

MCP251863

External CAN FD Controller with Integrated Transceiver

General Features

- External CAN FD Controller with Integrated CAN FD Transceiver and Serial Peripheral Interface (SPI)
- · Arbitration Bit Rate Up to 1 Mbps
- · Data Bit Rate up to 5 Mbps
- · CAN FD Controller Modes
 - Mixed CAN 2.0B and CAN FD Mode
 - CAN 2.0B Mode
- Fully ISO 11898-1:2015, ISO 11898-2: 2016 and SAE J2962-2 Compliant
- · Temperature Ranges:
 - Extended (E): -40°C to +125°C
 - High (H): -40°C to +150°C
- · ISO 26262 Functional Safety Ready
- Low Electromagnetic Emission (EME) and High Electromagnetic Immunity (EMI)
- · AEC-Q100 and AEC-Q006 Qualified
- Package: SSOP28 (Moisture Sensitivity Level 2)

CAN FD Controller Features

Message FIFOs

- 31 FIFOs, Configurable as Transmit or Receive FIFOs
- One Transmit Queue (TXQ)
- Transmit Event FIFO (TEF) with 32-bit Time Stamp

Message Transmission

- · Message Transmission Prioritization:
 - Based on Priority Bit Field
 - Message with Lowest ID gets Transmitted First Using the Transmit Queue (TXQ)
- Programmable Automatic Retransmission Attempts: Unlimited, 3 Attempts or Disabled

Message Reception

- · 32 Flexible Filter and Mask Objects
- Each Object Can Be Configured to Filter Either:
 - Standard ID + first 18 data bits, or
 - Extended ID
- · 32-bit Time Stamp

Special Features

- VDD: 2.7V to 5.5V
- Active Current: Maximum 20 mA at 5.5 V,

- 40 MHz CAN clock
- Sleep Current: 15 μA, Typical
- Low Power Mode Current: Maximum 10 μA from -40°C to +150°C
- · Message Objects are Located in RAM: 2 KB
- · Up to 3 Configurable Interrupt Pins
- · Bus Health Diagnostics and Error Counters
- · Transceiver Standby Control
- Start of Frame Pin for Indicating the Beginning of Messages on the Bus

Oscillator Options

- 40, 20 or 4 MHz Crystal or Ceramic Resonator; External Clock Input
- · Clock Output with Prescaler

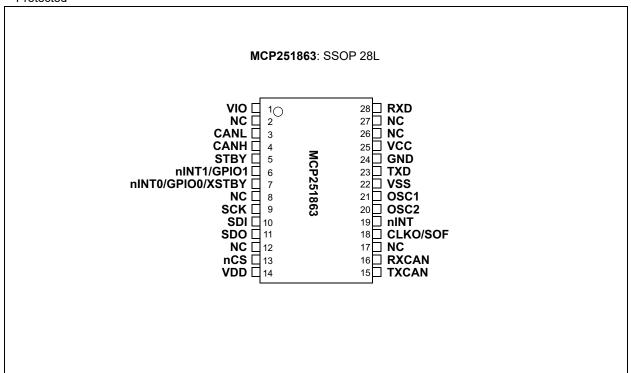
SPI Interface

- · Up to 20 MHz SPI Clock Speed
- Supports SPI Modes 0, 0 and 1, 1
- Registers and Bit Fields are Arranged in a Way to Enable Efficient Access through SPI

Safety Critical Systems

- SPI Commands with CRC to Detect Noise on SPI Interface
- · Error Correction Code (ECC) Protected RAM

Additional Features


- GPIO Pins: NTO and NTT Can Be Configured as General Purpose I/O
- Open Drain Outputs: TXCAN, INT, INTO, and INT1
 Pins Can Be Configured as Push/Pull or Open
 Drain Outputs

CAN FD Transceiver Features

- Differential Receiver with Wide Common Mode Range
- Remote Wake-Up Capability via CAN Bus -Wake-Up on Pattern (WUP), as Specified in ISO 11898-2: 2016, 3.8 µs Activity Filter Time
- Functional Behavior Predictable under All Supply Conditions
- Transceiver Disengages from the Bus When Not Powered Up
- RXD Recessive Clamping Detection
- High Electrostatic Discharge (ESD) Handling Capability on the Bus Pins
- Bus Pins Protected Against Transients in Automotive Environments

MCP251863

- Transmit Data (TXD) Dominant Time-Out Function
- Undervoltage Detection on VCC and VIO Pins
- CANH/CANL Short-Circuit and Overtemperature Protected
- Low Max Standby Current of 12 μA
- Fulfills the OEM "Hardware Requirements for LIN, CAN and FlexRay Interfaces in Automotive Applications, Rev. 1.3"

1.0 DEVICE OVERVIEW

The MCP251863 device is a cost-effective and small-footprint CAN FD controller (MCP2518FD) with an integrated Transceiver (ATA6563) that can be easily added to a microcontroller with an available SPI interface. A CAN FD channel can be easily added to a microcontroller that is either lacking a CAN FD peripheral or does not have enough CAN FD channels.

MCP251863 supports both CAN frames in the Classical format (CAN2.0B) and CAN Flexible Data Rate (CAN FD) format, as specified in ISO 11898-1:2015.

The integrated transceiver is a high-speed CAN FD Transceiver compliant with ISO 11898-2:2016 and SAE J2962-2 CAN standards. It provides a very low current consumption in Standby mode and wake-up capability via the CAN bus.

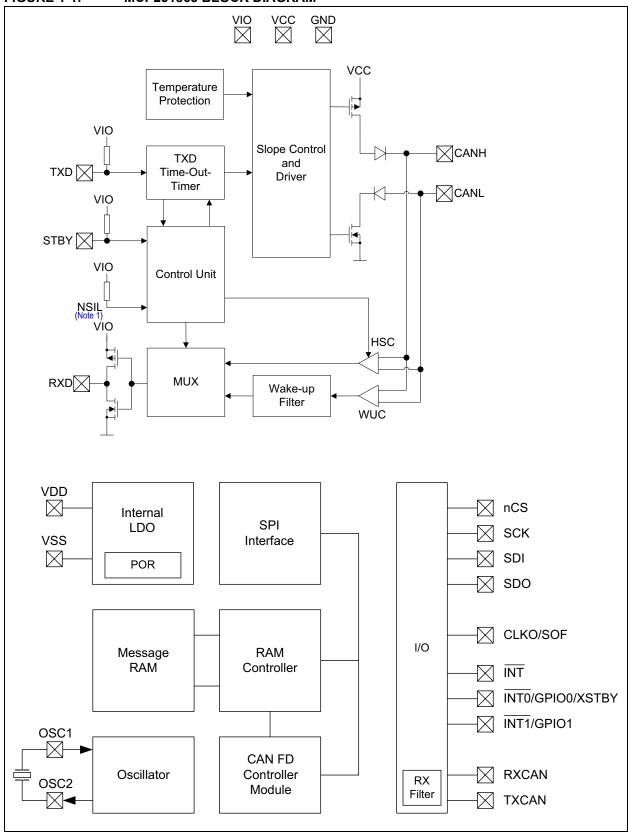

1.1 Block Diagram

Figure 1-1 shows the block diagram of the MCP251863 device. MCP251863 contains the following main blocks:

- The CAN FD Controller module implements the CAN FD protocol, and contains the FIFOs and Filters.
- The SPI interface is used to control the device by accessing Special Function Registers (SFR) and RAM.
- The RAM controller arbitrates the RAM accesses between the SPI and CAN FD Controller module.
- The Message RAM is used to store the data of the Message Objects.
- · The oscillator generates the CAN clock.
- · The Internal LDO and POR circuit.
- The I/O control.
- · The CAN FD Transceiver

Note 1: This data sheet summarizes the features of the MCP251863 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "MCP25xxFD Family Reference Manual" (FRM).

FIGURE 1-1: MCP251863 BLOCK DIAGRAM

Note 1: NSIL is not an externally available signal on this device and instead is pulled to VIO.

1.2 Pinout Description

Table 1-1 describes the functions of the pins.

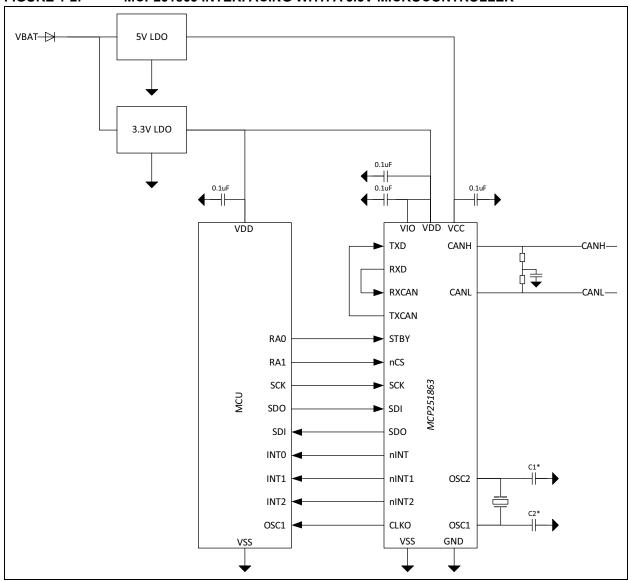
TABLE 1-1: MCP251863 STANDARD PINOUT VERSION

Pin Name	SSOP	Pin Type	Description	
TXCAN	15	0	Transmit output of the CAN FD Controller	
RXCAN	16	I	Receive input of the CAN FD Controller	
CLKO/SOF	18	0	Clock output/Test output	
nINT	19	0	Interrupt output	
OSC2	20	0	External oscillator output	
OSC1	21	I	External oscillator input	
VSS	22	Power	Ground	
nINT1/GPIO1	6	I/O	Interrupt output/GPIO	
nINT0/GPIO0/ XSTBY	7	I/O	Interrupt output/GPIO/ Transceiver Standby	
SCK	9	I	SPI clock input	
SDI	10	I	SPI data input	
SDO	11	0	SPI data output	
nCS	13	I	SPI chip select input	
VDD	14	Power	Controller - Positive Supply	
TXD	23	I	Transmit Data Input	
GND	24	Power	Ground	
VCC	25	Power	Transceiver - Positive Supply	
RXD	28	0	Receive Data Output	
VIO	1	Power	Transceiver - Digital I/O Supply	
CANL	3	I/O	CAN Low-Level Voltage	
CANH	4	I/O	CAN High-Level Voltage	
STBY	5	1	Standby Mode	
NC	2	NC	No Connect	
NC	8	NC	No Connect	
NC	12	NC	No Connect	
NC	17	NC	No Connect	
NC	26	NC No Connect		
NC	27	NC	No Connect	
egend: I: Input, O	: Output, I/O Input/	Output		

1.3 Typical Application

Figure 1-2 shows an example of a typical application of the MCP251863 device. In this example, the microcontroller operates at 3.3V.

The MCP251863 device interfaces directly with microcontrollers operating at 2.7V to 5.5V. There are no external level shifters required when connecting VDD and VIO of the MCP251863 and the microcontroller.


The Vcc of the CAN FD transceiver is connected to 5V.

The SPI interface is used to configure and control the CAN FD controller.

The MCP251863 device signals interrupts to the microcontroller by using INT, INT0 and INT1. Interrupts need to be cleared by the microcontroller through SPI.

The CLKO pin provides the clock to the microcontroller.

FIGURE 1-2: MCP251863 INTERFACING WITH A 3.3V MICROCONTROLLER

Note: Example capacitor values are listed in the FRM.

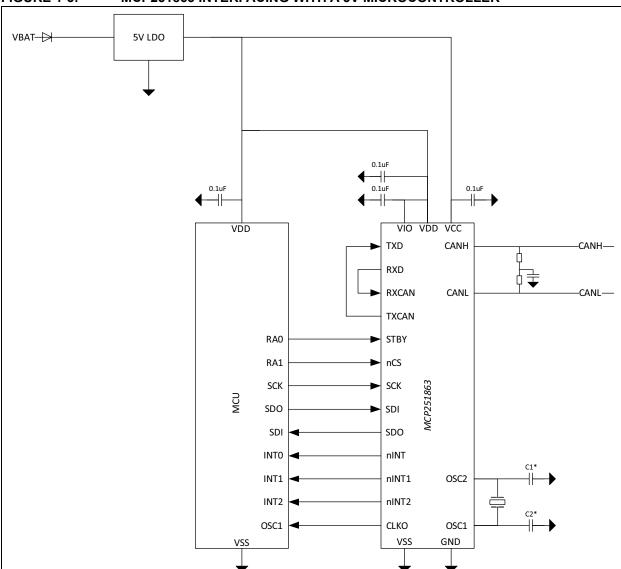


FIGURE 1-3: MCP251863 INTERFACING WITH A 5V MICROCONTROLLER

Note: Example capacitor values are listed in the FRM.

2.0 OPERATING MODES

2.1 Operating Modes of the CAN FD Controller

The CAN FD Controller module has multiple modes:

- Configuration
- Normal CAN FD
- Normal CAN 2.0
- Sleep (normal Sleep mode and Low Power Mode)
- Listen Only
- · Restricted Operation
- · Internal and External Loop back modes

The operational mode is selected via the REQOP[2:0] bits in the CiCON register (see Register 4-7: "CiCON – CAN Control Register")

When changing modes, the mode will not actually change until all pending message transmissions are completed. The requested mode must be verified by reading the OPMOD[2:0] bits in the CiCON register.

A detailed description of the Operating Modes can be found in the FRM.

2.2 CAN FD Transceiver Modes of Operation

The CAN FD Transceiver supports two modes of operation Standby and Normal mode. The mode is selected via the Standby pin. A detailed description can be found in section **Section 8.1**, **Operating Modes of the Transceiver**.

2.3 Normal Mode

Normal mode is the standard operating mode of the MCP251863. In this mode, the device actively monitors all bus messages and generates Acknowledge bits, error frames, etc. This is also the only mode in which the MCP251863 transmits frames over the CAN bus.

The CAN FD Controller must be in Normal CAN FD or in Normal CAN 2.0 mode. The Transceiver must be in normal mode.

2.4 Sleep/Standby Mode

The CAN FD Controller has two internal Sleep modes that are used to minimize the current consumption of the device. The SPI interface remains active for reading even when the MCP251863 is in Sleep mode, allowing access to all registers.

Sleep mode is selected via the REQOPx bits in the CiCON register. The OPMODx bits in the CiCON register indicate the operation mode. The bit OSCDIS in register OSC should be read after sending the

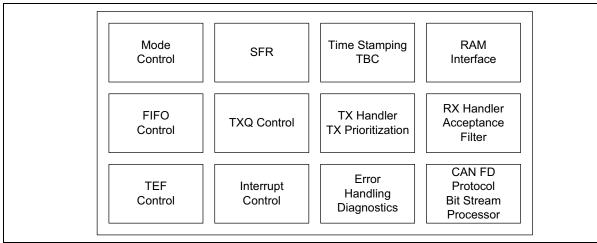
SLEEP command to the MCP251863. The MCP251863 is active and has not yet entered Sleep mode until the OSCDIS bit indicates that Sleep mode has been entered.

When in Sleep mode, the MCP251863 stops its internal oscillator. The MCP251863 will wake-up when bus activity occurs or when the microcontroller clears OSCDIS via the SPI interface. The WAKIF bit in the CiINT register will "generate" a wake-up event (the WAKIE bit in the CiINT register must also be set in order for the wake-up interrupt to occur).

The CAN FD transceiver must be in Standby mode in order to take advantage of the low standby current of the transceiver. After a wake-up, the microcontroller must put the transceiver back into Normal mode using the Standby pin.

The CAN FD Controller also supports an LP mode. For a detailed description of entering and exiting LPM mode refer to the FRM.

3.0 CAN FD CONTROLLER MODULE


Figure 3-1 shows the main blocks of the CAN FD Controller module:

- The CAN FD Bit Stream Processor (BSP) implements the Medium Access Control of the CAN FD protocol described in ISO 11898-1:2015. It serializes and de-serializes the bit stream, encodes and decodes the CAN FD frames, manages the medium access, acknowledges frames and detects and signals errors.
- The TX Handler prioritizes the messages that are requested for transmission by the Transmit FIFOs. It uses the RAM Interface to fetch the transmit data from RAM and provides it to the BSP for transmission.
- The BSP provides received messages to the RX Handler. The RX Handler uses the Acceptance Filter to filter out messages that shall be stored into Receive FIFOs. It uses the RAM Interface to store received data into RAM.

- Each FIFO can be configured either as a Transmit or Receive FIFO. The FIFO Control keeps track of the FIFO Head and Tail, and calculates the User Address. For a TX FIFO, the User Address points to the address in RAM where the data for the next transmit message shall be stored. For a RX FIFO, the User Address points to the address in RAM where the data of the next receive message shall be read. The User notifies the FIFO that a message was written to or read from RAM by incrementing the Head/Tail of the FIFO.
- The Transmit Queue (TXQ) is a special transmit FIFO that transmits the messages based on the ID of the messages stored in the queue.
- The Transmit Event FIFO (TEF) stores the message IDs of the transmitted messages.
- A free-running Time Base Counter is used to time stamp received messages. Messages in the TEF can also be time stamped.
- The CAN FD Controller module generates interrupts when new messages are received or messages were transmitted successfully.
- The SFR are used to control and to read the status of the CAN FD Controller module.

Note 1: This data sheet summarizes the features of the CAN FD Controller module. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "MCP25xxFD Family Reference Manual".

4.0 MEMORY ORGANIZATION

Figure 4-1 illustrates the main sections of the memory and its address ranges:

- MCP251863 Special Function Registers
- · CAN FD Controller module SFR
- · Message Memory (RAM)

The SFR are 32-bit wide. The LSB is located at the lower address, for example, the LSB of C1CON is located at address 0×000 , while its MSB is located at address 0×000 .

Table 4-1 lists the MCP251863 specific registers. The first column contains the address of the SFR.

Table 4-2 lists the registers of the CAN FD Controller module. The first column contains the address of the SFR.

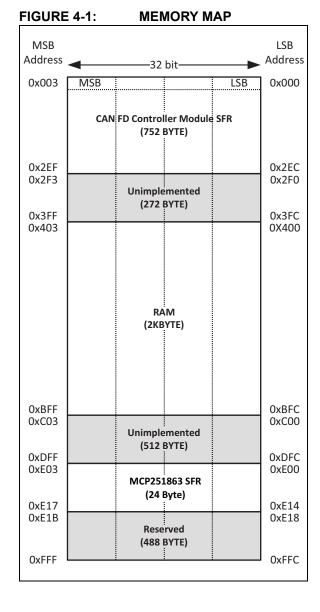


TABLE 4-1: MCP251863 REGISTER SUMMARY

Address	Name)	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
E03	OSC	31:24	_	_	_	_	_	_	_	_
E02		23:16	_	_	_	_	_	_	_	_
E01		15:8	_	_	_	SCLKRDY	_	OSCRDY	_	PLLRDY
E00 ⁽¹⁾		7:0	ı	CLKOD	DIV[1:0]	SCLKDIV	LPMEN	OSCDIS	1	PLLEN
	IOCON	31:24		INTOD	SOF	TXCANOD	_	_	PM1	PM0
		23:16	_	_	_	_	_	_	GPIO1	GPIO0
		15:8	-	_	_	_	_	_	LAT1	LAT0
E04		7:0	1	XSTBYEN	_	-	_	-	TRIS1	TRIS0
	CRC	31:24	_	_	_	_	_	_	FERRIE	CRCERRIE
		23:16	ı	ı	_	-	_	ı	FERRIF	CRCERRIF
		15:8		CRC[15:8]						
E08		7:0				CRC	[7:0]			
	ECCCON	31:24	ı	_	_	_	_	_	_	_
		23:16	I	I		1		I	1	_
		15:8	1				PARITY[6:0]			
E0C		7:0	_	_	_	_	_	DEDIE	SECIE	ECCEN
	ECCSTAT	31:24	-	_	_	_		ERRADI	DR[11:8]	
		23:16				ERRAD	DR[7:0]			
		15:8	_	_	_	_	_	_	_	_
E10		7:0	ı	1	_	1	_	DEDIF	SECIF	_
	DEVID	31:24	_	_	_	_	_	_	_	_
		23:16	-	_	_	_	_	_	_	_
		15:8	_	_	_	_	_	_	_	_
E14		7:0	ID[3:0] REV[3:0]							

