the reflective memory card.
−307744 An alarm failed to compile correctly and cannot be executed.
−307743 The VeriStand Engine failed to start. A configured start trigger or external timing

source did not occur within the specified timeout.
−307742 The VeriStand Engine could not be loaded. Make sure that VeriStand and the required

drivers, such as NI-DAQmx, are installed correctly. Refer to the VeriStand readme.html
for a list of required software and drivers.

−307741 VeriStand export data exceeds the allocated reflective memory address.
−307740 Invalid data range. The reflective memory network requires a valid data range.
−307739 Data on reflective memory must have the correct byte alignment from memory

address 0x0.

© National Instruments 453

VeriStand Feature Usage

Error code Message
−307738 Unable to share data between two targets. There is not enough dynamic data sharing

space.
−307737 Unable to create dynamic data sharing between targets. Either the source or

destination target does not have a data sharing device.
−307736 Unable to share data for the channel. Either the source or destination target does not

have reflective memory support.
−307735 A required resource is disabled in the current version of the VeriStand Engine. For

example, a DAQ board is the master timing device, but the current VeriStand Engine
has disabled NI-DAQ. Remove the device or resource from the system definition file.

−307734 The scaling and calibration setting is invalid. The channel does not exist or is not
scalable.

−307733 The version of the calibration file (HardwareCalibrationData.nivscal) is too old to
mutate to the current version. Delete the file and manually recreate the calibration
settings.

−307732 The system has become unresponsive. The Primary Control Loop has been shut
down. To correct this error, enable Filter Watchdog Errors on the Controller

Configuration page of System Explorer. You can configure watchdog functionality by
monitoring the Watchdog Timer system channel using alarms and procedures.

−307731 The system definition file is not saved in the current version of VeriStand. VeriStand
cannot mutate system definition files on a real-time target. Use System Explorer to
open and save the file.

−307730 One or more asynchronous custom devices failed to shut down properly and the
VeriStand Engine aborted them.

−307729 The system definition file is missing. Deploy a valid system definition file.
−307728 One or more channel mappings have incompatible dimensions. Matrix channels only

can be mapped to matrix channels with the same dimension.
−307727 The requested DAQ device, the master timing source for the timed loop, is

unavailable.
−307726 A calculated channel failed to compile correctly and cannot be executed.
−307725 The value does not match the dimensions of the specified channel.
−307723 A property of a DAQ channel has an invalid value. Change the value the error message

lists. If you used the System Definition API to change the units property of a channel,
restore the units to the original value.

−307721 Cannot enable Slow Background Conversion Mode if hardware-timed single-point
sample mode is disabled for analog input channels. If you want to enable Slow

ni.com454

VeriStand Feature Usage

Error code Message
Background Conversion Mode for this device, you must first enable hardware-timed
single-point support for its AI channels.

−307720 Failed to route PXI_Trig0 from bus segment of chassis master device to other bus
segments. To address this issue, open MAX and select the chassis. On the Triggers
pane for the chassis, clear any reservation for PXI_Trig0 on the appropriate bus, set
routing for PXI_Trig0 to Dynamic, and try again.

−307719 Unable to discover XNET interface(s) before timeout elapsed. Contact NI support at
ni.com/support for more information about resolving this error.

−307710 The specified item is not an inline custom device. Pass in a valid reference to an inline
custom device.

−307704 The specified model is not compatible with the specified execution host.
−307703 The specified model is incompatible with VeriStand. If you want to deploy the model

to an RT target, launch the Console Viewer tool to display the console output of the
target, which includes information about the source of the error.

−307702 The size of the imported model data in the system definition file conflicts with the size
in the specified model file. This error can occur if the model file contains a different
number of inports, outports, signals, or parameters than when it was imported. This
error also can occur if two or more models contain a global parameter with the same
name but different dimensions. To correct this error, reload the model in the System

Explorer and verify the dimensions of any global parameters that multiple models
contain. Alternatively, on the Parameters page for a model in the Scope for Global
Parameters drop-down, select Model to avoid conflicts caused when the model shares
the global parameter with other models.

−307701 Timeout occurred while writing a parameter value to the VeriStand Engine.
−307700 One or more Model Execution Loops failed to shut down properly.
−307691 Import operation failed for the specified SLSC chassis.
−307686 The specified target is not defined in the deployed system definition.
−307685 Cannot initialize model parameter(s) defined in model parameter file because

parameter was not found in system. 1) Ensure the expression of the parameter is
spelled correctly in the file. 2) If the file defines a temporary variable, ensure the
system definition allows temporary variables. 3) If the file contains aliases, ensure the
path to an alias file is correct in the system definition. Verify the contents of the file
and the settings on the Simulation Models configuration page in System Explorer, and
try again.

© National Instruments 455

VeriStand Feature Usage

Error code Message
−307684 Cannot start server because the port address is already in use by another process. To

change the port address for the server, select Tools > Options, browse to the Port

Settings page, and change the value of the corresponding control.
−307683 Cannot deploy or connect to the system definition because all targets in the system

are disabled. Enable one or more targets in the system definition, and then try to
deploy again.

−307681 Failed to read the VeriStand service configuration file. Repair your VeriStand
installation.

−307680 An exception occurred when the model parameter file was being parsed.
−307679 The VeriStand Gateway is no longer connected to the targets. One of the targets

stopped running the system definition file.
−307678 The specified workspace tool VI is not open.
−307677 The reference to the project file is no longer valid. The referenced project is no longer

open.
−307676 VeriStand cannot open the specified project file because another project is already

open.
−307675 The VeriStand Gateway cannot complete the specified operation because the number

of streamed channels for one or more targets exceeds the maximum size. Stop data
logging configurations or graphs to reduce the number of streamed channels. You
also can increase the maximum streamed channel count for the targets by editing the
system definition file in System Explorer.

