

Description

The SiT5711 is the industry's smallest Stratum 3E OCXO (9 mm x 7 mm) with ±5 ppb over-temp stability and ±0.04 ppb/°C typical frequency slope (dF/dT). Leveraging SiTime's unique DualMEMS® and TurboCompensation® temperature sensing technology, it delivers excellent stability in the presence of environmental stressors – airflow, temperature perturbation, vibration, shock, and electromagnetic interference (EMI).

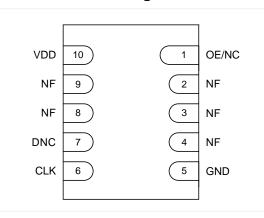
The SiT5711's environmental robustness enables unmatched ease-of-use and reduces system manufacturing overhead:

- Highly flexible location on the PCB
- Minimal shielding for thermal isolation

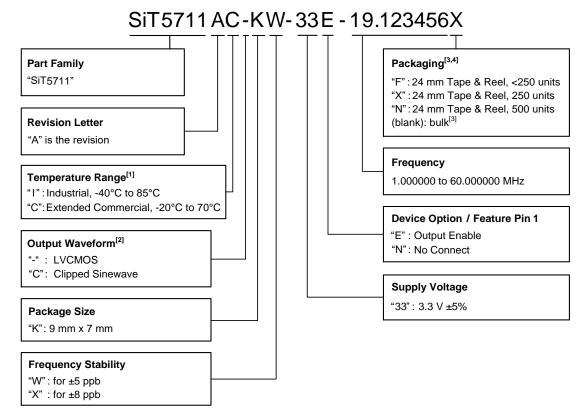
SiT5711 can be factory-programmed to any frequency between 1 MHz and 60 MHz. The SiT5711 is supported by the SiT6731 evaluation board.

Features

- Any frequency between 1 MHz and 60 MHz, in 1 Hz steps
- ±0.04 ppb/°C frequency slope typical dF/dT
- ±5 ppb frequency stability over temperature
- Up to 85°C operating temperature range
- 1.4E-11 ADEV at 10 second averaging time
- Exceptional dynamic stability under airflow and rapid temperature changes
- Excellent Holdover over a wide range of conditions
- Integrated regulators for on-chip power-supply noise filtering and excellent PSNR
- GR-1244 Stratum 3E compliant
- Resistant to shock and vibration
- 3.3 V supply voltage
- LVCMOS and Clipped Sinewave outputs


Applications

- 4G/5G radio
- Base Stations
- Digital Switching
- Time and Frequency Measurement
- IEEE 1588
- Test and measurement


Figure 1. Top and bottom view

Package Pinout

Figure 2. Pin Assignments (Bottom view)

Ordering Information

Notes:

- 1. Contact SiTime for other temperature range options.
- 2. "-" corresponds to the default rise/fall time for LVCMOS output as specified in Table 2 (Electrical Characteristics). Contact SiTime for other rise/fall time options for best EMI.
- 3. Bulk is available for sampling only.

Table 1. Ordering Codes for Supported Tape & Reel Packaging Method^[4]

Device Size	24 mm T&R (<250 units)	24 mm T&R (250 units)	24 mm T&R (500 units)
9 mm x 7 mm	F	Х	Ν

Notes:

4. 10 unit minimum order quantity for tape and reel packaging.

Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage. Typical values are at 25°C and 3.3 V VDD. All measurements are specified with 15 pF load unless otherwise stated.

