

# Silicon Carbide (SiC) MOSFET – 22 mohm, 1200 V, M3, D<sup>2</sup>PAK-7L

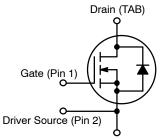
# NTBG022N120M3S

#### **Features**

- Typ.  $R_{DS(on)} = 22 \text{ m}\Omega$
- Low switching losses (Typ. EON 485 μJ at 40 A, 800 V)
- 100% Avalanche Tested
- These Devices are RoHS Compliant

#### **Typical Applications**

- Solar Inverters
- Electric Vehicle Charging Stations
- Uninterruptible Power Supplies (UPS)
- Energy Storage Systems
- Switch Mode Power Supplies (SMPS)


#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Parameter                                                                                             |                                       | Symbol                            | Value           | Unit    |   |
|-------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|-----------------|---------|---|
| Drain-to-Source Voltage                                                                               |                                       | $V_{DSS}$                         | 1200            | V       |   |
| Gate-to-Source Voltage                                                                                | !                                     |                                   | $V_{GS}$        | -10/+22 | ٧ |
| Recommended Operation of Gate-to-Source Volta                                                         |                                       | T <sub>C</sub> < 175°C            | $V_{GSop}$      | -3/+18  | > |
| Continuous Drain<br>Current (Note 2)                                                                  | Steady T <sub>C</sub> = 25°C<br>State |                                   | I <sub>D</sub>  | 58      | Α |
| Power Dissipation $R_{\theta JC}$ (Note 2)                                                            |                                       |                                   | P <sub>D</sub>  | 234     | W |
| Continuous Drain<br>Current R <sub>0</sub> JC (Note 2)                                                | Steady<br>State                       | T <sub>C</sub> = 100°C            | I <sub>D</sub>  | 41      | Α |
| Power Dissipation R <sub>0</sub> JC (Notes 1, 2)                                                      |                                       |                                   | P <sub>D</sub>  | 117     | W |
| Pulsed Drain Current (Note 3)                                                                         | T <sub>C</sub> = 25°C                 |                                   | I <sub>DM</sub> | 159     | Α |
| Operating Junction and Storage Temperature Range                                                      |                                       | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+175  | °C      |   |
| Source Current (Body Diode)<br>T <sub>C</sub> = 25°C, V <sub>GS</sub> = -3 V                          |                                       | I <sub>S</sub>                    | 53              | Α       |   |
| Single Pulse Drain-to-Source Avalanche<br>Energy (I <sub>L(pk)</sub> = 23.1 A, L = 1 mH) (Notes 4, 5) |                                       | E <sub>AS</sub>                   | 267             | mJ      |   |
| Maximum Lead Temperature for Soldering (1/8" from case for 10 seconds)                                |                                       | TL                                | 245             | °C      |   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface mounted on a FR-4 board using 1 in<sup>2</sup> pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. Peak current might be limited by transconductance
- 5.  $E_{AS}$  of 264 mJ is based on starting  $T_J$  = 25°C; L = 1 mH,  $I_{AS}$  = 23.1 A,  $V_{DD}$  = 100 V,  $V_{GS}$  = 18 V.

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 1200 V               | 30 mΩ @ 18 V            | 58 A               |



Power Source (Pins 3, 4, 5, 6, 7)

#### **N-CHANNEL MOSFET**



D2PAK-7L CASE 418BJ

#### **MARKING DIAGRAM**

BG022N 120M3S AYWWZZ

BG022N120M3S = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

#### **ORDERING INFORMATION**

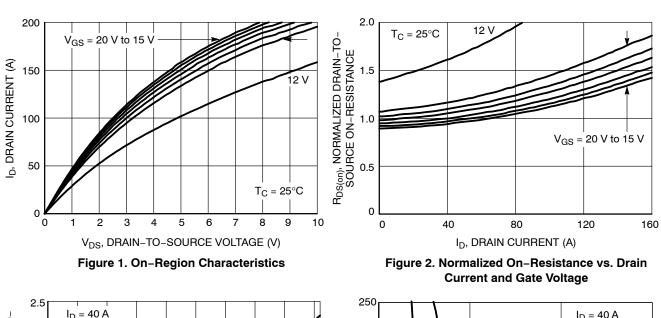
| Device         | Package  | Shipping             |
|----------------|----------|----------------------|
| NTBG022N120M3S | D2PAK-7L | 800 / Tape<br>& Reel |

#### THERMAL CHARACTERISTICS

| Parameter                          | Symbol          | Тур  | Max | Unit |
|------------------------------------|-----------------|------|-----|------|
| Junction-to-Case - Steady State    | $R_{	heta JC}$  | 0.64 | -   | °C/W |
| Junction-to-Ambient - Steady State | $R_{\theta JA}$ | -    | 40  |      |

## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter                                                    | Symbol                               | Test Condition                                                          | Min      | Тур  | Max | Unit |
|--------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|----------|------|-----|------|
| OFF-STATE CHARACTERISTICS                                    |                                      |                                                                         | <u> </u> |      |     |      |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                              | 1200     | -    | -   | V    |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | I <sub>D</sub> = 1 mA, referenced to 25°0                               | -        | 0.3  | -   | V/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V,<br>V <sub>DS</sub> = 1200 V                      | 5°C –    | -    | 100 | μΑ   |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | $V_{GS} = +22/-10 \text{ V}, V_{DS} = 0 \text{ V}$                      | _        | _    | ±1  | μΑ   |
| ON-STATE CHARACTERISTICS (Note 6)                            |                                      |                                                                         |          |      |     |      |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}$ , $I_D = 20 \text{ mA}$                               | 2.04     | 2.72 | 4.4 | V    |
| Recommended Gate Voltage                                     | $V_{GOP}$                            |                                                                         | -3       | -    | +18 | V    |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 18 V, I <sub>D</sub> = 40 A, T <sub>J</sub> = 25      | °C –     | 22   | 30  | mΩ   |
|                                                              |                                      | V <sub>GS</sub> = 18 V, I <sub>D</sub> = 40 A, T <sub>J</sub> = 175     | 5°C –    | 47   | _   |      |
| Forward Transconductance                                     | 9FS                                  | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 40 A                           | -        | 34   | -   | S    |
| CHARGES, CAPACITANCES & GATE RE                              | SISTANCE                             |                                                                         |          |      |     |      |
| Input Capacitance                                            | C <sub>ISS</sub>                     | $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 80$                 | 00 V –   | 3200 | _   | pF   |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                         | -        | 148  | _   |      |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                         | -        | 14   | _   |      |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   | $V_{GS} = -3/18 \text{ V}, V_{DS} = 800 \text{ V}$ $I_D = 40 \text{ A}$ | _        | 20   | _   | nC   |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  | I <sub>D</sub> = 40 A                                                   | -        | 148  | _   |      |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                      |                                                                         | -        | 35   | _   |      |
| Gate-to-Drain Charge                                         | $Q_{GD}$                             |                                                                         | -        | 38   | -   |      |
| Gate-Resistance                                              | $R_{G}$                              | f = 1 MHz                                                               | -        | 1.5  | -   | Ω    |
| SWITCHING CHARACTERISTICS                                    |                                      |                                                                         |          | -    |     |      |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                   | $V_{GS} = -3/18 \text{ V},$                                             | -        | 18   | -   | ns   |
| Rise Time                                                    | t <sub>r</sub>                       | V <sub>DS</sub> = 800 V,<br>I <sub>D</sub> = 40 A,                      | -        | 24   | -   |      |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  | $R_G = 4.5 \Omega$ inductive load (Note 6)                              | -        | 47   | -   |      |
| Fall Time                                                    | t <sub>f</sub>                       | industive load (Note o)                                                 | -        | 14   | -   |      |
| Turn-On Switching Loss                                       | E <sub>ON</sub>                      |                                                                         | _        | 485  | -   | μJ   |
| Turn-Off Switching Loss                                      | E <sub>OFF</sub>                     |                                                                         | _        | 220  | -   |      |
| Total Switching Loss                                         | E <sub>tot</sub>                     |                                                                         | -        | 705  | -   |      |
| SOURCE-DRAIN DIODE CHARACTERIS                               | TICS                                 |                                                                         |          |      |     |      |
| Continuous Source-Drain Diode Forward Current                | I <sub>SD</sub>                      | $V_{GS} = -3 \text{ V}, T_{C} = 25^{\circ}\text{C}$                     | -        | -    | 53  | Α    |
| Pulsed Source-Drain Diode Forward<br>Current (Note 6)        | I <sub>SDM</sub>                     |                                                                         | -        | -    | 159 |      |
| Forward Diode Voltage                                        | $V_{SD}$                             | V <sub>GS</sub> = -3 V, I <sub>SD</sub> = 40 A, T <sub>J</sub> = 25     | 5°C –    | 4.5  | -   | V    |


# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified) (continued)

| Parameter                     | Symbol           | Test Condition                                                                                                       | Min | Тур | Max | Unit |
|-------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| SOURCE-DRAIN DIODE CHARACTERI | STICS            |                                                                                                                      |     |     |     |      |
| Reverse Recovery Time         | t <sub>RR</sub>  | $V_{GS} = -3/18 \text{ V}, I_{SD} = 40 \text{ A},$<br>$dI_S/dt = 1000 \text{ A}/\mu\text{s}, V_{DS} = 800 \text{ V}$ | -   | 23  | -   | ns   |
| Reverse Recovery Charge       | Q <sub>RR</sub>  | di <sub>S</sub> /at = 1000 A/μs, V <sub>DS</sub> = 800 V                                                             | _   | 146 | -   | nC   |
| Reverse Recovery Energy       | E <sub>REC</sub> | 1                                                                                                                    | _   | 5   | -   | μJ   |
| Peak Reverse Recovery Current | I <sub>RRM</sub> |                                                                                                                      | _   | 13  | -   | Α    |
| Charge time                   | t <sub>A</sub>   |                                                                                                                      | _   | 13  | -   | ns   |
| Discharge time                | t <sub>B</sub>   | 1                                                                                                                    | _   | 10  | -   | ns   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. E<sub>ON</sub>/E<sub>OFF</sub> result is with body diode

#### **TYPICAL CHARACTERISTICS**



2.5 ON NORMALIZED DRAIN-TO-VIDE SOURCE RESISTANCE SOURCE RESISTANCE AND A VGS = 18 V

-55 -30

-5

20

T<sub>J</sub>, JUNCTION TEMPERATURE (°C)

Figure 3. On–Resistance Variation with
Temperature

70

95

120

145

170

45

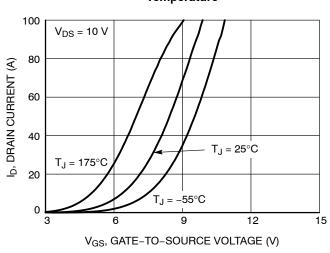



Figure 5. Transfer Characteristics

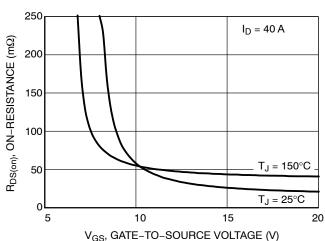



Figure 4. On-Resistance vs. Gate-to-Source Voltage

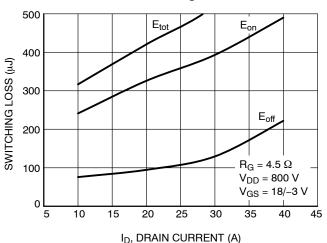



Figure 6. Switching Loss vs. Drain Current

#### **TYPICAL CHARACTERISTICS**

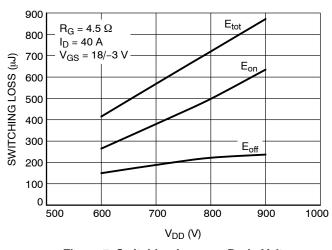



Figure 7. Switching Loss vs. Drain Voltage

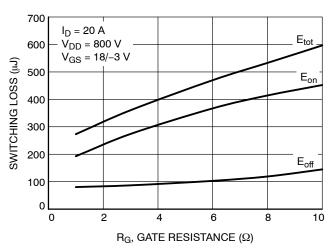



Figure 8. Switching Loss vs. Gate Resistance

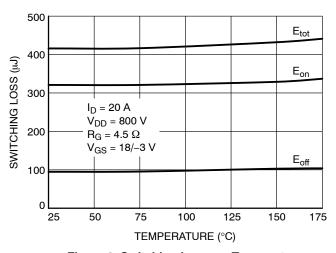



Figure 9. Switching Loss vs. Temperature

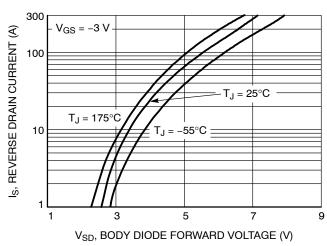
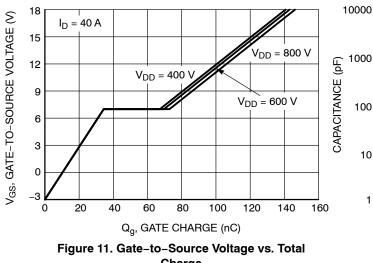