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

^{2:} The bit fields in the IOCON register must be written using single data byte SFR WRITE instructions.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
03	C1CON	31:24		TXBV	/S[3:0]		ABAT		REQOP[2:0]			
02		23:16		OPMOD[2:0]		TXQEN	STEF	SERR2LOM	ESIGM	RTXAT		
01		15:8	_	_	_	BRSDIS	BUSY	WFT	[1:0]	WAKFIL		
0 ⁽¹⁾		7:0	_	PXEDIS	ISOCRCEN		•	DNCNT[4:0]				
	C1NBTCFG	31:24				BRF	P[7:0]					
		23:16				TSEC	G1[7:0]					
		15:8	_				TSEG2[6:0]					
04		7:0	_				SJW[6:0]					
	C1DBTCFG	31:24		BRP[7:0]								
		23:16		TSEG1[4:0]								
		15:8	_	_	-	1		TSEG	2[3:0]			
80		7:0	_	_	_	-		SJW	[3:0]			
	C1TDC	31:24	_	_	_	_	_	_	EDGFLTEN	SID11EN		
		23:16	_	_	_	_	_	_	TDCM	DD[1:0]		
		15:8	_	_			TDC					
0C		7:0	_									
	C1TBC	31:24		TBC[31:24]								
		23:16		TBC[23:16]								
		15:8				TBC	[15:8]					
10		7:0		TBC[7:0]								
	C1TSCON	31:24	_	_	_		_	_	_	_		
		23:16	_	_	_	_	_	TSRES	TSEOF	TBCEN		
		15:8	_	TBCPRE[9:8]								
14		7:0		TBCPRE[7:0]								
	C1VEC	31:24	_			ļ	RXCODE[6:0]					
		23:16	_				TXCODE[6:0]					
		15:8	_	_	_			FILHIT[4:0]				
18		7:0	_				ICODE[6:0]					
	C1INT	31:24	IVMIE	WAKIE	CERRIE	SERRIE	RXOVIE	TXATIE	SPICRCIE	ECCIE		
		23:16	_	_	_	TEFIE	MODIE	TBCIE	RXIE	TXIE		
		15:8	IVMIF	WAKIF	CERRIF	SERRIF	RXOVIF	TXATIF	SPICRCIF	ECCIF		
1C		7:0	_		_	TEFIF	MODIF	TBCIF	RXIF	TXIF		
	C1RXIF	31:24					31:24]					
		23:16					23:16]					
		15:8					[15:8]					
20		7:0				RFIF[7:1]						
	C1TXIF	31:24		_	_		31:24]	_		•		
		23:16					23:16]					
		15:8					[15:8]					
24		7:0	TFIF[7:0]									
	C1RXOVIF	31:24	-	-			F[31:24]					
		23:16					F[23:16]					
		15:8					IF[15:8]					
28		7:0				RFOVIF[7:1]				_		
	C1TXATIF	31:24	• •									
		23:16					[23:16]					
		15:8	TFATIF[15:8]									
2C		7:0				TFAT	IF[7:0]					

^{2:} Reserved register reads 0.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
	C1TXREQ	31:24				TXREC	Q[31:24]				
		23:16				TXREC	2[23:16]				
		15:8				TXRE	Q[15:8]				
30		7:0				TXRE	Q[7:0]				
	C1TREC	31:24	_	_	_	_	_	_	_	_	
		23:16	_	1	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	
		15:8		TEC[7:0]							
34		7:0				REC	[7:0]				
	C1BDIAG0	31:24		DTERRCNT[7:0]							
		23:16		DRERRCNT[7:0]							
		15:8		NTERRCNT[7:0]							
38		7:0		NRERRCNT[7:0]							
	C1BDIAG1	31:24	DLCMM	DLCMM ESI DCRCERR DSTUFERR DFORMERR — DBIT1ER						DBIT0ERR	
		23:16	TXBOERR	-	NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR	
		15:8				EFMSG	CNT[15:8]				
3C		7:0		EFMSGCNT[7:0]							
	C1TEFCON	31:24	_	_	_			FSIZE[4:0]			
		23:16	_	1	_	_	_	1	_	_	
		15:8	_	_	_	_	_	FRESET	_	UINC	
40		7:0	_	_	TEFTSEN	_	TEFOVIE	TEFFIE	TEFHIE	TEFNEIE	
	C1TEFSTA	31:24	_		_	_	_	_	_	_	
		23:16	_	-	_	_	_	ı	_	_	
		15:8	_	-	_	_	_	ı	_	_	
44		7:0	_	_	_	_	TEFOVIF	TEFFIF	TEFHIF	TEFNEIF	
	C1TEFUA	31:24					\[31:24]				
		23:16				TEFUA	A[23:16]				
		15:8					A[15:8]				
48		7:0					JA[7:0]				
	Reserved ⁽²⁾	31:24					ed[31:24]				
		23:16					ed[23:16]				
		15:8					ed[15:8]				
4C		7:0				Reserv	/ed[7:0]				
	C1TXQCON	31:24		PLSIZE[2:0]				FSIZE[4:0]			
		23:16	_	TXAT	[1:0]		ı	TXPRI[4:0]	ı	ı	
		15:8	_	_	_	_	_	FRESET	TXREQ	UINC	
50		7:0	TXEN		_	TXATIE	_	TXQEIE	_	TXQNIE	
	C1TXQSTA	31:24	_	_	_	_	_		_	_	
		23:16	_	_	_	_	_	—	_	_	
		15:8		_			1	TXQCI[4:0]	1		
54		7:0	TXABT	TXLARB	TXERR	TXATIF	_	TXQEIF	_	TXQNIF	
	C1TXQUA	31:24					A[31:24]				
		23:16					A[23:16]				
_		15:8					A[15:8]				
58		7:0		TXQUA[7:0]							

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

^{2:} Reserved register reads 0.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
	C1FIFOCON1	31:24		PLSIZE[2:0]				FSIZE[4:0]				
		23:16	_	TXAT	[1:0]			TXPRI[4:0]				
		15:8	_	_	_	_	_	FRESET	TXREQ	UINC		
5C		7:0	TXEN	RTREN	RXTSEN	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNIE		
	C1FIFOSTA1	31:24	_	_	_	_	_	_	_	_		
		23:16	_		_	_	_	_	_	_		
		15:8	_	_	_			FIFOCI[4:0]				
60		7:0	TXABT	TXABT TXLARB TXERR TXATIF RXOVIF TFERFFIF TFHRFHIF TFNR								
	C1FIFOUA1	31:24		FIFOUA[31:24]								
		23:16		FIFOUA[23:16]								
		15:8					A[15:8]					
64		7:0					JA[7:0]					
68	C1FIFOCON2	31:0										
6C	C1FIFOSTA2	31:0		same as C1FIFOCON1 same as C1FIFOSTA1								
70	C1FIFOUA2	31:0		same as C1FIFOSTA1 same as C1FIFOUA1								
74	C1FIFOCON3	31:0		same as C1FIFOCON1								
78	C1FIFOSTA3	31:0					1FIFOSTA1					
7C	C1FIFOUA3	31:0					1FIFOUA1					
80	C1FIFOCON4	31:0					1FIFOCON1					
84	C1FIFOSTA4	31:0		same as C1FIFOSTA1								
88	C1FIFOUA4	31:0		same as C1FIFOUA1								
8C	C1FIFOCON5	31:0		same as C1FIFOCN1								
90	C1FIFOSTA5	31:0		same as C1FIFOCON1								
94	C1FIFOUA5	31:0		same as C1FIFOUA1								
98	C1FIFOCON6	31:0		same as C1FIFOCON1								
9C	C1FIFOSTA6	31:0		same as C1FIFOCON1 same as C1FIFOSTA1								
A0	C1FIFOUA6	31:0					1FIFOUA1					
A4	C1FIFOCON7	31:0					1FIFOCON1					
A8	C1FIFOSTA7	31:0					1FIFOSTA1					
AC	C1FIFOUA7	31:0					1FIFOUA1					
B0	C1FIFOCON8	31:0					1FIFOCON1					
B4	C1FIFOSTA8	31:0					1FIFOSTA1					
B8	C1FIFOUA8	31:0					1FIFOUA1					
BC	C1FIFOCON9	31:0					1FIFOCON1					
CO	C1FIFOSTA9	31:0					1FIFOSTA1					
C4	C1FIFOUA9	31:0					1FIFOUA1					
C8	C1FIFOCON10	31:0					IFIFOCON1					
CC	C1FIFOSTA10	31:0					1FIFOSTA1					
D0	C1FIFOUA10	31:0					1FIFOUA1					
D4	C1FIFOCON11	31:0					1FIFOCON1					
D8	C1FIFOSTA11	31:0					1FIFOSTA1					
DC	C1FIFOUA11	31:0					1FIFOUA1					
E0	C1FIFOCON12	31:0					IFIFOCON1					
E4	C1FIFOSTA12	31:0		same as C1FIFOSTA1								
E8	C1FIFOUA12	31:0					1FIFOUA1					
EC	C1FIFOCON13	31:0					IFIFOCON1					
F0	C1FIFOSTA13	31:0					1FIFOSTA1					
F4	C1FIFOUA13	31:0					1FIFOUA1					
F8	C1FIFOCON14	31:0					1FIFOCON1					
FC	C1FIFOSTA14	31:0					1FIFOSTA1					
100	C1FIFOUA14	31:0										
	100 C1FIFOUA14 31:0 same as C1FIFOUA1 Lote 1: The lower order byte of the 32-bit register resides at the low-order address											

2: Reserved register reads 0.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
104	C1FIFOCON15	31:0			l	same as C1	FIFOCON1		l	l		
108	C1FIFOSTA15	31:0				same as C	1FIFOSTA1					
10C	C1FIFOUA15	31:0		same as C1FIFOUA1								
110	C1FIFOCON16	31:0				same as C1						
114	C1FIFOSTA16	31:0				same as C						
118	C1FIFOUA16	31:0				same as C						
11C	C1FIFOCON17	31:0				same as C1						
120	C1FIFOSTA17	31:0				same as C						
124	C1FIFOUA17	31:0				same as C						
128	C1FIFOCON18	31:0				same as C1						
12C	C1FIFOSTA18	31:0				same as C	1FIFOSTA1					
130	C1FIFOUA18	31:0				same as C						
134	C1FIFOCON19	31:0				same as C1						
138	C1FIFOSTA19	31:0				same as C						
13C	C1FIFOUA19	31:0				same as C						
140	C1FIFOCON20	31:0				same as C1						
144	C1FIFOSTA20	31:0				same as C						
148	C1FIFOUA20	31:0				same as C						
14C	C1FIFOCON21	31:0										
150	C1FIFOSTA21	31:0		same as C1FIFOCON1								
154	C1FIFOUA21	31:0		same as C1FIFOSTA1								
158	C1FIFOCON22	31:0		same as C1FIFOUA1								
15C	C1FIFOSTA22	31:0		same as C1FIFOCON1								
-				same as C1FIFOSTA1								
160	C1FIFOCON23	31:0 31:0		same as C1FIFOUA1 same as C1FIFOCON1								
168	C1FIFOSTA23	31:0				same as C						
-												
16C	C1FIFOCON24	31:0 31:0				same as C						
174	C1FIFOCON24	31:0				same as C						
178 17C	C1FIFOCON25	31:0 31:0				same as C						
180	C1FIFOCON25	31:0				same as C						
-												
184	C1FIFOCON26	31:0 31:0				same as C						
18C	C1FIFOCON26	31:0				same as C						
-												
190 194	C1FIFOCON27	31:0 31:0				same as C						
194	C1FIFOCON27	31:0				same as C						
19C	C1FIFOCON28	31:0 31:0				same as C1						
1A4	C1FIFOCON28	31:0				same as C						
1A8	C1FIFOCON20	31:0				same as C						
1AC	C1FIFOCON29	31:0		same as C1FIFOCON1 same as C1FIFOSTA1								
1B0	C1FIFOUA20	31:0										
1B4	C1FIFOCON20	31:0				same as C						
1B8	C1FIFOCON30	31:0				same as C1						
1BC	C1FIFOSTA30	31:0				same as C						
1C0	C1FIFOUA30	31:0				same as C						
1C4	C1FIFOCON31	31:0				same as C1						
1C8	C1FIFOSTA31	31:0	same as C1FIFOSTA1									
1CC	C1FIFOUA31 1. The lower of	31:0		la lé ma mi - é - m	-1-1	same as C						

^{2:} Reserved register reads 0.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
	C1FLTCON0	31:24	FLTEN3	_	_			F3BP[4:0]			
		23:16	FLTEN2	_	_			F2BP[4:0]			
		15:8	FLTEN1	_	_			F1BP[4:0]			
1D0		7:0	FLTEN0	_	_			F0BP[4:0]			
	C1FLTCON1	31:24	FLTEN7		_			F7BP[4:0]			
		23:16	FLTEN6	_	_	F6BP[4:0]					
		15:8	FLTEN5	_	_			F5BP[4:0]			
1D4		7:0	FLTEN4		_			F4BP[4:0]			
	C1FLTCON2	31:24	FLTEN11					F11BP[4:0]			
	011 2100142	23:16	FLTEN10		_			F10BP[4:0]			
		15:8	FLTEN9					F9BP[4:0]			
400					_						
1D8		7:0	FLTEN8		_			F8BP[4:0]			
	C1FLTCON3	31:24	FLTEN15		_			F15BP[4:0]			
		23:16	FLTEN14		_			F14BP[4:0]			
		15:8	FLTEN13		_			F13BP[4:0]			
1DC		7:0	FLTEN12	_	_			F12BP[4:0]			
	C1FLTCON4	31:24	FLTEN19	_	_			F19BP[4:0]			
		23:16	FLTEN18	_	_			F18BP[4:0]			
		15:8	FLTEN17	_	_			F17BP[4:0]			
1E0		7:0	FLTEN16	_	_			F16BP[4:0]			
	C1FLTCON5	31:24	FLTEN23	_	_	F23BP[4:0]					
		23:16	FLTEN22	_	_	F22BP[4:0]					
		15:8	FLTEN21		_			F21BP[4:0]			
1E4		7:0	FLTEN20	_	_			F20BP[4:0]			
	C1FLTCON6	31:24	FLTEN27		_			F27BP[4:0]			
	0112100110	23:16	FLTEN26		_			F26BP[4:0]			
		15:8	FLTEN25		_			F25BP[4:0]			
1E8		7:0	FLTEN24					F24BP[4:0]			
ILO	C1FLTCON7				_						
	CIFLICON	31:24	FLTEN31		_			F31BP[4:0]			
		23:16	FLTEN30		_			F30BP[4:0]			
		15:8	FLTEN29		_			F29BP[4:0]			
1EC		7:0	FLTEN28		_			F28BP[4:0]			
	C1FLTOBJ0	31:24	_	EXIDE	SID11			EID[17:6]			
		23:16				EID[12:5]				
		15:8			EID[4:0]				SID[10:8]		
1F0		7:0				SID	[7:0]				
	C1MASK0	31:24	_	MIDE	MSID11			MEID[17:6]			
		23:16				MEID	[12:5]				
		15:8			MEID[4:0]				MSID[10:8]		
1F4		7:0				MSI	D[7:0]				
1F8	C1FLTOBJ1	31:0				same as C	1FLTOBJ0				
1FC	C1MASK1	31:0				same as C1MASK0					
200	C1FLTOBJ2	31:0			-	same as C1FLTOBJ0					
204	C1MASK2	31:0				same as C1MASK0					
208	C1FLTOBJ3	31:0			_	same as C1FLTOBJ0					
20C	C1MASK3	31:0				same as	C1MASK0				
210	C1FLTOBJ4	31:0				same as C1FLTOBJ0					
214	C1MASK4	31:0			_	same as C1MASK0					
218	C1FLTOBJ5	31:0				same as C1FLTOBJ0					
21C	C1MASK5	31:0				same as	C1MASK0				
Note	21C C1MASK5 31:0 same as C1MASK0 Note 1: The lower order byte of the 32-bit register resides at the low-order address.										

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

^{2:} Reserved register reads 0.

TABLE 4-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

IADL			D CONTROLLER MODULE REGISTER COMMARK (CONTINGED)										
Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
220	C1FLTOBJ6	31:0				same as C	1FLTOBJ0						
224	C1MASK6	31:0		same as C1MASK0									
228	C1FLTOBJ7	31:0		same as C1FLTOBJ0									
22C	C1MASK7	31:0		same as C1MASK0									
230	C1FLTOBJ8	31:0		same as C1FLTOBJ0									
234	C1MASK8	31:0		same as C1MASK0									
238	C1FLTOBJ9	31:0				same as C	1FLTOBJ0						
23C	C1MASK9	31:0				same as (C1MASK0						
240	C1FLTOBJ10	31:0				same as C	1FLTOBJ0						
244	C1MASK10	31:0				same as (C1MASK0						
248	C1FLTOBJ11	31:0				same as C	1FLTOBJ0						
24C	C1MASK11	31:0				same as (C1MASK0						
250	C1FLTOBJ12	31:0				same as C	1FLTOBJ0						
254	C1MASK12	31:0				same as (C1MASK0						
258	C1FLTOBJ13	31:0				same as C	1FLTOBJ0						
25C	C1MASK13	31:0				same as (C1MASK0						
260	C1FLTOBJ14	31:0				same as C	1FLTOBJ0						
264	C1MASK14	31:0				same as (C1MASK0						
268	C1FLTOBJ15	31:0				same as C	1FLTOBJ0						
26C	C1MASK15	31:0				same as (C1MASK0						
270	C1FLTOBJ16	31:0				same as C	1FLTOBJ0						
274	C1MASK16	31:0				same as (C1MASK0						
278	C1FLTOBJ17	31:0				same as C	1FLTOBJ0						
27C	C1MASK17	31:0		same as C1MASK0									
280	C1FLTOBJ18	31:0		same as C1FLTOBJ0									
284	C1MASK18	31:0		same as C1MASK0									
288	C1FLTOBJ19	31:0				same as C	1FLTOBJ0						
28C	C1MASK19	31:0				same as (C1MASK0						
290	C1FLTOBJ20	31:0				same as C	1FLTOBJ0						
294	C1MASK20	31:0				same as (C1MASK0						
298	C1FLTOBJ21	31:0				same as C	1FLTOBJ0						
29C	C1MASK21	31:0				same as (C1MASK0						
2A0	C1FLTOBJ22	31:0				same as C	1FLTOBJ0						
2A4	C1MASK22	31:0				same as (C1MASK0						
2A8	C1FLTOBJ23	31:0				same as C	1FLTOBJ0						
2AC	C1MASK23	31:0				same as (C1MASK0						
2B0	C1FLTOBJ24	31:0				same as C	1FLTOBJ0						
2B4	C1MASK24	31:0				same as (C1MASK0						
2B8	C1FLTOBJ25	31:0				same as C	1FLTOBJ0						
2BC	C1MASK25	31:0					C1MASK0						
2C0	C1FLTOBJ26	31:0				same as C	1FLTOBJ0						
2C4	C1MASK26	31:0				same as (C1MASK0						
2C8	C1FLTOBJ27	31:0				same as C	1FLTOBJ0						
2CC	C1MASK27	31:0		same as C1MASK0									
2D0	C1FLTOBJ28	31:0		-	-		1FLTOBJ0		-	· · ·			
2D4	C1MASK28	31:0					C1MASK0						
2D8	C1FLTOBJ29	31:0					1FLTOBJ0						
2DC	C1MASK29	31:0					C1MASK0						
2E0	C1FLTOBJ30	31:0					1FLTOBJ0						
2E4	C1MASK30	31:0					C1MASK0						
2E8	C1FLTOBJ31	31:0	same as C1FLTOBJ0										
2EC	C1MASK31	31:0					C1MASK0						
Mata	 The lower of 	and an Irra		hit register re	aidee et the l	au ardar add							

^{2:} Reserved register reads 0.

MCP251863

4.1 MCP251863 Specific Registers

• Register 4-1: OSC

• Register 4-2: IOCON

• Register 4-3: CRC

• Register 4-4: ECCCON

• Register 4-5: ECCSTAT

• Register 4-6: DEVID

TABLE 4-3: REGISTER LEGEND

Symbol	Description	Symbol	Description
R	Readable bit	HC	Cleared by Hardware only
W	Writable bit	HS	Set by Hardware only
U	Unimplemented bit, read as '0'	1	Bit is set at Reset
S	Settable bit	0	Bit is cleared at Reset
С	Clearable bit	X	Bit is unknown at Reset

EXAMPLE 4-1:

R/W - 0 indicates the bit is both readable and writable, and reads '0' after a Reset.

REGISTER 4-1: OSC – MCP251863 OSCILLATOR CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	U-0	U-0	R-0	U-0	R-0	U-0	R-0
_	_	_	SCLKRDY	-	OSCRDY	_	PLLRDY
bit 15							bit 8

U-0	R/W-1	R/W-1	R/W-0	R/W-0	HS/C-0	U-0	R/W-0
_	CLKOE	DIV[1:0]	SCLKDIV ⁽¹⁾	LPMEN ⁽³⁾	OSCDIS ⁽²⁾	_	PLLEN ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 SCLKRDY: Synchronized SCLKDIV bit

1 = SCLKDIV 1 0 = SCLKDIV 0

bit 11 **Unimplemented:** Read as '0'

bit 10 OSCRDY: Clock Ready

1 = Clock is running and stable0 = Clock not ready or off

bit 9 **Unimplemented:** Read as '0'

bit 8 PLLRDY: PLL Ready

1 = PLL Locked0 = PLL not ready

bit 7 **Unimplemented:** Read as '0'

bit 6-5 **CLKODIV[1:0]:** Clock Output Divisor

11 =CLKO is divided by 10 10 =CLKO is divided by 4 01 =CLKO is divided by 2 00 =CLKO is divided by 1

bit 4 SCLKDIV: System Clock Divisor⁽¹⁾

1 = SCLK is divided by 2 0 = SCLK is divided by 1

Note 1: This bit can only be modified in Configuration mode.

- 2: Clearing OSCDIS while in Sleep mode will wake-up the device and put it back in Configuration mode.
- 3: Setting LPMEN does not actually put the device in LPM. It selects which Sleep mode will be entered after requesting Sleep mode using CiCON.REQOP. In order to wake up on RXCAN activity, CiINT.WAKIE must be set.

REGISTER 4-1: OSC – MCP251863 OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3 LPMEN: Low Power Mode (LPM) Enable⁽³⁾

1 = When in LPM, the device will stop the clock and power down the majority of the chip. Register and RAM values will be lost. The device will wake-up due to asserting nCS, or due to RXCAN activity.

0 = When in Sleep mode, the device will stop the clock, and retain it's register and RAM values. It will wake-up due to clearing the OSCDIS bit, or due to RXCAN activity.

bit 2 OSCDIS: Clock (Oscillator) Disable⁽²⁾

1 = Clock disabled, the device is in Sleep mode.

0 = Enable Clock

bit 1 Unimplemented: Read as '0'

bit 0 **PLLEN**: PLL Enable⁽¹⁾

1 = System Clock from 10x PLL

0 = System Clock comes directly from XTAL oscillator

Note 1: This bit can only be modified in Configuration mode.

2: Clearing OSCDIS while in Sleep mode will wake-up the device and put it back in Configuration mode.

3: Setting LPMEN does not actually put the device in LPM. It selects which Sleep mode will be entered after requesting Sleep mode using CiCON.REQOP. In order to wake up on RXCAN activity, CiINT.WAKIE must be set.

REGISTER 4-2: IOCON - INPUT/OUTPUT CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-1
_	INTOD	SOF	TXCANOD	_	_	PM1	PM0
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
_	_	_	_	_	_	GPIO1	GPIO0
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
_	_	_	_	_	_	LAT1	LAT0
bit 15							bit 8

U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
_	XSTBYEN	_	_	_	_	TRIS1 ⁽¹⁾	TRIS0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30 INTOD: Interrupt pins Open Drain Mode

1 = Open Drain Output0 = Push/Pull Output

bit 29 **SOF:** Start-Of-Frame signal

1 = SOF signal on CLKO pin 0 = Clock on CLKO pin

bit 28 TXCANOD: TXCAN Open Drain Mode

1 = Open Drain Output0 = Push/Pull Output

bit 27-26 Unimplemented: Read as '0'

bit 25 **PM1:** GPIO Pin Mode

1 = Pin is used as GPIO1

0 = Interrupt Pin INT1, asserted when CilNT.RXIF and RXIE are set

bit 24 PM0: GPIO Pin Mode

1 = Pin is used as GPIO0

 $0 = Interrupt Pin \overline{INT0}$, asserted when CilNT.TXIF and TXIE are set

bit 23-18 Unimplemented: Read as '0'

bit 17 GPIO1: GPIO1 Status

1 = VGPIO1 > VIH 0 = VGPIO1 < VIL

bit 16 GPIO0: GPIO0 Status

1 = VGPIO0 > VIH 0 = VGPIO0 < VIL

bit 15-10 **Unimplemented:** Read as '0'

Note 1: If PMx = 0, TRISx will be ignored and the pin will be an output.

2: The bit fields in the IOCON register must be written using single data byte SFR WRITE instructions.

REGISTER 4-2: IOCON – INPUT/OUTPUT CONTROL REGISTER (CONTINUED)

bit 9

LAT1: GPIO1 Latch

1 = Drive Pin High

0 = Drive Pin Low

bit 8

LAT0: GPIO0 Latch

1 = Drive Pin High

0 = Drive Pin Low

bit 5-2

bit 1

bit 7 **Unimplemented:** Read as '0'

bit 6 XSTBYEN: Enable Transceiver Standby Pin Control

1 = XSTBY control enabled 0 = XSTBY control disabled Unimplemented: Read as '0' TRIS1: GPIO1 Data Direction⁽¹⁾

1 = Input Pin0 = Output Pin

bit 0 TRISO: GPIO0 Data Direction⁽¹⁾

1 = Input Pin0 = Output Pin

Note 1: If PMx = 0, TRISx will be ignored and the pin will be an output.

2: The bit fields in the IOCON register must be written using single data byte SFR WRITE instructions.

REGISTER 4-3: CRC – CRC REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	FERRIE	CRCERRIE
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	HS/C-0	HS/C-0
_	_	_	_	_	_	FERRIF	CRCERRIF
bit 23							bit 16

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CRC[15:8]			
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CRC[7:0]			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 FERRIE: CRC Command Format Error Interrupt Enable

bit 24 CRCERRIE: CRC Error Interrupt Enable

bit 23-18 Unimplemented: Read as '0'

bit 17 FERRIF: CRC Command Format Error Interrupt Flag

1 = Number of Bytes mismatch during "SPI with CRC" command occurred

0 = No SPI CRC command format error occurred

bit 16 CRCERRIF: CRC Error Interrupt Flag

1 = CRC mismatch occurred0 = No CRC error has occurred

bit 15-0 CRC[15:0]: Cycle Redundancy Check from last CRC mismatch

REGISTER 4-4: ECCCON – ECC CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				PARITY[6:0]			
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	DEDIE	SECIE	ECCEN
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-15 **Unimplemented:** Read as '0'

bit 14-8 PARITY[6:0]: Parity bits used during write to RAM when ECC is disabled

bit 7-3 **Unimplemented:** Read as '0'

bit 2 **DEDIE:** Double Error Detection Interrupt Enable Flag bit 1 **SECIE:** Single Error Detection Interrupt Enable Flag

bit 0 **ECCEN:** ECC Enable

1 = ECC enabled0 = ECC disabled

REGISTER 4-5: ECCSTAT – ECC STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_		ERRAD	DR[11:8]	
bit 31							bit 24

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
ERRADDR[7:0]									
bit 23							bit 16		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	HS/C-0	HS/C-0	U-0
_	_	_	_	_	DEDIF	SECIF	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

bit 27-16 ERRADDR[11:0]: Address where last ECC error occurred

bit 15-3 **Unimplemented:** Read as '0'

bit 2 **DEDIF:** Double Error Detection Interrupt Flag

1 = Double Error was detected

0 = No Double Error Detection occurred

bit 1 SECIF: Single Error Detection Interrupt Flag

1 = Single Error was detected

0 = No Single Error occurred

bit 0 **Unimplemented:** Read as '0'

MCP251863

REGISTER 4-6: DEVID - DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	ID[3	3:0]		REV[3:0]				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0'

bit 7-4 **ID[3:0]:** Device ID

bit 3-0 **REV[3:0]:** Silicon Revision

4.2 CAN FD Controller module Registers

Configuration Registers

- Register 4-7: CiCON
- Register 4-8: CiNBTCFG
- Register 4-9: CiDBTCFG
- Register 4-10: CiTDC
- Register 4-11: CiTBC
- Register 4-12: CiTSCON

Interrupt and Status Registers

- Register 4-13: CiVEC
- Register 4-14: CiINT
- Register 4-15: CiRXIF
- Register 4-16: CiRXOVIF
- Register 4-17: CiTXIF
- Register 4-18: CiTXATIF
- Register 4-19: CiTXREQ

Error and Diagnostic Registers

- Register 4-20: CiTREC
- Register 4-21: CiBDIAG0
- Register 4-22: CiBDIAG1

Fifo Control and Status Registers

- Register 4-23: CiTEFCON
- Register 4-24: CiTEFSTA
- Register 4-25: CiTEFUA
- Register 4-26: CiTXQCON
- Register 4-27: CiTXQSTA
- Register 4-28: CiTXQUA
- Register 4-29: CiFIFOCONm m = 1 to 31
- Register 4-30: CiFIFOSTAm m = 1 to 31
- Register 4-31: CiFIFOUAm m = 1 to 31

Filter Configuration and Control Registers

- Register 4-32: CiFLTCONm m = 0 to 7
- Register 4-33: CiFLTOBJm m = 0 to 31
- Register 4-34: CiMASKm m = 0 to 31

Note: The 'i' shown in the register identifier denotes CANi, for example, C1CON. The MCP251863 device contains one CAN FD Controller module.

TABLE 4-4: REGISTER LEGEND

Sym	Description	Sym	Description
R	Readable bit	HC	Cleared by Hardware only
W	Writable bit	HS	Set by Hardware only
U	Unimplemented bit, read as '0'	1	Bit is set at Reset
S	Settable bit	0	Bit is cleared at Reset
С	Clearable bit	Х	Bit is unknown at Reset

EXAMPLE 4-2:

R/W - 0 indicates the bit is both readable and writable, and reads '0' after a Reset.

REGISTER 4-7: CICON – CAN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
	TXBW	S[3:0]		ABAT	REQOP[2:0]		
bit 31							bit 24

R-1	R-0	R-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
	OPMOD[2:0]		TXQEN ⁽¹⁾	STEF ⁽¹⁾	SERR2LOM (1)	ESIGM ⁽¹⁾	RTXAT ⁽¹⁾
bit 23							bit 16

U-0	U-0	U-0	R/W-0	R-0	R/W-1	R/W-1	R/W-1
_	_	_	BRSDIS	BUSY	WFT[1:0]		WAKFIL ⁽¹⁾
bit 15							bit 8

U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	PXEDIS ⁽¹⁾	ISOCRCEN (1)			DNCNT[4:0]		
bit 7	_				_		bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 **TXBWS[3:0]**: Transmit Bandwidth Sharing bits

Delay between two consecutive transmissions (in arbitration bit times)

0000 = No delay

0001 = 2

0010 = 4

0011 = 8

0100 = 16

0101 = 32

0110 = 64

0111 = 128

1000 = 256

1000 - 230

1001 = 512 1010 = 1024

1011 = 2048

1111-1100 = 4096

bit 27 ABAT: Abort All Pending Transmissions bit

- 1 = Signal all transmit FIFOs to abort transmission
- 0 = Module will clear this bit when all transmissions were aborted
- Note 1: These bits can only be modified in Configuration mode.
 - 2: In Sleep mode, the OPMOD bits indicate Configuration mode (OPMOD = 100) and OSC. OSCDIS will read as '1'. The application software should use these bit fields as a handshake indication for the Sleep mode request.

REGISTER 4-7: CICON – CAN CONTROL REGISTER (CONTINUED)

- bit 26-24 REQOP[2:0]: Request Operation Mode bits 000 = Set Normal CAN FD mode; supports mixing of CAN FD and Classic CAN 2.0 frames 001 = Set Sleep mode 010 = Set Internal Loopback mode 011 = Set Listen Only mode 100 = Set Configuration mode 101 = Set External Loopback mode 110 = Set Normal CAN 2.0 mode; possible error frames on CAN FD frames 111 = Set Restricted Operation mode **OPMOD[2:0]**: Operation Mode Status bits⁽²⁾ bit 23-21 000 = Module is in Normal CAN FD mode; supports mixing of CAN FD and Classic CAN 2.0 frames 001 = Module is in Sleep mode 010 = Module is in Internal Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Module is in External Loopback mode 110 = Module is Normal CAN 2.0 mode; possible error frames on CAN FD frames 111 = Module is Restricted Operation mode **TXQEN**: Enable Transmit Queue bit⁽¹⁾ bit 20 1 = Enables TXQ and reserves space in RAM 0 = Do not reserve space in RAM for TXQ **STEF**: Store in Transmit Event FIFO bit⁽¹⁾ bit 19 1 = Saves transmitted messages in TEF and reserves space in RAM 0 = Do not save transmitted messages in TEF bit 18 **SERR2LOM**: Transition to Listen Only Mode on System Error bit (1) 1 = Transition to Listen Only Mode 0 = Transition to Restricted Operation Mode bit 17 **ESIGM**: Transmit ESI in Gateway Mode bit(1) 1 = ESI is transmitted recessive when ESI of message is high or CAN FD Controller error passive 0 = ESI reflects error status of CAN FD Controller RTXAT: Restrict Retransmission Attempts bit(1) bit 16 1 = Restricted retransmission attempts, CiFIFOCONm.TXAT is used 0 = Unlimited number of retransmission attempts, CiFIFOCONm.TXAT will be ignored bit 15-13 Unimplemented: Read as '0' bit 12 **BRSDIS**: Bit Rate Switching Disable bit 1 = Bit Rate Switching is Disabled, regardless of BRS in the Transmit Message Object 0 = Bit Rate Switching depends on BRS in the Transmit Message Object bit 11 BUSY: CAN Module is Busy bit 1 = The CAN module is transmitting or receiving a message 0 = The CAN module is inactive bit 10-9 WFT[1:0]: Selectable Wake-up Filter Time bits 00 = T00FILTER 01 = T01FILTER 10 = T10FILTER 11 **= T11FILTER** Please refer to Table 9-6. Note: bit 8 WAKFIL: Enable CAN Bus Line Wake-up Filter bit(1) 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up **Note 1:** These bits can only be modified in Configuration mode.
 - 2: In Sleep mode, the OPMOD bits indicate Configuration mode (OPMOD = 100) and OSC. OSCDIS will read as '1'. The application software should use these bit fields as a handshake indication for the Sleep mode request.

REGISTER 4-7: CICON – CAN CONTROL REGISTER (CONTINUED)

bit 7 **Unimplemented**: Read as '0'

bit 6 **PXEDIS**: Protocol Exception Event Detection Disabled bit⁽¹⁾

A recessive "res bit" following a recessive FDF bit is called a Protocol Exception.

1 = Protocol Exception is treated as a Form Error.

0 = If a Protocol Exception is detected, the CAN FD Controller module will enter Bus Integrating state.

bit 5 **ISOCRCEN**: Enable ISO CRC in CAN FD Frames bit⁽¹⁾

1 = Include Stuff Bit Count in CRC Field and use Non-Zero CRC Initialization Vector according to ISO 11898-1:2015

0 = Do NOT include Stuff Bit Count in CRC Field and use CRC Initialization Vector with all zeros

bit 4-0 **DNCNT[4:0]**: Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

10010 = Compare up to data byte 2 bit 6 with EID17

...

00001 = Compare up to data byte 0 bit 7 with EID0

00000 = Do not compare data bytes

Note 1: These bits can only be modified in Configuration mode.

2: In Sleep mode, the OPMOD bits indicate Configuration mode (OPMOD = 100) and OSC. OSCDIS will read as '1'. The application software should use these bit fields as a handshake indication for the Sleep mode request.

REGISTER 4-8: CINBTCFG – NOMINAL BIT TIME CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BRP[7:0]									
oit 31							bit 24		

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0			
TSEG1[7:0]										
bit 23										

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
_				TSEG2[6:0]			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
_				SJW[6:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

```
bit 31-24
               BRP[7:0]: Baud Rate Prescaler bits
               1111 1111 = TQ = 256/Fsys
               0000 \ 0000 = TQ = 1/Fsys
bit 23-16
               TSEG1[7:0]: Time Segment 1 bits (Propagation Segment + Phase Segment 1)
               1111 1111 = Length is 256 x TQ
               0000 0000 = Length is 1 \times TQ
bit 15
               Unimplemented: Read as '0'
bit 14-8
               TSEG2[6:0]: Time Segment 2 bits (Phase Segment 2)
               111 1111 = Length is 128 x TQ
               000 0000 = Length is 1 \times TQ
bit 7
               Unimplemented: Read as '0'
bit 6-0
               SJW[6:0]: Synchronization Jump Width bits
               111 1111 = Length is 128 x TQ
```

Note 1: This register can only be modified in Configuration mode.

000 0000 = Length is 1 x TQ

REGISTER 4-9: CIDBTCFG - DATA BIT TIME CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BRP[7:0]									
bit 31									

U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
_	_	_			TSEG1[4:0]		
bit 23							bit 16

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
_	_	_	_		TSEG	2[3:0]	
bit 15 bi							

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1	
_	_	_	_	SJW[3:0]				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 BRP[7:0]: Baud Rate Prescaler bits

1111 1111 = TQ = 256/Fsys

0000 0000 = Tq = 1/Fsys

bit 23-21 Unimplemented: Read as '0'

bit 20-16 TSEG1[4:0]: Time Segment 1 bits (Propagation Segment + Phase Segment 1)

1 1111 = Length is 32 x TQ

...

0 0000 = Length is 1 x TQ

bit 15-12 **Unimplemented**: Read as '0'

bit 11-8 **TSEG2[3:0]**: Time Segment 2 bits (Phase Segment 2)

1111 = Length is 16 x TQ

•••

 $0000 = \text{Length is } 1 \times \text{TQ}$

bit 7-4 **Unimplemented**: Read as '0'

bit 3-0 **SJW[3:0]**: Synchronization Jump Width bits

1111 = Length is 16 x TQ

••

0000 = Length is 1 x TQ

Note 1: This register can only be modified in Configuration mode.

REGISTER 4-10: CITDC - TRANSMITTER DELAY COMPENSATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		_	_			EDGFLTEN	SID11EN
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0
_	_	_	_	_	_	TDCM	OD[1:0]
bit 23							bit 16

U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TDCC	O[5:0]		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TDC\	/[5:0]		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26	Unimplemented: Read as '0'
bit 25	EDGFLTEN : Enable Edge Filtering during Bus Integration state bit 1 = Edge Filtering enabled, according to ISO 11898-1:2015 0 = Edge Filtering disabled
bit 24	SID11EN : Enable 12-Bit SID in CAN FD Base Format Messages bit 1 = RRS is used as SID11 in CAN FD base format messages: SID[11:0] = {SID[10:0], SID11} 0 = Do not use RRS; SID[10:0] according to ISO 11898-1:2015
bit 23-18	Unimplemented: Read as '0'
bit 17-16	TDCMOD[1:0] : Transmitter Delay Compensation Mode bits; Secondary Sample Point (SSP) 10-11 = Auto; measure delay and add TDCO. 01 = Manual; Do not measure, use TDCV + TDCO from register 00 = TDC Disabled
1 11 4 5	
bit 15	Unimplemented: Read as '0'
bit 15 bit 14 bit 13-8	Reserved: Always write to 0 TDCO[5:0]: Transmitter Delay Compensation Offset bits; Secondary Sample Point (SSP) Two's complement; offset can be positive or zero, therefore, bit 14 must always be set to 0. 11 1111 = 63 x TSYSCLK
bit 14	Reserved: Always write to 0 TDC0[5:0]: Transmitter Delay Compensation Offset bits; Secondary Sample Point (SSP) Two's complement; offset can be positive or zero, therefore, bit 14 must always be set to 0.
bit 14	Reserved: Always write to 0 TDCO[5:0]: Transmitter Delay Compensation Offset bits; Secondary Sample Point (SSP) Two's complement; offset can be positive or zero, therefore, bit 14 must always be set to 0. 11 1111 = 63 x TSYSCLK
bit 14 bit 13-8	Reserved: Always write to 0 TDCO[5:0]: Transmitter Delay Compensation Offset bits; Secondary Sample Point (SSP) Two's complement; offset can be positive or zero, therefore, bit 14 must always be set to 0. 11 1111 = 63 x TSYSCLK 00 0000 = 0 x TSYSCLK

Note 1: This register can only be modified in Configuration mode.

REGISTER 4-11: CITBC - TIME BASE COUNTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC[3	1:24]			
bit 31							bit 24

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC[2	3:16]			
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC[1	15:8]			
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | TBC[| 7:0] | | | |
| bit 7 | | | | | | | bit 0 |

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **TBC[31:0]**: Time Base Counter bits

This is a free running timer that increments every TBCPRE clocks when TBCEN is set

Note 1: The TBC will be stopped and reset when TBCEN = 0.

2: The TBC prescaler count will be reset on any write to CiTBC (CiTSCON.TBCPRE will be unaffected).

REGISTER 4-12: CITSCON - TIME STAMP CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	TSRES	TSEOF	TBCEN
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	TBCPRE[9:8]	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TBCPRE[7:0]								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-19 **Unimplemented**: Read as '0'

bit 18 **TSRES**: Time Stamp res bit (FD Frames only)

1 = at sample point of the bit following the FDF bit.

0 = at sample point of SOF

bit 17 TSEOF: Time Stamp EOF bit

1 = Time Stamp when frame is taken valid:

- RX no error until last but one bit of EOF

- TX no error until the end of EOF

- 1X no entor until the end of EOF

0 = Time Stamp at "beginning" of Frame:

- Classical Frame: at sample point of SOF

- FD Frame: see TSRES bit.

bit 16 TBCEN: Time Base Counter Enable bit

1 = Enable TBC

0 = Stop and reset TBC

bit 15-10 **Unimplemented**: Read as '0'

bit 9-0 TBCPRE[9:0]: Time Base Counter Prescaler bits

1023 = TBC increments every 1024 clocks

...

0 = TBC increments every 1 clock

REGISTER 4-13: CIVEC - INTERRUPT CODE REGISTER

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_			F	RXCODE[6:0] ⁽¹⁾)		
bit 31							bit 24

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_			7	TXCODE[6:0] ⁽¹⁾)		
bit 23							bit 16

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			FILHIT[4:0] ⁽¹⁾		
bit 15							bit 8

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_				ICODE[6:0] ⁽¹⁾			
bit 7							bit 0

```
bit 31
               Unimplemented: Read as '0'
               RXCODE[6:0]: Receive Interrupt Flag Code bits<sup>(1)</sup>
bit 30-24
               1000001-1111111 = Reserved
               1000000 = No interrupt
               0100000-0111111 = Reserved
               0011111 = FIFO 31 Interrupt (RFIF[31] set)
               0000010 = FIFO 2 Interrupt (RFIF[2] set)
               0000001 = FIFO 1 Interrupt (RFIF[1] set)
                0000000 = Reserved. FIFO 0 cannot receive.
bit 23
               Unimplemented: Read as '0'
               TXCODE[6:0]: Transmit Interrupt Flag Code bits<sup>(1)</sup>
bit 22-16
               1000001-1111111 = Reserved
               1000000 = No interrupt
               0100000-0111111 = Reserved
               0011111 = FIFO 31 Interrupt (TFIF[31] set)
               0000001 = FIFO 1 Interrupt (TFIF[1] set)
               0000000 = TXQ Interrupt (TFIF[0] set)
bit 15-13
               Unimplemented: Read as '0'
               FILHIT[4:0]: Filter Hit Number bits<sup>(1)</sup>
bit 12-8
               11111 = Filter 31
               11110 = Filter 30
               00001 = Filter 1
               00000 = Filter 0
```

Note 1: If multiple interrupts are pending, the interrupt with the highest number will be indicated.

