DC Power Relays (200-A Models)

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($98 \times 44 \times 86.7 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching 400-V 200-A DC loads. (Capable of interrupting 1,000 A at 400 VDC max.) 1,000 VDC 100 A type are also added.
(Capable of interrupting 500 A at 1,000 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.

- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover is also available for industrial applications.
- UL/CSA standard UL508 approved.

Model Number Legend

G9EC- $\frac{\square}{1}-\frac{\square}{2} \quad \frac{\square}{3}-\frac{\square}{4}$

1. Number of Poles

1: 1 pole
2. Contact Form

Blank: SPST-NO
3. Coil Terminals

B : M3.5 screw terminals (standard)
Blank: Lead wire output
4. Special Functions

X1 : High Voltage type ($1,000 \mathrm{~V}$)

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$\begin{aligned} & 12 \mathrm{VDC} \\ & 24 \mathrm{VDC} \end{aligned}$	G9EC-1-B
	Lead wire			$\begin{aligned} & 60 \text { VDC } \\ & 100 \text { VDC } \end{aligned}$	G9EC-1
	Screw terminals			$\begin{aligned} & 12 \text { VDC } \\ & 24 \text { VDC } \end{aligned}$	G9EC-1-B-X1

Note 1. Two M8 nuts are provided for the contact terminal connection.
Note 2. Two M3.5 screws are provided for the coil terminal connection.

DC Power Relays (200-A Models)

Ratings

-Coil

Model	Rated voltage	Rated current (mA)	Coil resistance (Ω)	Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (W)
				Percentage of rated voltage			
$\begin{aligned} & \text { G9EC-1-B } \\ & \text { G9EC-1 } \end{aligned}$	12 VDC	938	12.8	75\% max.	8\% min.	$\begin{aligned} & 110 \% \text { (at } 23^{\circ} \mathrm{C} \\ & \text { within } 10 \text { minutes) } \end{aligned}$	Approx. 11
	24 VDC	469	51.2				
	48 VDC	234	204.8				
	60 VDC	188	320.0				
	100 VDC	113	888.9				
9FC-1-B-X1	12 VDC	583	20.6			130\%	Approx 7
	24 VDC	292	82.3			130\%	Approx. 7

Note 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
Note 2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil.
-Contacts

Item	Resistive load	
	G9EC-1(-B)	G9EC-1-B-X1
Rated load	200 A at 400 VDC	100 A at $1,000 \mathrm{VDC}$
Rated carry current	200 A	200 A
Maximum switching voltage	400 V	$1,000 \mathrm{~V}$
Maximum switching current	200 A	200 A

■Characteristics

Item Model		G9EC-1(-B)	G9EC-1-B-X1
Contact resistance *1		$30 \mathrm{~m} \Omega$ max. (0.2 m Ω typical)	
Contact voltage drop		0.1 V max. (for a carry current of 200 A)	
Operate time		50 ms max .	
Release time		30 ms max.	
Insulation resistance *2	Between coil and contacts	1,000 M 2 min .	
	Between contacts of the same polarity	1,000 M 2 min.	
Dielectric strength	Between coil and contacts	2,500 VAC (1 min.)	4,000 VAC (1 min.)
	Between contacts of the same polarity	2,500 VAC (1 min.)	4,000 VAC (1 min.)
Impulse withstand voltage *3		4,500 V	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	5 to 200 to 5 Hz (Acceleration: $44.1 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	5 to 200 to 5 Hz (Acceleration: $44.1 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$	
Mechanical endurance *4		200,000 operations min.	
Electrical endurance (resistive load) *5		400 VDC, 200 A (3,000 operations min.)	1,000 VDC, 100 A (6,000 operations min.) 1,000 VDC, 150 A (1,000 operations min.)
Short-time carry current		300 A (15 min.)	
Maximum interruption current		1,000 A at 400 VDC (10 operations min.)	1,000 VDC, 500 A (5 operations min.)
Overload interruption		700 A at 400 VDC (40 operations min.)	850 VDC, 900 A (3 operations min.)
Reverse polarity interruption		-200 A at 200 VDC (1,000 operations min.)	850 VDC, -600 A (1 operations min.) 1,000 VDC, -300 A (1 operations min.)
Ambient operating temperature		-40 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	-40 to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%	
Weight (Including accessories)		Approx. 560 g	Approx. 650 g

Note. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
*1. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
*2. The insulation resistance was measured with a $500-$ VDC megohmmeter.
*3. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$)
*4. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
*5. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Engineering Data

G9EC-1(-B) Switching/Current Conduction Models

-Maximum Switching Capacity

-Carry Current vs Energizing Time

- Vibration Malfunction

-Shock Malfunction

-Electrical Endurance (Switching Performance)

-Must-operate Voltage and Must-release Voltage Distributions

- Vibration Resistance

Shock Resistance

Characteristics were measured after applying a shock directions along 3 axes. The percentage rate change is the average value for all of the samples.

-Electrical Endurance (Interruption Performance)

-Time Characteristic Distributions

IDimensions (Unit: mm)

-Models with Screw Terminals

G9EC-1-B

Terminal Arrangement/ Internal Connections (TOP VIEW)

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.

Mounting Hole Dimensions (TOP VIEW)

G9EC-1-B-X1

Terminal Arrangement/ Internal Connections (TOP VIEW)

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.
Mounting Hole Dimensions (TOP VIEW)

－Models with Lead Wires

G9EC－1

Dimension（mm）	Tolerance（mm）
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

Options（Unit：mm）
－Terminal Cover P9EC－C

＊Dimensions of cutout for wiring．
Note：Be sure to remove the cutouts
for wiring that are located in the
wiring outlet direction before
installing the Terminal Cover．

Dimension（mm）	Tolerance（mm）
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

OMRON Corporation

Device \＆Module Solutions Company

Regional Contact

Americas

https：／／components．omron．com／us
Asia－Pacific
https：／／components．omron．com／ap
Korea
https：／／components．omron．com／kr

Europe

https：／／components．omron．com／eu
China
https：／／components．omron．com．cn
Japan
https：／／components．omron．com／jp