Figure 10. Diode Forward Voltage vs. Current

#### **TYPICAL CHARACTERISTICS**



Charge

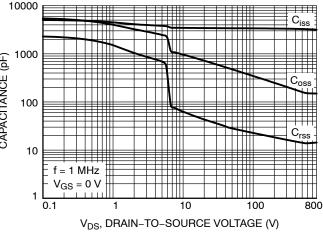



Figure 12. Capacitance vs. Drain-to-Source Voltage

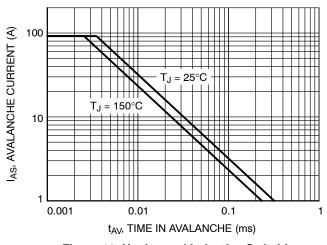



Figure 13. Unclamped Inductive Switching Capability

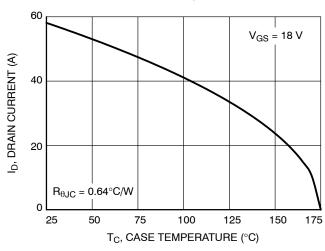



Figure 14. Maximum Continuous Drain **Current vs. Case Temperature** 

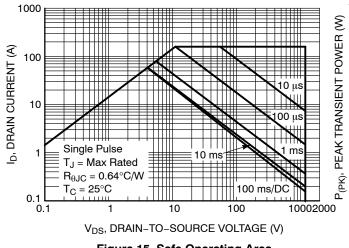



Figure 15. Safe Operating Area

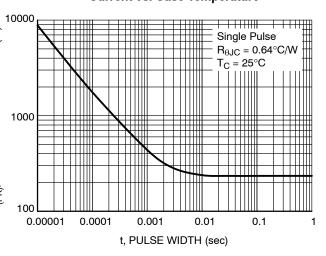



Figure 16. Single Pulse Maximum Power Dissipation

### **TYPICAL CHARACTERISTICS**

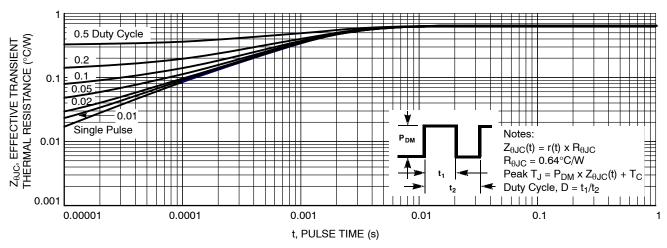
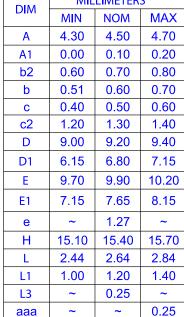


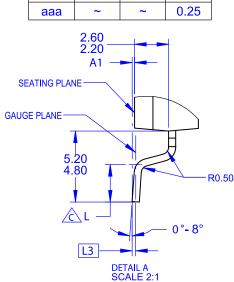

Figure 17. Junction-to-Case Transient Thermal Response

#### D<sup>2</sup>PAK7 (TO-263-7L HV) CASE 418BJ **ISSUE B**

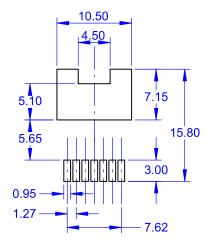
**DATE 16 AUG 2019** 

#### NOTES:

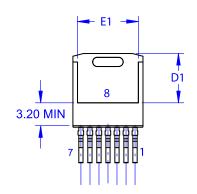

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

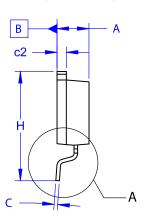

- OUT OF JEDEC STANDARD VALUE.

  D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.


  E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

| DIM        | MILLIMETERS |       |       |  |  |
|------------|-------------|-------|-------|--|--|
| DIM        | MIN         | NOM   | MAX   |  |  |
| Α          | 4.30        | 4.50  | 4.70  |  |  |
| <b>A</b> 1 | 0.00        | 0.10  | 0.20  |  |  |
| b2         | 0.60        | 0.70  | 0.80  |  |  |
| р          | 0.51        | 0.60  | 0.70  |  |  |
| С          | 0.40        | 0.50  | 0.60  |  |  |
| c2         | 1.20        | 1.30  | 1.40  |  |  |
| D          | 9.00        | 9.20  | 9.40  |  |  |
| D1         | 6.15        | 6.80  | 7.15  |  |  |
| Е          | 9.70        | 9.90  | 10.20 |  |  |
| E1         | 7.15        | 7.65  | 8.15  |  |  |
| е          | ~           | 1.27  | ~     |  |  |
| Н          | 15.10       | 15.40 | 15.70 |  |  |
| L          | 2.44        | 2.64  | 2.84  |  |  |
| L1         | 1.00        | 1.20  | 1.40  |  |  |
| L3         | ~           | 0.25  | ~     |  |  |
| aaa        | ~           | ~     | 0.25  |  |  |




| A          | <b>—</b> E <b>—</b> | - L1 |
|------------|---------------------|------|
|            |                     |      |
| <u> </u>   |                     |      |
| 1<br>b2 ─► |                     |      |
| e aaa B    | b —   A   M         |      |



LAND PATTERN RECOMMENDATION





#### **GENERIC MARKING DIAGRAM\***



XXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to

| device data sheet for actual part marking.  |
|---------------------------------------------|
| Pb-Free indicator, "G" or microdot "■", may |
| or may not be present. Some products may    |
| not follow the Generic Marking.             |
|                                             |

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON84234G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. D<sup>2</sup>PAK7 (TO-263-7L HV)

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

**DESCRIPTION:** 

**PAGE 1 OF 1** 

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative