

Positronic Provides Complete Capability

ellence

Mission Statement

"To utilize product flexibility and application assistance to present quality interconnect solutions which represent value to customers worldwide."

Experience

- Founded in 1966
- Involvement in the development of international connector specifications through EIA®, IEC and ISO as well as PICMG®.

Me

- Introduction of new and unique connector products to the electronics industry.
- Patent holder for many unique connector features and manufacturing techniques.
- Vertically integrated manufacturing raw materials to finished connectors.

Technology

- Expertise with solid machined contacts provides a variety of high reliability connectors including high current density power connectors.
- Quality Assurance lab is capable of testing to IEC, EIA, UL, CUL, military and customer-specified requirements.
- In-house design and development of connectors based on market need or individual customer requirements.
- Internal manufacturing capabilities include automatic precision contact machining. injection molding, stamping, plating operations and connector assembly.
- Manufacturing locations in southwest Missouri, U.S.A. (headquarters); Puerto Rico, France, China, Singapore, and India. Total square footage: 407,441.

Support

- Quality Systems: Select locations qualified to ISO 9001, ISO 14001, AS9100, MIL-STD-790 and customer "dock to stock" programs. Applicable products gualified to MIL-DTL-24308, AS39029, DSCC 85039, MIL-DTL-28748, Space D32, GSFC S-311-P-4 and GSFC S-311-P-10.
- Compliance to a variety of international and customer specific environmental requirements.
- Large in-house inventory of finished connectors. Customer specific stocking programs.
- Factory direct technical sales support in major cities worldwide.
- One-on-one customer support from worldwide factory locations.
- World class web site.
- Value-added solutions and willingness to develop custom products with reasonable price and delivery.

Regional Headquarters

Springfield, MO Auch, France Singapore

Products described within this catalog may be protected by one or more of the following US patents: #4,900,261[†] #5,255,580 #5,329,697 #6,260,268 #6,835,079 #7,115,002 [†]Patented in Canada, 1992 Other Patents Pending

POSITRONIC® IS AN ITAR REGISTERED COMPANY

Positronic Industries' FEDERAL SUPPLY CODE (Cage Code) FOR MANUFACTURERS is 28198

Unless otherwise specified, dimensional tolerances are:

- ±0.001 inches [0.03 mm] for male contact mating diameters. 1) 2)
 - ±0.003 inches [0.08 mm] for contact termination diameters.
- ±0.005 inches [0.13 mm] for all other diameters. 3) ±0.015 inches [0.38 mm] for all other dimensions. 4)

Information in this catalog is proprietary to Positronic and its subsidiaries. Positronic believes the data contained herein to be reliable. Since the technical information is given free of charge, the user employs such information at his own discretion and risk. Positronic Industries assumes no responsibility for results obtained or damages incurred from use of such information in whole or in part.

The following trademarks are registered to Positronic Industries, Inc. in the United States and many other countries: Positronic Industries, Inc.®, Positronic®, Connector Excellence®, P+ logo®, PosiBand®, PosiShop®, Positronic Global Connector Solutions®, Global Connector Solutions®, The color blue as it appears on various connectors is a trademark of Positronic Industries, Inc., Registered in U.S. Patent and Trademark Office.

CONNECTOR DESCRIPTIONS


COMBINATION D-SUBMINIATURE STANDARD AND HIGH DENSITY

CB series connectors are available in standard density versions, which have fixed size 20 signal contacts and size 8 power, shielded, high voltage and air contacts. High density CB series connectors offer fixed size 22 signal contacts, size 8 contacts or size 16 power contacts. These connectors are available in various performance levels for best cost/performance ratio. Thermocouple contact options are also available.

COMBINATION D-SUBMINIATURE CRIMP CONTACTS STANDARD AND HIGH DENSITY

CBC series connectors offer crimp removable contacts for signal, power, shielded, high voltage and air contacts applications. These connectors are available in standard and high density versions. Thermocouple contact options are also available.

COMBINATION CONTACT DUAL PORT CONNECTORS

CBDP series. Offers seventeen different combinations of power and signal contact stacked assemblies. Size 20 signal contacts and size 8 power contacts.

COMBO-D CONNECTOR SAVERS -ACBDP and ACBMP SERIES

ACBDP and ACBMP series. Combo-D connector savers with size 20 and size 8 contacts. Available for all standard Combo-D variants in shell sizes 1 through 6.

i.

F R Ν Ν Μ G E Ν Ε R Α L 0 Α Т 10

Temperature Rise Curves

-1	0
- 1	-2

CBD/CBM SERIES	
CBD/CBM Series Introduction	3
Technical Characteristics	4
Contact Variants	5
Standard Shell Assembly	6
Code 2 Solder Cup Connector and	
Code 3, 35, 36 and 37 Straight Printed Board Mount Connector	7
Code 5, 55 and 57 Right Angle (90°) Printed Board Mount Connector	8
Code 5, 55 and 57 Shell Size 6 - Right Angle (90°) Printed Board Mount Connector	9
Code 7, 75 and 77 Metric System Right Angle (90°) Printed Board Mount Connector	10
Right Angle (90°) and Straight Printed Contact Hole Pattern with	
0.078 [1.98] ø, 0.094 [2.39] ø and 0.125 [3.18] ø Power Contacts	11-12
Right Angle (90°) Printed Board Contact Hole Pattern with 0.125 [3.18] ø Power Contacts	13-14
Code 65 Straight Printed Board Mount Connector with FDS4201D or MDS4201D Shielded Contacts and	
Code 85 Right Angle (90°) Printed Board Mount Connector with FDS4201D or MDS4201D Shielded Contacts	15
Straight Printed Board Mount Contact Hole Pattern with	
FDS4201D and MDS4201D Shielded Contacts	16-17
Right Angle (90°) Printed Board Mount Contact Hole Pattern with	
FRT4201D and MRT4201D Shielded Contacts	18-19
Code 93 Compliant Press-fit Connector and Temperature Rise Curve	20
Ordering Information	21

C B C S E R I E S

CBC Series Introduction	22
Technical Characteristics	23
Contact Variants	24
Standard Shell Assembly	25
Ordering Information	26

CBDD/ CBHD SERIES

CBDD/CBHD Series Introduction and Technical Characteristics Contact Variants Standard Shell Assembly Code 21 Solder Cup Connector and	27-28 28 29
Code 3, 35, 36 and 37 Straight Printed Board Mount Connector	30
Code 4, 45 and 47 Right Angle (90°) Printed Board Mount Connector	31-33
Code 65 Straight Printed Board Mount Connector with FDS4201D or MDS4201D Shielded Contacts and	01-00
-	34
Code 84 Right Angle (90°) Printed Board Mount Connector with FRT4201D or MRT4201D Shielded Contacts	34
Code 85 Right Angle (90°) Printed Board Mount Connector with FRT4201D or MRT4201D Shielded Contacts and	
Code 93 Compliant Press-Fit Connector	35
Printed Board Mount Contact Hole Pattern	36
Ordering Information	37-38

ii

TABLE OF CONTENTS

CBCD SERIES

CBCD Series Introduction	39
Technical Characteristics	39-40
Contact Variants	40
Standard Shell Assembly	41
Ordering Information	42

C B D P B / C B D P C S E R I E S

Combo-Dual Port Series Introduction	43
Technical Characteristics	43-44
Contact Variants	44
Right Angle (90°) Printed Board Mount Connector	45
Right Angle (90°) Printed Board Mount Contact Hole Pattern	46-47
Ordering Information	48

C O N N E C T O R S A V E R S

ACBDP/ACBMP Series Introduction	ł
Technical Characteristics	ł
ACBDP/ACBMP Series Size 20 and Size 8 Contact Variants	ł
Male to Female Connector Saver and Jackscrew Systems	ł
Ordering Information	6

UNIQUE FEATURES

Unique Features Introduction and Sequential Mating Contacts Size 8 Contact Stabilization Feature	61 62
Combo-D Connectors with 100 AMP High Current Removable Crimp Power Contacts Technical Characteristics and 100 AMP High Current Removable Crimp Power Contacts (for use with 8 AWG wire)	63
Selectively Loaded Combo-D Connectors for use with 100 AMP	00
High Current Removable Crimp Power Contacts and Temperature Rise Curve	64
Size 8 Straight Printed Board Mount High Voltage Contact	65
Size 8 Right Angle (90°) Printed Board Mount High Voltage Contact	65
Size 8 Bus Bar Power Contacts	66
Size 8 Integral Blind Mate Guide	66
Customer Specified Contact Termination Length	67

continued on next page . . .

Visit our web site for the latest catalog updates and supplements at www.connectpositronic.com/combo-d/catalogs

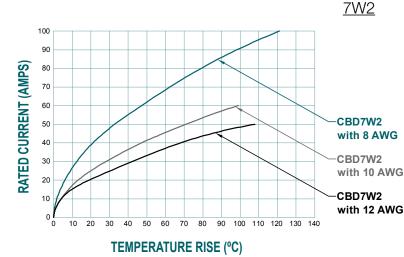
iii

REMOVABLE CONTACTS

Removable Contact Technical Characteristics	68-69
What makes PosiBand [®] contact interface significant	69
Size 22 Crimp and Removable Signal Crimp Contacts	70-71
Size 22 Removable Thermocouple Signal Crimp Contact	71
Size 20 Crimp and Removable Crimp Signal Contact	72-73
Size 20 Removable Thermocouple Crimp Signal Contact	74
Size 16 Removable Crimp Power Contacts	74
Size 8 Removable Crimp Power Contacts	75
Size 8 Removable Solder Cup Power Contacts	75
Size 8 Removable High Voltage Power Contacts	76
Size 8 Straight Printed Board Mount Power Contact	76
Size 8 Right Angle (90°) Printed Board Power Contact	77
Size 8 Removable Shielded Contact	78
Size 8 Straight Printed Board Mount Shielded Contact	79
Size 8 Right Angle (90°) Printed Board Shielded Contact	79

SPECIAL OPTIONS

Modification (MOS) Suffixes	81
	0.


A P P L I C A T I O N T O O L S

Introduction	82
Contact Reels for Automatic Pneumatic Crimp Tools	82
Contact Application Tools Cross Reverence List	83-84
Suggested Printed Board Hole Sizes For Compliant Press-Fit Connectors	85
Compliant Press-Fit Connector Installation Tools	
Q P L LISTING	

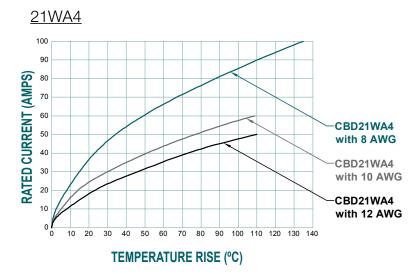
Positronic offers a wide variety of QPL conne	ctor products	87

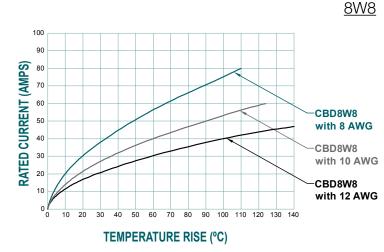
TEMPERATURE RISE CURVES FOR SIZE 8, 10 AND 12 AWG WIRE

Test conducted in accordance with UL1977. All power contacts under load.

 MC4008D:
 Curve developed using a mated CBD7W2F57

 8 AWG
 and CBC7W2M loaded with MC4008D contacts terminated to 8 AWG wire.


MC4010D: Curve developed using a mated CBD7W2F36 10 AWG and CBC7W2M loaded with MC4010D contacts terminated to 10 AWG wire.