−307674 The Run Workspace function is no longer supported. Use the Connect to System
function instead, which has a system definition file parameter instead of a workspace
file.

−307673 Another VeriStand Gateway already is connected to the execution host. Only one
VeriStand Gateway can be connected to an execution host at a time.

−307672 One or more targets failed to start within the specified timeout. Verify that any start
trigger or clock signals are configured correctly.

−307671 The execution host is running a different system definition file than the file specified.
You must deploy the system definition file in order to connect to the execution host.

−307670 The VeriStand Gateway cannot process the requested operation. The VeriStand
Gateway currently is busy performing another operation.

−307669 The license is unavailable, invalid, or VeriStand failed to initialize the licensing
component.

−307668 The specified channel cannot be scaled.
−307667 The requested operation on this item reference is invalid.

ni.com456

VeriStand Feature Usage

Error code Message
−307666 The specified channel cannot be faulted.
−307665 Channel does not have write access.
−307664 Channel does not have read access.
−307663 Timeout occurred while processing request.
−307662 Node is not found in the system.
−307661 VeriStand failed to deploy the system definition file.
−307660 Timeout occurred while deploying a new system definition file.
−307659 Invalid password input parameter. The password cannot be an empty string.
−307658 VeriStand is unable to run the system definition file when a system definition file is

already running.
−307657 The specified password does not match the current deployed configuration password.
−307656 Invalid request. VeriStand does not have a system definition file loaded.
−307655 Invalid request. VeriStand is missing an engine component that is required to process

the request.
−307654 Cannot perform this request because VeriStand is not running a system definition file.

Deploy a system definition file, and try again.
−307653 Invalid input file parameter.
−307652 Failed to open a connection to VeriStand.exe.
−307651 The VeriStand API does not support this function.
−307650 An unexpected error has occurred in the VeriStand API.
−307615 This DAQ device does not support reference clock synchronization. In System Explorer

on the DAQ Device Configuration page, click the PXI Backplane Reference Clock drop-
down and select None or Automatic.

−307614 The DAQ support files are missing for the channel type selected. Try repairing your
installation of VeriStand.

−307613 You cannot add channels of the type you selected. The DAQ device either contains no
channels of this type, or all available channels of this type are already in the system
definition.

−307612 One or more chassis are unidentified. Open NI MAX and identify the type of the chassis
for each controller that is configured in System Explorer.

−307611 The associated NI-XNET database path cannot be found. Update either the alias or the
database path.

−307610 The formula contains an invalid function or variable name.

© National Instruments 457

VeriStand Feature Usage

Error code Message
−307609 The formula contains an unused variable declaration.
−307608 The custom device does not provide a valid source distribution for the target

specified. Specify a different target or contact the creator of the custom device for
further support.

−307607 VeriStand could not mutate the system definition file. The system definition file
version is different from the official released version of VeriStand.

−307606 The file does not contain a valid file format.
−307605 The requested simulation model could not be found. Navigate to the Model

Configuration page in System Explorer and choose a different model.
−307604 VeriStand cannot mutate the system definition file to the current version.
−307603 The requested custom device does not have a main page specified. Contact the

creator of the custom device to correct this error.
−307602 The GUID could not be found. If the requested page is a custom device, contact the

creator of the custom device.
−307601 The XML file is invalid according to the XML schema document (XSD).
−307600 The specified VI is broken and cannot run. Open the VI in LabVIEW for more

information.
−307562 The waveform session reference cannot be used if it is not open. Use the Open

Waveform Session VI to open a waveform session reference.
−307561 Cannot write to waveform. Another waveform write session is already open for this

waveform reference, and only one writer can access the waveform reference at a time.
−307557 Custom device cannot perform requested operation because VeriStand Engine is

shutting down.
−307556 Cannot open waveform session because waveform data references are not valid. Use

the Get Waveform Data Reference VI to generate valid data references with which you
can open a waveform session.

−307555 Cannot open a waveform session using an empty array of waveform references. Use
the Get Waveform Data Reference VI to generate valid data references with which you
can open a waveform session.

−307554 The specified stream condition is not valid for the data type of the waveform. This
error might occur if you try to set the streaming condition to be within a range of
values for a waveform whose data type is a complex double (CDB). The in-range
streaming condition supports only waveforms whose data type is double (DBL).

−307553 Unexpected waveform data type. This VI requires the specified waveform nodes to be
of a specific data type.

ni.com458

VeriStand Feature Usage

Error code Message
−307550 You have provided an invalid username or password.
−307526 The XML file provided is invalid.
−307525 Cannot open selected file. The file was saved in a later version of VeriStand.
−307505 The FPGA bitfile has changed since the system definition file was last compiled. Open

the system definition file in System Explorer and refresh the FPGA configuration file
(.fpgaconfig).

−307504 An FPGA argument or parameter is outside the expected range. Update the FPGA
configuration file (.fpgaconfig).

−307503 An unknown exception occurred while running the NI FPGA device. Verify that NI-RIO
and the VeriStand software are installed correctly on the real-time (RT) target.

−307502 An FPGA argument or parameter is invalid. This might be a problem with the FPGA
configuration file (.fpgaconfig) or FPGA bitfile. This problem also might be caused by
an invalid FPGA target handle.

−307501 The specified operation is unable to acquire the memory necessary to execute. To
correct this error, increase the amount of memory in the system or reduce the amount
of memory that this operation requires. You can reduce the amount of memory
required by the operation by uninstalling unneeded components from the real-time
(RT) target or by reducing the number of devices, channels, and/or stimulus
generators used.

−307500 The FPGA configuration file (.fpgaconfig) is invalid or contains an error.

VeriStand File Extensions
VeriStand projects use a variety of file types.
Use the following table to find information on a file extension.

File extension Description

.bt1 A batch stimulus profile file created using VeriStand 2009, 2010, or NI Dynamic
Testing Software 1.0.

.cah Calibration History file.

.csv Comma Separated Values file.

.dbc Database file that describes signals and associated messages for a collection of
controller area network (CAN) nodes.

.depvs Support file that lists any dependencies of a compiled model. This file ensures the
dependencies deploy to real-time targets.

© National Instruments 459

VeriStand Feature Usage

File extension Description
.dll Shared library. VeriStand requires that models be compiled into a dynamic link

library (DLL) before they can run on a Phar Lap RT target.
.et1 A step-based stimulus profile file created using VeriStand 2009 or NI Dynamic

Testing Software 1.0.
.et2 A table-based stimulus profile file created using VeriStand 2009 or NI Dynamic

Testing Software 1.0.
.fpgaconfig FPGA Configuration file. XML-based file that specifies the content of direct memory

access first-in-first-out memory buffers (DMA FIFOs).
.ini Standard Windows configuration settings file.
.ldf A local interconnect network (LIN) description file.
.llb A LabVIEW VI library (LLB). Custom devices that run in VeriStand consist of

LabVIEW VIs distributed in LLBs.
.lvbitx LabVIEW-generated bitfile. Defines the available I/O on the FPGA. A bitfile is a

compiled version of an FPGA VI.
.lvlib LabVIEW project library. A collection of LabVIEW VIs, type definitions, shared

variables, palette files, and other files, including other project libraries. For
example, the VeriStand LabVIEW APIs are organized into project libraries.

.lvmodel Compiled model that runs on Windows PCs. Generate models from a LabVIEW VI
or simulation subsystem.

.lvmodelso Compiled model that runs on Linux x64 or Linux ARM. Generate models from a
LabVIEW VI or simulation subsystem.

Note You must install additional software to enable LabVIEW models
for targets running a Linux Real-Time OS. For more information about
how to use LabVIEW models with Linux, visit the NI website. VeriStand
is not supported on x64 Intel-based cDAQ controllers running NI Linux
Real-Time.

.lvproj LabVIEW project file. A LabVIEW file type you can use to build custom devices for
VeriStand.

.m Text-based m-script file that initializes variables and can provide other information
needed by models.

.mdl Model you developed in the MathWorks Simulink® simulation environment.

.ncd NI-CAN database. Database file that describes signals and associated messages for
a collection of CAN nodes.

.ncl NI-XNET logfile. Binary file for the storage of CAN, FlexRay, and LIN data.

ni.com460

VeriStand Feature Usage

http://www.ni.com/r/exiivr

File extension Description
.nivscal Calibration file deployed to targets. Binary file that VeriStand deploys, and then

deletes when the project is undeployed.
.nivscf Calibration file on host. XML-based file you can import a .nivscf file into other

projects to reuse the calibrations.
.nivsmacro Macro file. A recording of the commands sent to the target.
.nivsproj Legacy VeriStand project file.
.nivsprj VeriStand project file.
.nivsscreen VeriStand screen file.
.nivssdf VeriStand system definition file.
.nivsseq Real-time sequence.
.nivsseqt Real-time sequence template.
.nivsstimprof Stimulus profile.
.nivsstimproft Stimulus profile template.
.nivstest A stimulus profile file created using VeriStand 2009, 2010, or NI Dynamic Testing

Software 1.0.
.out Shared library.
.tdms Technical Data Management Streaming file. A binary measurement file that

contains waveform data. Stores descriptive information at the file, group, and
channel levels. When you run a stimulus profile file using the Stimulus Profile
Editor, VeriStand logs data to a TDMS file.

.vi LabVIEW Virtual Instrument.

.xml Extensible Markup Language file. VeriStand requires a corresponding XML file for
any custom device that you add to a project. An XML file might also refer to a
Stimulus Profile Editor test results file or a FIBEX file, a database storage file for use
with the XNET Database Editor.

.xsd XML Schema Document file. This file determines the validity of that XML file. It
contains a set of rules to which the corresponding XML document must adhere in
order to be considered valid according to that schema. VeriStand ships with .xsd
files that you can use to validate FPGA configuration files and custom device XML
files.

System Channels
Use system channels to monitor system parts, such as the host computer, the target,
and the VeriStand Engine, while it is deployed and running.

© National Instruments 461

VeriStand Feature Usage

You can access the system channels in System Explorer by clicking Targets >
Controller > System Channels.
Use the following table for more information on each system channel.
Channel name Units Description

Absolute Time sec The current date and time relative to 12:00 a.m., Friday, January 1,
1904, Universal Time [01-01-1904 00:00:00]. VeriStand coerces this
value from a 128-bit value to double precision. This change might
impact resolution.

Actual Loop Rate Hz The execution rate of the Primary Control Loop.
Alarm Status Enum The alarm's current state.

■ 0: Disabled
■ 1: Enabled
■ 2: Tripped
■ 3: Delayed Trip
■ 4: Indicate

Analysis State N/A The state of the analysis sub-system on the real-time target.
Command Rate N/A The decimation of the Data Processing Loop.
DAQ Error N/A The last reported error code from a DAQmx function call. The value

zero indicates no error.
Delta T sec The period of the Primary Control Loop.
Detailed Tracing
Flag

N/A The Boolean value that specifies whether detailed execution tracing is
enabled on the real-time target.

