Grove - High Temperature Sensor

Thermocouples are very sensitive devices. It requires a good amplifier with cold-junction compensation. The Grove - High Temperatire Sensor uses a K-Type themocouple and a thermocouple amplifier that measures ambient temperature using thermistor for cold-junction compensation. The detectable range of this Sensor is -50~600°C, and the accuracy is $\pm(2.0\% + 2°C)$.

Get One Now 📜 👘

[https://www.seeedstudio.com/depot/Grove-High-Temperature-Sensor-p-1810.html]

Version

Product Version	Changes	Released Date
Grove - High Temperature Sensor V1.0	Initial	Feb 25, 2014

Specifications

Parameter	Value/Range
Operating Voltage	3.3-5V
Max power rating at $25^{\circ}C$	300mW
Operating temperature range	-40 ~ +125 °C
Temperature measurement range	-50 ~ +600 °C
Amplifier output voltage range	0 ~ 3.3 V
Thermocouple material	Glass Fiber
Cold junction compensation	Environment temperature measurement
Thermocouple temperature measurement accuracy	±2.0% (+ 2 °C)
Thermocouple temperature sensor cable length	100cm
Dimension	20mm x 40mm

Tip More details about Grove modules please refer to Grove System [https://wiki.seeedstudio.com/Grove_System/]

Platforms Supported

Arduino	Raspberry Pi	
00	B	

◀

Caution

The platforms mentioned above as supported is/are an indication of the module's software or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

Getting Started

Play with Arduino

Hardware

• Step 1. We need to prepare the below stuffs:

- Step 2. Connect the Grove-High Temperature Sensor to **A0** on Base Shield.
- Step 3. Plug the base Shield into Seeeduino-V4.2.
- Step 4. Connect Seeeduino-V4.2 to PC by using a USB cable.

Note

If we don't have a Base Shield, don't worry, the sensor can be connected to your Arduino directly. Please follow below tables to connect with Arduino.

Seeeduino	Grove-High Temperature Sensor
GND	Black
5V	Red
A1	White
A0	Yellow

Software

- Step 1. Download the Grove-High Temperature Sensor Library [https://github.com/Seeed-Studio/Grove_HighTemp_Sensor/archive/master.zip] from Github.
- Step 2. Refer How to install library
 [https://wiki.seeedstudio.com/How_to_install_Arduino_Library]
 to install library for Arduino.
- Step 3. Copy the code into Arduino IDE and upload.

```
Ē
1
   #include "High_Temp.h"
2
   HighTemp ht(A1, A0);
4
5
   void setup()
6
7
        Serial.begin(115200);
        Serial.println("grove - hight temperature sensor tes"
8
        ht.begin();
9
10
11
12 void loop()
13 {
        Serial.println(ht.getThmc());
14
        delay(100);
15
16 }
```

 Step 4. Open your Serial Monitor and set baud rate as 115200, We will see the temperature in Celsius here.

<u></u>	COM34		- 0	×
1				Send
27.50				^
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27. 5 0				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
27.50				
				~
✓ Autoscroll	No line ending	~	115200	baud 🗸

Play With Raspberry Pi

Hardware

• Step 1. Prepare the below stuffs:

- Step 2. Plug the GrovePi_Plus into Raspberry.
- Step 3. Connect Grove-Ultrasonic ranger to A0 port of GrovePi_Plus.
- Step 4. Connect the Raspberry to PC through USB cable.

Software

Step 1. Follow Setting Software
 [https://www.dexterindustries.com/GrovePi/get-started-with-the-grovepi/setting-software/] to configure the development environment.

• Step 2. Follow Updating the Firmware

[https://www.dexterindustries.com/GrovePi/get-started-withthe-grovepi/updating-firmware/] to update the newest firmware of GrovePi.

Tip

In this wiki we use the path **~/GrovePi/** instead of **/home/pi/Desktop/GrovePi**, you need to make sure Step 2 and Step 3 use the same path.