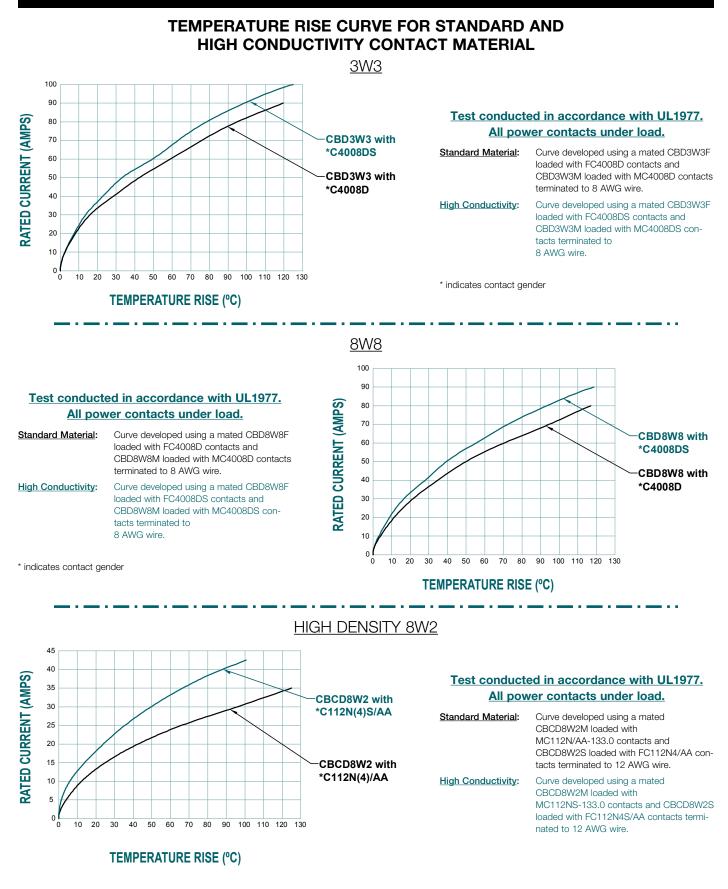

MC4012D: Curve developed using a mated CBD7W2F55 12 AWG and CBC7W2M loaded with MC4012D contacts terminated to 12 AWG wire.

Test conducted in accordance with UL1977. All power contacts under load.

- MC4008D:
 Curve developed using a mated CBD21WA4F57

 8 AWG
 and CBC21WA4M loaded with MC4008D contacts terminated to 8 AWG wire.
- MC4010D: Curve developed using a mated CBD21WA4F36 10 AWG and CBC21WA4M loaded with MC4010D contacts terminated to 10 AWG wire.
- MC4012D: Curve developed using a mated CBD21WA4F55 12 AWG and CBC21WA4M loaded with MC4012D contacts terminated to 12 AWG wire.

Test conducted in accordance with UL1977. All power contacts under load.


- MC4008D:Curve developed using a mated CBD8W8F57
and CBC8W8M loaded with MC4008D contacts
terminated to 8 AWG wire.MC4010D:Curve developed using a mated CBD8W8F36
and CBC8W8M loaded with MC4010D contacts
terminated to 10 AWG wire.MC4012D:Curve developed using a mated CBD8W8F55
 - C4012D:
 Curve developed using a mated CBD8W8F55

 12 AWG
 and CBC8W8M loaded with MC4012D contacts terminated to 12 AWG wire.

GENERAL INFORMATION

Positronic connectpositronic.com

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT connectpositronic com

Combo-D **D-Sub**

Size 20 Fixed Signal and Thermocouple Contacts Size 8 Removable Power, Shielded, Air and High Voltage Contacts **UL Recognized CSA Recognized** File #E49351 File #LR54219 **DSCC 85039** Telecommunication UL File #E140980

Combo-D series connectors permit mixed contact combinations of power, shielded, air, high voltage and signal contacts within the same connector body. Twenty-two connector variants are offered in six standard shell sizes.

Three performance levels of Combo-D series connectors are offered: professional, industrial and military. CBD series connectors are quality connectors recommended for use in sheltered, non-corrosive indoor and outdoor environments having normal ventilation, but without temperature or humidity controls. Signal contacts are offered with open entry professional level or PosiBand closed entry industrial level signal contacts. CBD series connectors meet performance requirements of IEC 60807-2, Performance Level One or Two. CBM series connectors are military quality connectors recommended for use in sheltered, mildly corrosive environments having a wide range of temperature, pressure and humidity changes. CBM series connectors will meet the applicable performance requirements of DSCC 85039.

Combo-D series connectors utilize precision machined signal contacts. Connector variants are available with contact terminations for solder and straight and right angle (90°) printed board mount terminations featuring a choice of inch or metric printed board footprints.

Power, shielded and high voltage contacts are removable, having solder and straight and right angle (90°) printed board mount terminations. Power and shielded contacts are available with crimp terminations. Air contact options are also available, see page 80 for details.

For low level shielding requirements, ferrite inductors may be attached to both signal and power contacts of connectors having contact terminations which are straight or right angle (90°) for printed board mounting applications. For additional information contact Technical Sales.

The female power contacts feature the Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contacts and reduced contact resistance during operation.

A wide assortment of printed board mounting hardware, cable support hoods, and locking systems is available from stock.

A blind mating system is available for applications requiring connector coupling in recessed areas or mobile power coupling systems.

Straight and right angle (90°) PCB mount thermocouple contacts are available, please contact Technical Sales for details.

Combo-D **D-Sub**

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Insulator: Contacts: Contact Plating:	Glass filled polyester per ASTM D 5927 UL 94V-0, blue color, and composite. Precision machined copper alloy.
SIGNAL:	Gold flash over nickel plate and gold 0.000050 $[1.27\mu]$ over nickel plate. Other finishes available upon request, see page 81.
POWER:	Gold flash over nickel. Other finishes available upon request, see page 81.
SHIELDED:	For contact platings, see page 68.
HIGH VOLTAGE:	For contact platings, see page 68.
Shells:	Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other materials and finishes available upon request.
Mounting Spacers and Brackets:	Nylon; polyester; copper alloy or steel with zinc plate and chromate seal or tin plate; phosphor bronze with tin plate; stainless steel, passivated.
Push-On Fasteners:	Phosphor bronze and beryllium copper with tin plate.
Jackscrew Systems:	Brass or steel with zinc plate and chromate seal or clear zinc plate or tin plate; stainless steel, passivated.
Hoods:	Composite and plastic, UL 94V-0; brass or steel with zinc plate and chromate seal. Aluminum; aluminum with electroless nickel plate. For aluminum hoods, zinc content is 1% maximum. Die cast zinc.

Non-magnetic versions are available, contact Technical Sales.

MECHANICAL CHARACTERISTICS:

Signal Contacts, Fixed:	Size 20 contacts, male - 0.040 inch [1.02mm] diameter. CBD series has open entry female contacts. PosiBand closed entry female options are also available. CBM series has PosiBand closed entry female contacts, see page 68 for details.
Contact Retention in Insulator:	Signal: 9 lbs. [40N]. Power, shielded and high voltage: 22 lbs [98N].
Resistance to Solder Iron Heat:	500°F [260°C] for 10 seconds duration per IEC 60512-6.
Signal Contact Terminations:	Solder contacts - 0.042 inch [1.06mm] minimum hole diameter for 20 AWG [0.5 mm ²] wire maximum.
	Straight Printed Board Mount – 0.028 inch [0.71mm] termination diameter.
	Right Angle (90°) Printed Board Mount – 0.028 inch [0.71 mm] termination diameter.
Power Contacts, Removable, Crimp or Solder Termination:	Size 8 contact, male – 0.142 inch [3.61mm] mating diameter. Terminations for 6, 8, 10, 12, and 16 AWG. Female contact features Large Surface Area (L.S.A.) closed entry contact design utilizing BeCu mechanical retention member. Closed crimp barrel.
Power Contacts, Printed Board Mount:	Size 8 contact, male – 0.142 inch [3.61mm] mating diameter. Printed board terminations with 0.078 inch [1.98mm], 0.094 inch [2.39mm] and 0.125 inch [3.18mm] termination diameters.
Shielded Contacts, Removable:	See table of cable sizes for contact termination dimensions, page 78.

High Voltage Contacts:	Straight and right angle (90°) terminations – 0.041 inch [1.04mm] minimum hole diameter.
Shells:	Male shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells and polarized jackscrews.
Mounting to Angle Brackets:	Jackscrews and riveted fasteners with 0.120 inch [3.05mm] diameter hole, and threaded riveted fasteners with 4-40 threads and nylon inserts.
Mounting to Printed Board:	Rapid installation push-on fasteners and threaded posts.
Locking Systems:	Jackscrews and vibration locking systems.
Mechanical Operations:	CBD series, open entry contacts, 500 operations. CBD series, PosiBand closed entry and CBM series, 1,000 operations. Per IEC 60512-5.

ELECTRICAL CHARACTERISTICS:

SIZE 20 CONTACTS

Contact Current Rating:	7.5 amperes nominal.
Initial Contact Resistance:	0.008 ohms maximum.
Proof Voltage:	1000 V r.m.s.

SIZE 8 CONTACTS

POWER CONTACTS		
Contact Current Rating - Tes	ted per UL 1977:	
Standard Contact Material:		
0.078 inches diameter / 12	AWG terminations:	39 amperes.
0.094 inches diameter / 10	AWG terminations:	50 amperes.
0.125 inches diameter / 8 A	WG terminations:	70 amperes.
See Temperature Rise Curves	s on page 1 for details.	
High Conductivity Contact M	aterial:	
8 AWG terminations:		80 amperes.
See Temperature Rise Curves	s on page 2 for details.	
Initial Contact Resistance:		
Standard Contact Material:	0.0005 ohms max. per	IEC 60512-2,
	Test 2b.	
High Conductivity	0.00035 ohms max. per	IEC 60512-2,
Contact Material:	Test 2b.	
Proof Voltage:	1000 V r.m.s.	
SHIELDED CONTACTS		

S

For electrical characteristics, see page 69.

HIGH VOLTAGE CONTACTS

For electrical characteristics, see page 69.

CONNECTOR	
Insulation Resistance:	5 G ohms.
Clearance and	
Creepage Distance:	0.039 [1.0mm] minimum.
Working Voltage:	300 V r.m.s.

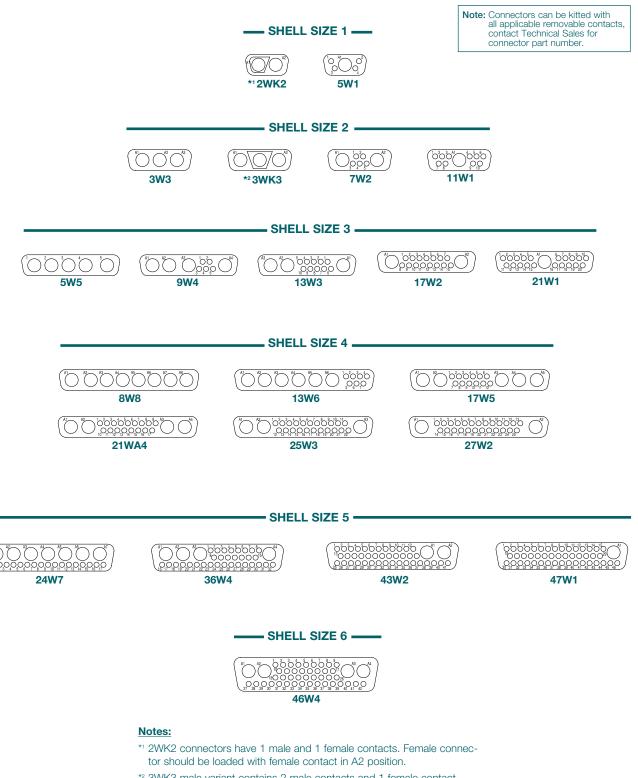
CLIMATIC CHARACTERISTICS:

Temperature Range:	-55°C to +125°C.
Damp Heat, Steady State:	10 days.

THERMOCOUPLE CONTACTS:

Straight and right angle PCB mount contacts are available, please contact Technical Sales for details.

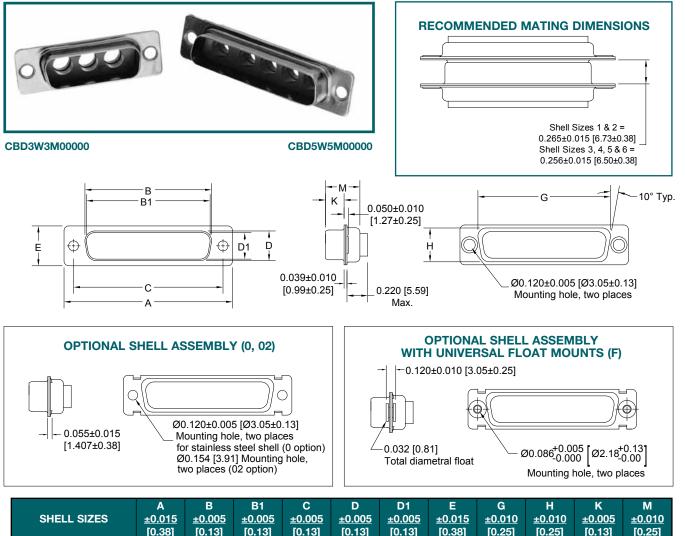
Size 20 crimp contacts are available in CBC series, see page 74 for details.



PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT

Combo-D D-Sub

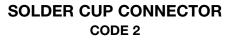
CONTACT VARIANTS

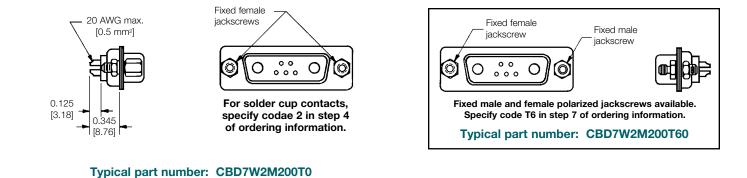

FACE VIEW OF MALE OR REAR VIEW OF FEMALE

*2 3WK3 male variant contains 2 male contacts and 1 female contact. Female variant contains 2 female contacts and 1 male contact Combo-D

D-Sub

STANDARD SHELL ASSEMBLY



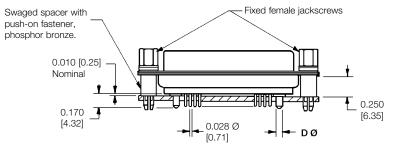

SHELL SIZES	A <u>±0.015</u> [0.38]	B <u>±0.005</u> [0.13]	B1 <u>±0.005</u> [0.13]	C <u>±0.005</u> [0.13]	D <u>±0.005</u> [0.13]	D1 <u>±0.005</u> [0.13]	E <u>±0.015</u> [0.38]	G <u>±0.010</u> [0.25]	H <u>±0.010</u> [0.25]	K <u>±0.005</u> [0.13]	M <u>±0.010</u> [0.25]
SHELL SIZE 1 MALE	<u>1.213</u> [30.81]		<u>0.666</u> [16.92]	<u>0.984</u> [24.99]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
SHELL SIZE 1 FEMALE	<u>1.213</u> [30.81]	<u>0.643</u> [16.33]		<u>0.984</u> [24.99]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
SHELL SIZE 2 MALE	<u>1.541</u> [39.14]		<u>0.994</u> [25.25]	<u>1.312</u> [33.32]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
SHELL SIZE 2 FEMALE	<u>1.541</u> [39.14]	<u>0.971</u> [24.66]		<u>1.312</u> [33.32]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
SHELL SIZE 3 MALE	<u>2.088</u> [53.04]		<u>1.534</u> [38.96]	<u>1.852</u> [47.04]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>1.625</u> [41.28]	<u>0.422</u> [10.72]	<u>0.230</u> [5.84]	<u>0.426</u> [10.82]
SHELL SIZE 3 FEMALE	<u>2.088</u> [53.04]	<u>1.511</u> [38.38]		<u>1.852</u> [47.04]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>1.625</u> [41.28]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
SHELL SIZE 4 MALE	<u>2.729</u> [69.32]		<u>2.182</u> [55.42]	<u>2.500</u> [63.50]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>2.272</u> [57.71]	<u>0.422</u> [10.72]	<u>0.230</u> [5.84]	<u>0.426</u> [10.82]
SHELL SIZE 4 FEMALE	<u>2.729</u> [69.32]	<u>2.159</u> [54.84]		<u>2.500</u> [63.50]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>2.272</u> [57.71]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
SHELL SIZE 5 MALE	<u>2.635</u> [66.93]		<u>2.079</u> [52.81]	<u>2.406</u> [61.11]		<u>0.441</u> [11.20]	<u>0.605</u> [15.37]	<u>2.178</u> [55.32]	<u>0.534</u> [13.56]	<u>0.230</u> [5.84]	<u>0.426</u> [10.82]
SHELL SIZE 5 FEMALE	<u>2.635</u> [66.93]	<u>2.064</u> [52.43]		<u>2.406</u> [61.11]	<u>0.423</u> [10.74]		<u>0.605</u> [15.37]	<u>2.178</u> [55.32]	<u>0.534</u> [13.56]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
SHELL SIZE 6 MALE	<u>2.729</u> [69.32]		<u>2.212</u> [56.18]	<u>2.500</u> [63.50]		<u>0.503</u> [12.78]	<u>0.668</u> [16.97]	<u>2.302</u> [58.47]	<u>0.596</u> [15.14]	<u>0.230</u> [5.84]	<u>0.426</u> [10.82]
SHELL SIZE 6 FEMALE	<u>2.729</u> [69.32]	<u>2.189</u> [55.60]		<u>2.500</u> [63.50]	<u>0.485</u> [12.32]		<u>0.668</u> [16.97]	<u>2.302</u> [58.47]	<u>0.596</u> [15.14]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]

Positronic

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE. 6

CBD17W2F200E0 with FS4008D contacts.

CBD17W2M55B30T20

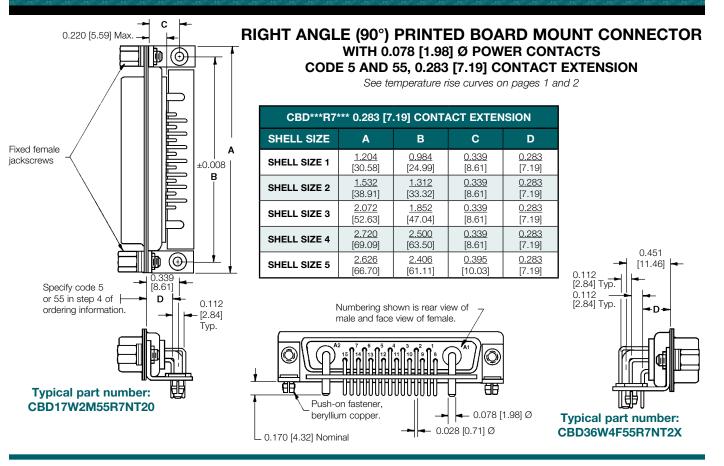

D-Sub

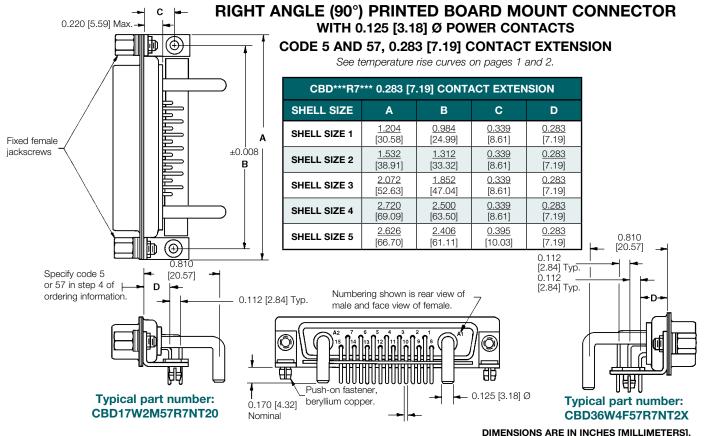
STRAIGHT PRINTED BOARD MOUNT CONNECTOR CODE 3, 35, 36 AND 37

For Code 93 Press-Fit Board Mount Connectors, see page 20.

CONTACT CODE	DØ
3	
35	<u>0.078</u> [1.98]
36	<u>0.094</u> [2.39]
37	<u>0.125</u> [3.18]

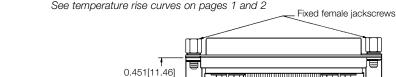
For straight printed board mount contacts, specify code no. in step 4 of ordering information.

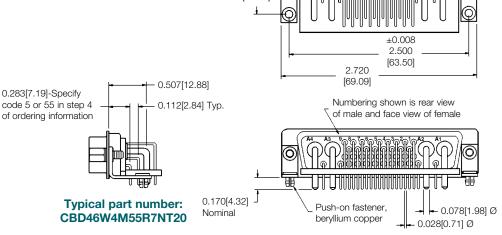

Typical part number: CBD17W2F35S60T2X


PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT

Combo-D

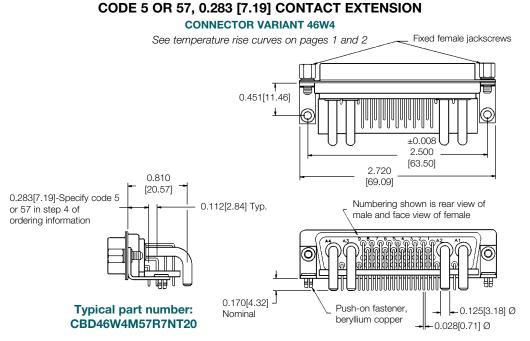
D-Sub

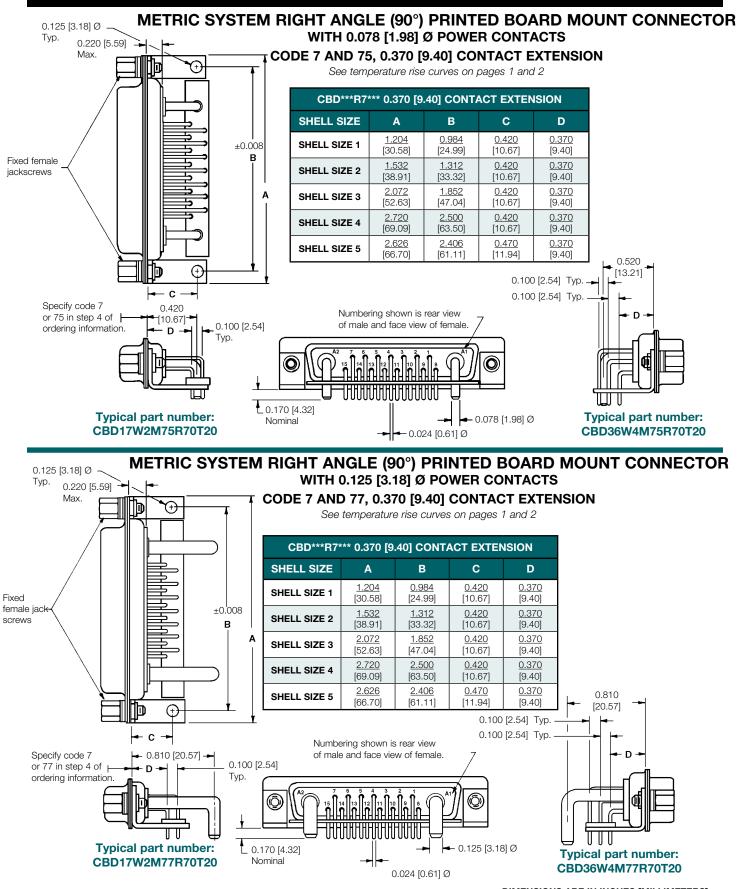

ALL DIMENSIONS ARE SUBJECT TO CHANGE.