Table 2. Output Characteristics

Image: Contract of the state of th	Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
Frequency Stability Frequency Stability Frequency Stability over Temperature F_{a} stab 5 $ 45$ ppb Referenced to (max + trinin)/2 over the specified trequency stability. Measured after 48 hours of operation. Frequency Stability over Temperature F_{a} dynamic $ 48$ ppb Steady attlew 3 m(s, "tcmin ramp rate Promatic Frequency Change to F_{a} dynamic $ 4300$ ppb/ Steady attlew 3 m(s, "tcmin ramp rate Pynamic Frequency Change to F_{a} dynamic $ 4300$ ppb Other from nominal frequency (F) after 2 reflows, measured at 25°C Initial Tolerance F_{a} dift $ 40.7$ ± 1.6 ppb Other from nominal frequency (F) after 2 reflows, measured at 25°C One-day Aging F_{a} dift $ \pm 0.7$ ± 1.6 ppb After 60-days operation, 50°C One-earl Aging F_{a} dift $ \pm 0.7$ ± 1.6 ppb After 50-days operation, 50°C Tranyear Aging F_{a} dift $ \pm 0.3$ $ \pm 0.3$ $-$ ppb After 50-days operation, 50°C				Frequency	Coverage		
Frequency Stability over Temperature F_stab -5 - +5 ppb Referenced to (fmax + fmin)2 over the specified temperature composition for ±2 ppb or tighter temperature for ±2 ppb or tighter temperature and the 4 house of comperature start temperature and the 4 house of the temperature start temperature and the 4 house of the temperature start temperature and the 4 house of the temperature and the 4 house of the temperature and the 4 house of temperature start temperature and the 4 house of temperature start temperature and temperature and temperature and temperature and temperature and the 4 house of temperature and temper	Output Frequency Range	F	1	-	60	MHz	
Image: Second Silf and Signal Signa				Frequenc	y Stability		
Frequency cs. Temperature SlopedF/dT-0.12 ± 0.04 +0.12ppbfrequency cs. Temperature SlopedF/dT-0.02 ± 0.002 ± 0.002 $pobm^{-1}$ CSteady airflow <3 m/s, 1°C/min ramp rateDynamic Frequency Change to Temperature RampFdynamic-0.002 ± 0.0007 $+0.002$ $pobm^{-1}$ CSteady airflow <3 m/s, 1°C/min ramp rate	Frequency Stability over Temperature	F_stab	-5	-	+5	ppb	
Dynamic Frequency Change to Temperature Ramp Fdynamic -0.002 ±0.002 Ppb/s Steady airflow <3 m/s, 1*C/min ramp rate Initial Tolerance Finit -300 - +300 ppb/ Offset from nominal frequency (F) after 2 reflows, measured at 25°C. Hysteresis Over Temperature FInit -300 - +300 ppb Over -40 to 85°C, measured as maximum frequency deviation from center of hysteresis eye, 1*C/min ramp rate One-day Aging F1nt - ±0.7 ±1.6 ppb After 60-days operation, 50°C One-month Aging F1ny - ±110 ±220 ppb After 30-days operation, 50°C One-year Aging F10y - ±210 ±220 ppb After 30-days operation, 50°C Ten-year Aging F10y - ±220 ±394 ppb After 30-days operation, 50°C Total Stability - 20 years F20y_stab -1 -1 +1 ppb After 30-days operation, 50°C Supply Voltage Sensitivity Fdotad - ±0.2 - ppb UCMOS output, 15 P ±10%			-8	-	+8	ppb	frequency stability. Measured after 48 hours of
Temperature RampImage: Constraint of the standard	Frequency vs. Temperature Slope	dF/dT	-0.12	±0.04	+0.12	ppb/°C	Steady airflow <3 m/s, 1°C/min ramp rate
Image: Construct of the second sec		F_dynamic	-0.002	±0.0007	+0.002	ppb/s	Steady airflow <3 m/s, 1°C/min ramp rate
One-day AgingF_1d-±0.7±1.6ppbAfter 60-days operation, 50°COne-month AgingF_1m-±32±57ppbAfter 30-days operation, 50°COne-month AgingF_1y-±110±220ppbAfter 30-days operation, 50°COne-year AgingF_1y-±110±220ppbAfter 30-days operation, 50°CTen-year AgingF_10y-±220±394ppbAfter 30-days operation, 50°CTotal Stability - 20 yearsF_20y_stab1-+11ppmBetter thin Strutum 35 tability of ±4.6 ppm over 20 years ppr GR-1244-CORE. Inclusive of initial tolerance, trequery stability over temperature, 20-year Aging, and variated free running accuracySupply Voltage SensitivityF_vod-±0.3-ppbVoa ±5%Output Load SensitivityF_vod-±0.1-ppbUCMOS output, 15 pF ±10%Start-up TimeTstart-2.53.5msTime to first pulseafter OE pin reaches 70% of Voo. 10 MHzWarm-up TimeTwarmup-20150sTime to first pulse after OE pin reaches 70% of Voo. 10 MHzUty CycleDC45-55%Iter optic powered on tor 48 hours then powered of for 1 hour prior to measurement.Uty CycleDC45-55%Iter optic powered on tor 48 hours then powered of for 1 hour prior to measurement.Uty CycleDC45-55%Iter optic powered on tor 48	Initial Tolerance	F_init	-300	-	+300	ppb	
One-month Aging F_1m - ±32 ±57 ppb After 30-days operation, 50°C One-year Aging F_1y - ±110 ±230 ppb After 30-days operation, 50°C Ten-year Aging F_10y - ±220 ±394 ppb After 30-days operation, 50°C Total Stability - 20 years F_20y_stab -1 - +11 ppm Better than Stratum 3E stability of ±4.6 ppm over 20 years per GR-1244-CORE. Inclusive of initial tolerance, frequency stability over temperature, 20-year Aging, and variations to supply Voltage and output toal. Typically called free running accuracy Supply Voltage Sensitivity F_vdd - ±0.2 - ppb Vpo ±5% Output Load Sensitivity F_load - ±0.2 - ppb LVCMOS output, 15 pF ±10% Start-up Time T_start - 2.5 3.5 ms Time to first pulse after OE pin reaches 70% of Vob. 10 MHz Warm-up Time T_start - 2.5 3.5 ms Time to first pulse after OE pin reaches 70% of Vob. 10 MHz Warm-up Time T_warmup - 20 150	Hysteresis Over Temperature	F_Hys	-0.8	±0.11	+0.8	ppb	deviation from center of hysteresis eye, 1°C/min ramp
One-year Aging F_1y - ±110 ±230 ppb After 30-days operation, 50°C Ten-year Aging F_10y - ±220 ±394 ppb After 30-days operation, 50°C Total Stability – 20 years F_20y_stab -1 - +1 ppm Better than Stratum 35 stability of ±4.6 ppm over 20 Supply Voltage Sensitivity F_vdd - ±0.3 - ppb Von ±5% Output Load Sensitivity F_load - ±0.2 - ppb Von ±5% Output Load Sensitivity F_load - ±0.2 - ppb UVCMOS output, 15 pF ±10% Start-up Time T_start - 2.5 3.5 ms Time to first pulse after OE pin reaches 70% of Von. OE Time OE_Tstart - 2.5 3.5 ms Time to suithin ±10 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement. Warm-up Time T_warmup - 20 150 s Time to within ±20 pb of final frequency. Final frequency measured at one hour. Device pow	One-day Aging	F_1d	-	±0.7	±1.6	ppb	After 60-days operation, 50°C
Ten-year AgingF_10y- ± 220 ± 334 ppbAfter 30-days operation, 50°CTotal Stability - 20 years F_20y_stab -1-+1ppmBetter than Stratum 3E stability of ± 4.6 ppm over 20 years per GR-1244-CORE. Inclusive of initial tolerance, local gene of anitial tolerance, variations to supply voltage and output load. Typically called free running accuracySupply Voltage Sensitivity F_vvdd - ± 0.3 -ppbVoo $\pm 5\%$ Output Load Sensitivity F_load - ± 0.2 -ppbLVCMOS output, 15 pF $\pm 10\%$ Start-up CharacteristicsStart-up Time T_start - 2.5 3.5 msTime to first pulseOE Time OE_Tstart - 20 150 sTime to first pulse after OE pin reaches 70% of Voo. 10 MHzWarm-up Time T_warmup - 20 150 sTime to first pulse after OE pin reaches 70% of Voo. 10 MHzWarm-up Time T_warmup - 20 150 sTime to within ± 10 opb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered of for 1 hour prior to measurement.Uty CycleDC 45 - 55 $\%$ Duty CycleDC 45 - 55 $\%$ Output Voltage HighVoit 90% VooUty CycleDC 45 - 56 $\%$ Output Voltage LevelVoit 0.8 1.2 V<	One-month Aging	F_1m	-	±32	±57	ppb	After 30-days operation, 50°C
