Grove - Thermal Imaging Camera IR-Array MLX90641

Grove - Thermal Imaging Camera / IR Array MLX90641

This IR thermal camera carries a 16x12 array of thermal sensors **(MLX90641)** and it can detect the temperature of objects from far away with a center area accuracy of $\pm 1^{\circ}$ C and average accuracy of $\pm 1.5^{\circ}$ C. In order to obtain the thermal images easily, the I2C

protocol is used to get the low-resolution images from the camera. The FOV (Field of View) of this camera is 110°x75°, and the temperature measurement range is -40°C to 300°C. In order to obtain the thermal image easily, I2C protocol is used to get the lowresolution image from the camera.

Grove - Thermal Imaging Camera / IR Array MLX90640

While Grove - Thermal Imaging Camera is a thermal sensor (MLX90640), carrying a 32x24 array of thermal sensors, and it can detect the temperature of objects from feet away with the accuracy of $\pm 1.5^{\circ}$ C and can present dynamic thermal images and detect the surrounding temperature from -40°C~300°C. The camera with narrow-angle/wide-angle has an FOV(Field of View) of 55°x35°/110°x75°.In order to obtain the thermal image easily, I2C protocol is used to get the low-resolution image from the camera.

Versions

Version	Date of Released	Order
Grove - Thermal Imaging Camera / IR Array MLX90641 110 degree [New]	03-June- 2020	Buy it [https://www.seeedstudio.com/Grove- Thermal-Imaging-Camera-IR-Array- MLX90641-110-degree-p-4612.html]
Grove - Thermal Imaging Camera / IR Array MLX90640 110 degree	12-Nov- 2019	Buy it [https://www.seeedstudio.com/Grove- Thermal-Imaging-Camera-IR-Array- MLX90640-110-degree-p-4334.html]

Note

This wiki fits both types of the Thermal Imageing Camera IR Array MLX90641 and MLX90640.

Features

- Compact size 16x12 pixel IR thermal sensor array (MLX90641), 32x24 array pixel IR thermal sensor array (MLX90640)
- High FOV (field-of-view) of 110°x75° to capture more area
- Wide temperature measurement range (-40°C~300°C)
- I2C Grove interface for easy communication with an MCU
- Fully calibrated IR array for convenient setup

Specification

ltem	Grove - Thermal Imaging Camera - MLX90640	Grove - Thermal Imaging Camera - MLX90641
Thermal sensor	32X24 array MLX90640	16x12 array MLX90641
Operating Voltage	3.3V - 5V	3.3V - 5V
Current consumption	~18mA	~18mA
FOV(Field of View)	110°x75°	110°x75°
Temperature Measurement Range	-40°C - 300°C	-40°C - 300°C
Temperature Resolution	± 1.5°C	± 1.5°C (±1°C at center area)
Refresh Rate	0.5Hz - 64Hz	0.5Hz - 64Hz
Interface	I2C Grove interface	I2C Grove interface
I2C Address	0x33	0x33

Platforms Supported

Arduino	Raspberry Pi	
00	®	
	•=•	

Getting Started

Getting Started by Wio Terminal

Materials required

Hardware Connection

Step 1. Plug Grove - Thermal Imaging Camera to Wio Terminal via Grove cable and also connect Wio Terminal to PC through a USB cable.

Step 2. Download the Library [https://github.com/Seeed-Studio/Seeed_Arduino_MLX9064x/archive/master.zip] and copy the whole **Seeed_Arduino_MLX9064x** file and paste it into your Arduino IDE library file.

Note

If it is your first time playing Wio Terminal and not sure which interface to plug on Wio Terminal, please refer to **Get Started with Wio Terminal** [https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/]. **Step 3.** Copy the Software Code 1 below into your Arduino IDE and upload it for visualization format displayed via **Serial Port.**