8

Combo-D **D-Sub**

SHELL SIZE 6 RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR WITH 0.078 [1.98] Ø POWER CONTACTS CODE 5 AND 55, 0.283 [7.19] CONTACT EXTENSION

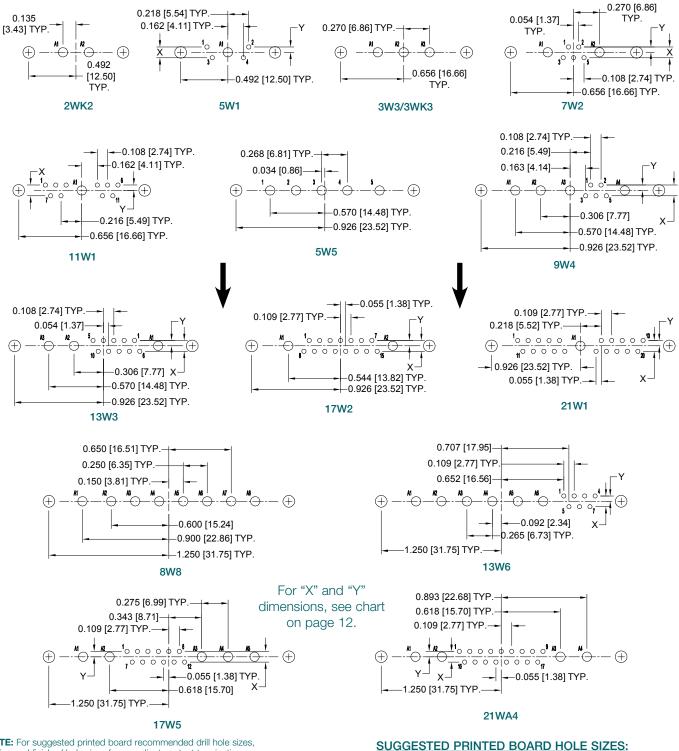

CONNECTOR VARIANT 46W4


SHELL SIZE 6

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR WITH 0.125 [3.18] Ø POWER CONTACTS

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY Combo-D THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT connectpositronic com

D-Sub



Combo-D

D-Sub

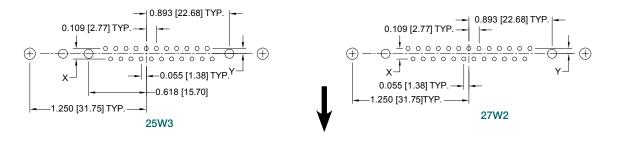
RIGHT ANGLE (90°) PRINTED BOARD CONTACT HOLE PATTERN WITH 0.078 [1.98] Ø POWER CONTACTS AND STRAIGHT PRINTED BOARD CONTACT HOLE PATTERN WITH 0.078 [1.98] Ø, 0.094 [2.39] Ø AND 0.125 [3.18] Ø POWER CONTACTS

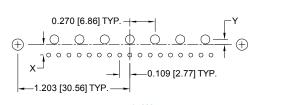
HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR; USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.

NOTE: For suggested printed board recommended drill hole sizes, plating and finished hole sizes for compliant contact termination positions, see page 85.

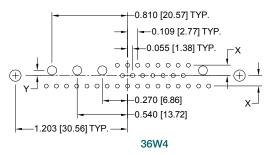
For press-fit connector installation tools, see page 86.

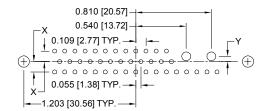
DIMENSIONS ARE IN INCHES [MILLIMETERS].

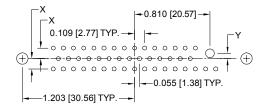

ALL DIMENSIONS ARE SUBJECT TO CHANGE. 11


Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.098 [2.49] Ø hole for 0.078 [1.98] Ø power contact termination positions. Suggest 0.114 [2.90] Ø hole for 0.094 [2.39] Ø power contact termination positions. Suggest 0.145 [3.68] Ø hole for 0.125 [3.18] Ø power contact termination positions. Suggest 0.123 ±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY Combo-D THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO **D-Sub** STANDARD DENSITY PCB MOUNT connectpositronic com


RIGHT ANGLE (90°) PRINTED BOARD CONTACT HOLE PATTERN WITH 0.078 [1.98] Ø POWER CONTACTS AND STRAIGHT PRINTED BOARD CONTACT HOLE PATTERN WITH 0.078 [1.98] Ø, 0.094 [2.39] Ø AND 0.125 [3.18] Ø POWER CONTACTS

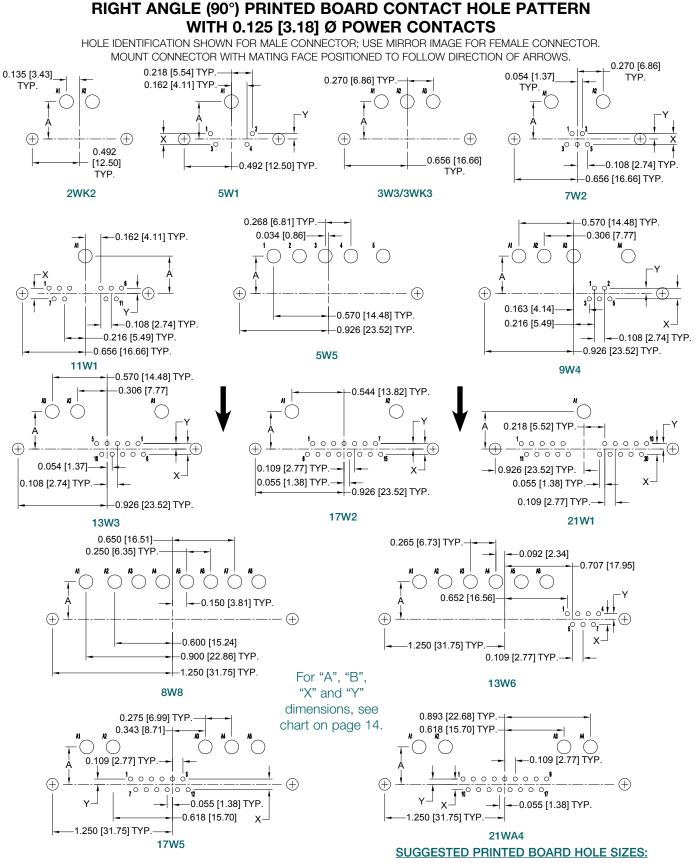

HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR; USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.


43W2

46W4

SUGGESTED PRINTED BOARD HOLE SIZES:

Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.098 [2.49] Ø hole for 0.078 [1.98] Ø power contact termination positions. Suggest 0.114 [2.90] Ø hole for 0.094 [2.39] Ø power contact termination positions. Suggest 0.145 [3.68] Ø hole for 0.125 [3.18] Ø power contact termination positions. Suggest 0.123 ±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

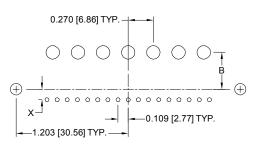

47W1

CODE NO.	x	Y	A	В	
3					
35	<u>0.112</u>	<u>0.056</u> [1.42]	<u>0.050</u> [1.27]	<u>0.100</u> [2.54]	
36	[2.84]				
37					
5	<u>0.112</u>	<u>0.056</u>	<u>0.056</u>	<u>0.112</u>	
55	[2.84]	[1.42]	[1.42]	[2.84]	
7	<u>0.100</u>	<u>0.050</u>	0.050	<u>0.100</u> [2.54]	
75	[2.54]	[1.27]	[1.27]		

NOTE: For suggested printed board recommended drill hole sizes, plating and finished hole sizes for compliant contact termination positions, see page 85.

For press-fit connector installation tools, see page 86.

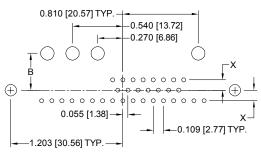
DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE. 13

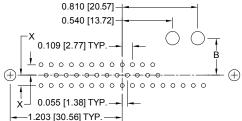

Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.145 [3.68] Ø hole for power contact termination positions. Suggest 0.123±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

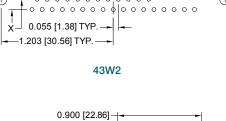
Positronic connectpositronic.com

RIGHT ANGLE (90°) PRINTED BOARD CONTACT HOLE PATTERN WITH 0.125 [3.18] Ø POWER CONTACTS

HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR; USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.

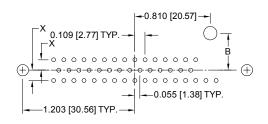



Combo-D


D-Sub

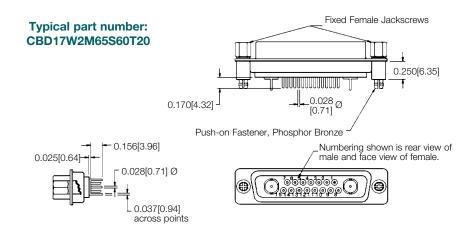

24W7

36W4

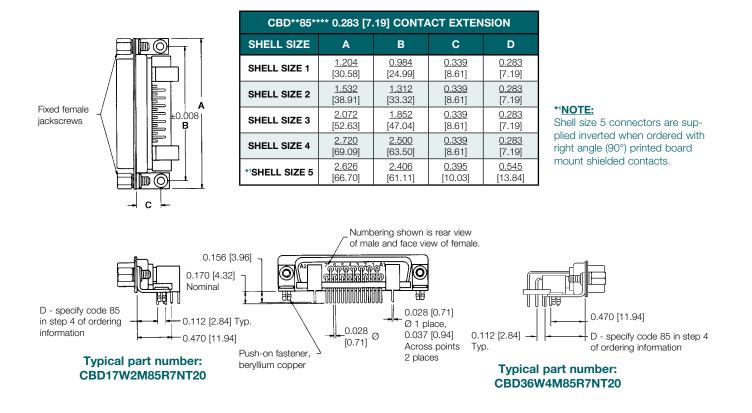


SUGGESTED PRINTED BOARD HOLE SIZES:

Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.145 [3.68] Ø hole for power contact termination positions. Suggest 0.123±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

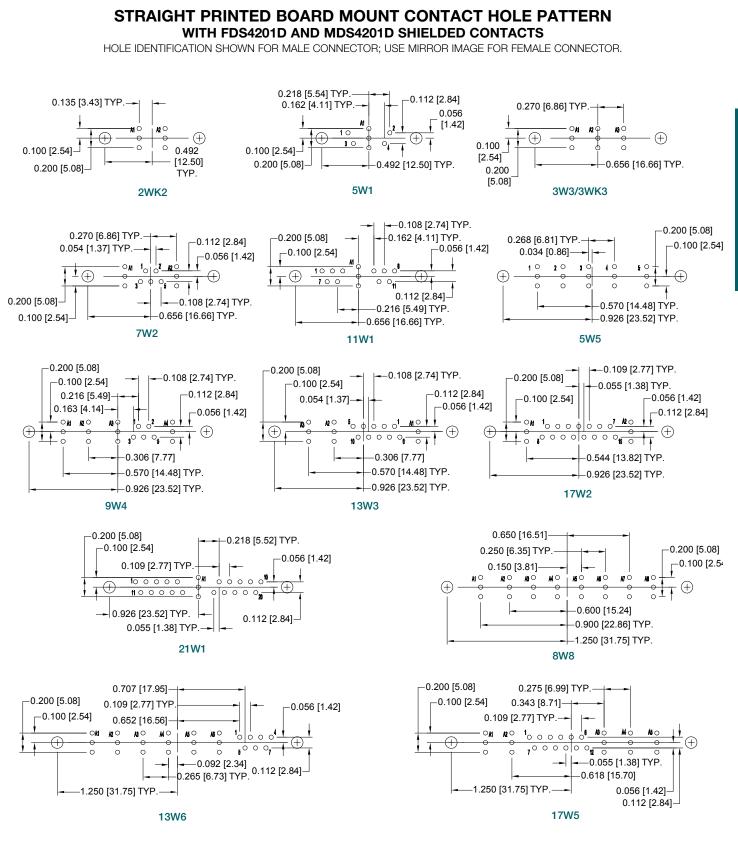


47W1


CODE NO.	5 & 57	7 & 77
Α	<u>0.471</u> [11.96]	<u>0.390</u> [9.91]
в	<u>0.415</u> [10.54]	<u>0.340</u> [8.64]
с	<u>0.359</u> [9.12]	<u>0.290</u> [7.37]
x	<u>0.112</u> [2.84]	<u>0.100</u> [2.54]
Y	<u>0.056</u> [1.42]	<u>0.050</u> [1.27]

Combo-D **D-Sub**

STRAIGHT PRINTED BOARD MOUNT CONNECTOR WITH FDS4201D OR MDS4201D SHIELDED CONTACTS **CODE 65**



RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR WITH FRT4201D OR MRT4201D SHIELDED CONTACTS **CODE 85**

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE. 16

SUGGESTED PRINTED BOARD HOLE SIZES:

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY

THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO

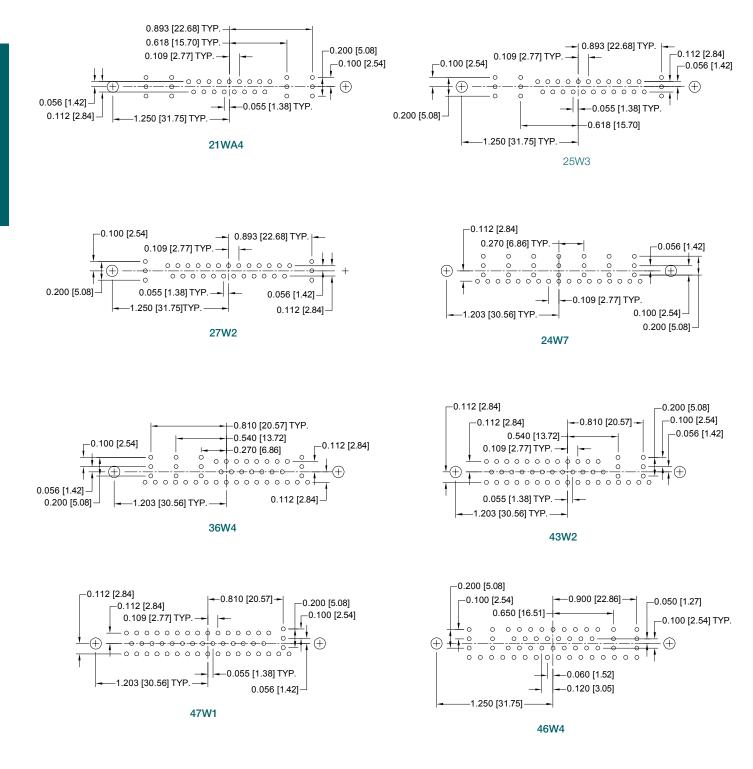
STANDARD DENSITY PCB MOUNT

Combo-D

D-Sub

CBD/CBM SERIES

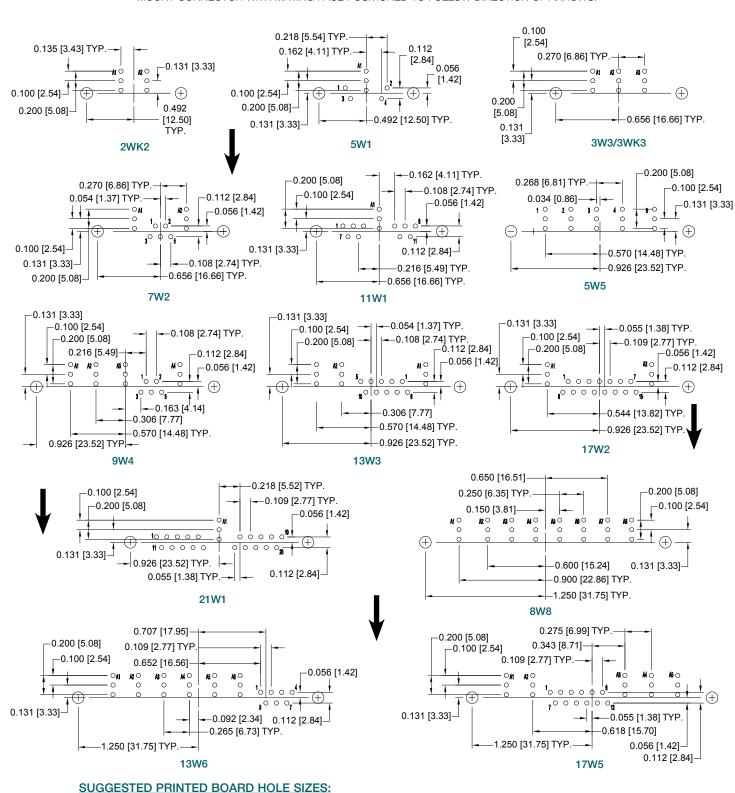
Positronic


connectpositronic com

Combo-D

D-Sub

STRAIGHT PRINTED BOARD MOUNT CONTACT HOLE PATTERN WITH FDS4201D AND MDS4201D SHIELDED CONTACTS


HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR; USE MIRROR IMAGE FOR FEMALE CONNECTOR.

Positronic

Suggest 0.045 [1.14] Ø hole for signal contact termination position. Suggest 0.123±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

SUGGESTED PRINTED BOARD HOLE SIZES:

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONTACT HOLE PATTERN WITH FRT4201D AND MRT4201D SHIELDED CONTACTS

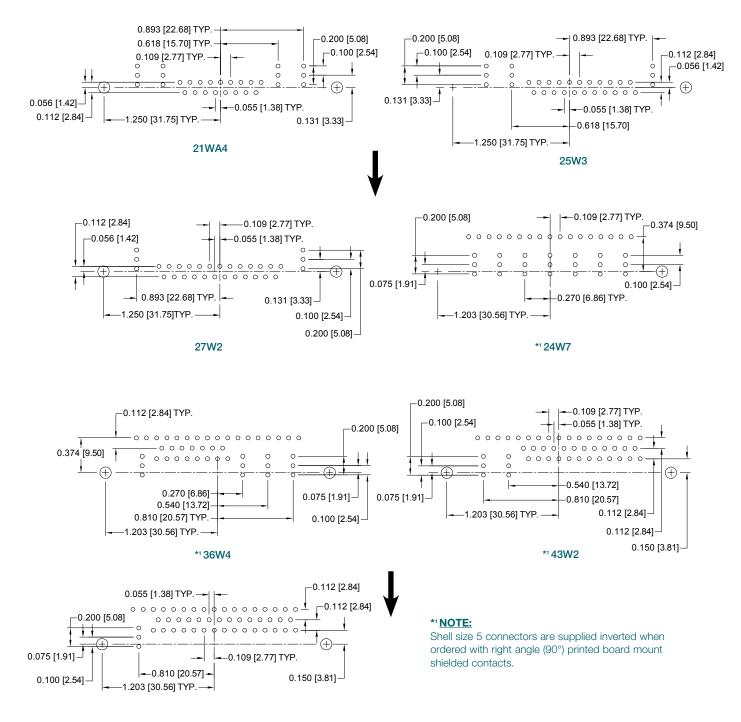
HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR; USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT

Combo-D

D-Sub

Positronic


CBD/CBM SERIES

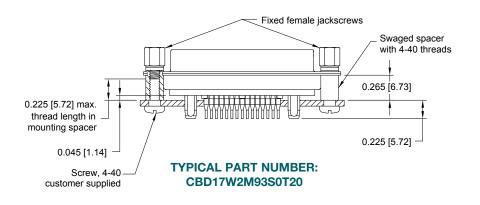
Combo-D

D-Sub

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONTACT HOLE PATTERN WITH FRT4201D AND MRT4201D SHIELDED CONTACTS

HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR: USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.

*147W1


SUGGESTED PRINTED BOARD HOLE SIZES:

Suggest 0.045 [1.14] Ø hole for signal contact termination position. Suggest 0.123±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY PCB MOUNT connectpositronic.com

COMPLIANT PRESS-FIT CONNECTOR CODE 93

Positronic recommends the practice of using mounting hardware to secure connector to printed circuit board.

SUGGESTED PRINTED BOARD HOLE SIZES:

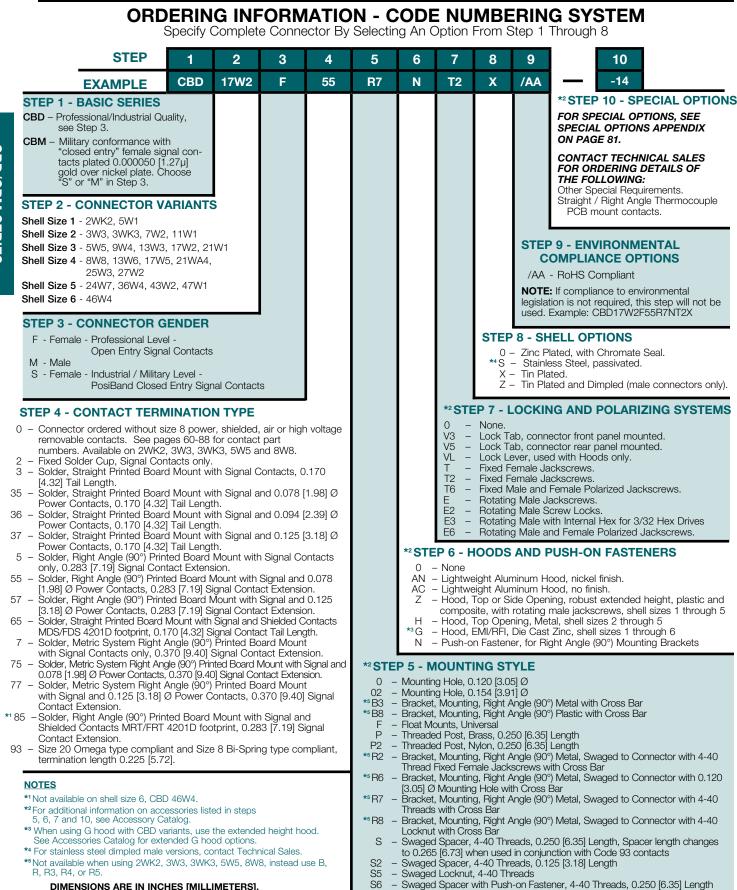
Combo-D

D-Sub

Suggest 0.123 [3.12] Ø hole for connector mounting holes. NOTE: For suggested printed board recommended drill hole sizes, plating and finished hole sizes for compliant contact termination positions, see page 85. For press-fit connector installation tools, see page 86.

FOR STRAIGHT PRINTED BOARD CONTACT HOLE PATTERNS, SEE PAGES 11 AND 12.

60 50 RATED CURRENT (AMPS) 40 30 20 10 0 0 10 20 30 40 50 60 70 80 **TEMPERATURE RISE (°C)**


Test conducted in accordance with UL1977. All power contacts under load.

Curve developed using CBD8W8M00000 and CBD8W8F93S000 connectors with MC4008D contacts terminated to 8 AWG wire.

TEMPERATURE RISE CURVE

Positronia

Combo-D D-Sub

Combo-D D-Sub

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY CRIMP REMOVABLE CONTACTS

Size 20 Removable Signal and Thermocouple Crimp Contacts

Size 8 Removable Power, Shielded, Air and High Voltage Contacts

DSCC 85039 UL Recognized File #E49351 IEC 60807-3 CSA Recognized File #LR54219

 File #E49351
 File #ER54219

 Telecommunication UL File #E140980

CBC series connectors offer professional, industrial and military performance levels. Connectors are designed for use in sheltered, mildly corrosive environments having a wide range of temperature, pressure and humidity changes. CBC series connectors offer mixed crimp-removable contact combinations of power, shielded, air, high voltage, signal, and thermocouple contacts within the same connector body. Refer to size 8 removable contacts power, shielded, air and high voltage section, pages 68-80 for technical characteristics. Sixteen connector variants are offered in six standard shell sizes. A wide assortment of cable support hoods and locking systems is available from stock.

CBC series connectors also offer a Blind Mating connector system for applications requiring connector couplings in recessed areas or for mobile power coupling systems.

CBC series connectors utilize precision machined contacts and they meet the applicable performance and dimensional requirements of IEC 60807-3, Performance Levels One and Two, DSCC 85039 and MIL-DTL-24308.

Connectors Designed To Customer Specifications

Positronic Combo-D connectors can be modified to customers specifications.

Examples: select loading of contacts for cost savings or to gain creepage and clearance distances; longer PCB terminations; customer specified hardware; sealing for water resistance.

Contact Technical Sales with your particular requirements.

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY CRIMP REMOVABLE CONTACTS

Combo-D **D-Sub**

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Insulator:	Glass filled polyester per ASTM D 5927, UL 94V-0, blue color.
Contacts:	Precision machined copper alloy.
SIGNAL:	Gold flash over nickel plate and gold 0.000050 [1.27µ] over nickel plate. Other finishes available upon request, see page 81.
POWER:	Gold flash over nickel. Other finishes available upon request, see page 81.
SHIELDED:	For contact platings, see page 68.
HIGH VOLTAGE:	For contact platings, see page 68.
Shells:	Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other materials and finishes available upon request.
Mounting Spacers:	Nylon; copper alloy or steel with zinc plate and chromate seal or tin plate; phosphor bronze with tin plate; stainless steel, passivated.
Jackscrew Systems:	Brass or steel with zinc plate and chromate seal or clear zinc plate or tin plate; stainless steel, passivated.
Hoods:	Composite and plastic UL94V-0; brass or steel with zinc plate and chromate seal. Aluminum; aluminum with electroless nickel plate. For aluminum hoods, zinc content is 1% maximum. Die cast zinc.