Failure Count N/A The failure count of current analysis settings.
Host IP N/A The 32-bit integer IP Address of the connected host. A zero value

indicates no host is connected to the VeriStand Engine.
HP Count N/A The number of times the Primary Control Loop reported being late.
HP Loop Duration ns The duration of the Primary Control Loop.
HP Loop Wakeup
Status

Enum The wakeup status of the Primary Control Loop.

■ 0: Normal
■ 1: Aborted
■ 2: Asynchronous wakeup
■ 3: Timing source error

ni.com462

VeriStand Feature Usage

Channel name Units Description
■ 4: Timed loop error
■ 5: Timeout

HP-LP Overwrite N/A The number of times the Primary Control Loop timed out writing
channel data to the Data Processing Loop.

HS TCP Overflow
Count

N/A The number of times the streaming data gets overwritten.

Iteration N/A The iteration count of the Primary Control Loop.
Last Late Iteration N/A The iteration count of the Primary Control Loop that last recorded a

late count. If the Primary Control Loop has not recorded a late count,
this value is -1.

Log Status N/A The state of the logging sub-system on the real-time target.
LP Count N/A The number of times the Data Processing Loop reported being late.
LP Data Count N/A The number of times the Data Processing Loop timed out writing

channel data to the Communication Send Loop.
LP Loop Duration ns The duration of the Data Processing Loop.
Max Streamed
Channels

N/A The maximum number of channels that the VeriStand Engine can
stream to the host.

Model Count N/A The number of times the models have not completed their execution in
time.

Real-Time (RT)
Sequence
Command

Enum The command that specifies how to halt execution of real-time
sequences:

■ 0: None
■ 1: Stop All—Stops real-time sequences and skips to their clean-
up sections.
■ 2: Abort All—Terminates sequence execution without
performing any clean-up tasks.

RT Sequence
Count

N/A The number of real-time sequences currently running.

RT Engine Build N/A A value representing the build number of the VeriStand Engine.
Streamed Channel
Count

N/A The number of channels that the VeriStand Engine is currently
streaming to the host.

Streamed
Waveform Count

N/A The number of waveforms that the VeriStand Engine is currently
streaming to the host.

© National Instruments 463

VeriStand Feature Usage

Channel name Units Description
System Command Enum The command that internally directs the real-time system with the

following numeric values:

■ 0: None
■ 1: Restart System
■ 2: Reset System
■ 3: Shut Down System
■ 4: Reboot System

System Reserved
X

N/A These channels are reserved for use by VeriStand.

System Time sec The relative system time of the VeriStand Engine according to the
iteration count and Delta T of the Primary Control Loop.

TCP Data Packet
Loss

N/A The number of times the VeriStand Engine fails to send a data packet
to the host. A non-zero number can indicate data loss in logged data.
The value is reset every time a workspace connects to the VeriStand
Engine.

Thread Tracing
Flag

N/A The Boolean value that specifies whether thread execution tracing is
enabled on the real-time Target.

Trace Buffer Size N/A The size in bytes of the execution trace buffer on the RT target.
Trace Enabled
Flag

N/A The Boolean value that specifies whether execution tracing is currently
active on the real-time target. Set to 1 to start tracing. Set to 0 to stop
tracing and write result to disk. Set to -1 to stop tracing and send the
result to the host. If no host is present, it is logged to disk.

VI Tracing Flag N/A The Boolean value that specifies whether VI execution tracing is
enabled on the real-time Target.

Watchdog Timer ns The amount of time since the Watchdog Timer Loop last executed. The
Watchdog Timer Loop is set to execute at a rate of 10Hz.

WPL Error Code N/A The last error code encountered by the Waveform Processing Loop.
WPL Error Count N/A The number of times the Waveform Processing Loop encountered an

error.
WPL Overflow
Count

N/A The number of times the Waveform Processing Loop attempts to write
to a waveform read session within the VeriStand Engine and times out.

WPL TCP Overflow
Count

N/A The number of times the Waveform Processing Loop attempts to write
to the TCP loop for a host waveform-stream session and times out.

ni.com464

VeriStand Feature Usage

VeriStand .NET Reference
Use .NET APIs to programmatically control software operations.
VeriStand includes the following .NET APIs.

Note These APIs are documented in the VeriStand .NET API Help.

API Assembly Description

Execution
API

NationalInstruments.VeriStand.ClientAPI (in
NationalInstruments.VeriStand.ClientAPI.dll)

Automates the
operation of an
VeriStand
application on
the target. For
example, you
can read and
write channel
data, control
running models,
configure alarm
states and read
data from
alarms, and
access
Workspace
tools.

System
Definition
API

NationalInstruments.VeriStand.SystemDefinitionAPI (in
NationalInstruments.VeriStand.SystemDefinitionAPI.dll)

Automates the
operation and
configuration of
a system
definition file.
This API
performs the
same operations
as configuring
the file in the
System Explorer
window.

Stimulus
Profile

NationalInstruments.VeriStand.StimulusProfileDefinitionApi (in
NationalInstruments.VeriStand.RealTimeSequenceDefinitionApi.dll)

Automates the
operation and
configuration of

© National Instruments 465

VeriStand Feature Usage

API Assembly Description
Definition
API

stimulus
profiles. This API
performs the
same operations
as configuring
stimulus profiles
in the Stimulus
Profile Editor.

Real-Time
Sequence
Definition
API

NationalInstruments.VeriStand.RealTimeSequenceDefinitionApi (in
NationalInstruments.VeriStand.RealTimeSequenceDefinitionApi.dll)

Automates the
operation and
configuration of
real-time
sequences. This
API performs the
same operations
as configuring
real-time
sequences in the
Stimulus Profile
Editor.