Outcome of Visualization Format

Software Code 1

```
Ē
1
2
4
5
    #include <Wire.h>
6
7
    #define USE MLX90641
8
9
    #ifndef USE MLX90641
        #include "MLX90640_API.h"
10
11
    #else
12
        #include "MLX90641_API.h"
13
    #endif
14
    #include "MLX9064X I2C Driver.h"
15
16
    #if defined(ARDUINO ARCH AVR)
17
        #define debug Serial
18
19
20
    #elif defined(ARDUINO ARCH SAMD) || defined(ARDUINO AR
        #define debug Serial
21
22
    #else
        #define debug Serial
23
24
    #endif
25
26
   #ifdef USE MLX90641
        const byte MLX90641 address = 0x33; //Default 7-bit
27
        #define TA SHIFT 8 //Default shift for MLX90641 in
28
29
30
        uint16 t eeMLX90641[832];
        float MLX90641To[192];
31
        uint16_t MLX90641Frame[242];
32
```

```
33
        paramsMLX90641 MLX90641;
34
        int errorno = 0;
35
    #else
        const byte MLX90640 address = 0x33; //Default 7-bit
36
37
38
        #define TA SHIFT 8 //Default shift for MLX90640 in
39
40
        float m1x90640To[768];
41
        paramsMLX90640 mlx90640;
    #endif
42
43
    void setup() {
44
        Wire.begin();
45
        Wire.setClock(400000); //Increase I2C clock speed to
46
47
        debug.begin(115200); //Fast debug as possible
48
49
        while (!debug); //Wait for user to open terminal
50
51
52
53
    #ifndef USE MLX90641
54
        if (isConnected() == false) {
             debug.println("MLX9064x not detected at default
55
56
            while (1);
57
58
        int status;
59
        uint16_t eeMLX90640[832];
60
61
        status = MLX90640 DumpEE(MLX90640 address, eeMLX906
        if (status != 0) {
62
63
             debug.println("Failed to load system parameters
64
65
        status = MLX90640 ExtractParameters(eeMLX90640, &ml)
66
67
        if (status != 0) {
             debug.println("Parameter extraction failed");
68
69
70
71
72
73
```

```
74
         MLX90640 SetRefreshRate(MLX90640 address, 0x03); //.
75
76
     #else
77
         if (isConnected() == false) {
78
             debug.println("MLX90641 not detected at default
79
             while (1);
80
81
82
         int status;
83
         status = MLX90641 DumpEE(MLX90641 address, eeMLX906
84
         errorno = status;//MLX90641_CheckEEPROMValid(eeMLX9)
85
86
         if (status != 0) {
87
             debug.println("Failed to load system parameters
88
            while(1);
89
90
91
         status = MLX90641 ExtractParameters(eeMLX90641, &ML)
92
         if (status != 0) {
93
             debug.println("Parameter extraction failed");
94
             while(1);
95
96
97
98
99
100
101
         MLX90641 SetRefreshRate(MLX90641 address, 0x03); //.
102
     #endif
103
104
105
106
    void loop() {
107
    #ifndef USE MLX90641
108
109
         long startTime = millis();
         for (byte x = 0; x < 2; x++) {
110
111
             uint16 t mlx90640Frame[834];
112
             int status = MLX90640 GetFrameData(MLX90640 add
113
114
             float vdd = MLX90640 GetVdd(mlx90640Frame, &mlx)
```

7/24/22, 11:26 AM

```
115
             float Ta = MLX90640 GetTa(mlx90640Frame, &mlx90
116
117
             float tr = Ta - TA SHIFT; //Reflected temperatu
118
             float emissivity = 0.95;
119
120
             MLX90640 CalculateTo(mlx90640Frame, &mlx90640,
121
122
         long stopTime = millis();
123
         for (int x = 0; x < 768; x++) {
124
125
126
             debug.print(mlx90640To[x], 2);
             debug.print(",");
127
128
129
         debug.println("");
130
     #else
131
         long startTime = millis();
132
133
         for (byte x = 0; x < 2; x++) {
134
             int status = MLX90641 GetFrameData(MLX90641 add
135
136
             float vdd = MLX90641 GetVdd(MLX90641Frame, &MLX)
             float Ta = MLX90641 GetTa(MLX90641Frame, &MLX90
137
138
139
             float tr = Ta - TA SHIFT; //Reflected temperatu
140
             float emissivity = 0.95;
141
142
             MLX90641 CalculateTo(MLX90641Frame, &MLX90641,
143
144
         long stopTime = millis();
145
146
147
148
149
150
151
152
153
154
155
```

```
156
157
158
159
160
161
162
         for (int x = 0; x < 192; x++) {
163
             debug.print(MLX90641To[x], 2);
164
             debug.print(",");
165
166
         debug.println("");
167
     #endif
168
169
170
171
     boolean isConnected() {
    #ifndef USE MLX90641
172
173
         Wire.beginTransmission((uint8_t)MLX90640_address);
174
     #else
175
         Wire.beginTransmission((uint8_t)MLX90641_address);
176
     #endif
177
         if (Wire.endTransmission() != 0) {
             return (false); //Sensor did not ACK
178
179
         return (true);
180
181
```

Note

Upload the software code 1 above into your Arduino IDE and open the **Serial Port**, you will see an outcome of visualization format as following:

	00	C	ом	14																													-		
[
5	5,	29	. 93	, 30	.15	,30	.22	,30	.20	, 30	.05	, 30	.18	, 30	.23	,30	.35	, 30	.34	, 30	.26,	30	. 19,	29.	. 93,	29.	99,	29.	. 98,	29	92,	, 30	.06,	30.	08
þ	8,	30	.06	, 30	.05	,30	.12	,30	.21	,30	.17	,30	.16	,30	.34	,30	.25	,30	.30	, 30	.52,	30	.30,	30.	.05,	29.	90,	30.	.14,	30.	.10,	,30	.13,	30.	14
þ	8,	29	.95	, 30	0.09	,30	.01	,30	.13	,30	.09	,30	.28	,30	.18	,30	.25	, 30	.30	, 30	.23,	30	.30,	29.	. 98,	30.	02,	30.	.09,	30.	.10,	,29	.96,	30.	10
þ	з,	30	.13	, 30	.16	,30	.11	,30	.24	,30	.23	,30	.15	, 30	.25	,30	.33	, 30	.34	, 30	.40,	30	.42,	30.	.04,	30.	01,	30.	.03,	30.	.14,	, 30	.13,	30.	17
þ	0,	29	. 95	,29	9.98	,29	.93	,30	.13	,30	.17	,30	.16	,30	.18	,30	.16	,30	.40	, 30	.40,	30	.36,	29.	. 98,	30.	02,	29.	.93,	30.	.05,	,30	.00,	30.	10
ŀ	1,	30	.11	, 30	.11	,30	.28	,30	.30	,30	.44	,30	.36	,30	.43	,30	.47	, 30	.33	, 30	.48,	30	. 57,	30.	.12,	30.	16,	30.	.33,	30.	19,	, 30	.26,	30.	31
þ	9,	30	.00	, 30	0.03	,30	.06	,30	.23	,30	.26	,30	.21	, 30	.31	,30	.38	, 30	.18,	, 30	.43,	30	.31,	29.	. 99,	29.	98,	29.	.97,	30.	.24,	, 30	.09,	30.	15
þ	з,	29	.98	, 30	0.01	,30	.01	,30	.17	,30	.13	,30	.23	,30	.20	,30	.32	,30	.21	, 30	.57,	30	.35,	29.	.75,	29.	90,	29.	.94,	29.	. 98,	,30	.12,	30.	13
ŀ	з,	30	.13	, 30	.20	,30	.11	,30	.28	,30	.27	,30	.23	,30	.36	,30	.49	, 30	.50	, 30	.44,	30	.33,	30.	.07,	30.	12,	30.	.04,	30.	.02,	, 30	.32,	30.	16
þ	5,	29	. 95	,29	9.90	,30	.08	,30	.13	,30	.17	,30	.32	, 30	.38	,30	.38	, 30	.24	, 30	.34,	30	.22,	29.	. 89,	30.	07,	30.	.03,	29.	86,	, 30	.04,	30.	02
þ	7,	30	.06	, 30	.13	,30	.02	,30	.18	,30	.28	,30	.20	,30	.25	,30	.28	,30	. 32	, 30	.18,	30	.16,	30.	.17,	29.	96,	30.	.00,	30.	17	,30	.17,	30.	10
þ	2,	30	.05	, 30	0.01	,29	.86	,30	.28	,30	.27	,30	.19	,30	. 32	,30	.22	, 30	.30	, 30	.38,	30	.07,	29.	.80,	29.	88,	29.	.83,	29.	97,	,29	.98,	30.	20
þ	8,	30	. 01	, 30	.05	,30	.22	,30	.20	,30	.16	,30	.23	,30	.36	,30	.40	, 30	.40,	, 30	.44,	30	. 39,	29.	. 93,	30.	17,	29.	.93,	30.	.02,	, 30	.15,	30.	16
б	7,	29	.73	, 30	.15	,30	.03	,30	.08	,29	.97	,30	.29	,30	.19	,30	.18	,30	.16	, 30	.30,	30	. 37,	29.	.78,	29.	85,	29.	.95,	29.	97,	,29	.89,	29.	96
þ	з,	29	. 91	, 30	0.06	,30	.01	,30	.18	,30	.25	,30	.31	, 30	.33	,30	.41	, 30	.31,	, 30	.34,	30	.27,	29.	. 95,	29.	89,	29.	.84,	29.	89,	, 30	.12,	30.	13
þ	7,	30	.04	, 30	.19	,30	.21	,30	.23	, 30	.26	,30	.41	, 30	.35	,30	.43	, 30	.43,	, 30	.53,	30	.56,	29.	. 97,	30.	03,	30.	.12,	30.	.14,	, 30	.14,	30.	19
þ	5,	30	.08	, 30	0.04	,30	.07	,30	.19	,30	.30	,30	.29	,30	.27	,30	.47	, 30	.48	, 30	.31,	30	.24,	30.	. 11,	29.	92,	30.	.12,	29.	91,	, 30	.27,	30.	27
þ	8,	30	. 22	,29	9.95	,30	.28	,30	.22	,30	.29	,30	.28	, 30	.30	,30	.28	, 30	.31	, 30	.40,	30	.41,	29.	. 95,	30.	01,	30.	.10,	30.	.08,	, 30	.21,	30.	18
•	ŝ	• •	07	0	10	- 20	24	90	•••	90	25	20	96	90	24	90	41	20	96	90	A C	90	41	20	••	20	0 ¢	90	05	20	00	90	19	90	<u>^</u>