Non-magnetic versions are available, contact Technical Sales.

MECHANICAL CHARACTERISTICS:

Signal Contacts, Crimp Removable:	Size 20 contacts, male – 0.040 inch [1.02mm] mating diameter; Female rugged open entry or PosiBand closed entry contact design, see page 69 for details.
Contact Retention In Insulator:	Signal: 9 lbs. [40N]. Power, shielded and high voltage: 22 lbs. [98N]
Crimp Contact Terminations:	Closed barrel crimp, wire sizes 18 AWG [1.0mm²] through 30 AWG [0.05 mm²]
Power Contacts, Removable, Crimp	
or Solder Termination:	Size 8 contacts, male – 0.142 inch [3.61mm] mating diameter. Terminations for 6, 8, 10, 12, and 16 AWG. Female contact features Large Surface Area (L.S.A.) closed entry contact design utilizing BeCu mechanical retention member. Closed crimp barrel.
Shielded Contacts,	
Removable:	See table of cable sizes for contact termination dimensions, page 78.
High Voltage Contacts:	Straight and right angle (90°) terminations – 0.041 inch [1.04mm] min. hole diameter.

Shells:	Male shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells and polarized jackscrews.
Locking Systems:	Jackscrews and vibration locking systems.
Mechanical Operations:	500 operations for open entry contact, 1000 operations for PosiBand closed entry contact with 0.000050 [1.27µ] gold plating. Per IEC 60512-5.

ELECTRICAL CHARACTERISTICS:

SIZE 20 CONTACTS
Operate at Operand Dation

Contact Current Rating:	7.5 amperes nominal.
Initial Contact Resistance:	0.008 ohms maximum.
Proof Voltage:	1000 V r.m.s.

SIZE 8 CONTACTS

POWER CONTACTS

For electrical characteristics, see page 4.

SHIELDED CONTACTS

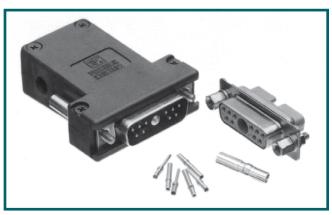
For electrical characteristics, see page 69.

HIGH VOLTAGE CONTACTS

For electrical characteristics, see page 69.

CONNECTOR

Insulation Resistance:	5 G ohms.
Clearance and	
Creepage Distance:	0.039 [1.0mm] minimum.
Working Voltage:	300 V r.m.s.

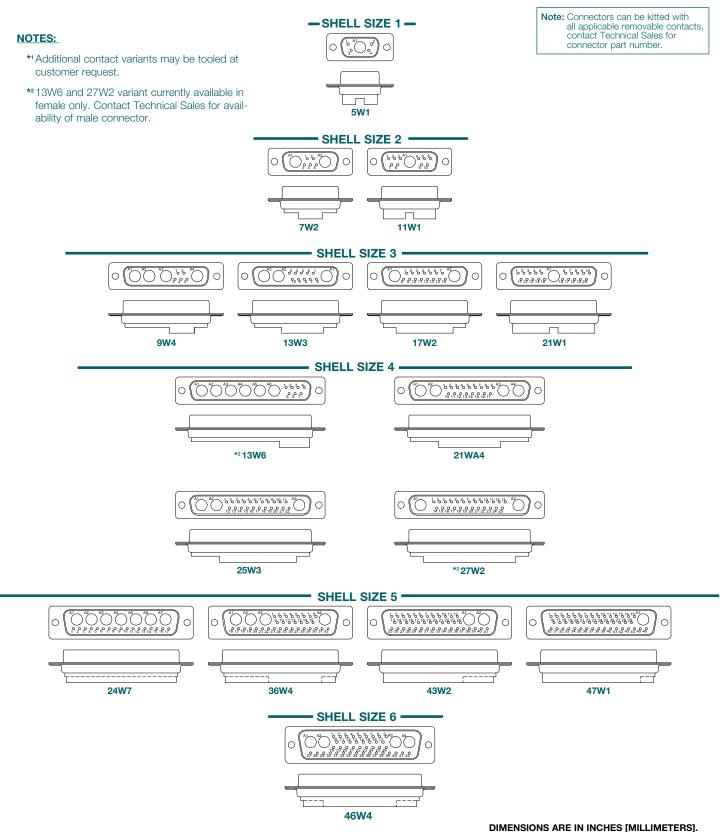

CLIMATIC CHARACTERISTICS:

Temperature Range:	-55°C to +125°C.
Damp Heat, Steady State:	10 days.

THERMOCOUPLE CONTACTS:

Size 20 crimp contacts are available. See page 74 for details.

PCB mount contacts are available in CBD/CBM series, see page 4 for details.


CBC11W1M10Z00 WITH MS4012D CONTACT

CBC11W1S100T20 WITH FC4008D CONTACT PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY CRIMP REMOVABLE CONTACTS

Positronic.com

***1 CONTACT VARIANTS**

FACE VIEW OF MALE OR REAR VIEW OF FEMALE

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY CRIMP REMOVABLE CONTACTS connectpositronic com

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 25 ALL DIMENSIONS ARE SUBJECT TO CHANGE.

SHELL SIZE 6 MALE

SHELL SIZE 6 FEMALE

<u>2.729</u> [69.32]

2.729 [69.32

<u>2.189</u> [55.60]

<u>2.212</u> [56.18]

<u>2.500</u> [63.50]

<u>2.500</u> [63.50]

0.485

0.503

<u>2.302</u> [58.47]

<u>2.302</u> [58.47

0.668

[16.97]

0.668

<u>0.596</u> [15.14]

0.596

<u>0.230</u> [5.84]

<u>0.243</u> [6.17]

0.426

[10.82]

0.429 [10.90]

Combo-D D-Sub PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO STANDARD DENSITY CRIMP REMOVABLE CONTACTS

ORDERING INFORMATION - CODE NUMBERING SYSTEM Specify Complete Connector By Selecting An Option From Step 1 Through 8 **STEP** 1 4 5 6 7 8 2 3 9 10 CBC 7W2 Μ 1 0 Z 0 0 /AA -14 **EXAMPLE STEP 1 - BASIC SERIES** *2 STEP 10 - SPECIAL OPTIONS **CBC** Series FOR SPECIAL OPTIONS, SEE **STEP 2 - CONNECTOR VARIANTS** SPECIAL OPTIONS APPENDIX ON PAGE 81 Shell Size 1 5W1 Shell Size 2 7W2.11W1 **STEP 9 - ENVIRONMENTAL** Shell Size 3 **COMPLIANCE OPTIONS** 9W4, 13W3, 17W2, 21W1 /AA - RoHS Compliant Shell Size 4 *113W6, 21WA4, 25W3, *127W2 NOTE: If compliance to environmental Shell Size 5 legislation is not required, this step will not 24W7, 36W4, 43W2, 47W1 be used. Example: CBC7W2M10Z00 Shell Size 6 46W4 **STEP 8 - SHELL OPTIONS STEP 3 - CONNECTOR GENDER** 0 - Zinc Plated, with Chromate Seal. *4 S - Stainless Steel, passivated. M - Male X - Tin Plated. S - Female - Industrial or Military Level Z - Tin Plated and Dimpled (male connectors only) PosiBand Closed Entry Signal Contacts Professional Level female open entry contacts are available and can be ordered separately, see page 73. *2 STEP 7 - LOCKING AND POLARIZING SYSTEMS 0 None. **STEP 4 - CONTACT TERMINATION TYPE** _ V3 Lock Tab, connector front panel mounted. _ V5 Lock Tab, connector rear panel mounted. 0 - Connector ordered without contacts. Order signal, _ Lock Lever, used with Hoods only. power, shielded, high voltage, air and thermocouple VL Fixed Female Jackscrews. т contacts separately. See pages 68-80 for contact T2 _ **Fixed Female Jackscrews** part numbers. _ Fixed Male and Female Polarized Jackscrews. T6 1 - Signal contacts, 20 AWG-24 AWG [0.5mm²-Rotating Male Jackscrews. E 0.25mm²]. F2 Rotating Male Screw Locks. _ 11 - Signal contacts, 20 AWG-24 AWG [0.5mm²-Rotating Male with Internal Hex for 3/32 Hex Drives F3 _ 0.25mm²] with MC/FC 4012D Power Contact. E6 _ Rotating Male and Female Polarized Jackscrews. 12 - Signal contacts, 20 AWG-24 AWG [0.5mm²-*2 STEP 6 - HOODS 0.25mm²] with MC/FC 4016D power contact. 13 - Signal contacts, 20 AWG-24 AWG [0.5mm²-0 – None 0.25mm²] with MCC/FCC 4101D shielded contacts. - Hood, Top Opening, Metal, shell sizes 2 through 5 Н AN - Lightweight Aluminum Hood, nickel finish. 14 - Signal contacts, 20 AWG-24 AWG [0.5mm²-0.25mm²] AC - Lightweight Aluminum Hood, no finish. with MCC/FCC 4102D shielded contacts. *3 G Z - Hood, EMI/RFI, Die Cast Zinc, shell sizes 1 through 6 - Hood, Top or Side Opening, robust extended height, plastic and com-*2 STEP 5 - MOUNTING STYLE posite, with rotating jackscrews, shell sizes 1 through 5 0 - Mounting Hole, 0.120 [3.05] Ø 02 - Mounting Hole, 0.154 [3.91] Ø NOTE: If you would like a 2D drawing or 3D model, once you've made F - Float Mounts, Universal your connector selection, please visit www.connectpositronic.com. S2 - Swaged Spacer, 4-40 Threads, 0.125 [3.18] Length If you can't find your specific part number on our web site, contact S5 - Swaged Locknut, 4-40 Threads Technical Sales to have one created 1 **2**8 NOTES *1 Connector variant 13W6 and 27W2 are currently available in female ľ only, contact Technical Sales for availability of male connector. 11111 *2 For additional information on accessories listed in steps 5, 6, 7 and 10, see Accessory Catalog.

2D Drawing

- *³ When using G hood with CBC variants, use the extended height hood. See Accessories Catalog for extended G hood options.
- *4 For stainless steel dimpled male versions, contact Technical Sales.

For crimping information and crimp tools, see Application Tools section, page 82.

3D Model

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO HIGH DENSITY PCB MOUNT

Combo-D D-Sub

Positronic's Combo-D connectors are a popular choice for a wide variety of applications. Many options make the Combo-D a versatile connector choice.

CBDD high density series connectors are quality connectors recommended for use in sheltered, non-corrosive indoor and outdoor environments having normal ventilation, but without temperature or humidity controls.

CBDD series connectors offer mixed contact combinations of power, signal, and thermocouple contacts within the same connector body.

CBDD series connectors utilize precision machined contacts offering high reliability. Connector variants are available with straight and right angle (90°) printed board mount terminations, including compliant press-fit. For cable connectors see CBCD section, page 39.

Female power contacts feature the Large Surface Area (L.S.A.)

closed entry contact design, which provides maximum mating surfaces between male and female contacts and reduced contact resistance during operation.

Fixed signal contacts are available with open entry female contacts, professional level or PosiBand closed entry female contacts, industrial level. Military contact plating is optional.

A wide assortment of printed board mounting hardware, cable support hoods, and locking systems is available from stock.

A blind mating system is available for applications requiring connector coupling in recessed areas or mobile power coupling systems.

Straight and right angle PCB mount thermocouple contacts are available, please contact Technical Sales for details.

CBDD series connectors utilize precision machined contacts and meet applicable performance and dimensional requirements of IEC 60807-7, MIL-DTL-24308 and AS39029.

Non-magnetic versions are available, contact Technical Sales.

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

		v			
Insulator:	Glass filled polyester per ASTM D 5927 UL 94V-0, blue color.		IARACTERISTICS:		
Contacts:	Precision machined copper alloy.	Signal Contacts, Fixed:	Size 22 contacto mala 0.020 inch		
Contact Plating:		Fixed:	Size 22 contacts, male – 0.030 inch [0.76mm] mating diameter. Female – open		
SIGNAL:	Gold flash over nickel plate. Other finishes available upon request, see page 81.		entry or PosiBand closed entry design, see page 69 for details.		
POWER:	Gold flash over nickel. Other finishes available upon request, see page 81.	Power Contacts, Fixed:	Size 16 contacts, male – 0.0625 inch		
<u>SHIELDED:</u> HIGH VOLTAGE:	For contact platings, see page 68. For contact platings, see page 68.		[1.588mm] mating diameter. Female contacts - closed entry design.		
Shells:	Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other materials and finishes available upon request.		Size 8 contacts, male - 0.142 inch [3.61mm] mating diameter. Female contact features Large Surface Area (L.S.A.) closed entry		
Mounting Spacers and Brackets:	Nylon; polyester; copper alloy or steel with zinc plate and chromate seal or tin plate; phosphor		contact design utilizing BeCu mechanical retention member. Closed crimp barrel.		
	bronze with tin plate; stainless steel, passivated.	Contact Retention in In	on in Insulator:		
Push-On Fasteners:	Phosphor bronze and beryllium copper with tin plate.	SIGNAL SIZE 22 POWER SIZE 16	5 lbs. [21N] minimum 6 lbs [26N] minimum		
Jackscrew Systems:	Brass or steel with zinc plate and chromate seal or clear zinc plate or tin plate; stainless steel,	<u>SIZE 8</u>	22 lbs [98N] for power, shielded and high voltage.		
	passivated.	Resistance to	500°F [260°C] for 10 seconds duration per		
Hoods:	Composite and plastic, UL 94V-0; brass	Solder Iron Heat:	IEC 60512-6.		
	or steel with zinc plate and chromate seal Aluminum; aluminum with electroless nickel plate. For aluminum hoods, zinc content is 1% maximum. Die cast zinc.	Signal Contact Terminations:	Solder contacts - 0.035 inch [0.89mm] minimum hole diameter for 22 AWG [0.3 mm²] wire maximum.		

TECHNICAL CHARACTERISTICS, continued

continued from previous	page
	Straight Printed Board Mount – 0.020 inch [0.51mm] diameter.
	Right Angle (90°) Printed Board Mount – 0.030 inch [0.76 mm] diameter.
Power Contacts,	
Terminations:	Size 16 contacts- printed board terminations with 0.063 inch [1.60mm] diameters.
	Size 8 contacts - printed board terminations with 0.078 inch [1.98mm], 0.094 inch [2.39mm] and 0.125 inch [3.18mm] termination diameters.
Shielded Contacts,	
Removable:	See table of cable sizes for contact termination dimensions, page 78.
High Voltage Contacts:	Straight and right angle (90°) terminations – 0.041 inch [1.04mm] minimum hole diameter.
Shells:	Male shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells and polarized jackscrews.
Mounting to	
Angle Brackets:	Jackscrews and riveted fasteners with 0.120 inch [3.05mm] diameter hole, and threaded riveted fasteners with 4-40 threads and nylon inserts.
Mounting to	
Printed Board:	Rapid installation push-on fasteners and threaded posts.
Locking Systems:	Jackscrews and vibration locking systems.
Mechanical Operations:	Open entry, 500 operations. PosiBand closed entry, 1000 operations minimum. Per IEC 60512-5.

ELECTRICAL CHARACTERISTICS:

SIZE 22 CONTACT Contact Current Rating: Initial Contact Resistance:

Proof Voltage:

5 amperes nominal. 0.010 ohms maximum for open entry 0.005 ohms maximum for closed entry 1000 V r.m.s.

SIZE 16 CONTACTS

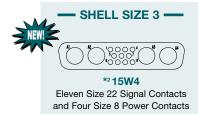
POWER CONTACTS Contact Current Rating - Tested per UL 1977: Standard Contact Material: 28 amperes. High Conductivity Contact Material: 40 amperes. See Temperature Rise Curves on page 2 for details. Initial Contact Resistance: Standard Contact Material: 0.0016 ohms max. Per IEC 60512-2, Test 2b. **High Conductivity Contact Material:** 0.001 ohms max. Per IEC 60512-2, Test 2b. Proof Voltage: 1000 V r.m.s. SIZE 8 CONTACTS POWER CONTACTS For electrical characteristics, see page 4. SHIELDED CONTACTS For electrical characteristics, see page 69. HIGH VOLTAGE CONTACTS For electrical characteristics, see page 69. **CONNECTOR** Insulation Resistance: 5 G ohms.

Clearance and Creepage Distance: Working Voltage:

CLIMATIC CHARACTERISTICS:

Temperature Range:	-55°C to +125°C.
Damp Heat, Steady State:	10 days.

THERMOCOUPLE CONTACTS:


Straight and right angle PCB mount contacts are available, please contact Technical Sales for details.

Size 22 crimp contacts are available in CBCD series, see page 71 for details.

***1 CONTACT VARIANT**

FACE VIEW OF MALE OR REAR VIEW OF FEMALE

- SHELL SIZE 1 -

8W2 Six Size 22 Signal Contacts and Two Size 16 Power Contacts

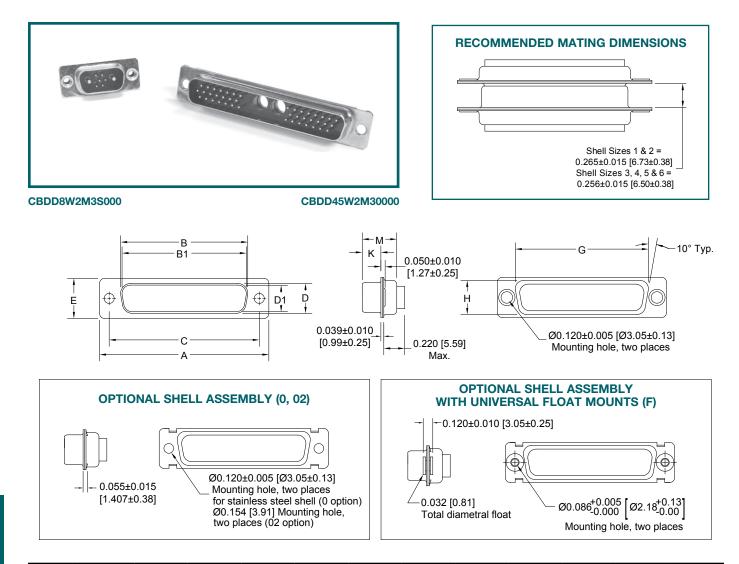
- SHELL SIZE 4 -

0.042 inch [1.06mm] minimum.

300 V r.m.s.

19W1 Eighteen Size 22 Signal Contacts and One Size 8 Power Contact

NOTES:

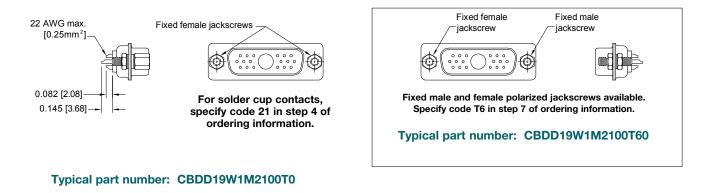

- *1 Additional contact variants may be tooled at customer request.
- *2 For technical, dimensional and PCB layout information on 15W4 variants, contact Technical Sales.
- *345W2 variant currently available in male only. Contact Technical Sales for availability of female connector.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE. 28

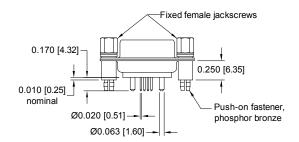
Combo-D

D-Sub

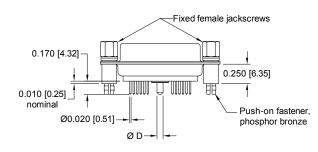
STANDARD SHELL ASSEMBLY


SHELL SIZES	VARIANT	A <u>±0.015</u> [0.38]	B <u>±0.005</u> [0.13]	B1 <u>±0.005</u> [0.13]	C <u>±0.005</u> [0.13]	D <u>±0.005</u> [0.13]	D1 <u>±0.005</u> [0.13]	E <u>±0.015</u> [0.38]	G <u>±0.010</u> [0.25]	H <u>±0.010</u> [0.25]	K <u>±0.005</u> [0.13]	M <u>±0.010</u> [0.25]
	8W2M	<u>1.213</u> [30.81]		<u>0.666</u> [16.92]	<u>0.984</u> [24.99]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
1	8W2F 8W2S	<u>1.213</u> [30.81]	<u>0.643</u> [16.33]		<u>0.984</u> [24.99]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
	19W1M	<u>1.541</u> [39.14]		<u>0.994</u> [25.25]	<u>1.312</u> [33.32]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
2	19W1F 19W1S	<u>1.541</u> [39.14]	<u>0.971</u> [24.66]		<u>1.312</u> [33.32]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
4	45W2M	<u>2.729</u> [69.32]		<u>2.182</u> [55.42]	<u>2.500</u> [63.50]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>2.272</u> [57.71]	<u>0.422</u> [10.72]	<u>0.230</u> [5.84]	<u>0.426</u> [10.82]

Positronic


connectpositronic.com

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO **HIGH DENSITY PCB MOUNT** connectpositronic.com


SOLDER CUP CONNECTOR **CODE 21**

STRAIGHT PRINTED BOARD MOUNT CONNECTOR CODE 3, 35, 36, AND 37

Typical part number: CBDD8W2F3S60T2X

Typical part number: CBDD19W1F35S60T2X

CONTACT CODE	DØ
3	

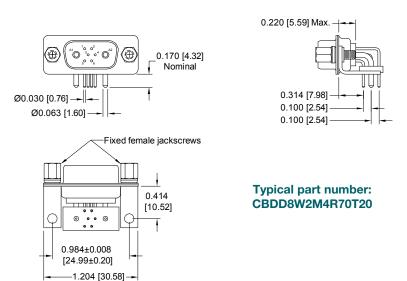
Combo-D

D-Sub

For straight printed board mount contacts, specify code 3 in step 4 of ordering information.

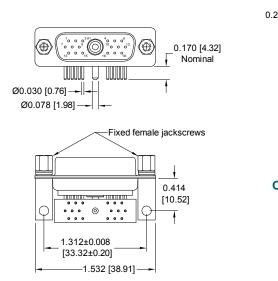
CONTACT CODE	DØ
3	
35	<u>0.078</u> [1.98]
36	<u>0.094</u> [2.39]
37	<u>0.125</u> [3.18]

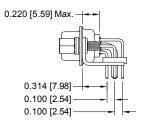
For straight printed board mount contacts, specify code no. in step 4 of ordering information.