We firmly suggest you to update the firmware, or for some sensors you may get errors.

If you are using **Raspberry Pi with Raspberrypi OS >= Bullseye**, you have to use this command line **only with Python3**.

• Step 3. Git clone the Github repository.

- Step 4. Excute below commands to use the ultrasonic_ranger to meansure the distance.

Here is the grove_ultrasonic.py code.

14	# instatiate a HighTemperatureSensor object
15	<pre>sensor = grovepi.HighTemperatureSensor(room_temperat</pre>
16	
17	# and do this indefinitely
18	while True:
19	# read the room temperature
20	<pre>room_temperature = sensor.getRoomTemperature()</pre>
21	# and also what's important to us: the temperatu
22	<pre>probe_temperature = sensor.getProbeTemperature()</pre>
23	
24	# print it in a fashionable way
25	<pre>print('[room temperature: {:5.2f}°C][probe temped</pre>
26	# and wait for 250 ms before taking another meas
27	<pre>sleep(0.25)</pre>
28	
29	
30 if	name == "main":
31	try:
32	Main()
33	
34	# in case CTRL-C / CTRL-D keys are pressed (or anyth
35	except KeyboardInterrupt:
36	<pre>print('[Keyboard interrupted]')</pre>
37	<pre>sys.exit(0)</pre>
38	
39	# in case there's an IO error aka I2C
40	except IOError:
41	<pre>print('[IO Error]')</pre>
42	<pre>sys.exit(0)</pre>
43	
44	# in case we have a math error (like division by 0 -
45	# or if the values exceed a certain threshold
46	# experiment and you'll see
47	except ValueError as e:
48	<pre>print('[{}]'.format(str(e)))</pre>
49	<pre>sys.exit(0)</pre>

• Step 4. We will see the temperature display on terminal as below.

1	pi@raspberrypi:~/G	rovePi/Software,	/Python/grove_	_hightemper
2	[room temperature:	20.47°C][probe	temperature:	32.19°C]
3	[room temperature:	20.47°C][probe	temperature:	32.19°C]
4	[room temperature:	20.47°C][probe	temperature:	32.19°C]
5	[room temperature:	20.47°C][probe	temperature:	32.19°C]
6	[room temperature:	20.60°C][probe	temperature:	32.19°C]
7	[room temperature:	20.60°C][probe	temperature:	32.19°C]
8	[room temperature:	20.60°C][probe	temperature:	32.19°C]

FAQs

Q1: How to do Grove-High temperature sensor calibration?

A1: Please download the libray

[https://files.seeedstudio.com/wiki/Grove_High_Temperature_Sens or/resource/Grove_HighTemp_Sensor-master_cal.zip] and then follow below instructions.

• Step 1. run the getTemperature-calibration-measurement.ino to get below info.

- Step 2. paste to getTemperature-calibration_demo.ino and run the calibration.
- Step 3. run getTemperature.ino to read the temperature.

Resources

• [PDF] Download Wiki PDF

[https://files.seeedstudio.com/wiki/Grove_Ultrasonic_Ranger/r es/Grove-High_Temperature_Sensor.pdf]

[Eagle] Grove - High Temperature Sensor Eagle file [https://files.seeedstudio.com/wiki/Grove High_Temperature_Sensor/res/Grove%20 %20High%20Temperature%20Sensor%20v1.0.zip]

- [Library] High Temperature Sensor Library
 [https://github.com/Seeed-Studio/Grove_HighTemp_Sensor]
- [Datasheet] OPA333 PDF
 [http://www.ti.com/lit/ds/symlink/opa333.pdf]
- [Datasheet] LMV358 PDF
 [https://files.seeedstudio.com/wiki/Grove-High_Temperature_Sensor/res/Lmv358.pdf]

Tech Support

Please submit any technical issue into our forum

[https://forum.seeedstudio.com/].

[https://www.seeedstudio.com/act-4.html? utm_source=wiki&utm_medium=wikibanner&utm_campaign=newpr oducts]