REGISTER 4-13: CIVEC - INTERRUPT CODE REGISTER (CONTINUED)

```
bit 7
               Unimplemented: Read as '0'
bit 6-0
               ICODE[6:0]: Interrupt Flag Code bits<sup>(1)</sup>
               1001011-1111111 = Reserved
               1001010 = Transmit Attempt Interrupt (any bit in CiTXATIF set)
               1001001 = Transmit Event FIFO Interrupt (any bit in CiTEFIF set)
               1001000 = Invalid Message Occurred (IVMIF/IE)
               1000111 = Operation Mode Change Occurred (MODIF/IE)
               1000110 = TBC Overflow (TBCIF/IE)
               1000101 = RX/TX MAB Overflow/Underflow (RX: message received before previous message was
                          saved to memory; TX: can't feed TX MAB fast enough to transmit consistent data.)
                           (SERRIF/IE)
               1000100 = Address Error Interrupt (illegal FIFO address presented to system) (SERRIF/IE)
               1000011 = Receive FIFO Overflow Interrupt (any bit in CiRXOVIF set)
               1000010 = Wake-up interrupt (WAKIF/WAKIE)
               1000001 = Error Interrupt (CERRIF/IE)
               1000000 = No interrupt
               0100000-0111111 = Reserved
               0011111 = FIFO 31 Interrupt (TFIF[31] or RFIF[31] set)
               0000001 = FIFO 1 Interrupt (TFIF[1] or RFIF[1] set)
               0000000 = TXQ Interrupt (TFIF[0] set)
```

Note 1: If multiple interrupts are pending, the interrupt with the highest number will be indicated.

REGISTER 4-14: CIINT – INTERRUPT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVMIE	WAKIE	CERRIE	SERRIE	RXOVIE	TXATIE	SPICRCIE	ECCIE
bit 31							bit 24

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	TEFIE	MODIE	TBCIE	RXIE	TXIE
bit 23							bit 16

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0	R-0
IVMIF ⁽¹⁾	WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF	SPICRCIF	ECCIF
bit 15							bit 8

U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0
_	_	_	TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF
bit 7							bit 0

Lea	e۱	ոժ	٠
	CI	IU	

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31	IVMIE: Invalid Message Interrupt Enable bit
bit 30	WAKIE: Bus Wake Up Interrupt Enable bit
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit
bit 28	SERRIE: System Error Interrupt Enable bit
bit 27	RXOVIE : Receive FIFO Overflow Interrupt Enable bit
bit 26	TXATIE: Transmit Attempt Interrupt Enable bit
bit 25	SPICRCIE: SPI CRC Error Interrupt Enable bit
bit 24	ECCIE: ECC Error Interrupt Enable bit
bit 23-21	Unimplemented: Read as '0'
bit 20	TEFIE: Transmit Event FIFO Interrupt Enable bit
bit 19	MODIE: Mode Change Interrupt Enable bit
bit 18	TBCIE: Time Base Counter Interrupt Enable bit
bit 17	RXIE: Receive FIFO Interrupt Enable bit
bit 16	TXIE: Transmit FIFO Interrupt Enable bit
bit 15	IVMIF: Invalid Message Interrupt Flag bit ⁽¹⁾
bit 14	WAKIF: Bus Wake Up Interrupt Flag bit ⁽¹⁾
bit 13	CERRIF: CAN Bus Error Interrupt Flag bit ⁽¹⁾
bit 12	SERRIF: System Error Interrupt Flag bit ⁽¹⁾
	1 = A system error occurred
L:1 44	0 = No system error occurred
bit 11	RXOVIF : Receive Object Overflow Interrupt Flag bit 1 = Receive FIFO overflow occurred
	0 = No receive FIFO overflow has occurred
bit 10	TXATIF: Transmit Attempt Interrupt Flag bit

Note 1: Flags are set by hardware and cleared by application.

REGISTER 4-14: CIINT – INTERRUPT REGISTER (CONTINUED)

bit 9	SPICRCIF: SPI CRC Error Interrupt Flag bit
bit 8	ECCIF: ECC Error Interrupt Flag bit
bit 7-5	Unimplemented: Read as '0'
bit 4	TEFIF : Transmit Event FIFO Interrupt Flag bit 1 = TEF interrupt pending 0 = No TEF interrupts pending
bit 3	MODIF : Operation Mode Change Interrupt Flag bit ⁽¹⁾ 1 = Operation mode change occurred (OPMOD has changed) 0 = No mode change occurred
bit 2	TBCIF : Time Base Counter Overflow Interrupt Flag bit ⁽¹⁾ 1 = TBC has overflowed 0 = TBC did not overflow
bit 1	RXIF: Receive FIFO Interrupt Flag bit 1 = Receive FIFO interrupt pending 0 = No receive FIFO interrupts pending
bit 0	TXIF : Transmit FIFO Interrupt Flag bit 1 = Transmit FIFO interrupt pending 0 = No transmit FIFO interrupts pending

Note 1: Flags are set by hardware and cleared by application.

REGISTER 4-15: CIRXIF - RECEIVE INTERRUPT STATUS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF[3	1:24]			
bit 31							bit 24

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF[2	3:16]			
bit 23							bit 16

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF[1	15:8]			
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0
			RFIF[7:1]				_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 RFIF[31:1]: Receive FIFO Interrupt Pending bits⁽¹⁾

1 = One or more enabled receive FIFO interrupts are pending

0 = No enabled receive FIFO interrupts are pending

bit 0 **Unimplemented**: Read as '0'

Note 1: RFIF = 'or' of enabled RXFIFO flags; flags will be cleared when the condition of the FIFO terminates.

REGISTER 4-16: CIRXOVIF - RECEIVE OVERFLOW INTERRUPT STATUS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOVIF	[31:24]			
bit 31							bit 24

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
RFOVIF[23:16]								
bit 23							bit 16	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
RFOVIF[15:8]								
bit 15							bit 8	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0
RFOVIF[7:1]							
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 RFOVIF[31:1]: Receive FIFO Overflow Interrupt Pending bits

1 = Interrupt is pending0 = Interrupt not pending

bit 0 **Unimplemented**: Read as '0'

Note 1: Flags need to be cleared in FIFO register

REGISTER 4-17: CITXIF - TRANSMIT INTERRUPT STATUS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFIF[31:24]								
bit 31							bit 24	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFIF[23:16] ⁽¹⁾								
bit 23							bit 16	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
TFIF[15:8] ⁽¹⁾									
bit 15							bit 8		

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFIF[7:0] ⁽¹⁾								
bit 7							bit 0	

Legena

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 TFIF[31:0]: Transmit FIFO/TXQ (2) Interrupt Pending bits(1)

1 = One or more enabled transmit FIFO/TXQ interrupts are pending

0 = No enabled transmit FIFO/TXQ interrupt are pending

Note 1: TFIF = 'or' of the enabled TXFIFO flags; flags will be cleared when the condition of the FIFO terminates.

2: TFIF[0] is for the Transmit Queue.

REGISTER 4-18: CITXATIF - TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFATIF[31:24] ⁽¹⁾								
bit 31							bit 24	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFATIF[23:16] ⁽¹⁾								
bit 23							bit 16	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFATIF[15:8] ⁽¹⁾								
bit 15							bit 8	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TFATIF[7:0] ⁽¹⁾								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **TFATIF[31:0]**: Transmit FIFO/TXQ ⁽²⁾ Attempt Interrupt Pending bits⁽¹⁾

1 = Interrupt is pending0 = Interrupt not pending

Note 1: Flags need to be cleared in FIFO register

2: TFATIF[0] is for the Transmit Queue.

REGISTER 4-19: CITXREQ - TRANSMIT REQUEST REGISTER

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREQ	[31:24]			
bit 31							bit 24

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREQ	[23:16]			
bit 23							bit 16

| S/HC-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | TXREQ | [15:8] | | | |
| bit 15 | | | | | | | bit 8 |

| S/HC-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | TXREC | Q[7:0] | | | |
| bit 7 | | | | | | | bit 0 |

L	е	a	е	n	d	

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 TXREQ[31:1]: Message Send Request bits

<u>TXEN= 1</u> (Object configured as a Transmit Object) Setting this bit to '1' requests sending a message.

The bit will automatically clear when the message(s) queued in the object is (are) successfully sent.

This bit can NOT be used for aborting a transmission.

TXEN= 0 (Object configured as a Receive Object)

This bit has no effect

bit 0 TXREQ[0]: Transmit Queue Message Send Request bit

Setting this bit to '1' requests sending a message.

The bit will automatically clear when the message(s) queued in the object is (are) successfully sent.

This bit can NOT be used for aborting a transmission.

REGISTER 4-20: CITREC - TRANSMIT/RECEIVE ERROR COUNT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_			_		_
bit 31							bit 24

U-0	U-0	R-1	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN
bit 23							bit 16

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TEC[7:0]			
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			REC[7:0]			
bit 7							bit 0

_		_
Lea	-	161-

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-22	Unimplemented: Read as '0'
bit 21	TXBO : Transmitter in Bus Off State bit (TEC > 255) In Configuration mode, TXBO is set, since the module is not on the bus.
bit 20	TXBP : Transmitter in Error Passive State bit (TEC > 127)
bit 19	RXBP : Receiver in Error Passive State bit (REC > 127)
bit 18	TXWARN : Transmitter in Error Warning State bit (128 > TEC > 95)
bit 17	RXWARN : Receiver in Error Warning State bit (128 > REC > 95)
bit 16	EWARN: Transmitter or Receiver is in Error Warning State bit
bit 15-8	TEC[7:0]: Transmit Error Counter bits

bit 15-8 **TEC[7:0]**: Transmit Error Counter bits bit 7-0 **REC[7:0]**: Receive Error Counter bits

REGISTER 4-21: CiBDIAG0 - BUS DIAGNOSTIC REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTERRO	NT[7:0]			
bit 31							bit 24

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DRERRO	NT[7:0]			
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NTERRO	NT[7:0]			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NRERRO	NT[7:0]			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 DTERRCNT[7:0]: Data Bit Rate Transmit Error Counter bits
bit 23-16 DRERCNT[7:0]: Data Bit Rate Receive Error Counter bits
bit 15-8 NTERRCNT[7:0]: Nominal Bit Rate Transmit Error Counter bits
bit 7-0 NRERCNT[7:0]: Nominal Bit Rate Receive Error Counter bits

REGISTER 4-22: CiBDIAG1 - BUS DIAGNOSTICS REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
DLCMM	ESI	DCRCERR	DSTUFERR	DFORMERR	_	DBIT1ERR	DBIT0ERR
bit 31		•					bit 24

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBOERR	_	NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSGC	NT[15:8]			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSGC	NT[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DLCMM : DLC Mismatch bit
	During a transmission or reception, the specified DLC is larger than the PLSIZE of the FIFO element.
bit 30	ESI: ESI flag of a received CAN FD message was set.
bit 29	DCRCERR: Same as for nominal bit rate (see below).
bit 28	DSTUFERR: Same as for nominal bit rate (see below).
bit 27	DFORMERR : Same as for nominal bit rate (see below).
bit 26	Unimplemented: Read as '0'
bit 25	DBIT1ERR: Same as for nominal bit rate (see below).
bit 24	DBIT0ERR: Same as for nominal bit rate (see below).
bit 23	TXBOERR: Device went to bus-off (and auto-recovered).
bit 22	Unimplemented: Read as '0'
bit 21	NCRCERR : The CRC check sum of a received message was incorrect. The CRC of an incoming message does not match with the CRC calculated from the received data.
bit 20	NSTUFERR : More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.
bit 19	NFORMERR: A fixed format part of a received frame has the wrong format.
bit 18	NACKERR: Transmitted message was not acknowledged.
bit 17	NBIT1ERR : During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value '1'), but the monitored bus value was dominant.
bit 16	NBIT0ERR : During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), the device wanted to send a dominant level (data or identifier bit logical value '0'), but the monitored bus value was recessive.
bit 15-0	EFMSGCNT[15:0]: Error Free Message Counter bits

REGISTER 4-23: CITEFCON - TRANSMIT EVENT FIFO CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSIZE[4:0] ⁽¹⁾		
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	S/HC-1	U-0	S/HC-0
_	_	_	_	_	FRESET ⁽²⁾	_	UINC
bit 15							bit 8

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	TEFTSEN ⁽¹⁾	_	TEFOVIE	TEFFIE	TEFHIE	TEFNEIE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 **Unimplemented:** Read as '0' bit 28-24 **FSIZE[4:0]:** FIFO Size bits⁽¹⁾

0_0000 = FIFO is 1 Message deep 0_0001 = FIFO is 2 Messages deep 0_0010 = FIFO is 3 Messages deep

...

1 1111 = FIFO is 32 Messages deep

bit 23-11 **Unimplemented:** Read as '0' bit 10 **FRESET:** FIFO Reset bit⁽²⁾

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO was reset. The user should wait for this bit to clear before taking any action.

0 = No effect

bit 9 **Unimplemented:** Read as '0'

bit 8 UINC: Increment Tail bit

When this bit is set, the FIFO tail will increment by a single message.

bit 7-6 Unimplemented: Read as '0'

bit 5 **TEFTSEN**: Transmit Event FIFO Time Stamp Enable bit⁽¹⁾

1 = Time Stamp objects in TEF

0 = Do not Time Stamp objects in TEF

bit 4 Unimplemented: Read as '0'

bit 3 **TEFOVIE**: Transmit Event FIFO Overflow Interrupt Enable bit

1 = Interrupt enabled for overflow event

0 = Interrupt disabled for overflow event

Note 1: These bits can only be modified in Configuration mode.

2: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-23: CITEFCON – TRANSMIT EVENT FIFO CONTROL REGISTER (CONTINUED)

bit 2 **TEFFIE**: Transmit Event FIFO Full Interrupt Enable bit

1 = Interrupt enabled for FIFO full0 = Interrupt disabled for FIFO full

bit 1 **TEFHIE**: Transmit Event FIFO Half Full Interrupt Enable bit

1 = Interrupt enabled for FIFO half full0 = Interrupt disabled for FIFO half full

bit 0 **TEFNEIE**: Transmit Event FIFO Not Empty Interrupt Enable bit

1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty

Note 1: These bits can only be modified in Configuration mode.

2: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-24: CITEFSTA – TRANSMIT EVENT FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_					_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	HS/C-0	R-0	R-0	R-0
_	_	_	_	TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 **Unimplemented:** Read as '0'

bit 3 **TEFOVIF**: Transmit Event FIFO Overflow Interrupt Flag bit

1 = Overflow event has occurred0 = No overflow event occurred

bit 2 **TEFFIF**: Transmit Event FIFO Full Interrupt Flag bit⁽¹⁾

1 = FIFO is full 0 = FIFO is not full

bit 1 **TEFHIF**: Transmit Event FIFO Half Full Interrupt Flag bit⁽¹⁾

1 = FIFO is ≥ half full0 = FIFO is < half full

bit 0 **TEFNEIF**: Transmit Event FIFO Not Empty Interrupt Flag bit⁽¹⁾

1 = FIFO is not empty, contains at least one message

0 = FIFO is empty

Note 1: This bit is read only and reflects the status of the FIFO.

REGISTER 4-25: CITEFUA – TRANSMIT EVENT FIFO USER ADDRESS REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
TEFUA[31:24]									
bit 31									

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TEFUA[23:16]								
bit 23							bit 16	

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TEFUA[15:8]								
bit 15								

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TEFUA[7:0]								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **TEFUA[31:0]:** Transmit Event FIFO User Address bits

A read of this register will return the address where the next object is to be read (FIFO tail).

Note 1: This register is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 4-26: CITXQCON - TRANSMIT QUEUE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PLSIZE[2:0] ⁽¹⁾				FSIZE[4:0] ⁽¹⁾		
bit 31							bit 24

U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TXA	TXAT[1:0]		TXPRI[4:0]				
bit 23							bit 16	

U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0
_	_	_	_	_	FRESET ⁽³⁾	TXREQ ⁽²⁾	UINC
bit 15							bit 8

R-1	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
TXEN	_	_	TXATIE	_	TXQEIE	-	TXQNIE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 PLSIZE[2:0]: Payload Size bits⁽¹⁾

000 **= 8 data bytes**

001 = 12 data bytes

010 = 16 data bytes

011 = 20 data bytes

100 = 24 data bytes

101 = 32 data bytes

110 = 48 data bytes

111 = 64 data bytes

bit 28-24 **FSIZE[4:0]**: FIFO Size bits⁽¹⁾

0 0000 = FIFO is 1 Message deep

0_0001 = FIFO is 2 Messages deep

0_0010 = FIFO is 3 Messages deep

1 1111 = FIFO is 32 Messages deep

bit 23 Unimplemented: Read as '0'

bit 22-21 **TXAT[1:0]**: Retransmission Attempts bits

This feature is enabled when CiCON.RTXAT is set.

00 = Disable retransmission attempts

01 = Three retransmission attempts

10 = Unlimited number of retransmission attempts

11 = Unlimited number of retransmission attempts

bit 20-16 **TXPRI[4:0]**: Message Transmit Priority bits

00000 = Lowest Message Priority

•••

11111 = Highest Message Priority

- Note 1: These bits can only be modified in Configuration mode.
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-26: CITXQCON – TRANSMIT QUEUE CONTROL REGISTER (CONTINUED)

bit 15-11	Unimplemented: Read as '0'
bit 10	 FRESET: FIFO Reset bit⁽³⁾ 1 = FIFO will be reset when bit is set; cleared by hardware when FIFO was reset. User should wait until this bit is clear before taking any action.
	0 = No effect
bit 9	 TXREQ: Message Send Request bit⁽²⁾ 1 = Requests sending a message; the bit will automatically clear when all the messages queued in the TXQ are successfully sent. 0 = Clearing the bit to '0' while set ('1') will request a message abort.
bit 8	UINC: Increment Head bit
DIL O	When this bit is set, the FIFO head will increment by a single message.
bit 7	TXEN: TX Enable
	1 = Transmit Message Queue. This bit always reads as '1'.
bit 6-5	Unimplemented: Read as '0'
bit 4	TXATIE: Transmit Attempts Exhausted Interrupt Enable bit
	1 = Enable interrupt0 = Disable interrupt
bit 3	Unimplemented: Read as '0'
bit 2	TXQEIE: Transmit Queue Empty Interrupt Enable bit
5.1. 2	1 = Interrupt enabled for TXQ empty
	0 = Interrupt disabled for TXQ empty
bit 1	Unimplemented: Read as '0'
bit 0	TXQNIE : Transmit Queue Not Full Interrupt Enable bit 1 = Interrupt enabled for TXQ not full 0 = Interrupt disabled for TXQ not full
Note 1:	These bits can only be modified in Configuration mode.
	TI: 1::: 1 () 0 FIEO: 1

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- 3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-27: CITXQSTA – TRANSMIT QUEUE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_					_	_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 23							bit 16

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			TXQCI[4:0] ⁽¹⁾		
bit 15	_						bit 8

HS/C-0	HS/C-0	HS/C-0	HS/C-0	U-0	R-1	U-0	R-1		
TXABT ⁽²⁾⁽³⁾	TXLARB (2)(3)	TXERR ⁽²⁾⁽³⁾	TXATIF	_	TXQEIF	_	TXQNIF		
bit 7 bit 0									

П	e	ae	n	d	
_	•	чч		u	

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 3-13 **Unimplemented:** Read as '0'

bit 12-8 **TXQCI[4:0]:** Transmit Queue Message Index bits⁽¹⁾

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

bit 7 **TXABT**: Message Aborted Status bit⁽²⁾⁽³⁾

1 = Message was aborted

0 = Message completed successfully

bit 6 **TXLARB**: Message Lost Arbitration Status bit⁽²⁾⁽³⁾

1 = Message lost arbitration while being sent

0 = Message did not loose arbitration while being sent

bit 5 **TXERR**: Error Detected During Transmission bit⁽²⁾⁽³⁾

1 = A bus error occurred while the message was being sent

 $_{
m 0}\,$ = A bus error did not occur while the message was being sent

bit 4 **TXATIF**: Transmit Attempts Exhausted Interrupt Pending bit

1 = Interrupt pending

0 = Interrupt Not pending

bit 3 **Unimplemented:** Read as '0'

bit 2 **TXQEIF**: Transmit Queue Empty Interrupt Flag bit

1 = TXQ is empty

0 = TXQ is not empty, at least 1 message queued to be transmitted

bit 1 **Unimplemented:** Read as '0'

bit 0 **TXQNIF**: Transmit Queue Not Full Interrupt Flag bit

1 = TXQ is not full 0 = TXQ is full

Note 1: TXQCI[4:0] gives a zero-indexed value to the message in the TXQ. If the TXQ is 4 messages deep (FSIZE = 5'h03) TXQCI will take on a value of 0 to 3 depending on the state of the TXQ.

