MFHA

SMD current sensing resistor-metal film

Applications

- Switched-mode power supply (SMPS)
- Voltage regulator module
- Power management
- Stepper motor drives

Environmental compliance

Product features

- Low sensing resistance
- 1206 (3216 metric) to 2512 (6432 metric)

- High power dissipation
- AEC-Q200 compliant
- Moisture sensitivity level (MSL): 1

Table 1. Part numbering configuration scheme

Mechanical parameters- Inches [mm]

Family	Size code	\mathbf{L}	\mathbf{W}	\mathbf{C}	\mathbf{d}	\mathbf{t}
MFHA1206	1206	0.126 ± 0.008	0.063 ± 0.008	0.020 ± 0.012	0.016 ± 0.008	0.022 ± 0.004
	$[3216]$	$[3.20 \pm 0.20]$	$[1.60 \pm 0.20]$	$[0.50 \pm 0.30]$	$[0.40 \pm 0.20]$	$[0.55 \pm 0.10]$
MFHA2512	2512	$[6432]$	0.252 ± 0.008	0.126 ± 0.008	0.024 ± 0.012	0.020 ± 0.010
	$[6.40 \pm 0.20]$	$[3.20 \pm 0.20]$	$[0.60 \pm 0.30]$	$[0.50 \pm 0.25]$	$[0.022 \pm 0.004$	

Part marking: Rxxx: (xxx= resistance value in ohms expressed in 3 digits, $100=0.100 \Omega$ or $100 \mathrm{~m} \Omega$)

Recommended pad layout-mm

Family	\mathbf{a}	\mathbf{b}	\mathbf{c}
MFHA1206	0.7	5.1	2.5
MFHA2512	1.0	7.5	4.2

1. The copper foil minimum thickness of PCB needs 3 oz.
2. Pad layout dimension tolerance is $\pm-0.1 \mathrm{~mm}$.
3. The resistance will change slightly after soldered; it is dependent on PCB pad size deign and it's necessary to consider the effect of the resistance increase or decrease.

Electrical specifications

Part number	Size	Grade option	Resistance value $\mathbf{m} \Omega$ (Part number code)	Resistance tolerance (Part number code)	Power rating (Part number code)	TCR (ppm $/{ }^{\circ} \mathrm{C}$)	Operating temperature
MFH@1206Rxxxx*?	1206 (3216 metric)	A	100 (1000)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	120 (1200)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	150 (1500)	$\pm 1 \%$ (F)	$1 \mathrm{~W}(\mathrm{C})$	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	200 (2000)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	220 (2200)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	250 (2500)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	270 (2700)	$\pm 1 \%$ (F)	$1 \mathrm{~W}(\mathrm{C})$	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	300 (3000)	$\pm 1 \%$ (F)	$1 \mathrm{~W}(\mathrm{C})$	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	400 (4000)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	500 (5000)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	510 (5100)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@1206Rxxxx*?	1206 (3216 metric)	A	700 (7000)	$\pm 1 \%$ (F)	1 W (C)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	100 (1000)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	120 (1200)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55{ }^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	130 (1300)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	150 (1500)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155{ }^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	180 (1800)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	200 (2000)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	240 (2400)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	250 (2500)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	270 (2700)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	300 (3000)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	360 (3600)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	390 (3900)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	450 (4500)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	470 (4700)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	500 (5000)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	510 (5100)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	680 (6800)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
MFH@2512Rxxxx*?	2512 (6432 metric)	A	750 (7500)	$\pm 1 \%$ (F)	2.0 W (E)	± 100	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

[^0]$R x x x x=$ Enter resistance code option from table above $x x x x=$ resistance code $(R 1000=100.0 \mathrm{~m} \Omega)$

* $=$ Enter resistance tolerance code from tbale above ($\mathrm{F}= \pm 1 \%$)
?= Enter power rating code from table above ($\mathrm{C}=1 \mathrm{~W}, \mathrm{E}=2.0 \mathrm{~W}$)

Packaging information- mm

Supplied in tape and reel on a $7.0^{\prime \prime}$ diameter reel
(EIA-481 compliant)

Size	Tape	Quantity
1206	7 inch paper	$5 K$
2512	7 inch embossed	$4 K$

Tape carrier and dimensions

Paper tape carrier drawing

Dimension	$\mathbf{1 2 0 6}$	$\mathbf{2 5 1 2}$
E	1.75 ± 0.1	1.75 ± 0.1
F	3.5 ± 0.05	5.5 ± 0.05
P2	2.0 ± 0.1	2.0 ± 0.1
D0	1.5 ± 0.1	1.5 ± 0.1
P0	4.0 ± 0.1	4.0 ± 0.1
W	8.0 ± 0.1	12.0 ± 0.1
P1	4.0 ± 0.1	4.0 ± 0.1
A0	2.0 ± 0.15	3.6 ± 0.2
BO	3.6 ± 0.2	6.9 ± 0.2
T	0.84 ± 0.1	0.85 ± 0.15

Embossed tape carrier drawing

Reel dimensions

Size	A	B	C	D	N	W1	W2	W3
1206	178 ± 2.0	3.5 ± 0.5	13.0 ± 1.0	na	60 ± 1.0	9.0 ± 1.0	11.5 ± 1.0	na
2512	178 ± 2.0	3.5 ± 0.5	13.0 ± 1.0	na	60 ± 1.0	13.0 ± 1.0	15.5 ± 1.0	na

General specifications

	Insulation resistance: > $100 \mathrm{M} \Omega$
Temperature coefficient of resistance: IEC60115-1 4.8, +25 ${ }^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$	
Short time overload: IEC60115-1 4.13, 2.5 X rated power for 5 s	
High temperature exposure (storage): AEC-0200-REV D-test 3, MIL-STD202 Method 108, 1000 hours. @ +155 ${ }^{\circ} \mathrm{C}$ unpowered	
Temperature cycling: AEC-0200-REV D-Test 4, JESD22 Method JA-104, 1000 cycles $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+155^{\circ} \mathrm{C}\right), 30$ minute maximum dwell time at each temperature extreme. 1 minute maximum transition time.	
Biased humidity: AEC-0200-REV D-Test 7, MIL-STD-202 method 103,1000 hours $+85^{\circ} \mathrm{C} / 85 \%$ RH. Note: Specified conditions: 10% of operating power (not exceeding max working voltage).	
Operational life: AEC-0200-REV D-Test 8, MIL-STD-202 method 108, 1000 hours, $+125^{\circ} \mathrm{C}$ at rated derating power.	
Resistance to solvents: AEC-0200-REV D-Test 12, MIL-STD-202 method 215, a: Isopropyl alcohol : mineral spirits=1:3, b: Terpene defluxer (Bioact EC-7R) c: Deionized water : Propylene glycol Monomethyl ether : monoethanolamine $=42: 1$	
Mechanical shock: AEC-0200-REV D-Test 13, MIL-STD-202 Method 213, half sine shock pulse, peak value is 100 g 's. Normal duration (D) is 6 (ms)	
Vibration: AEC-0200-REV D-Test 14, MIL-STD-202 method 204, 5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10-2000 Hz	
Resistance to soldering heat: AEC-0200-REV D-Test 15, MIL-STD-202 method 210, Condition B : Immerse in eutectic solder at $+260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 10 ± 1 second	
Thermal shock: AEC-0200-REV D-Test 16, MIL-STD-202 method 107, $-55^{\circ} \mathrm{C} /+155^{\circ} \mathrm{C} .300$ cycles, Maximum transfer time 20 seconds, Dwell time 15 minutes. Air-Air	
ESD: AEC-0200-REV D-Test 17, AEC-0200-002 or ISO/DIS 10605, verify the voltage setting at 500 V	
	Solderability: AEC-0200-REV D-Test 18, J-STD-002, method B, aging 4 hours at $+155^{\circ} \mathrm{C}$ dry heat Lead-free solder bath at $+235^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$, Dipping time: 3 ± 0.5 seconds, $>95 \%$ area covered with tin
Flammability: AEC-0200-REV D-Test 20, UL-94, Without plastic part, Use final goods burn with methane twice, each 10 s , Electrical test not required.	
Board flex (bending): AEC-0200-REV D-Test 21, AEC-0200-005, The duration of the applied forces shall be $60(+5)$ seconds, 2 mm deflection	
	Terminal strength (SMD): AEC-0200-REV D-Test 22, AEC-0200-006, Force of 1.8 kg for 60 seconds

Temperature derating curve

Rated current \& voltage

The rated current and voltage are calculated by the following formula:
$\mathrm{I}=\sqrt{\mathrm{P} \div \mathrm{R}}$
$\begin{array}{ll}\text { I: Rated current (A) } & \text { V: Rated voltage (V) } \\ \text { P: Rated power (W) } & \text { R: Resistance value (} \Omega \text {) }\end{array}$

Solder reflow profile

Profile feature	Lead (Pb) free solder
Preheat and soak - Temperature min. ($\mathrm{T}_{\text {smin }}$)	$150^{\circ} \mathrm{C}$
- Temperature max. ($\mathrm{T}_{\text {smax }}$)	$200{ }^{\circ} \mathrm{C}$
- Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$) (t_{s})	60-150 seconds
Ramp up rate T_{L} to T_{p}	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (TL) Time (t_{L}) maintained above T_{L}	$\begin{aligned} & 217^{\circ} \mathrm{C} \\ & 60-120 \text { seconds } \\ & \hline \end{aligned}$
Peak package body temperature (Tp)*	$260^{\circ} \mathrm{C}$
Time ($\left.\mathrm{t}_{\mathrm{p}}\right)^{*}$ within $5^{\circ} \mathrm{C}$ of the specified classification temperature (T_{C})	10 seconds*
Ramp-down rate (T_{p} to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

* Tolerance for peak profile temperature $\left(T_{p}\right)$ is defined as a supplier minimum and a user maximum.

Manual solder

$+350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}, 3+1 /-0$ seconds 1 time (by soldering iron), generally manual, hand soldering is not recommended

Eaton
Electronics Division
1000 Eaton Boulevard
Cleveland, OH 44122
United States
Eaton.com/electronics

[^0]: @= Enter grade option from table above (A=Automotive)