Outcome of Visualization on Wio Terminal

Step 4. Upload the Software Code 2 below into your Arduino IDE for visualization displayed on Wio Terminal.

Software Code 2

```
#include <Wire.h>
1
    #include "MLX90641 API.h"
2
3
   #include "MLX9064X I2C Driver.h"
    #include <TFT_eSPI.h>
4
                                         // Include the gra
5
6
    const byte MLX90641_address = 0x33; //Default 7-bit uns
    #define TA SHIFT 12 //Default shift for MLX90641 in open
    #define debug Serial
8
9
    uint16_t eeMLX90641[832];
    float MLX90641To[192];
10
11
    uint16_t MLX90641Frame[242];
12
    paramsMLX90641 MLX90641;
13
    int errorno = 0;
14
15
    TFT eSPI tft = TFT eSPI();
16
    TFT_eSprite Display = TFT_eSprite(&tft); // Create Spr
17
18
```

```
19
    unsigned long CurTime;
20
21
    uint16_t TheColor;
22
23
    uint16_t MinTemp = 25;
24
    uint16 t MaxTemp = 38;
25
26
27
    byte red, green, blue;
28
29
30
    byte i, j, k, row, col, incr;
    float intPoint, val, a, b, c, d, ii;
31
32
    byte aLow, aHigh;
33
34
35
    byte BoxWidth = 3;
36
    byte BoxHeight = 3;
37
38
    int x, y;
39
    char buf[20];
40
41
42
    int ShowGrid = -1;
43
44
45
    float HDTemp[6400];
46
47
    void setup() {
48
        Wire.begin();
49
        Wire.setClock(2000000); //Increase I2C clock speed
50
        debug.begin(115200); //Fast debug as possible
51
52
53
        if (isConnected() == false) {
54
             debug.println("MLX90641 not detected at default
55
             while (1);
56
57
58
59
        int status;
```

```
60
         status = MLX90641 DumpEE(MLX90641 address, eeMLX906
61
         errorno = status;//MLX90641 CheckEEPROMValid(eeMLX9)
62
63
         if (status != 0) {
64
             debug.println("Failed to load system parameters
65
            while(1);
66
67
68
         status = MLX90641 ExtractParameters(eeMLX90641, &ML)
69
70
         if (status != 0) {
71
             debug.println("Parameter extraction failed");
72
             while(1);
73
74
75
76
77
         MLX90641 SetRefreshRate(MLX90641 address, 0x05); //.
78
         tft.begin();
79
         tft.setRotation(3);
80
         tft.fillScreen(TFT BLACK);
81
82
         Display.createSprite(TFT HEIGHT, TFT WIDTH);
83
         Display.fillSprite(TFT_BLACK);
84
85
86
         Getabcd();
87
88
89
         DrawLegend();
90
91
     void loop() {
92
93
         Display.fillRect(10, 10, 220, 220, TFT WHITE);
94
         for (byte x = 0; x < 2; x++) {
95
96
             int status = MLX90641 GetFrameData(MLX90641 add
97
             float vdd = MLX90641 GetVdd(MLX90641Frame, &MLX)
98
             float Ta = MLX90641 GetTa(MLX90641Frame, &MLX90
99
100
```

```
101
             float tr = Ta - TA SHIFT; //Reflected temperatu.
102
             float emissivity = 0.95;
103
104
             MLX90641 CalculateTo(MLX90641Frame, &MLX90641,
105
106
107
         interpolate image(MLX90641To, 12, 16, HDTemp, 80, 80);
108
109
110
         DisplayGradient();
111
112
113
         Display.drawCircle(115, 115, 5, TFT_WHITE);
         Display.drawFastVLine(115, 105, 20, TFT WHITE);
114
115
         Display.drawFastHLine(105, 115, 20, TFT_WHITE);
116
117
118
119
         Display.pushSprite(0, 0);
120
121
         tft.setRotation(3);
122
         tft.setTextColor(TFT_WHITE);
123
         tft.drawFloat(HDTemp[35 * 80 + 35], 2, 90, 20);
124
125
126
127
     boolean isConnected() {
128
         Wire.beginTransmission((uint8_t)MLX90641 address);
129
         if (Wire.endTransmission() != 0) {
130
             return (false); //Sensor did not ACK
131
132
         return (true);
133
134
135
     void DisplayGradient() {
136
137
       tft.setRotation(4);
138
139
140
       for (row = 0; row < 70; row ++) {</pre>
141
```

```
142
143
144
         if (ShowGrid < 0) {</pre>
145
            BoxWidth = 3;
146
147
         else {
            if ((row % 10 == 9) ) {
148
149
              BoxWidth = 2;
150
            else {
151
152
              BoxWidth = 3;
153
154
155
156
         for (col = 0; col < 70; col++) {</pre>
157
158
            if (ShowGrid < 0) {</pre>
159
160
              BoxHeight = 3;
161
162
            else {
163
              if ( (col % 10 == 9)) {
164
                BoxHeight = 2;
165
166
              else {
167
                BoxHeight = 3;
168
169
170
171
            Display.fillRect((row * 3) + 15, (col * 3) + 15, ⊥
172
173
174
175
176
     uint16_t GetColor(float val) {
177
178
179
180
181
182
```

```
183
184
185
186
187
188
189
       red = constrain(255.0 / (c - b) * val - ((b * 255.0)))
190
191
       if ((val > MinTemp) & (val < a)) {
192
         green = constrain(255.0 / (a - MinTemp) * val - (25)
193
194
       else if ((val >= a) & (val <= c)) {</pre>
195
         green = 255;
196
197
       else if (val > c) {
198
         green = constrain(255.0 / (c - d) * val - (d * 255.0
199
       else if ((val > d) | (val < a)) {
200
201
         green = 0;
202
203
204
       if (val <= b) {
         blue = constrain(255.0 / (a - b) * val - (255.0 * b
205
206
207
       else if ((val > b) & (val <= d)) {
         blue = 0;
208
209
210
       else if (val > d) {
211
         blue = constrain(240.0 / (MaxTemp - d) * val - (d *
212
213
214
215
       return Display.color565(red, green, blue);
216
217
218
219
220
     void Getabcd() {
221
       a = MinTemp + (MaxTemp - MinTemp) * 0.2121;
222
       b = MinTemp + (MaxTemp - MinTemp) * 0.3182;
223
```

```
c = MinTemp + (MaxTemp - MinTemp) * 0.4242;
224
225
      d = MinTemp + (MaxTemp - MinTemp) * 0.8182;
226
227
228
     float get_point(float *p, uint8_t rows, uint8_t cols, i
229
230
         if (x < 0)
231
232
             x = 0;
233
         if (y < 0)
234
235
236
             y = 0;
237
238
         if (x \ge cols)
239
240
             x = cols - 1;
241
242
         if (y >= rows)
243
244
             y = rows - 1;
245
246
         return p[y * cols + x];
247
248
249
     void set_point(float *p, uint8_t rows, uint8_t cols, in
250
         if ((x < 0) || (x >= cols))
251
252
253
             return;
254
         if ((y < 0) || (y >= rows))
255
256
257
             return;
258
         p[y * cols + x] = f;
259
260 }
261
262 // src is a grid src rows * src cols
263
     void interpolate_image(float *src, uint8_t src_rows, ui
264
```

float *dest, uint8_t dest rows, float mu x = (src cols - 1.0) / (dest cols - 1.0); float mu y = (src rows - 1.0) / (dest rows - 1.0); float adj 2d[16]; // matrix for storing adjacents for (uint8 t y idx = 0; y idx < dest rows; y idx++)</pre> for (uint8_t x idx = 0; x idx < dest cols; x id)</pre> float x = x idx * mu x; float y = y_idx * mu_y; get adjacents 2d(src, adj 2d, src rows, src **float** frac x = x - (int)x; // we only need float frac_y = y - (int)y; // we only need float out = bicubicInterpolate(adj 2d, frac set point(dest, dest rows, dest cols, x idx float cubicInterpolate(float p[], float x) float r = p[1] + (0.5 * x * (p[2] - p[0] + x * (2.0))return r; float bicubicInterpolate(float p[], float x, float y) float arr[4] = {0, 0, 0, 0}; arr[0] = cubicInterpolate(p + 0, x); arr[1] = cubicInterpolate(p + 4, x); arr[2] = cubicInterpolate(p + 8, x); arr[3] = cubicInterpolate(p + 12, x); return cubicInterpolate(arr, y);

```
306 // src is rows*cols and dest is a 4-point array passed
307
     void get adjacents 1d(float *src, float *dest, uint8 t
308 {
309
310
         dest[0] = get point(src, rows, cols, x - 1, y);
311
         dest[1] = get point(src, rows, cols, x, y);
312
313
         dest[2] = get point(src, rows, cols, x + 1, y);
314
         dest[3] = get_point(src, rows, cols, x + 2, y);
315
316
317 // src is rows*cols and dest is a 16-point array passed
318
    void get_adjacents_2d(float *src, float *dest, uint8_t
319
320
         float arr[4];
321
         for (int8_t delta y = -1; delta y < 3; delta y++)</pre>
322
             float *row = dest + 4 * (delta_y + 1); // index
323
324
             for (int8_t delta x = -1; delta x < 3; delta x+</pre>
325
326
                 row[delta x + 1] = get point(src, rows, col
327
328
329
330
331
    void DrawLegend() {
332
333
334
      j = 0;
335
336
337
       float inc = (MaxTemp - MinTemp ) / 160.0;
338
       for (ii = MinTemp; ii < MaxTemp; ii += inc) {</pre>
339
         tft.drawFastHLine(260, 200 - j++, 30, GetColor(ii))
340
341
342
      tft.setTextSize(2);
343
       tft.setCursor(245, 20);
344
       tft.setTextColor(TFT_WHITE, TFT_BLACK);
345
       sprintf(buf, "%2d/%2d", MaxTemp, (int) (MaxTemp * 1.1
346
```

```
347 tft.print(buf);
348
349 tft.setTextSize(2);
350 tft.setCursor(245, 210);
351 tft.setTextColor(TFT_WHITE, TFT_BLACK);
352 sprintf(buf, "%2d/%2d", MinTemp, (int) (MinTemp * 1.1
353 tft.print(buf);
354
355 }
```


Success

The outcome of visualization will display on the screen of Wio Terminal if everything goes well

Getting Started by Raspberry Pi

Hardware

Materials required

Hardware Connection

			1.						Contractor of	 in the second	and a second			1	
						1.1		-							
	f														
										-					
									Sec.				1.		
-	 				 		-	-	 -		-				_
				Cale Contra								1			
															l

- **Step 1** Connect the Grove Thermal Imaging Camera to one of the two I2C ports.
- **Step 2** Plug the Raspberry Pi 4 into Grove Base Hat for Raspberry Pi.
- **Step 3** Connect the Raspberry Pi to a display via HDMI cable, and power on the Raspberry Pi 4 by USB type-C.