2: This bit is cleared when TXREQ is set or by writing a 0 using the SPI.

3: This bit is updated when a message completes (or aborts) or when the TXQ is reset.

REGISTER 4-28: CITXQUA – TRANSMIT QUEUE USER ADDRESS REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQUA	[31:24]			
bit 31							bit 24

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TXQUA[23:16]								
bit 23							bit 16	

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TXQUA[15:8]								
bit 15							bit 8	

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
TXQUA[7:0]								
bit 7							bit 0	

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 TXQUA[31:0]: TXQ User Address bits

A read of this register will return the address where the next message is to be written (TXQ head).

Note 1: This register is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 4-29: CIFIFOCONm – FIFO CONTROL REGISTER m, (m = 1 TO 31)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PLSIZE[2:0] ⁽¹⁾				FSIZE[4:0] ⁽¹⁾		
bit 31							bit 24

U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TXA	Γ[1:0]		TXPRI[4:0]			
bit 23							bit 16

U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0
_	_	_	_	_	FRESET ⁽³⁾	TXREQ ⁽²⁾	UINC
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXEN ⁽¹⁾	RTREN	RXTSEN ⁽¹⁾	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNIE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 **PLSIZE[2:0]:** Payload Size bits⁽¹⁾

000 = 8 data bytes

001 = **12** data bytes

010 = 16 data bytes

011 = 20 data bytes

100 = 24 data bytes

101 = 32 data bytes

110 = **48** data bytes

111 = 64 data bytes

bit 28-24 **FSIZE[4:0]**: FIFO Size bits⁽¹⁾

0 0000 = FIFO is 1 Message deep

0 0001 = FIFO is 2 Messages deep

0 0010 = FIFO is 3 Messages deep

...

1 1111 = FIFO is 32 Messages deep

bit 23 Unimplemented: Read as '0'

bit 22-21 **TXAT[1:0]:** Retransmission Attempts bits

This feature is enabled when CiCON.RTXAT is set.

00 = Disable retransmission attempts

01 = Three retransmission attempts

10 = Unlimited number of retransmission attempts

11 = Unlimited number of retransmission attempts

bit 20-16 **TXPRI[4:0]:** Message Transmit Priority bits

00000 = Lowest Message Priority

11111 = Highest Message Priority

Note 1: These bits can only be modified in Configuration mode.

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- 3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-29: CIFIFOCONm – FIFO CONTROL REGISTER m, (m = 1 TO 31) (CONTINUED)

bit 15-11 **Unimplemented:** Read as '0'

bit 10 FRESET: FIFO Reset bit⁽³⁾

1 = FIFO will be reset when bit is set; cleared by hardware when FIFO was reset. User should wait until this bit is clear before taking any action.

0 = No effect

bit 9 **TXREQ:** Message Send Request bit⁽²⁾

TXEN = 1 (FIFO configured as a Transmit FIFO)

 $_{
m 1}$ = Requests sending a message; the bit will automatically clear when all the messages queued in the FIFO are successfully sent.

0 = Clearing the bit to '0' while set ('1') will request a message abort.

TXEN = 0 (FIFO configured as a Receive FIFO)

This bit has no effect.

bit 8 UINC: Increment Head/Tail bit

TXEN = 1 (FIFO configured as a Transmit FIFO)

When this bit is set, the FIFO head will increment by a single message.

TXEN = 0 (FIFO configured as a Receive FIFO)

When this bit is set, the FIFO tail will increment by a single message.

bit 7 **TXEN:** TX/RX FIFO Selection bit⁽¹⁾

1 = Transmit FIFO

0 = Receive FIFO

bit 6 RTREN: Auto RTR Enable bit

1 = When a remote transmit is received, TXREQ will be set.

0 = When a remote transmit is received, TXREQ will be unaffected.

bit 5 **RXTSEN**: Received Message Time Stamp Enable bit (1)

1 = Capture time stamp in received message object in RAM.

0 = Do not capture time stamp.

bit 4 **TXATIE**: Transmit Attempts Exhausted Interrupt Enable bit

1 = Enable interrupt0 = Disable interrupt

bit 3 **RXOVIE**: Overflow Interrupt Enable bit

1 = Interrupt enabled for overflow event

0 = Interrupt disabled for overflow event

bit 2 TFERFFIE: Transmit/Receive FIFO Empty/Full Interrupt Enable bit

TXEN = 1 (FIFO configured as a Transmit FIFO)

Transmit FIFO Empty Interrupt Enable
1 = Interrupt enabled for FIFO empty

0 = Interrupt disabled for FIFO empty

TXEN = 0 (FIFO configured as a Receive FIFO)

Receive FIFO Full Interrupt Enable
1 = Interrupt enabled for FIFO full

0 = Interrupt disabled for FIFO full

Note 1: These bits can only be modified in Configuration mode.

2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.

3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-29: CiFIFOCONm - FIFO CONTROL REGISTER m, (m = 1 TO 31) (CONTINUED)

bit 1 TFHRFHIE: Transmit/Receive FIFO Half Empty/Half Full Interrupt Enable bit

TXEN = 1 (FIFO configured as a Transmit FIFO)
 Transmit FIFO Half Empty Interrupt Enable
 1 = Interrupt enabled for FIFO half empty
 0 = Interrupt disabled for FIFO half empty

TXEN = 0 (FIFO configured as a Receive FIFO)

Receive FIFO Half Full Interrupt Enable

1 = Interrupt enabled for FIFO half full

0 = Interrupt disabled for FIFO half full

bit 0 TFNRFNIE: Transmit/Receive FIFO Not Full/Not Empty Interrupt Enable bit

TXEN = 1 (FIFO configured as a Transmit FIFO)

Transmit FIFO Not Full Interrupt Enable

1 = Interrupt enabled for FIFO not full

0 = Interrupt disabled for FIFO not full

TXEN = 0 (FIFO configured as a Receive FIFO)
Receive FIFO Not Empty Interrupt Enable
1 = Interrupt enabled for FIFO not empty

0 = Interrupt disabled for FIFO not empty

Note 1: These bits can only be modified in Configuration mode.

2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.

3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 4-30: CIFIFOSTAM - FIFO STATUS REGISTER m, (m = 1 TO 31)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		_
bit 31							bit 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	_	_	_	_	
bit 23 bit 16								

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			FIFOCI[4:0] ⁽¹⁾		
bit 15							bit 8

HS/C-0	HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0	
TXABT ⁽²⁾⁽³⁾	TXLARB (2)(3)	TXERR ⁽²⁾⁽³⁾	TXATIF	RXOVIF	TFERFFIF	TFHRFHIF	TFNRFNIF	
bit 7 bit								

Leg	Δ	n	h	•
ьеч	C	ш	u	•

bit 4

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 FIFOCI[4:0]: FIFO Message Index bits⁽¹⁾

TXEN = 1 (FIFO is configured as a Transmit FIFO)

A read of this bit field will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0 (FIFO is configured as a Receive FIFO)

A read of this bit field will return an index to the message that the FIFO will use to save the next message

bit 7 **TXABT:** Message Aborted Status bit⁽²⁾⁽³⁾

1 = Message was aborted

0 = Message completed successfully

bit 6 TXLARB: Message Lost Arbitration Status bit⁽²⁾⁽³⁾

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 5 **TXERR:** Error Detected During Transmission bit⁽²⁾⁽³⁾

1 = A bus error occurred while the message was being sent

 $_{
m 0}$ = A bus error did not occur while the message was being sent

TXATIF: Transmit Attempts Exhausted Interrupt Pending bit

TXEN = 1 (FIFO is configured as a Transmit FIFO)

1 = Interrupt pending

0 = Interrupt not pending

TXEN = 0 (FIFO is configured as a Receive FIFO)

Read as '0'

- **Note 1:** FIFOCI[4:0] gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE = 5'h03) FIFOCI will take on a value of 0 to 3 depending on the state of the FIFO.
 - 2: This bit is cleared when TXREQ is set or by writing a 0 using the SPI.
 - 3: This bit is updated when a message completes (or aborts) or when the FIFO is reset.

REGISTER 4-30: CIFIFOSTAM – FIFO STATUS REGISTER m, (m = 1 TO 31) (CONTINUED)

bit 3 RXOVIF: Receive FIFO Overflow Interrupt Flag bit

TXEN = 1 (FIFO is configured as a Transmit FIFO)

Unused, Read as '0'

TXEN = 0 (FIFO is configured as a Receive FIFO)

1 = Overflow event has occurred

0 = No overflow event has occurred

bit 2 TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit

TXEN = 1 (FIFO is configured as a Transmit FIFO)

Transmit FIFO Empty Interrupt Flag

1 = FIFO is empty

0 = FIFO is not empty; at least one message queued to be transmitted

TXEN = 0 (FIFO is configured as a Receive FIFO)

Receive FIFO Full Interrupt Flag

1 = FIFO is full

0 = FIFO is not full

bit 1 TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit

TXEN = 1 (FIFO is configured as a Transmit FIFO)

Transmit FIFO Half Empty Interrupt Flag

1 = FIFO is ≤ half full 0 = FIFO is > half full

TXEN = 0 (FIFO is configured as a Receive FIFO)

Receive FIFO Half Full Interrupt Flag

1 = FIFO is ≤ half full 0 = FIFO is < half full

bit 0 TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit

TXEN = 1 (FIFO is configured as a Transmit FIFO)

Transmit FIFO Not Full Interrupt Flag

1 = FIFO is not full

0 = FIFO is full

TXEN = 0 (FIFO is configured as a Receive FIFO)

Receive FIFO Not Empty Interrupt Flag

1 = FIFO is not empty, contains at least one message

0 = FIFO is empty

Note 1: FIFOCI[4:0] gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE = 5'h03) FIFOCI will take on a value of 0 to 3 depending on the state of the FIFO.

- 2: This bit is cleared when TXREQ is set or by writing a 0 using the SPI.
- 3: This bit is updated when a message completes (or aborts) or when the FIFO is reset.

REGISTER 4-31: CiFIFOUAm - FIFO USER ADDRESS REGISTER m, (m = 1 TO 31)

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	[31:24]			
bit 31							bit 24

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
FIFOUA[23:16]								
bit 23							bit 16	

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
FIFOUA[15:8]								
bit 15							bit 8	

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
FIFOUA[7:0]								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOUA[31:0]: FIFO User Address bits

<u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0 (FIFO is configured as a Receive FIFO)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 4-32: CiFLTCONm - FILTER CONTROL REGISTER m, (m = 0 TO 7)

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN3	_	_			F3BP[4:0] ⁽¹⁾		
bit 31							bit 24

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN2	_	_			F2BP[4:0] ⁽¹⁾		
bit 23							bit 16

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN1	_	_			F1BP[4:0] ⁽¹⁾		
bit 15							bit 8

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN0	_	_			F0BP[4:0] ⁽¹⁾		
bit 7							bit 0

Le	ae	nd	ŀ
	9~		•

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 FLTEN3: Enable Filter 3 to Accept Messages bit

1 = Filter is enabled0 = Filter is disabled

bit 30-29 Unimplemented: Read as '0'

bit 28-24 **F3BP[4:0]:** Pointer to FIFO when Filter 3 hits bits⁽¹⁾

1_1111 = Message matching filter is stored in FIFO 31 1 1110 = Message matching filter is stored in FIFO 30

.....

0_0010 = Message matching filter is stored in FIFO 2 0_0001 = Message matching filter is stored in FIFO 1

0 0000 = Reserved FIFO 0 is the TX Queue and cannot receive messages

bit 23 FLTEN[2]: Enable Filter 2 to Accept Messages bit

1 = Filter is enabled0 = Filter is disabled

bit 22-21 Unimplemented: Read as '0'

bit 20-16 **F2BP[4:0]:** Pointer to FIFO when Filter 2 hits bits⁽¹⁾

1_1111 = Message matching filter is stored in FIFO 31
 1 1110 = Message matching filter is stored in FIFO 30

.

0 0010 = Message matching filter is stored in FIFO 2

0 0001 = Message matching filter is stored in FIFO 1

0 0000 = Reserved FIFO 0 is the TX Queue and cannot receive messages

bit 15 FLTEN1: Enable Filter 1 to Accept Messages bit

1 = Filter is enabled0 = Filter is disabled

bit 14-13 Unimplemented: Read as '0'

Note 1: This bit can only be modified if the corresponding filter is disabled (FLTEN = 0).

REGISTER 4-32: CIFLTCONM - FILTER CONTROL REGISTER m, (m = 0 TO 7) (CONTINUED)

```
F1BP[4:0]: Pointer to FIFO when Filter 1 hits bits<sup>(1)</sup>
bit 12-8
                1 1111 = Message matching filter is stored in FIFO 31
                1 1110 = Message matching filter is stored in FIFO 30
                0 0010 = Message matching filter is stored in FIFO 2
                0 0001= Message matching filter is stored in FIFO 1
                0 0000 = Reserved FIFO 0 is the TX Queue and cannot receive messages
bit 7
               FLTEN[0]: Enable Filter 0 to Accept Messages bit
                1 = Filter is enabled
                0 = Filter is disabled
bit 6-5
               Unimplemented: Read as '0'
                F0BP[4:0]: Pointer to FIFO when Filter 0 hits bits<sup>(1)</sup>
bit 4-0
                1 1111 = Message matching filter is stored in FIFO 31
                1 1110 = Message matching filter is stored in FIFO 30
                0 0010 = Message matching filter is stored in FIFO 2
                0 0001 = Message matching filter is stored in FIFO 1
                0 0000 = Reserved FIFO 0 is the TX Queue and cannot receive messages
```

Note 1: This bit can only be modified if the corresponding filter is disabled (FLTEN = 0).

REGISTER 4-33: CIFLTOBJm - FILTER OBJECT REGISTER m,(m = 0 TO 31)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	EXIDE	SID11			EID[17:13]		
bit 31							bit 24

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EID[12:5]								
bit 23							bit 16	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		EID[4:0]				SID[10:8]	
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | SID[7 | 7:0] | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 **Unimplemented:** Read as '0'

bit 30 **EXIDE:** Extended Identifier Enable bit

If MIDE = 1:

1 = Match only messages with extended identifier0 = Match only messages with standard identifier

bit 29 **SID11:** Standard Identifier filter bit bit 28-11 **EID[17:0]:** Extended Identifier filter bits

In DeviceNet mode, these are the filter bits for the first 18 data bits

bit 10-0 SID[10:0]: Standard Identifier filter bits

Note 1: This register can only be modified when the filter is disabled(CiFLTCON.FLTENm = 0).

REGISTER 4-34: CiMASKm – MASK REGISTER m, (m = 0 TO 31)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	MIDE	MSID11			MEID[17:13]		
bit 31							bit 24

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MEID[12:5]			
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		MEID[4:0]				MSID[10:8]	
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | MSID | [7:0] | | | |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Unimplemented: Read as '0'
bit 30	MIDE: Identifier Receive mode bit
	1 = Match only message types (standard or extended ID) that correspond to EXIDE bit in filter0 = Match both standard and extended message frames if filters match
bit 29	MSID11: Standard Identifier Mask bit
bit 28-11	MEID[17:0]: Extended Identifier Mask bits
	In DeviceNet mode, these are the mask bits for the first 18 data bits
bit 10-0	MSID[10:0]: Standard Identifier Mask bits

4.3 Message Memory

The MCP251863 device contains a 2 KB RAM that is used to store message objects. There are three different kinds of message objects:

- Table 4-5: Transmit Message Objects used by the TXQ and by TX FIFOs.
- Table 4-6: Receive Message Objects used by RX FIFOs.
- Table 4-7: TEF objects.

Figure 4-2 illustrates how message objects are mapped into RAM. The number of message objects for the TEF, the TXQ, and for each FIFO is configurable. Only the message objects for FIFO2 are shown in detail. The number of data bytes per message object (payload) is individually configurable for the TXQ and each FIFO.

FIFOs and message objects can only be configured in Configuration mode.

The TEF objects are allocated first. Space in RAM will only be reserved if CiCON.STEF = 1.

Next the TXQ objects are allocated. Space in RAM will only be reserved if CiCON.TXQEN = 1.

Next the message objects for FIFO1 through FIFO31 are allocated.

This highly flexible configuration results in an efficient usage of the RAM.

The addresses of the message objects depend on the selected configuration. The application does not have to calculate the addresses. The User Address field provides the address of the next message object to read from or write to.

4.3.1 RAM ECC

The RAM is protected with an Error Correction Code (ECC). The ECC logic supports Single Error Detection (SEC) and Double Error Detection (DED).

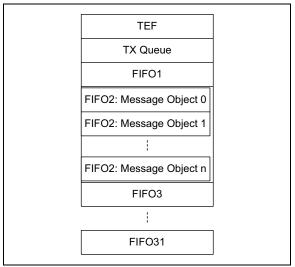
SEC/DED requires seven parity bits in addition to the 32 data bits.

Figure 4-3 shows the block diagram of the ECC logic.

4.3.1.1 ECC Enable and Disable

The ECC logic can be enabled by setting ECCCON.ECCEN. When ECC is enabled, the data written to the RAM is encoded, and the data read from RAM is decoded.

When the ECC logic is disabled, the data is written to RAM and the parity bits are taken from ECCCON.PARITY. This enables the testing of the ECC logic by the user. During a read, the parity bits are stripped out and the data is read back unchanged.


4.3.1.2 RAM Write

During a RAM write, the Encoder calculates the parity bits and adds the parity bits to the input data.

4.3.1.3 RAM READ

During a RAM read, the Decoder checks the output data from RAM for consistency and removes the parity bits. It corrects single bit errors and detects double bit errors

FIGURE 4-2: MESSAGE MEMORY ORGANIZATION

FIGURE 4-3: ECC LOGIC

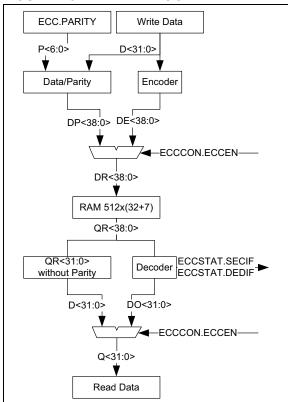


TABLE 4-5: TRANSMIT MESSAGE OBJECT (TXQ AND TX FIFO)

Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
T0	31:24			SID11			EID[17:13]		
	23:16				EID[12:5]			
	15:8			EID[4:0]				SID[10:8]	
	7:0				SID[7:0]			
T1	31:24				SEQ[2	22:15]			
	23:16		SEQ[14:7]						
	15:8			SEQ[6:0]					ESI
	7:0	FDF	BRS RTR IDE DLC[3:0]						
T2 ⁽¹⁾	31:24		Transmit Data Byte 3						
	23:16				Transmit D	ata Byte 2			
	15:8				Transmit D	ata Byte 1			
	7:0				Transmit D	ata Byte 0			
T3	31:24				Transmit D	ata Byte 7			
	23:16				Transmit D	ata Byte 6			
	15:8		Transmit Data Byte 5						
	7:0		Transmit Data Byte 4						
Ti	31:24				Transmit D	ata Byte n			
	23:16				Transmit Da	ata Byte n-1			
	15:8				Transmit Da	ita Byte n-2			
	7:0				Transmit Da	ita Byte n-3			

bit T0.31-30 Unimplemented: Read as 'x'

bit T0.29 SID11: In FD mode the standard ID can be extended to 12 bit using r1

bit T0.28-11 **EID[17:0]:** Extended Identifier bit T0.10-0 **SID[10:0]:** Standard Identifier

bit T1.31-9 SEQ[22:0]: Sequence to keep track of transmitted messages in Transmit Event FIFO

bit T1.8 **ESI:** Error Status Indicator

In CAN to CAN gateway mode (CiCON.ESIGM=1), the transmitted ESI flag is a "logical OR" of T1.ESI

and error passive state of the CAN FD Controller;

In normal mode ESI indicates the error status

1 = Transmitting node is error passive0 = Transmitting node is error active

bit T1.7 FDF: FD Frame; distinguishes between CAN and CAN FD formats

bit T1.6 **BRS:** Bit Rate Switch; selects if data bit rate is switched bit T1.5 **RTR:** Remote Transmission Request; not used in CAN FD

bit T1.4 IDE: Identifier Extension Flag; distinguishes between base and extended format

bit T1.3-0 DLC[3:0]: Data Length Code

Note 1: Data Bytes 0-n: payload size is configured individually in control register (CiFIFOCONm.PLSIZE[2:0]).