Total Stability - 20 years F_20y_stab -1-+1ppmBetter than Stratum 3E stability of ±4.6 ppm over 20 years per CR-1244-CORE. Inclusive of initial tolerance, frequency stability over themperature, 20-years over adding into supply voltage and output load. Typically called free running accuracySupply Voltage Sensitivity F_vdd -±0.3-ppbVoo ±5%Output Load Sensitivity F_load -±0.2-ppbLVCMOS output, 15 pF ±10%Start-up Time T_start -2.53.5msTime to first pulseOE TimeOE_Tstart-20150sTime to first pulse after OE pin reaches 70% of V_{00}.Warm-up Time T_start -20150sTime to first pulse after OE pin reaches 70% of V_{00}.Warm-up Time T_warmup -20150sTime to within ±10 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered of for 1 hour prior to measurement.Duty CycleDC45-55%10% - 90% VDDOutput Voltage LowVout10%Voo10H = 3 mA, (V_{0D} = 3.3 V)Output Voltage LowVout0.8-1.2VMeasurement.	One-year Aging	F_1y	-	±110	±230	ppb	After 30-days operation, 50°C
Answer Answer Years per GR-1244-CORE. Inclusive of initial toterance, frequency stability over temperature, 20-year Aging, and variations to supply voltage and output load. Typically called free running accuracy Supply Voltage Sensitivity F_vdd - ±0.3 - Ppb V _{DD} ±5% Output Load Sensitivity F_load - ±0.2 - Ppb U/CMOS output, 15 pF ±10% Start-up Time T_start - 2.5 3.5 ms Time to first pulse OE Time OE_Tstart - 2.0 150 s Time to first pulse after OE pin reaches 70% of V _{DD} , 10 MHz Warm-up Time Tstart - 2.0 150 s Time to first pulse after OE pin reaches 70% of V _{DD} , 10 MHz Warm-up Time Twarmup - 2.0 150 s Time to within ±10 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered of for 1 hour prior to measurement. Uty Cycle DC 45 - 55 % Rise/Fall Time if., if - 2.2 3 ns 10%- 90% VDD Output Voltage Level Vort 0.8 - 10% Vort Iot = ±3 mA, (V_{DD} = 3.3 V) Output Voltage Level No.ut 0.8 - 10% Vort	Ten-year Aging	F_10y	-	±220	±394	ppb	After 30-days operation, 50°C
$ \begin{array}{c c c c c c } \hline \end{picture} pict$	Total Stability – 20 years	F_20y_stab	-1	_	+1	ppm	years per GR-1244-CORE. Inclusive of initial tolerance, frequency stability over temperature, 20-year Aging, and variations to supply voltage and output load. Typically
Image: State Strike Within 200 Output Image: State Stat	Supply Voltage Sensitivity	F_vdd	-	±0.3	-	ppb	V _{DD} ±5%
Start-up CharacteristicsStart-up CharacteristicsStart-up TimeT_start-2.53.5msTime to first pulseOE TimeOE_Tstart-680nsTime to first pulse after OE pin reaches 70% of Vpp, 10 MHzWarm-up TimeT_warmup-20150sTime to within ±10 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement.UVCMOS Output CharacteristicsTime to within ±200 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement.Duty CycleDC45-55%Rise/Fall Timetr, ff-2.23ns10% - 90% VDDOutput Voltage LowVOL10%Vpplou = ±3 mA, (Vpp = 3.3 V)Clipped Sinewave Output CharacteristicsOutput Voltage LevelVour0.8-1.2VMeasured peak-to-peak swing at any Vpp - 10 kΩ 10 pF ±10%	Output Load Sensitivity	F_load	-	±0.2	-	ppb	LVCMOS output, 15 pF ±10%
$\begin{tabular}{ c c c c c c c } \hline Start up Time & T_start & - & 2.5 & 3.5 & ms & Time to first pulse \\ \hline OE_Time & OE_Tstart & - & 680 & ns & Time to first pulse after OE pin reaches 70% of V_{DD,} \\ 10 MHz & Time to first pulse after OE pin reaches 70% of V_{DD,} \\ 10 MHz & Time to first pulse after OE pin reaches 70% of V_{DD,} \\ \hline T_warmup & - & 20 & 150 & s & Time to within ±10 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered of for 1 hour prior to measurement. \\ \hline - & - & 45 & ms & Time to within ±200 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement. \\ \hline - & - & 45 & ms & Time to within ±200 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement. \\ \hline - & - & 45 & ms & Time to within ±200 pb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement. \\ \hline - & - & 55 & \% & \\ \hline Duty Cycle & DC & 45 & - & 55 & \% & \\ \hline Rise/Fall Time & tr, tf & - & 2.2 & 3 & ns & 10\% - 90\% VDD & \\ Output Voltage High & V_{OH} & 90\% & - & - & V_{DD} & I_{OH} = ±3 mA, (V_{DD} = 3.3 V) & \\ \hline Output Voltage Low & V_{OL} & - & - & 10\% & V_{DD} & I_{OL} = ±3 mA, (V_{DD} = 3.3 V) & \\ \hline Output Voltage Level & V_{OUT} & 0.8 & - & 1.2 & V & Measured peak-to-peak swing at any V_{DD} - & 10 K\Omega \ 10 pF \pm 10\% & \\ \hline \end{array}$			-	±0.1	-	ppb	Clipped sinewave output, 10 kΩ 10 pF ±10%
OE TimeOE_Tstart-680nsTime to first pulse after OE pin reaches 70% of V_DD, 10 MHzWarm-up Time T_warmup -20150sTime to within ±10 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement. $-$ 45msTime to within ±200 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to 			5	Start-up Ch	aracteristic	S	
Warm-up TimeT_warmup T_warmup-20150sTime to within ±10 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement45msTime to within ±200 ppb of final frequency. Final frequency measurement.Duty CycleDC45-55%Rise/Fall Timetr, tf-2.23ns10% - 90% VDDOutput Voltage HighVOH90%VDDIoH = ±3 mA, (VDD = 3.3 V)Clipped Sinewave Output CharacteristicsOutput Voltage LevelVour0.8-1.2VMeasured peak-to-peak swing at any VDD - 10k Q 10 p F ±10%	Start-up Time	T_start	-	2.5	3.5	ms	Time to first pulse
Within up finite1_withindp201003frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement45msTime to within ±200 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement.LVCMOS Output CharacteristicsDuty CycleDC45-55%Rise/Fall Timetr, tf-2.23ns10% - 90% VDDOutput Voltage HighVOH90%VDDIoH = ±3 mA, (V_{DD} = 3.3 V)Clipped Sinewave Output CharacteristicsOutput Voltage LevelVour0.8-1.2VMeasured peak-to-peak swing at any V_DD - 10 kΩ 10 p F ±10%	OE Time	OE_Tstart	-		680	ns	
Image: Second	Warm-up Time	T_warmup	_	20	150	s	frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to
Duty Cycle DC 45 - 55 % Rise/Fall Time tr, tf - 2.2 3 ns 10% - 90% VDD Output Voltage High VoH 90% - - Vpb IoH = ±3 mA, (Vpb = 3.3 V) Output Voltage Low VoL - - 10% Vpb IoL = ±3 mA, (Vpb = 3.3 V) Output Voltage Low VoL - - 10% Vpb IoL = ±3 mA, (Vpb = 3.3 V) Output Voltage Low VoL - - 10% Vpb IoL = ±3 mA, (Vpb = 3.3 V) Output Voltage Level Vour 0.8 - 1.2 V Measured peak-to-peak swing at any Vpb - 10 kΩ 10 pF ±10%			-	-	45	ms	frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to
Rise/Fall Time tr, tf - 2.2 3 ns 10% - 90% VDD Output Voltage High V _{OH} 90% - - V _{DD} I _{OH} = ±3 mA, (V _{DD} = 3.3 V) Output Voltage Low V _{OL} - - 10% V _{DD} I _{OL} = ±3 mA, (V _{DD} = 3.3 V) Output Voltage Low V _{OL} - - 10% V _{DD} I _{OL} = ±3 mA, (V _{DD} = 3.3 V) Output Voltage Level V _{OUT} 0.8 - 1.2 V Measured peak-to-peak swing at any V _{DD} - 10 kΩ 10 pF ±10%			LVCM	IOS Outpu	t Character	istics	
Output Voltage High V _{OH} 90% - - V _{DD} I _{OH} = ±3 mA, (V _{DD} = 3.3 V) Output Voltage Low V _{OL} - - 10% V _{DD} I _{OL} = ±3 mA, (V _{DD} = 3.3 V) Clipped Sinewave Output Characteristics Output Voltage Level V _{OUT} 0.8 - 1.2 V Measured peak-to-peak swing at any V _{DD} - 10 kΩ	Duty Cycle	DC	45	-	55	%	
Output Voltage Low Vol - 10% Vol Iol Iol <td>Rise/Fall Time</td> <td>tr, tf</td> <td>_</td> <td>2.2</td> <td>3</td> <td>ns</td> <td>10% - 90% VDD</td>	Rise/Fall Time	tr, tf	_	2.2	3	ns	10% - 90% VDD
Clipped Sinewave Output Characteristics Output Voltage Level V _{OUT} 0.8 - 1.2 V Measured peak-to-peak swing at any V _{DD} – 10 kΩ 10 pF ±10%	Output Voltage High	V _{OH}	90%	-	-	V _{DD}	$I_{OH} = \pm 3 \text{ mA}, (V_{DD} = 3.3 \text{ V})$
Output Voltage Level Vout 0.8 - 1.2 V Measured peak-to-peak swing at any V _{DD} – $10 \text{ k}\Omega \parallel 10 \text{ pF} \pm 10\%$	Output Voltage Low	Vol	-	-	10%	V _{DD}	$I_{OL} = \pm 3 \text{ mA}, (V_{DD} = 3.3 \text{ V})$
10 kΩ 10 pF ±10%			Clipped S	inewave O	utput Chara	acteristics	
Rise/Fall Time tr, tf - 3.9 4.6 ns 20%-80% V _{OUT}	Output Voltage Level	Vout	0.8	-	1.2	V	
	Rise/Fall Time	tr, tf	_	3.9	4.6	ns	20%-80% Vout