Data
Types API

NationalInstruments.VeriStand.Data (in
NationalInstruments.VeriStand.DataTypes.dll)

Represents data
types and
resources used
by VeriStand.

You can access these assemblies from any .NET-compatible programming language
or environment, including LabVIEW and NI TestStand.

Glossary
VeriStand uses unique terms for completing tasks while creating a project.
Use the following table to learn more about a term used in VeriStand.

Alphabetical
order

Term Description

A Alarm A notification that the value of a particular channel has
gone outside a specified range of values. An alarm triggers
the execution of a specified procedure.

Alias An alternate name for a channel in a system definition file.

ni.com466

VeriStand Feature Usage

Alphabetical
order

Term Description

B Bitfile A LabVIEW-generated file that defines the available I/O on
the FPGA. A bitfile is a compiled version of an FPGA VI.

Block diagram A pictorial description or representation of a program or
algorithm. In LabVIEW, the block diagram that consists of
executable icons called nodes and wires that carry data
between the nodes. The block diagram is the source code
for the VI. The block diagram resides in the block diagram
window of the VI.

C Calculated channel A channel that produces a new value based on calculations
performed on other channels in the system.

Calibration The process of determining the accuracy of an instrument.
In a formal sense, calibration establishes the relationship of
an instrument's measurement to the value provided by a
standard. When that relationship is known, the instrument
may then be adjusted (calibrated) for best accuracy.

CAN (Controller Area
Network)

A serial bus finding increasing use as a device-level network
for industrial automation. CAN was developed by Bosch to
address the needs of in-vehicle automotive
communications.

Chassis master
hardware
synchronization
device

A hardware device that controls the synchronization of all
hardware in a PXI chassis or across multiple PXI chassis. The
chassis master hardware synchronization device must be an
NI-DAQ device with at least one analog input or output
channel, any NI FPGA, or a timing and sync device that has
the capability to drive the RTSI 0 line.

Custom device A virtual instrument that executes user-defined actions,
such as third-party hardware control.

D Differential
measurement
system

A way to configure a device to read signals, in which you do
not need to connect either input to a fixed reference, such
as the earth ground or a building ground.

DLL (Dynamic Link
Library)

A compiled model.

DMA (Direct Memory
Access)

A method by which data can be transferred to/from
computer memory from/to a device or memory on the bus
while the processor does something else. DMA is the fastest
method of transferring data to/from computer memory.

Driver Software that controls a specific hardware device.

© National Instruments 467

VeriStand Feature Usage

Alphabetical
order

Term Description

F FIBEX (FIeld Bus
EXchange)

A vendor-independent exchange format for embedded
network data. It is an XML-based text format. For NI-XNET, NI
adopted the ASAM FIBEX standard as a database storage
format.

FIFO (First-In-First-
Out memory buffer)

The first data stored is the first data sent to the acceptor.

FIFO sink The output of a FIFO. You can use the VeriStand Custom
Device APIs to set the buffer size at the source and sink of
the FIFOs that an asynchronous custom device uses to
share data with the real-time engine.

FIFO source The input of a FIFO. You can use the VeriStand Custom
Device APIs to set the buffer size at the source and sink of
the FIFOs that an asynchronous custom device uses to
share data with the real-time engine.

FlexRay A new, deterministic, fault-tolerant, and high-speed bus
system developed in conjunction with automobile
manufacturers and leading suppliers.

FPGA (Field-
Programmable Gate
Array)

A semi-conductor device that contains a large quantity of
gates (logic devices), which are not interconnected, and
whose function is determined by a wiring list, which is
downloaded to the FPGA. The wiring list determines how
the gates are interconnected, and this interconnection is
performed dynamically by turning semiconductor switches
on or off to enable the different connections.

FPGA configuration
file

An XML-based file that specifies the content of DMA FIFOs.

FPGA VI A configuration that is downloaded to the FPGA and that
determines the functionality of the hardware.

Frames Messages sent across an embedded network. Frames are
sorted into clusters within an NI-XNET database.

H HIL (Hardware-In-
the-Loop)

A simulation configuration in which you test a controller
implementation with a simulated system.

Host computer The computer that runs the VeriStand Gateway and hosts
the screen file.

I Interface The interface represents a single CAN, FlexRay, or LIN
connector on an NI hardware device. Within NI-XNET, the

ni.com468

VeriStand Feature Usage

Alphabetical
order

Term Description

interface is the software object used to communicate with
external hardware described in the database.

L LabVIEW A graphical programming language.
LIN (Local
Interconnect
Network)

A standard for low-cost, low-end multiplexed
communication in automotive networks. LIN provides cost-
efficient communication in applications where the
bandwidth and versatility of CAN are not required.

M Mapping A connection between two channels.
MAX (Measurement
& Automation
Explorer)

Provides a centralized location for configuration of NI
hardware products. MAX also provides many useful tools for
interaction with hardware.

MIO (Multifunction
I/O)

A DAQ module that designates a family of data acquisition
products that have multiple analog input channels, digital
I/O channels, timing, and optionally, analog output
channels. An MIO product can be considered a miniature
mixed signal tester, due to its broad range of signal types
and flexibility. Also known as multifunction DAQ.

N NRSE (Non-
Referenced Single-
Ended mode)

All measurements are made with respect to a common
(NRSE) measurement system reference, but the voltage at
this reference can vary with respect to the measurement
system ground.

O Offline A simulation configuration in which you use software to
simulate the controller and the system you want to control.
No hardware is involved in an offline simulation.