TABLE 4-6: RECEIVE MESSAGE OBJECT

Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
R0	31:24	_	_	SID11			EID[17:13]		
	23:16				EID[12:5]			
	15:8			EID[4:0]				SID[10:8]	
	7:0				SID	[7:0]			
R1	31:24	_			_	_	_		_
	23:16			_	_	_	_	_	_
	15:8			FILHIT[4:0]			_	_	ESI
	7:0	FDF BRS RTR IDE DLC[3:0]							
R2 ⁽²⁾	31:24	RXMSGTS[31:24]							
	23:16		RXMSGTS[23:16]						
	15:8				RXMSG	TS[15:8]			
	7:0				RXMSG	STS[7:0]			
R3 ⁽¹⁾	31:24				Receive D	ata Byte 3			
	23:16				Receive D	ata Byte 2			
	15:8				Receive D	ata Byte 1			
	7:0				Receive D	ata Byte 0			
R4	31:24				Receive D	ata Byte 7			
	23:16				Receive D	ata Byte 6			
	15:8				Receive D	ata Byte 5			
	7:0					ata Byte 4			
Ri	31:24					ata Byte n			
	23:16					ata Byte n-1			
	15:8					ata Byte n-2			
	7:0				Receive Da	ata Byte n-3			

bit R0.31-30 Unimplemented: Read as 'x'

bit R0.29 SID[11]: In FD mode the standard ID can be extended to 12 bit using r1

bit R0.28-11 **EID[17:0]:** Extended Identifier bit R0.10-0 **SID[10:0]:** Standard Identifier bit R1.31-16 **Unimplemented:** Read as 'x'

bit R1.15-11 FILTHIT[4:0]: Filter Hit, number of filter that matched

bit R1.10-9 **Unimplemented:** Read as 'x' bit R1.8 **ESI:** Error Status Indicator

1 = Transmitting node is error passive0 = Transmitting node is error active

bit R1.7 **FDF:** FD Frame; distinguishes between CAN and CAN FD formats bit R1.6 **BRS:** Bit Rate Switch; indicates if data bit rate was switched bit R1.5 **RTR:** Remote Transmission Request; not used in CAN FD

bit R1.4 IDE: Identifier Extension Flag; distinguishes between base and extended format

bit R1.3-0 DLC[3:0]: Data Length Code

bit R2.31-0 **RXMSGTS[31:0]:** Receive Message Time Stamp

Note 1: RXMOBJ: Data Bytes 0-n: payload size is configured individually in the FIFO control register (CiFIFOCONm.PLSIZE[2:0]).

2: R2 (RXMSGTS) only exits in objects where CiFIFOCONm.RXTSEN is set.

TABLE 4-7: TRANSMIT EVENT FIFO OBJECT

Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
TE0	31:24		ı	SID11			EID[17:13]		
	23:16				EID[12:5]			
	15:8		EID[4:0] SID[10:8]						
	7:0		SID[7:0]						
TE1	31:24				SEQ[2	22:15]			
	23:16				SEQ[14:7]			
	15:8				SEQ[6:0]				ESI
	7:0	FDF	BRS	RTR	IDE		DLC	[3:0]	
TE2 (1)	31:24				TXMSGT	S[31:24]			
	23:16				TXMSGT	S[23:16]			
	15:8				TXMSG	TS[15:8]			
	7:0				TXMSG	TS[7:0]			

bit TE0.31-30 Unimplemented: Read as 'x' bit TE0.29 SID11: In FD mode the standard ID can be extended to 12 bit using r1 bit TE0.28-11 EID[17:0]: Extended Identifier bit TE0.10-0 SID[10:0]: Standard Identifier bit TE1.31-9 SEQ[22:0]: Sequence to keep track of transmitted messages bit TE1.8 ESI: Error Status Indicator 1 = Transmitting node is error passive 0 = Transmitting node is error active bit TE1.7 FDF: FD Frame; distinguishes between CAN and CAN FD formats bit TE1.6 BRS: Bit Rate Switch; selects if data bit rate is switched bit TE1.5 RTR: Remote Transmission Request; not used in CAN FD bit TE1.4 IDE: Identifier Extension Flag; distinguishes between base and extended format bit TE1.3-0 DLC[3:0]: Data Length Code

TXMSGTS[31:0]: Transmit Message Time Stamp⁽¹⁾ Note 1: TE2 (TXMSGTS) only exits in objects where CiTEFCON.TEFTSEN is set.

bit TE2.31-0

5.0 SPI INTERFACE

The MCP251863 device is designed to interface directly with a Serial Peripheral Interface port available on most microcontrollers. The SPI in the microcontroller must be configured in mode 0,0 or 1,1 in 8-bit operating mode.

SFR and Message Memory (RAM) are accessed using SPI instructions. Figure 5-1 illustrates the generic format of the SPI instructions (SPI mode 0, 0). Each instruction starts with driving nCS low (falling edge on nCS). The 4-bit command and the 12-bit address are shifted into SDI on the rising edge of SCK. During a write instruction, data bits are shifted into SDI on the rising edge of SCK. During a read instruction, data bits are shifted out of SDO on the falling edge of SCK. One or more data bytes are transfered with one instruction. Data bits are updated on the falling edge of SCK and must be valid on the rising edge of SCK. Each instruction ends with driving nCS high (rising edge on nCS).

Refer to Figure 9-1 for detailed input and output timing for both mode 0, 0 and mode 1, 1.

Table 5-1 lists the SPI instructions and their format.

- Note 1: The frequency of SCK has to be less than or equal to 0.85 * half the frequency of SYSCLK. This ensures that the synchronization between SCK and SYSCLK works correctly.
 - 2: In order to minimize the Sleep current, the SDO pin of the MCP251863 device must not be left floating while the device is in Sleep mode. This can be achieved by enabling a pull-up or pull-down resistor inside the MCU on the pin that is connected to the SDO pin, while the MCP251863 device is in Sleep mode.

FIGURE 5-1: SPI INSTRUCTION FORMAT

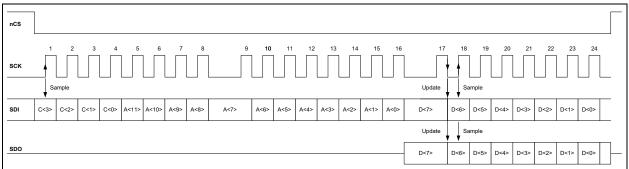


TABLE 5-1: SPI INSTRUCTIONS

	1					
Name	Format	Description				
RESET	C = 0b0000; A = 0x000	Resets internal registers to default state; selects Configuration mode.				
READ	C = 0b0011; A; D = SDO	Read SFR/RAM from address A.				
WRITE	C = 0b0010; A; D = SDI	Write SFR/RAM to address A.				
READ_CRC	C = 0b1011; A; N; D = SDO; CRC = SDO	Read SFR/RAM from address A. N data bytes. Two bytes CRC. CRC is calculated on C, A, N and D.				
WRITE_CRC	C = 0b1010; A; N; D = SDI; CRC = SDI	Write SFR/RAM to address A. N data bytes. Two bytes CRC. CRC is calculated on C, A, N and D.				
WRITE_SAFE	C = 0b1100; A; D = SDI; CRC = SDI	Write SFR/RAM to address A. Check CRC before write. CRC is calculated on C, A and D.				

Legend: C = Command (4 bit), A = Address (12 bit), D = Data (1 to n bytes), N = Number of Bytes (1 byte), CRC (2 bytes)

5.1 SFR Access

The SFR access is byte-oriented. Any number of data bytes can be read or written with one instruction. The address is incremented by one automatically after every data byte. The address rolls over from 0xFFF to 0x000.

The following SPI instructions only show the different fields and their values. Every instruction follows the generic format illustrated in Figure 5-1.

5.1.1 RESET

Figure 5-2 illustrates the RESET instruction. The instruction starts with nCS going low. The Command (C[3:0] = 0b0000) is followed by the Address (A[11:0] = 0x000). The instruction ends when nCS goes high.

The RESET instruction should only be issued after the device enters Configuration mode. All SFR and State Machines are reset same as during a Power-on Reset (POR), and the device transitions immediately to Configuration mode.

The Message Memory is not changed.

The actual reset happens at the end of the instruction when nCS goes high.

5.1.2 SFR READ – READ

Figure 5-3 illustrates the READ instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C[3:0] = 0b0011), is followed by the Address (A[11:0]). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by the data byte from address A+1 (DB[A+1]). Any number of data bytes can be read. The instruction ends when nCS goes high.

5.1.3 SFR WRITE – WRITE

Figure 5-4 illustrates the WRITE instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C[3:0] = 0b0010), is followed by the Address (A[11:0]). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Any number of data bytes can be written. The instruction ends when nCS goes high.

Note: The bit fields in the IOCON register must be written using the single data byte SFR WRITE instructions.

Data bytes are written to the register with the falling edge on SCK following the 8th data bit.

FIGURE 5-2: RESET INSTRUCTION

nCS Low	0b0000	0x000	nCS High

FIGURE 5-3: SFR READ INSTRUCTION

nCS Low 0b0011 A<11:0>	DB[A]	DB[A+1]		DB[A+n-1]	nCS High
------------------------	-------	---------	--	-----------	----------

FIGURE 5-4: SFR WRITE INSTRUCTION

Г							
	nCS Low	0b0010	A<11:0>	DB[A]	DB[A+1]	 DB[A+n-1]	nCS High

5.2 Message Memory Access

The Message Memory (RAM) access is word-oriented (4 bytes at a time). Any multiple of 4 data bytes can be read or written with one instruction. The address is incremented by one automatically after every data byte. The address rolls over from 0xBFF to 0x400.

Writes and Reads must be word-aligned. The lower two bits of the address are always assumed to be 0. It is not possible to do unaligned reads/writes.

The following SPI instructions only show the different fields and their values. Every instruction follows the generic format illustrated in Figure 5-1.

5.2.1 MESSAGE MEMORY READ – READ

Figure 5-5 illustrates the READ instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C[3:0] = 0b0011), is followed by the Address (A[11:0]). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by data byte from address A+1 (DB[A+1]). The instruction ends when nCS goes high.

Read commands from RAM must always read a multiple of 4 data bytes. A word is internally read from RAM after the address field, and after every fourth data byte read on the SPI. In case nCS goes high before a multiple of 4 data bytes is read on SDO, the incomplete read should be discarded by the microcontroller.

5.2.2 MESSAGE MEMORY WRITE – WRITE

Figure 5-6 illustrates the WRITE instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C[3:0] = 0b0010), is followed by the Address (A[11:0]). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). The instruction ends when nCS goes high.

Write commands must always write a multiple of 4 data bytes. After every fourth data byte, with the falling edge on SCK, the RAM Word gets written. In case nCS goes high before a multiple of 4 data bytes is received on SDI, the data of the incomplete Word will not be written to RAM.

FIGURE 5-5: MESSAGE MEMORY READ INSTRUCTION

nCS Low 0b0011	1 A<11:0>	DW[A]				nCS High
	A \ 11.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	1103 Flight

FIGURE 5-6: MESSAGE MEMORY WRITE INSTRUCTION

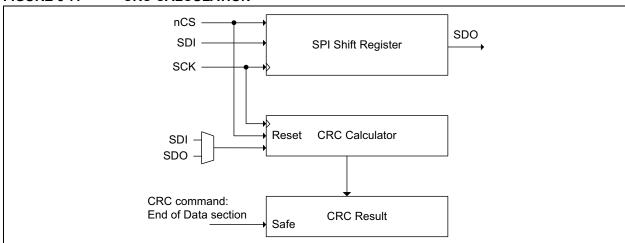
nCS Low 0b0010 A<11:0>	DW[A]				nCS High
	A\11.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]

5.3 SPI Commands with CRC

In order to detect or avoid bit errors during SPI communication, SPI commands with CRC are available.

5.3.1 CRC CALCULATION

The CRC is calculated in parallel with the SPI shift register (see Figure 5-7).


When nCS is asserted, the CRC calculator is reset to <code>OxFFFFF</code>.

The result of the CRC calculation is available after the Data section of a CRC command. The result of the CRC calculation is written to the CRC register in case a CRC mismatch is detected. In case of a CRC mismatch, CRC.CRCERRIF is set.

The MCP251863 device uses the following generator polynomial: CRC-16/USB (0x8005). CRC-16 detects all single and double-bit errors, all errors with an odd number of bits, all burst errors of length 16 or less, and most errors for longer bursts. This allows an excellent detection of SPI communication errors that can happen in the system, and heavily reduces the risk of miscommunication, even under noisy environments.

The maximum number of data bits is used while reading and writing TX or RX Message Objects. A RX Message Object with 64 Bytes of data + 12 Bytes ID and Time Stamp contains 76 Bytes or 608 bits. In comparison, USB data packets contain up to 1024 bits. CRC-16 has a Hamming Distance of 4 up to 1024 bits.

FIGURE 5-7: CRC CALCULATION

5.3.2 SFR READ WITH CRC – READ_CRC

Figure 5-8 illustrates the READ_CRC instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C[3:0] = 0b1011) is followed by the Address (A[11:0]) and the number of data bytes (N[7:0]). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by the data byte from address A+1 (DB[A+1]). Any number of data bytes can be read. Next the CRC is shifted out (CRC[15:0]). The instruction ends when nCS goes high.

The CRC is provided to the microcontroller. The microcontroller checks the CRC. No interrupt is generated on CRC mismatch during a READ_CRC command inside the MCP251863 device.

If nCS goes high before the last byte of the CRC is shifted out, a CRC Form Error interrupt is generated: CRC.FERRIF.

5.3.3 SFR WRITE WITH CRC – WRITE_CRC

Figure 5-9 illustrates the WRITE_CRC instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C[3:0] = 0b1010) is followed by the Address (A[11:0]) and the number of data bytes (N[7:0]). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Any number of data bytes can be written. Next the CRC is shifted in (CRC[15:0]). The instruction ends when nCS goes high.

The SFR is written to the register after the data byte was shifted in on SDI, with the falling edge on SCK. Data bytes are written to the register before the CRC is checked.

The CRC is checked at the end of the write access. In case of a CRC mismatch, a CRC Error interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC Form Error interrupt is generated: CRC.FERRIF.

FIGURE 5-8: SFR READ WITH CRC INSTRUCTION

nCS Low	0b1011	A<11:0>	N<7:0>	DB[A]	DB[A+1]	 DB[A+n-1]	CRC<15:8>	CRC<7:0>	nCS High

FIGURE 5-9: SFR WRITE WITH CRC INSTRUCTION

nCS Low	0b1010	A<11:0>	N<7:0>	DB[A]	DB[A+1]		DB[A+n-1]	CRC<15:8>	CRC<7:0>	nCS High
					•	,				

5.3.4 SFR WRITE SAFE WITH CRC – WRITE SAFE

This instruction ensures that only correct data is written to the SFR.

Figure 5-10 illustrates the WRITE_SAFE instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C[3:0] = 0b1100) is followed by the Address (A[11:0]). Afterwards, one data byte is shifted into address A (DB[A]). Next the CRC (CRC[15:0]) is shifted in. The instruction ends when nCS goes high.

The data byte is only written to the SFR after the CRC is checked and if it matches.

If the CRC mismatches, the data byte is not written to the SFR and a CRC Error interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC Form Error interrupt is generated: CRC.FERRIF.

FIGURE 5-10: SFR WRITE SAFE WITH CRC INSTRUCTION

nCS Low 0b1100 A<11:0> DB[A] CRC<15:8> CRC<7:0> nCS High			1			
	nCS Low	0b1100	DB[A]	CRC<15:8>	CRC<7:0>	nCS High

5.3.5 MESSAGE MEMORY READ WITH CRC – READ CRC

Figure 5-11 illustrates the READ_CRC instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C[3:0] = 0b1011) is followed by the Address (A[11:0]) and the number of data Words (N[7:0]). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by data byte from address A+1 (DB[A+1]). Next the CRC (CRC[15:0]) is shifted out. The instruction ends when nCS goes high.

Writes and Reads must be word-aligned. The lower two bits of the address are always assumed to be 0. It is not possible to do unaligned reads/writes.

Read commands should always read a multiple of 4 data bytes. A word is internally read from RAM after the "N" field and after every fourth data byte read on the SPI. In case nCS goes high before a multiple of 4 data bytes are read on SDO, the incomplete read should be discarded by the microcontroller.

The CRC is provided to the microcontroller. The microcontroller checks the CRC. No interrupt is generated on CRC mismatch during a READ_CRC command inside the MCP251863 device.

If nCS goes high before the last byte of the CRC is shifted out, a CRC Form Error interrupt is generated: CRC.FERRIF.

5.3.6 MESSAGE MEMORY WRITE WITH CRC – WRITE CRC

Figure 5-12 illustrates the WRITE instruction accessing the RAM. The instruction starts with nCS going low. The Command (C[3:0] = 0b1010) is followed by the Address (A[11:0]) and the number of data Words (N[7:0]). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Next the CRC (CRC[15:0]) is shifted in. The instruction ends when nCS goes high.

Write commands must always write a multiple of 4 data bytes. After every fourth data byte, with the falling edge on SCK, the RAM gets written. In case nCS goes high before a multiple of 4 data bytes is received on SDI, the data of the incomplete Word will not be written to RAM.

The CRC is checked at the end of the write access. In case of a CRC mismatch, a CRC interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC interrupt is generated: CRC.FERRIF.

FIGURE 5-11: MESSAGE MEMORY READ WITH CRC INSTRUCTION

nCS Low	0b1011	A < 11:0 \	N<7:0>		DW	CRC<15:8>	CPC>7:0>	nCS High		
		A<11:0>		DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	CRC<15.62	CRC<7:0>	ncs nign

FIGURE 5-12: MESSAGE MEMORY WRITE WITH CRC INSTRUCTION

nCS Low	051010	A<11:0>	N<7:0>		DW	CRC<15:8>	CRC<7:0>	nCS High		
IIC3 LOW	001010	A<11.0>	N~7.0>	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	CRC<15.62	CRC<7.02	IICS HIGH

5.3.7 MESSAGE MEMORY WRITE SAFE WITH CRC – WRITE SAFE

This instruction ensures that only correct data is written to RAM.

Figure 5-10 illustrates the WRITE_SAFE instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C[3:0] = 0b1100) is followed by the Address (A[11:0]). Afterwards, the data byte is shifted into address A (DB[A]), next into

address A+1 (DB[A+1]), A+2 (DB[A+2]), and A+3 (DB[A+3]) respectively. Next the CRC (CRC[15:0]) is shifted in. The instruction ends when nCS goes high.

The data word is only written to RAM after the CRC is checked and if it matches.

If the CRC mismatches, the data word is not written to RAM and a CRC Error interrupt is generated: CRC.CRCERRIF.

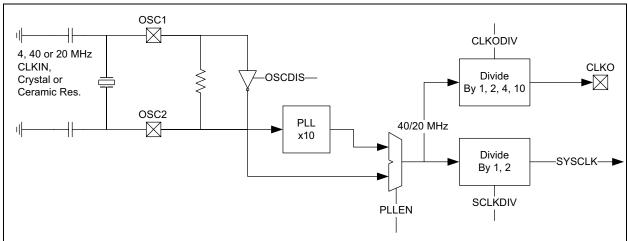
If nCS goes high before the last byte of the CRC is shifted in, a CRC interrupt is generated: CRC.FERRIF.

FIGURE 5-13: MESSAGE MEMORY WRITE SAFE WITH CRC INSTRUCTION

nCS Low	0b1100	A<11:0>		DW	/[A]		CPC<15:0>	CRC<7:0>	nCS High
IICS LOW	001100	A\11.0>	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	CRC<15:8>	CRC<7:0>	nCS High

6.0 OSCILLATOR

Figure 6-1 shows the block diagram of the oscillator in the MCP251863 device. The oscillator system generates the SYSCLK, which is used in the CAN FD Controller module and for RAM accesses. It is recommended by the CAN FD community to use either a 40 or 20 MHz SYSCLK.


The time reference for clock generation can be an external 40, 20 or 4 MHz crystal, ceramic resonator or external clock.

The OSC register controls the oscillator. The PLL can be enabled to multiply the 4 MHz clock by 10.

The internal 40/20 MHz can be divided by two.

The internally generated clock can be divided and provided on the CLKO pin.

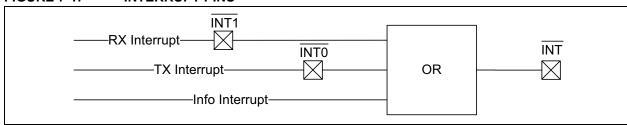
FIGURE 6-1: MCP251863 OSCILLATOR BLOCK DIAGRAM

7.0 I/O CONFIGURATION

The IOCON register is used to configure the I/O pins:

- CLKO/SOF: select Clock Output or Start of Frame.
- TXCANOD: TXCAN can be configured as Push-Pull or as Open Drain output. Open Drain outputs allows the user to connect multiple controllers together to build a CAN network without using a transceiver.
- INTO and INT1 can be configured as GPIO with similar registers as in the PIC microcontrollers or as Transmit and Receive interrupts.
- INTO/GPIO0/XSTBY can also be used to automatically control the standby pin of the transceiver.

 INTOD: The interrupt pins can be configured as open-drain or push/pull outputs.


7.0.1 INTERRUPT PINS

The MCP251863 device contains three different interrupt pins, see Figure 7-1:

- INT is asserted on any interrupt in the CiINT register (xIF & xIE), including the RX and TX interrupts.
- INT1/GPIO1 can be configured as GPIO or RX interrupt pin (CiINT.RXIF & RXIE).
- INTO/GPIO0 can be configured as GPIO or TX interrupt pin (CiINT.TXIF & TXIE).

All interrupt pins are active low.

FIGURE 7-1: INTERRUPT PINS

8.0 CAN FD TRANSCEIVER

8.1 Operating Modes of the Transceiver

The transceiver supports three operating modes: Unpowered, Standby and Normal. These modes can be selected via the STBY pin. See Figure 8-1 and Table 8-1 for a description of the operating modes.

FIGURE 8-1: OPERATING MODES

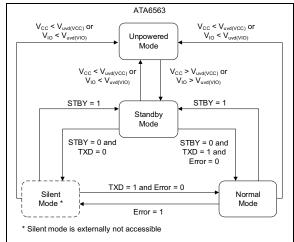


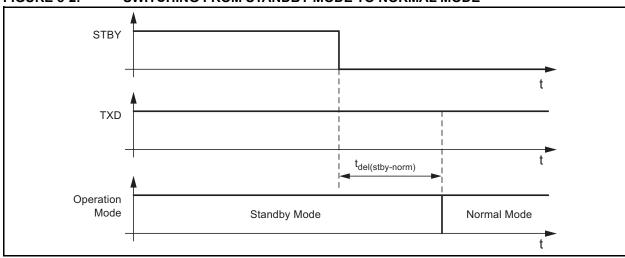
TABLE 8-1: OPERATING MODES

Mode	Inp	uts	Outputs			
Wiode	STBY	Pin TXD	CAN FD Driver	Pin RXD		
Unpowered	X ⁽¹⁾	X ⁽¹⁾	Recessive	Recessive		
Standby	HIGH	X ⁽¹⁾	Recessive	Active ⁽²⁾		
Normal	LOW	LOW	Dominant	LOW		
	LOW	HIGH	Recessive	HIGH		

Note 1: Irrelevant

2: Reflects the bus only for wake-up

8.1.1 NORMAL MODE


A low level on the STBY pin together with a high level on pin TXD selects the Normal mode. In this mode the transceiver is able to transmit and receive data via the CANH and CANL bus lines (see Figure 1-1). The output driver stage is active and drives data from the TXD input to the CAN bus. The high-speed comparator (HSC) converts the analog data on the bus lines into digital data which is output to the RXD pin. The bus biasing is set to $V_{\rm VCC}/2$ and the undervoltage monitoring of VCC is active.

The slope of the output signals on the bus lines is controlled and optimized in a way that guarantees the lowest possible electromagnetic emission (EME).

To switch the device in normal operating mode, set the STBY pin to low and the TXD pin to high (see Table 8-1 and Figure 8-2). The STBY pin provides a pull-up resistor to VIO, thus ensuring a defined level if the pin is open.

Please note that the device cannot enter Normal mode as long as TXD is at ground level.

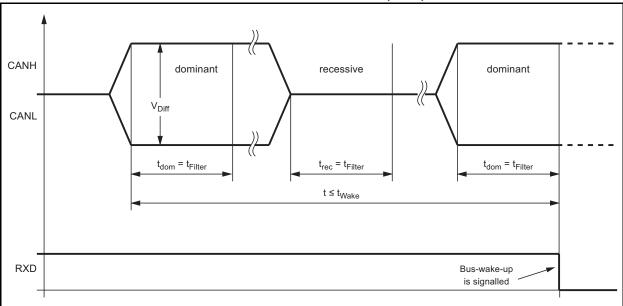
The switching into Normal mode is depicted in the following figure.

FIGURE 8-2: SWITCHING FROM STANDBY MODE TO NORMAL MODE

8.1.2 STANDBY MODE

A high level on the STBY pin selects Standby mode. In this mode the transceiver is not able to transmit or correctly receive data via the bus lines. The transmitter and the high-speed comparator (HSC) are switched off to reduce current consumption.

8.1.2.1 Remote Wake-up via the CAN Bus


In Standby mode the bus lines are biased to ground to reduce current consumption to a minimum. The MCP251863 monitors the bus lines for a valid wake-up pattern as specified in the ISO 11898-2: 2016. This filtering helps to avoid spurious wake-up events, which would be triggered by scenarios such as a dominant clamped bus or by a dominant phase due to noise, spikes on the bus, automotive transients, or EMI.

The wake-up pattern consists of at least two consecutive dominant bus levels for a duration of at least t_{Filter} , each separated by a recessive bus level with a duration of at least t_{Filter} . Dominant or recessive bus levels shorter than t_{Filter} are always being ignored. The complete dominant-recessive-dominant pattern as shown in Figure 8-3, must be received within the bus wake-up time-out time t_{Wake} to be recognized as a valid wake-up pattern. Otherwise, the internal wake-up logic is reset and then the complete wake-up pattern must be retransmitted to trigger a wake-up event. Pin RXD remains at high level until a valid wake-up event has been detected.

During Normal mode, at a VCC undervoltage condition or when the complete wake-up pattern is not received within t_{Wake} , no wake-up is signaled at the RXD pin.

When a valid CAN wake-up pattern is detected on the bus the RXD pin switches to low, to signal a wake-up request. A transition to Normal mode is not triggered until the STBY pin is forced back to low by the microcontroller.

FIGURE 8-3: TIMING OF THE BUS WAKE-UP PATTERN (WUP) IN STANDBY MODE

8.2 Fail-safe Features

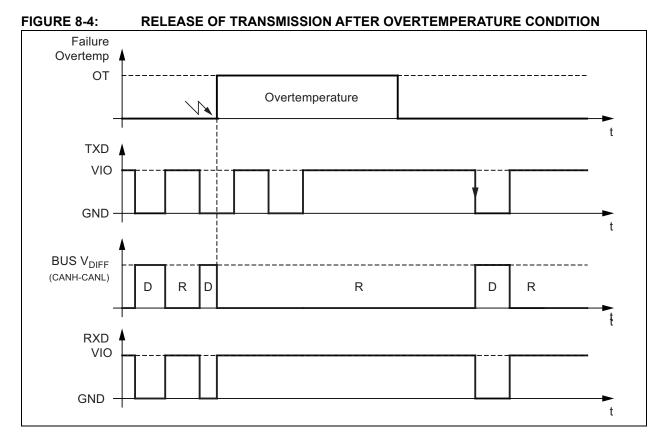
8.2.1 TXD DOMINANT TIME-OUT FUNCTION

A TXD dominant time-out timer is started when the TXD pin is set to low. If the low state on the TXD pin persists for longer than $t_{to(dom)TXD}$, the transmitter is disabled, releasing the bus lines to the recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state (blocking all network communications). The TXD dominant time-out timer is reset when the TXD pin is set to high. If the low state on the TXD pin was longer than $t_{to(dom)TXD}$, then the TXD pin has to be set to high longer 4 μ s in order to reset the TXD dominant time-out timer.

8.2.2 INTERNAL PULL-UP STRUCTURE AT THE TXD AND STBY INPUT PINS

The TXD and STBY pins have an internal pull-up to VIO. This ensures a safe, defined state in case one or both pins are left floating. Pull-up currents flow in these pins in all states, meaning all pins should be in high state during Standby mode to minimize the current consumption.

8.2.3 UNDERVOLTAGE DETECTION ON PIN VCC

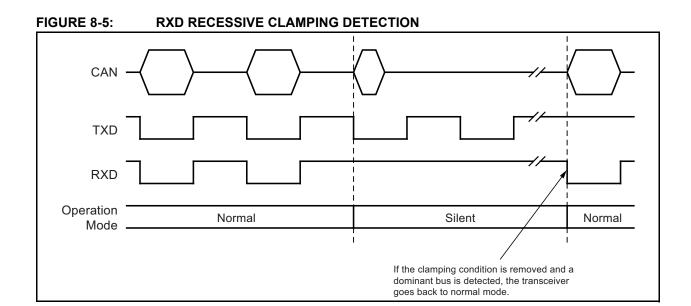

If V_{VCC} or V_{VIO} drops below its undervoltage detection levels ($V_{uvd(VCC)}$ and $V_{uvd(VIO)}$)(see Section 9.4, CAN FD Transceiver Characteristics), the transceiver switches off and disengages from the bus until V_{VCC} and V_{VIO} have recovered. The low-power wake-up comparator is only switched off during a VCC and VIO undervoltage. The logic state of the STBY pin is ignored until the V_{VCC} voltage or V_{VIO} voltage has recovered.

8.2.4 BUS WAKE UP ONLY AT DEDICATED WAKE-UP PATTERN

Due to the implementation of the wake-up filtering the MCP251863 does not wake-up when the bus is in a long dominant phase, it only wakes up at a dedicated wake-up pattern as specified in the ISO 11898-2: 2016. For a valid wake-up at least two consecutive dominant bus levels with a duration of at least t_{Filter}, each separated by a recessive bus level with a duration of at least t_{Filter}, must be received via the bus. Dominant or recessive bus levels shorter than t_{Filter} are always being ignored. The complete dominant-recessive-dominant pattern as shown in Figure 8-3, must be received within the bus wake-up time-out time t_{Wake} to be recognized as a valid wake-up pattern. This filtering results in a higher robustness against EMI and transients, and therefore significantly reduces the risk of an unwanted bus wake-up.

8.2.5 OVERTEMPERATURE PROTECTION

The output drivers are protected against over-temperature conditions. If the junction temperature exceeds the shutdown junction temperature, $T_{\rm Jsd}$, the output drivers are disabled until the junction temperature drops below $T_{\rm Jsd}$ and the TXD pin is at high level again. The TXD condition ensures that output driver oscillations due to temperature drift are avoided.



8.2.6 SHORT-CIRCUIT PROTECTION OF THE BUS PINS

The CANH and CANL bus outputs are short-circuit protected, either against GND or a positive supply voltage. A current-limiting circuit protects the transceiver against damage. If the device is heating up due to a continuous short on CANH or CANL, the internal overtemperature protection switches the bus transmitter off.

8.2.7 RXD RECESSIVE CLAMPING

This fail-safe feature prevents the controller from sending data on the bus if its RXD is clamped to HIGH (i.e., recessive). That is, if the RXD pin cannot signalize a dominant bus condition, for example, because it is shorted to VCC, the transmitter in the MCP251863 is disabled to avoid possible data collisions on the bus. In Normal mode, the device permanently compares the state of the high-speed comparator (HSC) with the state of the RXD pin. If the HSC indicates a dominant bus state for more than t_{RC_det} without the RXD pin doing the same, a recessive clamping situation is detected and the transceiver is forced into Silent mode. This Fail-Safe mode is released by either entering Standby or Unpowered mode, or when the RXD pin is showing a dominant (i.e., low) level again.

9.0 ELECTRICAL SPECIFICATIONS

9.1 Absolute Maximum Ratings^(†)

DC Voltage at CANH, CANL (V _{CANH} , V _{CANL})	–27 to +42V
Transient Voltage at CANH, CANL (according to ISO 7637 part 2) (V _{CANH} , V _{CANL})	150 to +100V
Max. differential bus voltage (V _{Diff})	5 to +18V
VDD	0.3V to 6.0V
Vcc	0.3V to 5.5V
DC Voltage at all other CAN FD Controller pins w.r.t GND	0.3V to VDD + 0.3V
DC Voltage at all other CAN FD Transceiver pins w.r.t GND	0.3V to VCC + 0.3V
Virtual Junction Temperature CAN FD Controller, TvJ (IEC60747-1)	40°C to +165°C
Virtual Junction Temperature CAN FD Transceiver (T _{vJ})	40°C to +175°C
ESD according to IBEE CAN EMC - Test specification following IEC 61000-4-2 — Pin CANH, CAN	L±8 kV
ESD (HBM following STM5.1 with 1.5 k Ω /100 pF) - Pins CANH, CANL to GND	±6 kV
Soldering temperature of leads (10 seconds)	+300°C
ESD protection on all pins (IEC 801; Human Body Model)	±4 kV
ESD protection on all pins (IEC 801; Machine Model)	±100V
ESD protection on all pins (IEC 801; Charge Device Model)	±750V

[†] Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those conditions, or any other conditions above those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

9.2 Temperature Specifications

Parameters	Sym.	Min.	Тур.	Max.	Units				
Temperature Ranges - E Type									
Operating Temperature Range	TA	-40	_	+125	°C				
Storage Temperature Range	TA	-55	_	+150	°C				
Thermal Shutdown of the Bus Drivers	T_{VJsd}	150	_	195	°C				
Thermal Shutdown Hysteresis	T _{vJsd_hys}	_	15	_	°C				
Temperature Ranges - H Type									
Operating Temperature Range	TA	-40		+150	°C				
Storage Temperature Range	TA	-55	_	+150	°C				
Thermal Shutdown of the Bus Drivers	T_{VJsd}	170	_	195	°C				
Thermal Shutdown Hysteresis	T _{vJsd_hys}	_	15	_	°C				
Thermal Package Resistance									
Thermal Resistance for SSOP-28	θЈА		85	_	K/W				

9.3 CAN FD Controller Characteristics

TABLE 9-2: DC CHARACTERISTICS

DC Specifi	cations				+125°C;	High (H): Тамв = -40°С to +150°С;
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments
VDD Pin						
VDD	Voltage Range	2.7	_	5.5	V	RAM data retention guaranteed
VPORH	Power-on Reset Voltage	_	_	2.65	V	Highest voltage on VDD before device releases POR
VPORL	Power-on Reset Voltage	2.2	_	_	V	Lowest voltage on VDD before device asserts POR
SVDD	VDD Rise Rate to ensure POR	0.05	_	_	V/ms	Note 1
IDD	Supply Current	_	15	20	mA	40 MHz SYSCLK, 20 MHz SPI activity
IDDS	Sleep Current	_	15	60	μА	Clock is stopped TAMB ≤ +85°C (Note 1)
		_	_	600	_	Clock is stopped TAMB ≤ +150°C
IDDLPM	LPM Current	_	4	10	μΑ	Digital logic powered down
Digital Inp	out Pins					
VIH	High-Level Input Voltage	0.7 VDD	_	VDD + 0.3	V	
VIL	Low-Level Input Voltage	-0.3	_	0.3 VDD	V	
Voscpp	OSC1 detection Voltage	0.5	_	_	V	Minimum peak-to-peak voltage on OSC1 pin (Note 1)
I⊔	Input Leakage Current			•		
	OSC1	-5	_	+5	μА	
	All other	-1	_	+1	μА	
Digital Ou	tput Pins					
Vон	High-Level Output Voltage	VDD - 0.7	_	_	V	IOH = -2 mA, VDD = 2.7V
Vol	Low-Level Output Voltage				-	
	TXCAN	_	_	0.6	V	IOL = 8 mA, VDD = 2.7V
	All other	_	_	0.6	V	IOL = 2 mA, VDD = 2.7V

Note 1: Characterized; not 100% tested.

TABLE 9-3: CLKOUT AND SOF AC CHARACTERISTICS

AC Specific	cations	Extended	Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C; High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V						
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments			
Тськон	CLKO Output High	8	_	_	ns	at 40 MHz (Note 1)			
TCLKOL	CLKO Output Low	8	_	_	ns	Note 1			
TCLKOR	CLKO Output Rise	_	_	5	ns	Note 1			
TCLKOF	CLKO Output Fall	_	_	5	ns	Note 1			
Tsofh	SOF Output High	_	31 Tosc	_	ns	Note 2			
TSOFPD	SOF Propagation Delay: RXCAN falling edge to SOF rising edge	_	1 Tosc	_	ns	Note 2			

Note 1: Characterized; not 100% tested.

2: Design guidance only.

TABLE 9-4: CRYSTAL OSCILLATOR AC CHARACTERISTICS

AC Specifica	ations	Extended	Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C; High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V							
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments				
Fosc1,clki	OSC1 Input Frequency	2	40	40	MHz	External digital clock				
FOSC1,4M	OSC1 Input Frequency	4 - 0.5%	4	4 + 0.5%	MHz	4 MHz crystal/resonator (Note 1)				
FDRIFT	SYSCLK frequency drift	_	_	10	ppm	Additional frequency drift of SYSCLK due to internal PLL at 4 MHz (Note 1)				
Fosc1,20M	OSC1 Input Frequency	20 - 0.5%	20	20 + 0.5%	MHz	20 MHz crystal/resonator (Note 1)				
Fosc1,40M	OSC1 Input Frequency	40 - 0.5%	40	40 + 0.5%	MHz	40 MHz crystal/resonator (Note 1)				
Tosc1	Tosc1=1/Fosc1,x	25	_	_	ns					
Tosc1H	OSC1 Input High	0.45 * Tosc	_	0.55 * TOSC	ns	Note 1				
Tosc1L	OSC1 Input Low	0.45 * Tosc	_	0.55 * TOSC	ns	Note 1				
Tosc1R	OSC1 Input Rise	_	_	20	ns	Note 2				
Tosc1F	OSC1 Input Fall	_	_	20	ns	Note 2				
DCosc1	Duty Cycle on OSC1	45	50	55	%	External clock duty cycle requirement (Note 1)				
TOSCSTAB	Oscillator stabilization period	_	_	3	ms	From POR to final frequency (Note 1)				
TOSCSLEEP	Oscillator stabilization from Sleep	_	_	3	ms	From Sleep to final frequency (Note 1)				
Gм,4M	Transconductance	1470	_	2210	μ A /V	4 MHz crystal (Note 2)				
Gм,40M	Transconductance	2040	_	3060	μ A /V	40 MHz crystal (Note 2)				

Note 1: Characterized; not 100% tested.

2: Design guidance only.

TABLE 9-5: CAN BIT RATE

AC Specific	cations		` '		+125°C; I	High (H): Тамв = -40°С to +150°С;
Sym	Characteristic	Min	Тур	Max	Units	Conditions/Comments
BRNOM	Nominal Bit Rate	0.125	0.5	1	Mbps	
BRDATA	Data Bit Rate	0.5	2	8	Mbps	BRDATA ≥ BRNOM

Note 1: Tested bit rates. Device allows the configuration of more bit rates, including slower bit rates than the minimum stated.

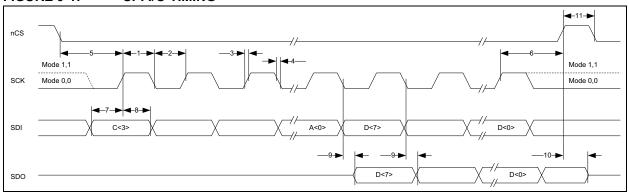
TABLE 9-6: CAN RX FILTER AC CHARACTERISTICS

AC Specifications		Extended	Characteris (E): TAMB : V to 5.5V		+125°C; I	High (H): Тамв = -40°С to +150°С;
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments
TPROP	Filter propagation delay	_	1	_	ns	Note 2
TFILTER	Filter time	50 80 130 225	_	100 140 220 390	ns	T00FILTER T01FILTER T10FILTER T11FILTER Note 3
TREVO- CERY	Minimum high time on input for output to go high again	5	_	_	ns	Note 2

- Note 1: Characterized; not 100% tested.
 - 2: Design guidance only.
 - **3:** Pulses on RXCAN shorter than the minimum TFILTER time will be ignored; pulses longer than the maximum TFILTER time will wake-up the device.

MCP251863

TABLE 9-7: SPI AC CHARACTERISTICS


·			Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C; High (H): TAMB = -40°C to +150°C, VDD = 2.7V to 5.5V				
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
	Fsck	SCK Input Frequency	_	_	17	MHz	Note 3
	Tsck	SCK Period, TSCK=1/FSCK	59	_	_	ns	Note 3
1	Тѕскн	SCK High Time	20	_	_	ns	
2	TSCKL	SCK Low Time	20	_	_	ns	
3	TSCKR	SCK Rise Time	_	_	100	ns	Note 2
4	TSCKF	SCK Fall Time	_	_	100	ns	Note 2
5	TCS2SCK	nCS ↓ to SCK ↑	Tsck/2	_	_	ns	
6	TSCK2CS	SCK ↑ to nCS ↑	Tsck	_	_	ns	
7	TSDI2SCK	SDI Setup: SDI ‡ to SCK ↑	5	_	_	ns	
8	TSCK2SDI	SDI Hold: SCK ↑ to SDI ↓	5	_	_	ns	
9	TSCK2SDO	SDO Valid: SCK ↓ to SDO ↓	_	_	20	ns	CLOAD = 50 pF
10	TCS2SDOZ	SDO High Z: nCS ↑ to SDO Z	_	_	2 Tsck	ns	CLOAD = 50 pF
11	TCSD	nCS ↑ to nCS ↓	Tsck	_	_	ns	Note 2

Note 1: Characterized; not 100% tested.

2: Design guidance only.

3: FSCK must be less than or equal to 0.85*(FSYSCLK/2).