Table 3. DC Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition			
Supply Voltage									
Supply Voltage	V _{DD}	3.14	3.3	3.47	V	Contact SiTime for other voltage options			
			Power Con	sumption					
Power Consumption – Warm-up	Pwr_warmup	-	-	2.3	W				
Power Consumption – Steady State	Pwr_steady	-	0.95	1.1	W	At +25°C			
			Temperat	ure Range					
Operating Temperature Range	T_use	-20	-	+70	°C	Extended commercial			
		-40	-	+85	°C	Industrial. Contact SiTime for -55°C and 95°C support			

Table 4. Input Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
		Inpu	t Characte	ristics – OE	E Pin	
Input Impedance	Z_in	75	-	-	kΩ	Internal pull up to VDD
Input High Voltage	VIH	70	-	-	%	
Input Low Voltage	VIL	-	-	30	%	

Table 5. Jitter & Phase Noise

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition			
			Jit	ter					
RMS Period Jitter	T_jitt	I	1	1.3	ps	F = 10 MHz, population 10 k			
RMS Phase Jitter (random)	T_phj	I	0.4	0.55	ps	F = 10.3 MHz, Integration bandwidth = 12 kHz to 5 MHz			
Allan Deviation									
$\tau = 1 \ second$	AD_1s	I	1.6E-11	-					
$\tau = 10$ seconds	AD_10s	I	1.4E-11	-					
$\tau = 100 \ seconds$	AD_100s	-	1.6E-11	-		Measured after 48 hours operation.			
$\tau = 1,000 \ seconds$	AD_1000s	-	2.5E-11	-					
$\tau = 10,000$ seconds	AD_10000s	-	1.4E-10	-					
			Phase	e Noise					
1 Hz offset		-	-81	-78	dBc/Hz				
10 Hz offset		I	-109	-106	dBc/Hz				
100 Hz offset		-	-128	-125	dBc/Hz				
1 kHz offset		-	-147	-145	dBc/Hz	Reference f = 10.3 MHz			
10 kHz offset		-	-152	-149	dBc/Hz				
100 kHz offset		-	-152	-149	dBc/Hz				
1 MHz offset		-	-164	-161	dBc/Hz				
5 MHz offset		-	-165	-160	dBc/Hz				

Table 6. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-55	105	°C
V _{DD}	-0.5	4	V
Soldering Temperature (follow standard Pb-free soldering guidelines)	-	260	°C

Table 7. Thermal Considerations

Package	θJA ^[5] (°C/W)
Stacked-PCB 9.0 mm x 7.0 mm	110

General guidelines for the thermal design of the PCB are the following:

1) The power and ground planes should be continuous in the 9 x 7 mm area directly under the device.

- 2) Thermal vias should not be added to 9 x 7 mm area directly under the device.
- 3) The thermal properties of the PCB should be designed such that the steady state device power is limited to 1.6 W at -40°C.

For more details on recommendations for thermal design Contact SiTime.

Table 8. Environmental Compliance^[6]

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007, Condition A JEDEC JESD22-B103, Condition 1
Temperature Cycle	JESD22, MethodA104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL3
Washability	Non-Washable

Notes:

- 5. The presented θ_{JA} is for a device on a JESD51-7 2s2p compliant board in still air. θ_{JA} is a function of board design and ambient environments.
- 6. This device is RoHS and REACH compliant Pb-free and is Halogen-free and Antimony-free.

Pin-out Bottom View

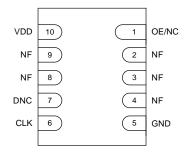


Figure 3. Size 9 mm x 7 mm

Table 9. Pin Assignments

Package Size	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10
9 mm x 7 mm	OE/NC	NF	NF	NF	GND	CLK	DNC	NF	NF	VDD

Table 10. Pin Description

Symbol	I/O	Internal Pull-up/Pull Down Resistor	Function
OE/NC	OE – Input	100 kΩ Pull-Up	H ^[7] : specified frequency output L: output is high impedance. Only output driver is disabled
0E/NC	NC – No Connect	-	H or L or Open: No effect on output frequency or other device functions [8]
NF	No Function	-	Solder to pads. Connect to VDD [9]
GND	Ground	-	Connect to ground [10]
DNC	Do Not Connect	-	Solder to pads. Do not connect [11]
CLK	Output	-	LVCMOS, or clipped sinewave oscillator output
VDD	Power	-	Connect to VDD

Notes:

7. In OE mode, a pull-up resistor of 100 k Ω or less is recommended if Pin 1 is not externally driven. If Pin 1 needs to be left floating, use the NC option.

- 8. Pin 1 voltage should not exceed device VDD or fall lower than device GND. Either of these conditions may lead to frequency shifts larger than specified limits.
- 9. SiTime recommends electrical connection to VDD. Use narrow traces (e.g. 4 to 6 mil) to avoid significant heat dissipation through these pads.
- 10. 0.1 μF capacitor in parallel with a 10 μF capacitor are required between VDD and GND.

11. Connecting DNC pin to VDD or ground may cause the device to malfunction.

Test Circuit Diagrams

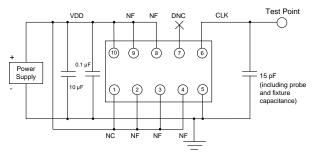


Figure 4. LVCMOS Test Circuit (NC Function)

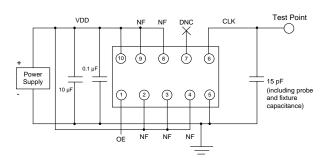


Figure 6. LVCMOS Test Circuit (OE Function)

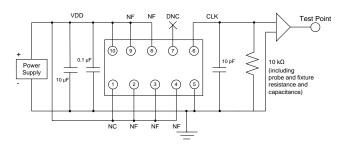
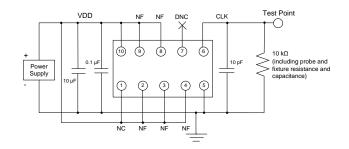



Figure 8. Phase Noise Clipped Sinewave Test Circuit (NC Function)

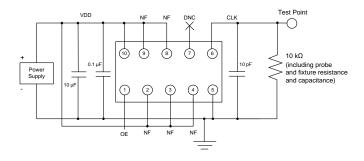


Figure 7. Clipped Sinewave Test Circuit (OE Function)