P PCI (Peripheral
Component
Interconnect)

An industry-standard, high-speed databus.

Phar Lap ETS A real-time operating system designed optimized for
devices based on the Intel x86 architecture.

Port In regard to NI-XNET, port refers to the connector on an NI
hardware device. The physical connector includes the
transceiver cable if applicable.

Port width Refers to the number of lines in a port. For example, E
Series devices have one port with eight lines; therefore, the
port width is eight.

Procedure A set of actions that the VeriStand Engine executes.

© National Instruments 469

VeriStand Feature Usage

Alphabetical
order

Term Description

Project file The .nivsprj file that defines high-level settings in an
VeriStand project, such as the screen and system definition
files to run, the IP address of the VeriStand Gateway, etc.

Q Quadrature encoder An encoding technique for a rotating device where two
tracks of information are placed on the device, with the
signals on the tracks offset by 90º from each other. This
makes it possible to detect the direction of the motion.

R RAM (Random-
Access Memory)

The generic term for the read/write memory that is used in
computers. RAM allows bits and bytes to be written to it as
well as read from.

RCP (Rapid Control
Prototype)

A simulation configuration in which you test plant hardware
with a software model of the controller.

RT (Real-Time) Pertaining to the performance of a computation during the
actual time that the related physical process transpires so
results of the computation can be used in guiding the
physical process.

Real-time sequence A program that can deploy to a target with a system
definition file and read/write channels defined in the
system definition file. Real-time sequences can feature a
wide array of programming constructs, including while
loops, for loops, variables, and conditional statements.
Real-time sequences execute on the target.

Reflective memory
network

A means of sharing data between two independent systems
in a deterministic manner. Reflective memory devices are
connected together using fiber optic cables. This reflective
memory system forms a deterministic network that
operates like a dual-ported memory system.

RSE (Referenced
Single-Ended
configuration)

All measurements are made with respect to a common
reference measurement system or ground. Also called a
grounded measurement system.

RTSI bus (Real-Time
System Integration)

The NI timing bus that interconnects data acquisition
devices directly by means of connectors on top of the
devices for precise synchronization of functions.

S Screen file A .nivscreen or .nivsscr file that defines the configuration
and settings for the screens and display items you view in
the VeriStand Editor or Workspace.

ni.com470

VeriStand Feature Usage

Alphabetical
order

Term Description

SCXI (Signal
Conditioning
eXtensions for
Instrumentation)

The NI product line for conditioning low-level signals within
an external chassis near sensors so that only high-level
signals are sent to DAQ devices in the noisy PC
environment.

Service A LabVIEW VI that runs on the host computer when
VeriStand connects to a target. Services are typically
Workspace tools that you want to launch as soon as you
connect to a target, or that you want to synchronize with
the launch of the Workspace window.

Single-point Data acquisition in which the software reads a single point
of data from one or more analog input channels and
immediately returns the value.

Stimulus profile A test executive that can call real-time sequences, open and
close VeriStand projects, and perform data-logging and
pass/fail analysis. It also connects real-time sequences to
system definition files to bind channel data within the
system definition file to variables in the real-time sequence.
Stimulus profiles execute on the host computer.

Stimulus Profile
Editor

A development environment you use to create, modify, and
execute tests.

System channel A channel that monitors the state and condition of various
internal aspects of VeriStand.

System definition
file

A .nivssdf file you configure primarily in System Explorer. A
system definition file contains the configuration settings of
the VeriStand Engine.

T Target The desktop PC or real-time target on which you run the
system definition file and VeriStand Engine.

TestStand NI test executive for sequencing and managing automatic
test programs.

Timing and sync
device

A virtual instrument that synchronizes more than one
chassis.

U User channel A channel that stores a single value.
V VeriStand Engine The non-visible execution mechanism that controls the

timing of the entire system as well as the communication
between the target and the host computer.

© National Instruments 471

VeriStand Feature Usage

Alphabetical
order

Term Description

VeriStand Gateway The non-visible mechanism that creates a TCP/IP
communication channel which facilitates communication
with the VeriStand Engine over the network. The VeriStand
Gateway receives channel values from the VeriStand Engine
and stores these values in a table that can be viewed using
the Channel Data Viewer.

VeriStand LabVIEW
Model Generator

A tool that generates a compiled model from a LabVIEW VI
or simulation subsystem. This tool is accessible from the
Tools menu in LabVIEW 2010 or later and generates files of
the type .lvmodel or .lvmodelso.

Note You must install additional software to
enable LabVIEW models for targets running a
Linux Real-Time OS. For more information about
how to use LabVIEW models with Linux, see
Creating Models in LabVIEW for Use in VeriStand.

VI (Virtual
Instrument)

A LabVIEW program.

X XNET A suite of products that provide connectivity to Controller
Area Network (CAN), Local Interconnect Network (LIN), and
FlexRay networks.