Software

Raspberry Pi 4 supports Python, so the project demo can be easily displayed from the Raspberry Pi 4 display if you follow the below steps.

• **Step 1** Install grove.py [https://github.com/Seeed-Studio/grove.py] by the command

pip3 install Seeed-grove.py

• **Step 2** Install the MLX90641 driver with the following command. Python environment(If you don't have authority of your Raspberry Pi):

- [https://github.com/Seeed-Studio/Seeed_Python_MLX9064x.git] by **git clone** with command.
- **Step 5** Run the **BasicReadings.py** file by the following commands:

pi@raspberrypi: ~/Seeed_Python_MLX9064x/examples 🛛 🗸 🗸	~ X
File Edit Tabs Help	
pi@raspberrypi:~ \$ cd Seeed Python MLX9064x	
<pre>pi@raspberrypi:~/Seeed_Python_MLX9064x/examples \$ python3 BasicReadings.py</pre>	
Found 0 broken pixels [36.01885005327972, 33.72021306516888, 32.96126652185296, 31.66748869159119,	31.
902862510191085, 30.386826689894292, 30.179362595964506, 31.813209362255975,	31.
367209820347682, 30.696286948080626, 30.51395842105802, 32.26012879878624, 32 8686118858466, 33.12499444464447, 35.35933746035727, 30.77974366189528, 34.63	2.06 3671
82627248, 34.05298566457458, 32.631006689809965, 31.063509865083574, 31.22616	520
3280407, 30.16445528512213, 30.146751560095424, 30.49462614574145, 31.3944795	5029
14407, 32.235787106225075, 32.62093070292343, 30.138795975750952, 30.50731923	3285
83, 27.64716785215984, 30.23747765148437, 30.412004579923178, 30.240122662276	0267
, 30.055723412386328, 30.018597918488638, 27.756306386735503, 31.967569588849 28.37175554296465, 33.23299612956894, 39.268641875916783, 39.85911194885549	9983
33.24434982262011, 32.66697858690321, 31.648972840661656, 28.051259194271154,	27
.484927421334987, 29.947833078363203, 29.667464893789827, 27.113222803140673, 20975242077577, 30.0816066479004, 30.7324891436582, 27.750835588555447, 31.6	27
18248964713, 28.13440659564776, 29.166118537810462, 30.76108634190217, 30.172	2202
396531418, 29.834106473279974, 29.203551591181792, 28.9034285999262, 27.92604 4022347, 30.61063145640378, 28.140732553119847, 27.750429118094814, 30.577436	4601 9353
742614, 30.464864096879012, 27.618612370166773, 30.859417538541265, 28.564594	1859
756028, 28.34032467166878, 29.5735610358592, 26.735065727069923, 29.865662574	1037 🗸

Success

The outcome will be displayed as above if everything goes well.

Note

An upgrated UI of outcome on Raspberry Pi has been released as following:

• Step 1 Install pyqt5:

sudo apt-get install python3-pyqt5 -y

• **Step 2** Installing from PyPI:

• Step 3 Set the max i2c speed then reboot:

• Step 4 Input below command in terminal:

sudo	ircamera	I2C MLX9064	1		Ū

The outcome will be displayed as following if everything goes well.

Resourse

- [PDF] Datasheet of MLX90641
 [https://files.seeedstudio.com/products/101020892/res/MLX9 0641-Datasheet-Melexis.pdf]
- [ZIP] MLX90641 Visualization
 [https://files.seeedstudio.com/products/101020892/res/Visual ization-mlx90641.zip]

Tech Support

Please submit any technical issue into our forum

[http://forum.seeedstudio.com/].

[https://www.seeedstudio.com/act-4.html? utm_source=wiki&utm_medium=wikibanner&utm_campaign=newpr oducts]