Waveforms

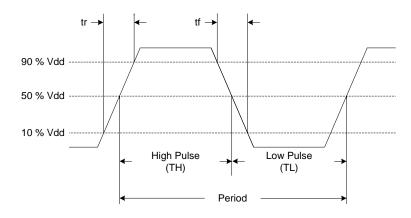


Figure 9. LVCMOS Waveform Diagram^[12]

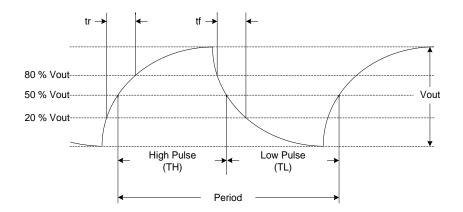
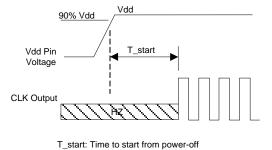
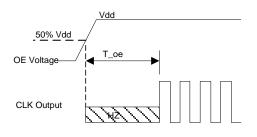



Figure 10. Clipped Sinewave Waveform Diagram^[12]


Note: 12. Duty Cycle is computed as Duty Cycle = TH/Period.

Timing Diagrams

T_oe: Time to re-enable the clock output

Figure 12. OE Enable Timing (OE Mode Only)

Typical Performance Plots

Figure 13. Frequency Stability

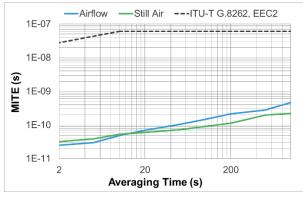


Figure 15. MTIE

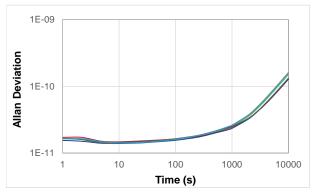
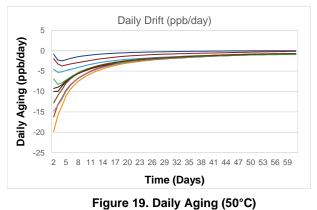



Figure 17. ADEV Still Air

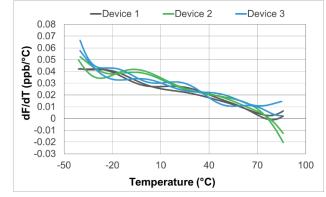


Figure 14. Frequency Slope

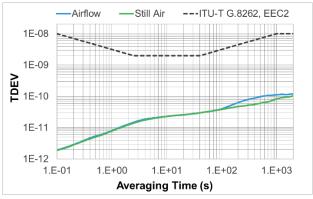


Figure 16. TDEV

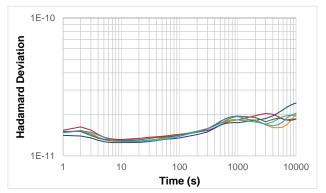
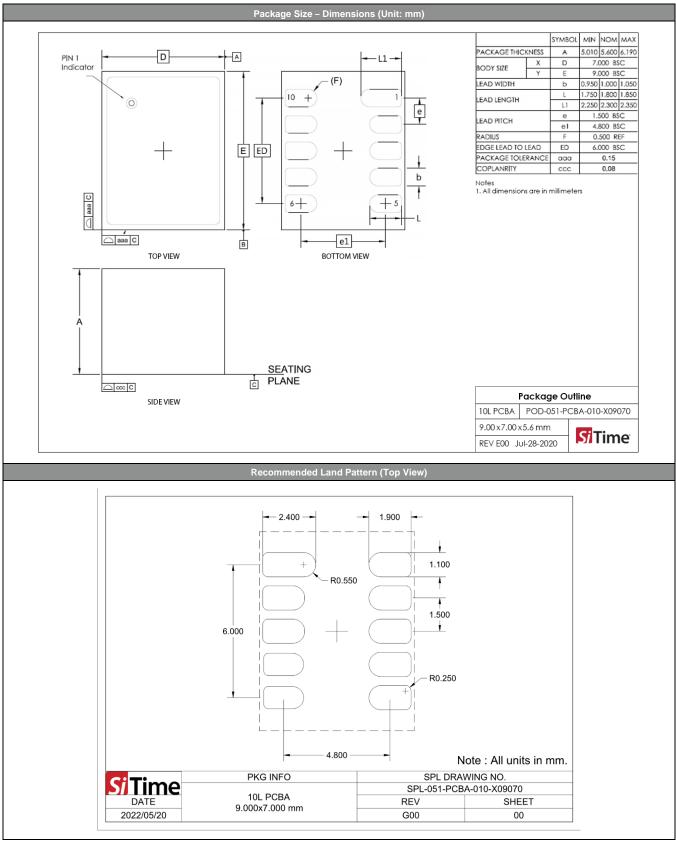