XNET database A standardized file, such as CANdb (.dbc) or NI-CAN (.ncd)
for CAN or FIBEX (.xml) for FlexRay that NI-XNET
applications use to understand hardware communications
in the embedded system. The database contains many
object classes, each of which describes a distinct entity in
the embedded system.

ni.com472

VeriStand Feature Usage

© 2022 National Instruments Corporation.

https://www.ni.com/r/exiivr

	VeriStand 2020 R6 Manual
	New Features
	VeriStand Licensing Options
	Activating a Product
	Deactivating and Transferring a Product
	Activation FAQ

	VeriStand Environment
	Components of a VeriStand Project
	Host Computer
	Development Computer

	Deployment Target
	VeriStand Engine
	Primary Control Loop Execution Steps

	Differences between Workspace and VeriStand
 Editor
	APIs in VeriStand
	Keyboard Shortcuts

	Configuring and Running a Project
	Creating a New Project
	Configuring a System Definition File
	Creating a New System Definition File
	Adding and Activating a System Definition
 File
	Versioning a System Definition File
	Connecting to a Target System
 Definition
	Specifying a Target
	Configuring the VeriStand Engine
	Adding and Configuring a Procedure
	Calling One Procedure from Multiple
 Alarms

	Adding and Configuring Alarms
	Adding an Alarm
	Assigning an Alarm Group
	Setting an Alarm Priority
	Triggering an Alarm for a Specific Channel
 Value

	Adding and Configuring a Hardware
 Device
	Adding and Configuring an SLSC device
	Adding and Configuring a DAQ Device
	Adding NI FPGA Targets
	Adding NI-XNET Devices
	Adding Reflective Memory Networks
	Adding and Configuring Timing and Sync
 Devices
	Synchronizing Hardware and Software
	Setting Chassis Master Hardware
 Synchronization Devices

	Scaling a Channel on Hardware Devices
	Creating a Lookup Table Scale
	Creating a Polynomial Scale
	Creating a Thermocouple Scale
	Mapping Scales to Channels
	Importing Scales from Another
 Application
	Importing Scale Values from a Text
 File

	Adding and Configuring a Custom Device
	Adding and Configuring a Model
	Components of a Model
	Primary Control Loop Step Execution in
 Models
	Setting Model Timing
	Setting Model Parameters
	Scoping Global Parameters
	Setting Default Values for Inports
	Configuring the Execution Order of
 Models

	Adding a User Channel
	Adding a Calculated Channel
	Formula Calculated Channel Options
	Adding a Calculated Channel with System
 Explorer

	Creating an Alias
	Mapping Channels and Aliases

	Configuring a Project File
	Creating a VI Source Distribution
	Adding a Standard or Custom Tools Menu
 Item
	Adding Custom VIs

	Adding Custom Files
	Connecting Multiple Hosts to the Same
 Target

	Deploying the System Definition File to a
 Real-Time Target
	Downloading Support Files in MAX
	Running the VeriStand Gateway Silently
	Individual Target Management
	Connecting Individual Targets
	Disconnecting Individual Targets
	Undeploying the System Definition from an
 Individual Target

	Configuring the Watchdog Timer when Deploying
 to a Real-Time Target

	Creating User Interfaces with the VeriStand Editor
	Viewing, Creating, and Interacting with Screens
	Adding and Configuring Components of a Screen
	Configuring Controls and Indicators to Send and Receive Data
	VeriStand Editor Tools
	Logging Data with the VeriStand Editor
	Viewing Model Values in the VeriStand
 Editor
	Faulting a Channel to a Specific Value
	Importing and Managing Batches of Model
		Parameters with the VeriStand Editor
	Viewing Channel Values at Run Time
	Actions Controls
	Array Controls
	Automotive Controls
	Booleans Controls
	Charts Controls
	Containers Controls
	Drawings Controls
	Numerics Controls
	Pull Downs Controls
	Text Controls

	Running the VeriStand Workspace
	Adding and Configuring Controls and
 Indicators
	Modifying Control Mappings at Run Time
	Calibrating a Hardware Channel at Run
 Time
	Channel Calibration

	Using Channel Value Forcing
	Logging Test Results with Stimulus
 Profiles
	Recording Commands VeriStand Sends to the
 Target
	Playing Back Commands Sent to the
 Target
	Setting Model Parameter Values in the
 Workspace
	Importing and Managing Batches of Model
		Parameters in the Workspace
	Supported Formatting for Model Parameter Files
	Setting a Parameter Value Manually
	Exporting Parameter Values

	Displaying Waveform Data in a Graph
	Enhancing Your Workspace to View Data
	Viewing the Console Output of a Real-Time
 Target
	Configuring and Executing Host-Side
 Logging
	Running a Command Line Script
	Loading a File in DIAdem
	Logging and Documenting Sessions

	Running VeriStand Operations Using the Command
 Line

	Using NI-XNET Interfaces
	NI-XNET Overview
	Adding NI-XNET Databases
	Editing NI-XNET Databases
	Importing NI-XNET Frames
	Using NI-XNET Frame IDs
	Accessing Timing and ID Information for
 Incoming NI-XNET Frames
	Logging Incoming NI-XNET Frames
	Monitoring Incoming NI-XNET Frame
 Logging
	Raw Frame Data Logging FAQs

	Replaying Logged NI-XNET CAN Frame
 Data
	Monitoring Replay Status

	Configuring NI-XNET CAN Cyclic Frame
 Faulting
	Configuring Cyclic Redundancy Checks (CRCs)
 and Counters for Outgoing NI-XNET CAN Frames
	NI-XNET Bus Monitor
	How VeriStand Applies Scaling Factors to
 NI-XNET Signals

	Integrating and Executing Models
	Supported Model Types and Modeling
 Environments
	Support for Compiling Models
	VeriStand Model Framework

	FMI Early Access Support
	Model Configuration and Execution Support
	FMI Support Limitations

	Models FAQs
	Choosing Compiler Tools for a Model
	Using Models from MathWorks
 Simulink® Software
	How VeriStand Imports Models from MathWorks
 Simulink® Software
	Compiling a Model in MathWorks
 Simulink® Software
	Conversion Process for Models from MathWorks
 Simulink® Software

	Using Models from C and C++
	Creating a Model Header File
	Adapting the C Template to Model Code
	Creating a Makefile and Compiling Model
 Code

	Using Models from LabVIEW VIs
	LabVIEW VI Model Hardware Target
 Support
	LabVIEW VI Model Conversion
 Preparation