FIGURE 9-1: SPI I/O TIMING

9.4 CAN FD Transceiver Characteristics

TABLE 9-8: ELECTRICAL CHARACTERISTICS

Electrical Specifications: Grade 1: T_{amb} = -40°C to +125°C and Grade 0: T_{amb} = -40°C to +150°C; T_{vJ} ≤ 170°C; V_{VCC} = 4.5V to 5.5V; R_L = 60Ω, C_L = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply, Pin VCC			•			
Supply Voltage	V _{VCC}	4.5	_	5.5	V	
Supply Current in Normal	I _{VCC_rec}	2	_	5	mA	recessive, V _{TXD} = V _{VIO}
Mode	I _{VCC_dom}	30	50	70	mA	dominant, V _{TXD} = 0V
	I _{VCC_short}	_	_	85	mA	short between CANH and CANL(Note 1)
Supply Current in Standby Mode	I _{VCC_STBY}	_	_	12	μA	VCC = VIO, V _{TXD} = V _{VIO}
	I _{VCC_STBY}	_	7	_	μA	T _a = 25°C (Note 3)
Undervoltage Detection Threshold on Pin VCC	$V_{uvd(VCC)}$	2.75	_	4.5	V	
I/O Level Adapter Supply, Pin	VIO					
Supply voltage on pin VIO	V _{VIO}	2.8	_	5.5	V	
Supply current on pin VIO	I _{VIO_rec}	10	80	250	μA	Normal mode recessive, V _{TXD} = V _{VIO}
	I _{VIO_dom}	50	350	500	μΑ	Normal mode dominant, V _{TXD} = 0V
	I _{VIO_STBY}	_	_	1	μA	Standby mode
Undervoltage detection threshold on pin VIO	$V_{uvd(VIO)}$	1.1	_	2.7	V	
Mode Control Input, Pin STBY						
High-Level Input Voltage	V_{IH}	0.7×V _{VIO}	_	V _{VIO} +0.3	V	
Low-Level Input Voltage	V_{IL}	-0.3	_	0.3×V _{VIO}	V	
Pull-Up Resistor to VCC	R_{pu}	75	125	175	kΩ	V _{STBY} = 0V
High-Level Leakage Current	l _L	-2	_	+2	μΑ	V _{STBY} = V _{VIO}
CAN Transmit Data Input, Pin	TXD					
High-Level Input Voltage	V_{IH}	0.7×V _{VIO}	_	V _{VIO} +0.3	V	
Low-Level Input Voltage	V_{IL}	-0.3	_	0.3×V _{VIO}	V	
Pull-Up Resistor to VCC	R_{TXD}	20	35	50	kΩ	$V_{TXD} = 0V$
High-Level Leakage Current	I_{TXD}	-2	_	+2	μΑ	Normal mode, $V_{TXD} = V_{VIO}$
Input Capacitance	C_{TXD}	_	5	10	рF	Note 3
CAN Receive Data Output, Pir	n RXD					
High-Level Output Current	I _{OH}	-8	_	-1	mA	Normal mode, $V_{RXD} = V_{VIO} - 0.4V$, $V_{VIO} = V_{VCC}$
Low-Level Output Current, Bus Dominant	I _{OL}	2	_	12	mA	Normal mode, V _{RXD} = 0.4V, bus dominant
Bus Lines, Pins CANH and CANL						

Note 1: 100% correlation tested

2: Characterized on samples

MCP251863

TABLE 9-8: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Grade 1: T_{amb} = -40°C to +125°C and Grade 0: T_{amb} = -40°C to +150°C; T_{vJ} ≤ 170°C; V_{VCC} = 4.5V to 5.5V; R_L = 60Ω, C_L = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Single Ended Dominant Output Voltage	V _{O(dom)}	2.75	3.5	4.5	V	V_{TXD} = 0V, t < t _{to(dom)TXD} R_L = 50 Ω to 65 Ω pin CANH (Note 1)
		0.5	1.5	2.25	V	$\begin{aligned} &V_{TXD} = 0 \text{V, } t < t_{to(dom)TXD} \\ &R_L = 50 \Omega \text{ to } 65 \Omega \\ &\text{pin CANL } (\textbf{Note 1}) \end{aligned}$
Transmitter Voltage Symmetry	V_{Sym}	0.9	1.0	1.1		$\begin{aligned} &V_{\text{Sym}} = \left(V_{\text{CANH}} + V_{\text{CANL}}\right) / V_{\text{VCC}}, \\ &\text{Split Termination, } R_{\text{L}} = 2 \times 30\Omega, \\ &C_{\text{Split}} = 4.7 \text{ nF (Note 3)} \end{aligned}$
Bus Differential Output Voltage	V _{Diff}	1.5	_	3	V	V_{TXD} = 0V, t < t _{to(dom)TXD} R_L = 45 Ω to 65 Ω
		1.5	_	3.3	V	$R_L = 70\Omega \text{ (Note 3)}$
		1.5		5	V	$R_L = 2240\Omega (Note 3)$
		– 50	_	+50	mV	Normal mode: V_{VCC} = 4.75V to 5.25V V_{TXD} = V_{VIO} , recessive, no load
		-200	_	+200	mV	Standby mode: V _{VCC} = 4.75V to 5.25V V _{TXD} = V _{VIO} , recessive, no load
Single Ended Recessive Output Voltage	V _{O(rec)}	2	0.5* V _{VCC}	3	V	Normal mode, V _{TXD} = V _{VIO} , no load
	V _{O(rec)}	-0.1	_	+0.1	V	Standby mode, V _{TXD} = V _{VIO} , no load
Differential Receiver Threshold Voltage	V _{th(RX)dif}	0.5	0.7	0.9	V	Normal mode (HSC), V _{cm(CAN)} = -27V to +27V
	V _{th(RX)dif}	0.4	0.7	1.1	V	Standby mode (WUC), V _{cm(CAN)} = -27V to +27V(Note 1)
Differential Receiver Hysteresis Voltage	V _{hys(RX)dif}	50	120	200	mV	Normal mode (HSC), $V_{cm(CAN)} = -27V$ to +27V (Note 1)
Dominant Output Current	I _{IO(dom)}	- 75	_	- 35	mA	V_{TXD} = 0V, t < t _{to(dom)TXD} , V_{VCC} = 5V pin CANH, V_{CANH} = -5V
		35		75	mA	$\begin{aligned} & V_{TXD} = 0V, t < t_{to(dom)TXD}, \\ & V_{VCC} = 5V \\ & pin \; CANL, V_{CANL} = +40V \end{aligned}$
Recessive Output Current	I _{IO(rec)}	- 5	_	+5	mA	Normal mode, $V_{TXD} = V_{VIO}$, no load, $V_{CANH} = V_{CANL} = -27V$ to +32V

Note 1: 100% correlation tested

2: Characterized on samples

TABLE 9-8: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Grade 1: T_{amb} = -40°C to +125°C and Grade 0: T_{amb} = -40°C to +150°C; $T_{vJ} \le 170$ °C; V_{VCC} = 4.5V to 5.5V; R_L = 60 Ω , C_L = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.

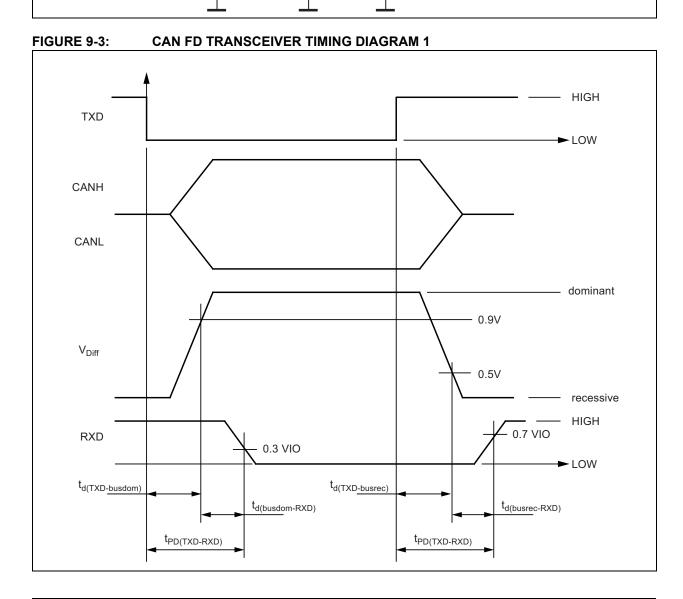
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Leakage Current	I _{IO(leak)}	– 5	0	+5	μA	$V_{VCC} = V_{VIO} = 0V,$ $V_{CANH} = V_{CANL} = 5V$
	I _{IO(leak)}	- 5	0	+5	μA	VCC = VIO connected to GND with R = 47 k Ω V _{CANH} = V _{CANL} = 5V(Note 3)
Input Resistance	R _i	9	15	28	kΩ	$V_{CANH} = V_{CANL} = 4V$
	R _i	9	15	28	kΩ	-2V ≤ V _{CANH} ≤ +7V, -2V ≤ V _{CANL} ≤ +7V(Note 3)
Input Resistance Deviation	ΔR _i	–1	0	+1	%	Between CANH and CANL V _{CANH} = V _{CANL} = 4V (Note 1)
	ΔR _i	–1	0	+1	%	Between CANH and CANL $-2V \le V_{CANH} \le +7V$, $-2V \le V_{CANL} \le +7V$ (Note 3)
Differential Input Resistance	R _{i(dif)}	18	30	56	kΩ	V _{CANH} = V _{CANL} = 4V (Note 1)
	R _{i(dif)}	18	30	56	kΩ	-2V ≤ V _{CANH} ≤ +7V, -2V ≤ V _{CANL} ≤ +7V (Note 3)
Common-mode Input Capacitance	C _{i(cm)}	_		20	pF	f = 500 kHz, CANH and CANL referred to GND (Note 3)
Differential Input Capacitance	C _{i(dif)}	_		10	pF	f = 500kHz, between CANH and CANL (Note 3)
Differential Bus Voltage Range for RECESSIVE State Detection	V _{Diff_rec}	- 3		+0.5	V	Normal mode (HSC) $-27V \le V_{CANH} \le +27V$, $-27V \le V_{CANL} \le +27V$ (Note 3)
	V _{Diff_rec}	-3		+0.4	V	Standby mode (WUC) $-27V \le V_{CANH} \le +27V$, $-27V \le V_{CANL} \le +27V($ Note 3)
Differential Bus Voltage Range for DOMINANT State Detection	V_{Diff_dom}	0.9		8.0	V	Normal mode (HSC) $-27V \le V_{CANH} \le +27V$, $-27V \le V_{CANL} \le +27V$ (Note 3)
	V_{Diff_dom}	1.15		8.0	V	Standby mode (WUC) $-27V \le V_{CANH} \le +27V$, $-27V \le V_{CANL} \le +27V$ (Note 3)
Transceiver Timing, Pins CAN	H, CANL, TXD,	and RXD, se	e Figur	e 9-2 and I	igure 9	9-4
Delay Time from TXD to Bus Dominant	t _{d(TXD-busdom)}	40		130	ns	Normal mode (Note 2)
Delay Time from TXD to Bus Recessive	t _{d(TXD-busrec)}	40		130	ns	Normal mode (Note 2)
Delay Time from Bus Dominant to RXD	t _{d(busdom-RXD)}	20		100	ns	Normal mode (Note 2)
Delay Time from Bus Recessive to RXD	t _{d(busrec-RXD)}	20		100	ns	Normal mode (Note 2)

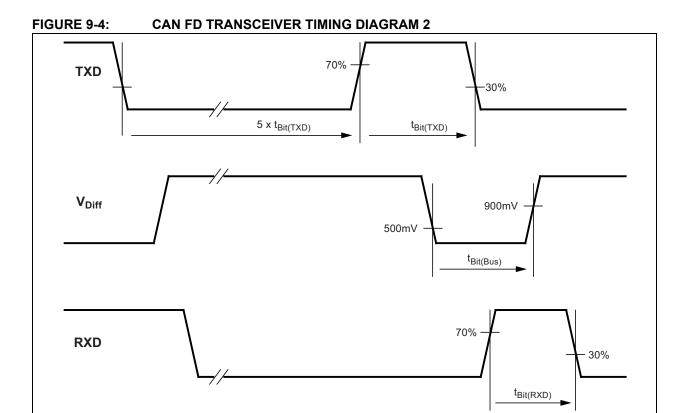
Note 1: 100% correlation tested

2: Characterized on samples

MCP251863

TABLE 9-8: ELECTRICAL CHARACTERISTICS (CONTINUED)

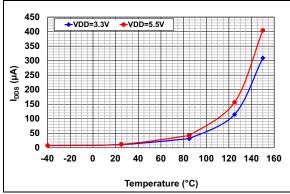

Electrical Specifications: Grade 1: T_{amb} = -40°C to +125°C and Grade 0: T_{amb} = -40°C to +150°C; T_{vJ} ≤ 170°C; V_{VCC} = 4.5V to 5.5V; R_L = 60Ω, C_L = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.

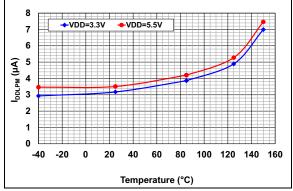

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Propagation Delay from TXD to RXD	t _{PD(TXD-RXD)}	40	_	210	ns	Normal mode, Rising edge at pin TXD $R_L = 60\Omega$, $C_L = 100 pF$
		40	_	200	ns	Normal mode, Falling edge at pin TXD $R_L = 60\Omega$, $C_L = 100 pF$
	t _{PD(TXD-RXD)}	I	_	300	ns	Normal mode, Rising edge at pin TXD $R_L = 150\Omega$, $C_L = 100$ pF (Note 3)
		1	_	300	ns	Normal mode, Falling edge at pin TXD $R_L = 150\Omega$, $C_L = 100pF$ (Note 3)
TXD Dominant Time-Out Time	t _{to(dom)} TXD	0.8	_	3	ms	V _{TXD} = 0V, Normal mode
Bus Wake-Up Time-Out Time	t _{Wake}	0.8	_	3	ms	Standby mode
Min. Dominant/Recessive Bus Wake-Up Time	t _{Filter}	0.5	3	3.8	μs	Standby mode
Delay Time for Standby Mode to Normal Mode Transition	t _{del(stby-norm)}		_	47	μs	Falling edge at pin STBY
Delay Time for Normal Mode to Standby Mode Transition	t _{del(norm-stby)}	l	_	5	μs	Rising edge at pin STBY (Note 3)
Debouncing Time for Recessive Clamping State Detection	t _{RC_det}		90	١	ns	V(CANH-CANL) > 900mV RXD = high (Note 3)
Transceiver Timing for higher I	Bit Rates, Pins	CANH, CANL	, TXD,	and RXD,	see Fig	ure 9-2 and Figure 9-4
Recessive Bit Time on Pin RXD	t _{Bit(RXD)}	400	_	550	ns	Normal mode, $t_{Bit(TXD)}$ = 500 ns R _L = 60 Ω , C _L = 100 pF (Note 1)
		120	_	220	ns	Normal mode, $t_{Bit(TXD)}$ = 200 ns R_L = 60 Ω , C_L = 100 pF
Recessive Bit Time on the Bus	t _{Bit(Bus)}	435	_	530	ns	Normal mode, $t_{Bit(TXD)}$ = 500 ns R _L = 60 Ω , C _L = 100 pF (Note 1)
		155	_	210	ns	Normal mode, $t_{Bit(TXD)}$ = 200 ns R_L = 60 Ω , C_L = 100 pF
Receiver Timing Symmetry	Δt _{Rec}	- 65	_	+40	ns	$\begin{aligned} &\text{Normal mode, } t_{Bit(TXD)} = 500 \text{ ns} \\ &\Delta t_{Rec} = t_{Bit(RXD)} - t_{Bit(Bus)} \\ &R_L = 60\Omega, C_L = 100 \text{ pF (Note 1)} \end{aligned}$
		-4 5	_	+15	ns	Normal mode, $t_{Bit(TXD)}$ = 200 ns Δt_{Rec} = $t_{Bit(RXD)}$ - $t_{Bit(Bus)}$ R _L = 60 Ω , C _L = 100 pF

Note 1: 100% correlation tested

2: Characterized on samples

FIGURE 9-2: TIMING TEST CIRCUIT FOR THE MCP251863 CAN FD TRANSCEIVER +5V $22\mu F$ = 100nF VIO VCC TXD CANH = C_L R_L **RXD** CANL **GND STBY** 15pF **=**




10.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (for example, outside the specified power supply range) and therefore outside the warranted range.

10.1 CAN FD Controller

FIGURE 10-1: Average IDDS vs. Temperature.

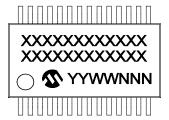
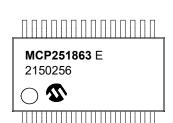


FIGURE 10-2: Average IDDLPM vs. Temperature.


11.0 PACKAGING INFORMATION

11.1 Package Marking Information

28-Lead SSOP* (5.30 mm)

Part Number	Code
MCP251863T-E/SSVAO	Е
MCP251863T-H/SSVAO	Н

Example

Legend: XX...X Customer-specific information

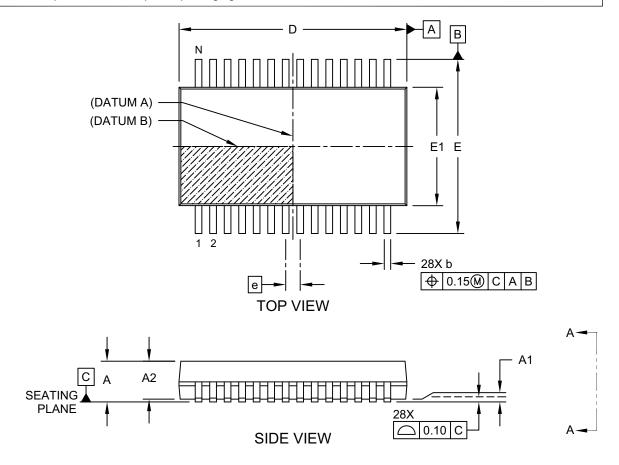
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

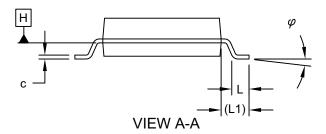
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

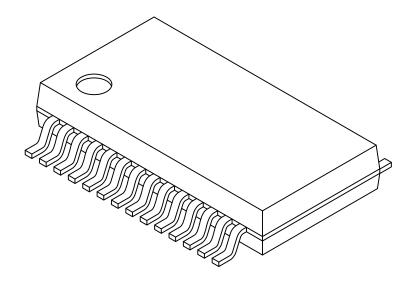

Note: In the event the full Microchip part number cannot be marked on one line, it will


be carried over to the next line, thus limiting the number of available

characters for customer-specific information.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

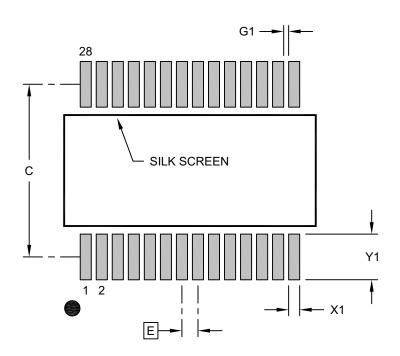
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	Α	ı	ı	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	ı	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	١	IILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.00	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.85
Contact Pad to Center Pad (X26)	G1	0.20		

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B

M	D7	51	Q	63
IVI		JI	U	UJ

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (February 2022)

Original release of this document

MCP251863

APPENDIX B: CAN FD CONFORMANCE

The MCP251863 passed the CAN FD conformance tests specified in ISO 16845-1:2016.

ISO 11898-1:2015 lists non-mandatory features. Table B-1 clarifies which optional features are implemented.

TABLE B-1: ISO OPTIONAL FEATURES

No.	Optional Feature	Implemented
1	FD frame format	Yes
2	Disabling of frame formats	Yes. Classical CAN frame format.
3	Limited LLC frames	No. Full range of IDs and DLCs implemented.
4	No transmission of frames including padding bytes	N/A. See No. 3.
5	LLC Abort interface	Yes
6	ESI and BRS bit values	Yes
7	Method to provide MAC data consistency	Yes
8	Time and time triggering	Start of Frame output.
9	Time stamping	Yes. 32 bit TBC.
10	Bus monitoring mode	Yes
11	Handle	Yes
12	Restricted operation	Yes
13	Separate prescalers for nominal bits and for data bits	Yes
14	Disabling of automatic retransmission	Yes
15	Maximum number of retransmissions	Yes. One, 3 or unlimited.
16	Disabling of protocol exception event on res bit detected recessive	Yes. Selectable.
17	PCS_Status	No
18	Edge filtering during the bus integration state	Yes. Selectable.
19	Time resolution for SSP placement	Yes. 128 T _Q . Measured, manual or disabled.
20	FD_T/R message	TX and RX interrupts.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	X ⁽¹⁾ and Re otion	-X el Temperature Range	/XX Package (XXX Qualification	Exampl a) MCP2		Tape and Reel, Extended Temperature, Plastic SSOP (5.30 mm Body), 28-Lead, Automotive qualified		
Device:	MCP251863: CAN FD Controller with Integrated Transceiver				b) MCP251863T-H/SSVAO		: Tape and Reel, High Temperature, Plastic SSOP (5.30 mm Body), 28-Lead, Automotive qualified		
Tape and Reel Option:	-	- Tana and Davi			c) MCP251863T-E/SS:		Tape and Reel, Extended Temperature, Plastic SSOP (5.30 mm Body), 28-Lead		
	1	= Tape and Reel	таре апи кеег		d) MCP251863T-H/SS:		Tape and Reel, High Temperature, Plastic SSOP (5.30 mm Body), 28-Lead		
Temperature Range:	E H	= -40°C to +125°C = -40°C to +150°C			Note 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.			
Package:	SS	= Plastic SSOP (5	.30 mm Body	y), 28-Lead					
Qualification	VAO	= Automotive Qual = Industrial Qualifi							

N/	D 2	51	Q	63
IVI		JI	O	UJ

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the LLS A

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-5224-9744-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta
Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 **Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453 Tel: 317-536-2380 **Los Angeles**

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820