Figure 18. HDEV Still Air

Dimensions and Patterns — 9 mm x 7 mm package

Layout Guidelines

- SiT5711 uses internal regulators to minimize the impact of the power supply noise. For further reduction of noise, it is essential to use two bypass capacitors (0.1 µF and 10 µF). Place the bypass capacitors as close to the VDD pin as possible, typically within 1 to 2 mm. Ensure 0.1 uF cap is placed closest to the device VDD and GND power pins.
- SiT5711 is engineered to have superior performance when compared to quartz OCXOs in the presence of ambient disturbers such as airflow and temperature transients. Therefore, the use of a metal cover typical for quartz OCXOs can often be avoided.
- For additional layout recommendations, refer to the Best Design Layout Practices.

Manufacturing Guidelines

- No Ultrasonic or Megasonic Cleaning: Do not subject the SiT5711 to an ultrasonic or megasonic cleaning environment. Permanent damage or long-term reliability issues to the device may occur in such an event.
- After the surface mount (SMT)/reflow process, solder flux residues may be present on the PCB and around the pads of the device. Excess residual solder flux may lead to problems such as pad corrosion, elevated leakage currents, increased frequency aging, or other performance degradation. For optimal device performance and long-term reliability, it is recommended to use "no clean" flux. Do not subject SiT5711 to liquid based cleaning processes.
- Reflow profile, per JESD22-A113D
- For additional manufacturing guidelines and marking/ tape-reel instructions, refer to SiTime Manufacturing Notes

Additional Information

Table 11. Additional Information

Document	Description
ECCN #: EAR99	Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.
SiT6731 EVB	Evaluation board, contact SiTime
Time Machine II	MEMS oscillator programmer
Field Programmable Oscillators	Devices that can be programmable in the field by Time Machine II
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info
Qualification Reports	RoHS report, Reliability reports, Composition reports
Performance Reports	Additional performance data such as phase noise, current consumption, and jitter for selected frequencies
Termination Techniques	Termination design recommendations
Layout Techniques	Layout recommendations
Other Quality Documents	ISO certificate, materials declarations, environmental policy, warranty on date code

Table 12. Revision History

Version	Release Date	Change Summary					
0.1	17-Jul-2018	First release, advanced information					
0.11	27-Jul-2018	Changed Pin 2 and Pin 7 to Rsvd (reserved)					
0.12	8-Aug-2018	Added 9x7 mm package option in the ordering code Added 9x7 mm package pad layout recommendation Misc. corrections					
0.13	9-Aug-2018	Removed 10 mm x 10 mm package Misc. formatting changes					
0.14	27-Aug-2018	Added ±3 ppb support Added 14.0 x 9.0 mm, 20.0 x 13.0 mm, 25.0 x 22.0 mm packages Updated Table 2 and Ordering information Added Package Drawing section					
0.8	1-Nov-2018	Update frequency slope to ±0.15 ppb°/C Misc. corrections					
0.81	15-Feb-2019	Updated Ordering information Added Typical Performance Plots section Rearranged sections Added Pin Outs for 14x9 mm, 20x13 mm and 25x22 mm Updated Layout Guidelines Added T&R options Added factory option note to the Typical Plots Labeled package Top Views Other minor corrections					
0.82	15-Mar-2019	Updated drawings for 14x9, 20x13 and 25x22 mm packages					
0.83	10-Oct-2019	Updated Phase Noise (<i>typical</i>) in Table 5 Updated Packages Pinout, added Washability and additional information					
0.84	3-Dec-2019	Changed Rise/Fall time condition for Clipped Sinewave Output Characteristics					
0.85	2-Mar-2020	Package Drawings edits					
0.91	20-Apr-2020	Updated various specifications and conditions after characterization Updated package drawings and pinouts view					
0.92	5-Jun-2020	Updated Typical Performance Plots Cycle to Cycle Jitter Removed Hysteresis Specification Updated Manufacturing Notes Updated					
0.93	7-Dec-2020	Updated pin description and package drawings Updated conditions for initial tolerance Updated minimum and maximum storage Updated dimensions and patterns Updated layout guidelines					
0.94	24-Aug-2021	Updated various electrical specifications after further characterization Updated minimum order quantity for tape and reel packing Added thermal considerations Updated recommended land pattern					
1.0	7-Jun-2022	Updated the product description Changed the name of pin 7 to "DNC" for added clarity Updated the aging, Allan deviation, and phase noise specifications with the latest characterization data Updated the typical rise/fall time specification with the latest characterization data Updated the thermal considerations and guidelines Added test circuit and waveform diagrams Added Allan deviation, Hadamard deviation, and daily aging performance plots					

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2018-2022. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) impoper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

SiTime®, DualMEMS®, TurboCompensation® and The Heartbeat of 5G™ are either trademarks or registered trademarks of SiTime Corporation.