	Controlling and Monitoring Model
 Execution
	Model Command
	Model Status
	Model Time
	Time Step Duration

	Common Issues with Models in VeriStand

	Maximizing System Performance
	Streamlining the System Definition
	Configuring the BIOS Settings of the
 Controller
	Configuring the Ethernet Settings of the
 Controller
	Optimizing Hardware Performance
	Improving Model Performance
	Optimizing Reflective Memory

	Data Logging Options
	VeriStand Add-ons
	Logging Target Data with the Embedded Data
 Logger
	Creating Custom Devices
	Custom Device FAQs
	Custom Device Framework
	Custom Device XML File
	Custom Device API Library
	Custom Device Library
	Custom Device Build Specifications

	Planning a Custom Device
	Custom Device Channels and Waveforms
	Custom Device Item Properties
	Custom Device Hierarchy
	Custom Device Pages
	Custom Device Types

	Implementing a Custom Device
	Adding Custom Device Channels and
 Waveforms
	Adding Custom Device Item Properties
	Adding Custom Device Pages
	Implementing a Custom Device Hierarchy
	Adding Custom Glyphs, Shortcut Menus, and
 Toolbar Buttons
	Adding Custom Error Codes in a Custom
 Device
	Automating Responses to User Actions with
 Action VIs
	Synchronizing an Asynchronous Custom Device
 with the Primary Control Loop
	Reading and Writing Waveforms in the Custom
 Device Engine
	Custom Device Benchmarking and
 Debugging

	Building a Custom Device
	Distributing Custom Devices

	Customizing an FPGA Target
	Copying the Sample FPGA VI and Project
	Customizing an FPGA VI
	FPGA VI Customization Guidelines and
 Defaults

	Compiling a Custom FPGA VI into a
 Bitfile
	Creating a Custom FPGA Configuration
 File
	FPGA Configuration File XML Tags
	DMA Scale and Offset
	Example FPGA Configuration File
		Structure

	ASAM XIL API - Generic Simulator
 Interface
	Accessing the VeriStand ASAM XIL
 Testbench
	Implementation Differences and Limitations
		with the ASAM XIL Interface
	ASAM XIL Framework C# Access
	Configuring the ASAM XIL Framework
	ASAM XIL Port Configuration Tag
		Reference

	Creating Real-Time Test Scenarios with
 Stimulus Profiles and Real-Time Test Sequences
	Navigating the Stimulus Profile Editor
 Environment
	Creating a Stimulus Profile Editor
 Layout

	Creating Stimulus Profiles
	Calling a Real-Time Sequence from a Stimulus
 Profile
	Updating Model Parameters During a Stimulus
 Profile Test
	Stimulus Profile Steps
	Real-Time Sequences Steps
	Logging Steps
	VeriStand Control Steps
	Other Steps

	Creating Real-Time Sequences
	Declaring Variables in a Real-Time Sequence
	Using CSV Files as Real-Time Sequences
	CSV File Formatting for Stimulus
 Profiles
	CSV File Formatting Examples

	Calling a Real-Time Sequence from Another
 Sequence
	Generating Errors in a Real-Time
 Sequence
	Adding and Editing Expressions in a Real-Time
 Sequence
	Expression Functions
	Expression Syntax
	Expression Operator Precedence
	Calling a Real-Time Sequence from an
 Expression
	Performing Division with Expression Functions
 and Operators

	Faulting Channels in a Real-Time
 Sequence
	Variables for Reading and Writing Channels in
 a Real-Time Sequence
	Real-Time Sequence Primitives
	Advanced Primitives
	Expressions Primitives
	Miscellaneous Primitives
	Structures Primitives
	Variables Primitives

	Viewing Stimulus Profile Test Results
	Automatic Test Markup Language (ATML)
 Standard
	Customizing ATML Test Result
 Appearance

	Logging Real-Time Test Data with the Stimulus
 Profile Editor
	Configuring Triggered Logging in Stimulus
 Profiles

	Communicating with the VeriStand Editor Using
 Stimulus Profile Arguments
	Getting Started with the Stimulus Profile
 Editor Tutorial
	Deploying the Engine Demo
	Setting up a Basic Stimulus Profile Editor
 Test
	Creating a Basic Real-Time Sequence
	Creating a Basic Stimulus Profile
	Reading and Writing Channels Directly from a
 Real-Time Sequence Tutorial

	Executing Multiple Parallel Tasks Using the
 Stimulus Profile Editor Tutorial
	Creating a Multitasking Real-Time
 Sequence
	Creating a Multitasking Stimulus
 Profile

	Configuring Failure Notification Using the
 Stimulus Profile Editor Tutorial
	Creating a Real-Time Sequence to Return a
 Pass/Fail Value
	Creating a Stimulus Profile with Execution
 Behavior after Step Failure

	Logging Data to a File using a Stimulus
 Profile
	Creating a Stimulus Profile to Log
 Data

	Calling a CSV File as a Real-Time
 Sequence
	Creating a Stimulus Profile to call CSV
 Files

	Playing Back Previously Recorded Test Data
 Using the Stimulus Profile Editor
	Creating a Stimulus Profile to Play a Macro
 File

	Updating Model Parameters During Test
 Execution Using the Stimulus Profile Editor Tutorial
	Updating a Stimulus Profile to Use a Text File
 for Model Parameters

	Running a Stimulus Profile

	VeriStand Reference
	Related Documentation
	NI Hardware Support
	VeriStand Directories and Aliases
	VeriStand Error Codes
	VeriStand File Extensions
	System Channels

	VeriStand .NET Reference
	Glossary