Combo-D

D-Sub

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR SIZE 16 POWER CONTACTS WITH 0.063 [1.60] Ø TERMINATIONS


CODE 4, 0.314 [7.98] CONTACT EXTENSION

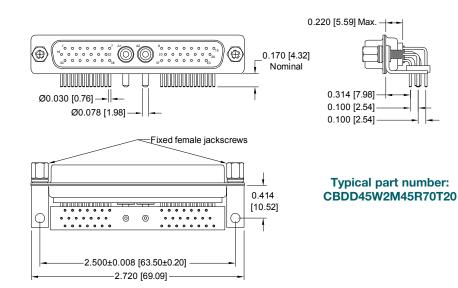

See temperature rise curves on pages 1 and 2

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR SIZE 8 POWER CONTACTS WITH 0.078 [1.98] Ø TERMINATIONS CODE 4 AND 45, 0.314 [7.98] CONTACT EXTENSION

See temperature rise curves on pages 1 and 2

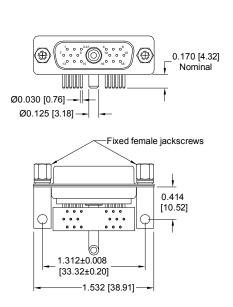
Typical part number: CBDD19W1M45R70T20

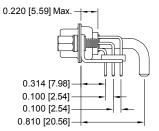
Positronic


connectpositronic.com

Combo-D

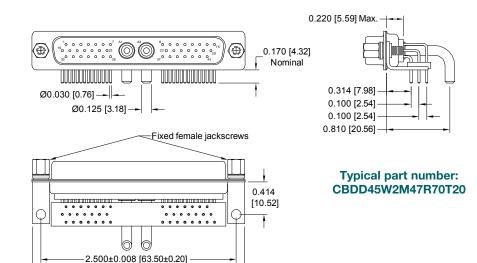
D-Sub


RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR SIZE 8 POWER CONTACTS WITH 0.078 [1.98] Ø TERMINATIONS CODE 4 AND 45, 0.314 [7.98] CONTACT EXTENSION


See temperature rise curves on pages 1 and 2

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR SIZE 8 POWER CONTACTS WITH 0.125 [3.18] Ø TERMINATIONS CODE 4 AND 47, 0.314 [7.98] CONTACT EXTENSION

See temperature rise curves on pages 1 and 2


Typical part number: CBDD19W1M47R70T20

Positronic

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR SIZE 8 POWER CONTACTS WITH 0.125 [3.18] Ø TERMINATIONS

CODE 4 AND 47, 0.314 [7.98] CONTACT EXTENSION

See temperature rise curves on pages 1 and 2

-2.720 [69.09]

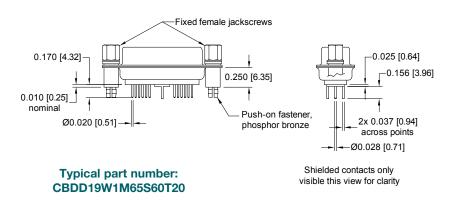
Positronic

connectpositronic com

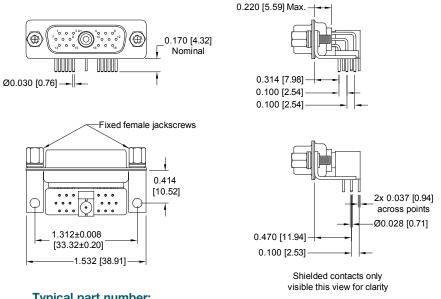
Connectors Designed To Customer Specifications

Positronic Combo-D connectors can be modified to customers specifications.

Examples: select loading of contacts for cost savings or to gain creepage and clearance distances; longer PCB terminations; customer specified hardware; sealing for water resistance.

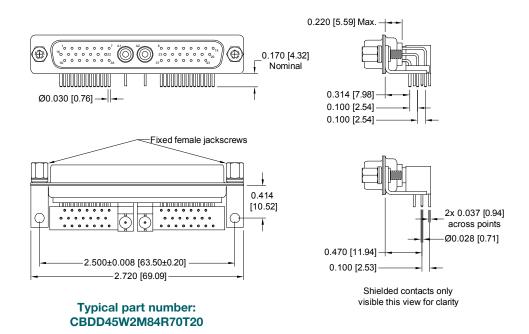

Contact Technical Sales with your particular requirements.

Combo-D


D-Sub

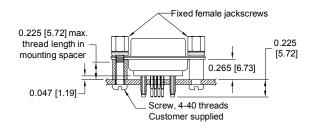
STRAIGHT PRINTED BOARD MOUNT CONNECTOR WITH FDS4201D OR MDS4201D SHIELDED CONTACTS CODE 65

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR WITH FRT4201D OR MRT4201D SHIELDED CONTACTS CODE 84

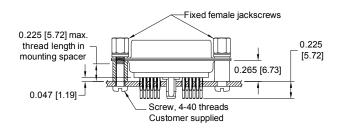


Typical part number: CBDD19W1M84R70T20

Combo-D


D-Sub

RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR WITH FRT4201D OR MRT4201D SHIELDED CONTACTS CODE 84

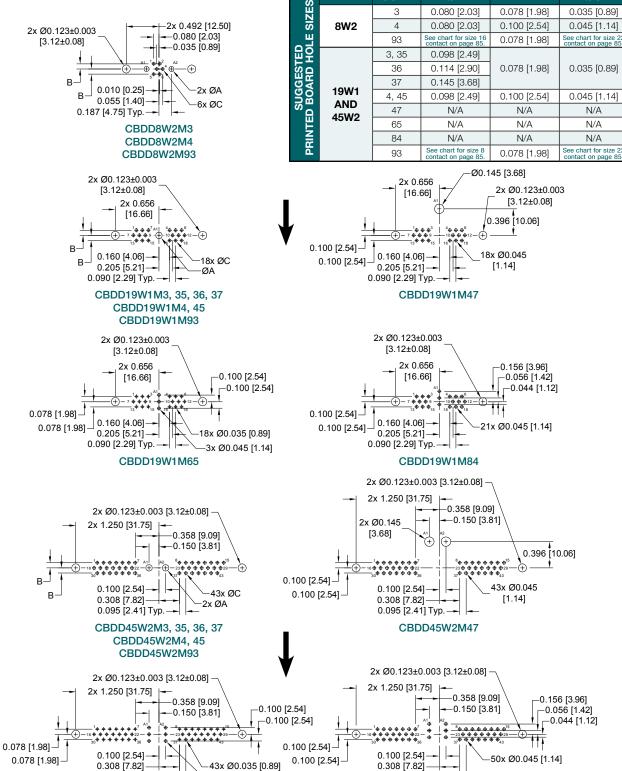


COMPLIANT PRESS-FIT CONNECTOR CODE 93

Positronic recommends the practice of using mounting hardware to secure connector to printed circuit board.

TYPICAL PART NUMBER: CBDD8W2M93S0T20

TYPICAL PART NUMBER: CBDD19W1M93S0T20


Positronic

connectpositronic.com

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE.

0.095 [2.41] Typ.

CBDD45W2M84

0.095 [2.41] Typ.-

CBDD45W2M65

-6x Ø0.045 [1.14]

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO HIGH DENSITY PCB MOUNT

PRINTED BOARD MOUNT CONTACT HOLE PATTERN HOLE IDENTIFICATION SHOWN FOR MALE CONNECTOR: USE MIRROR IMAGE FOR FEMALE CONNECTOR. MOUNT RIGHT ANGLE (90°) CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROWS.

VARIANT

CODE

З

ØA

0.080 [2.03]

в

0.078 [1.98]

Combo-D

D-Sub

Positronic connectpositronic.com

øc

0.035 [0.89]

36

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO HIGH DENSITY PCB MOUNT

Combo-D D-Sub

•	·		E	O R	С	2	cting An	•	τО	•	C C
<u>N (</u>	от і	N	<u>C L</u>				<u>SIZ</u>				<u>, </u>
S		1	2	3	4	5	6	7	8	9	10
EXAM		-	2 8W2	M	93	S	0	0	0	/AA	-14
											*2 STEP 10 - SPECIAL OPTIO
STEP 1 - BAS BDD Series -											FOR SPECIAL OPTIONS, SEE SPECIAL OPTIONS APPENDIX ON PAGE 81.
F	High Conductivity Power Contacts										CONTACT TECHNICAL SALES FOR ORDERING DETAILS OF THE FOLLOWING:
Shell Size 1 - 8	NNECTOR V N2 for ordering in:										Other Special Requirements. Straight and Right Angle Thermocouple PCB mount contacts
or other shell s	size options.			J							P 9 - ENVIRONMENTAL
	NNECTOR G		DER								COMPLIANCE OPTIONS
(M - Male S - Female - I	Dpen Entry Signa ndustrial / Militar PosiBand Closec	al Cor ry Leve	el -	`ontooto						legisl	E: If compliance to environmental ation is not required, this step will not be . Example: CBDD8W2M93S000
					1				STEF	9 8 - SI	HELL OPTIONS
^₅ 21 – Fixed Sol	der Cup, 22 AW traight Printed B	'G-30	AWG [0.3	3mm²-0.05r					*4 S X	 Stainle Tin Plane 	
 *5 4 – Solder, R [7.98] Sigr 93 – Signal On 	ight Angle (90°) I nal Contact Exter nega type comp	nsion. Iiant a	and Power	Bi-Spring					EP 7 -	LOCKI	ated and Dimpled (male connectors only)
	, termination len	-	-	<u>-</u>].		J		V3 -	 None. Lock 	Tab, cor	nnector front panel mounted.
0 – Mountir	10UNTING S ng Hole, 0.120 [(ng Hole, 0.154 [(3.05] (Ø					VL ·	 Lock 	Lever, us	nector rear panel mounted. sed with Hoods only. Jackscrews.
B3 – Bracke	t, Mounting, Rigl t, Mounting, Rigl	ht And	ale (90°) N	letal with C	Cross Bar Cross Bar	r		T2 -	- Fixed	Female	Jackscrews. d Female Polarized Jackscrews.
F – Float M	ounts. Universal										Jackscrews. Screw Locks.
 P – Threaded Post, Brass, 0.250 [6.35] Length P2 – Threaded Post, Nylon, 0.250 [6.35] Length R2 – Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector 									with Internal Hex for 3/32 Hex Drives and Female Polarized Jackscrews.		
with 4-	40 Thread Fixed t, Mounting, Rigi	Fema	ale Jackso	rews with	Cross Bar		*2 C		- HOO		D PUSH-ON FASTENERS
with 0.1 R7 – Bracke	120 [3.05] Ø Mo t, Mounting, Rigl	unting ht Ang	g Hole with gle (90°) N	n Cross Ba	r			0 – Nor	ne		m Hood, nickel finish
with 4-40 Threads with Cross Bar R8 – Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector				A	C – Ligł	ntweight	Aluminur	m Hood, no finish			
 with 4-40 Locknut with Cross Bar S – Swaged Spacer, 4-40 Threads, 0.250 [6.35] Length, Spacer length changes to 0.265 [6.73] when used in conjunction with Code 93 					H – Hood, Top Opening, Metal *3 G – Hood, EMI/RFI, Die Cast Zinc N – Push-on Fastener, for Right Angle (90°) Mounting Brackets						
with 4- S – Swage	s to 0.265 [6.73] whe	n used in	conjunctio		40.00		Z - HO	od, Top (or Side (Opening, robust extended height, plastic

- *2 For additional information on accessories listed in steps 5, 6, 7 and 10, see Accessory Catalog.
- *3 When using G hood with CBDD variants, use the extended height hood. See Accessories Catalog for extended G hood options.
- *4 For stainless steel dimpled male versions, contact Technical Sales.
- $^{\star 5} Size \ 16 \ power \ contact \ are \ included.$

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO

Combo-D

D-Sub

HIGH DENSITY PCB MOUNT

ORDERING INFORMATION - CODE NUMBERING SYSTEM NEW! Specify Complete Connector By Selecting An Option From Step 1 Through 8 **OR CONNECTORS INCLUDING SIZE 8 CONTACTS STEP** 1 2 3 4 5 6 7 8 9 10 S -14 **EXAMPLE** CBDD 19W1 Μ 93 0 0 0 /AA *3 STEP 10 - SPECIAL OPTIONS **STEP 1 - BASIC SERIES** FOR SPECIAL OPTIONS, SEE CBDD Series -SPECIAL OPTIONS APPENDIX CBHD Series - High Conductivity Power Contacts ON PAGE 81. CONTACT TECHNICAL SALES **STEP 2 - CONNECTOR VARIANTS** FOR ORDERING DETAILS OF THE FOLLOWING: Shell Size 2 - 19W1 Other Special Requirements. *6 Shell Size 3 - 15W4 Straight and Right Angle Thermocouple *1 Shell Size 4 - 45W2 PCB mount contacts **STEP 3 - CONNECTOR GENDER** *2 F - Female - Professional Level **STEP 9 - ENVIRONMENTAL Open Entry Signal Contacts COMPLIANCE OPTIONS** M - Male /AA - RoHS Compliant *2 S - Female - Industrial / Military Level -PosiBand Closed Entry Signal Contacts NOTE: If compliance to environmental legislation is not required, this step will not be **STEP 4 - CONTACT TERMINATION TYPE** used. Example: CBDD8W2M93S000 21 – Fixed Solder Cup, 22 AWG-30 AWG [0.3mm²-0.05mm²]. 3 – Solder, Straight Printed Board Mount with Signal Contacts **STEP 8 - SHELL OPTIONS** 0.170 [4.32] Tail Length. - Zinc Plated, with Chromate Seal. Solder, Straight Printed Board Mount with Signal and 0.078 35 *5 S - Stainless Steel, passivated. [1.98] Ø Power Contacts, 0.170 [4.32] Tail Length. Tin Plated. Solder, Straight Printed Board Mount with Signal and 0.094 36 -Z - Tin Plated and Dimpled (male connectors only). [2.39] Ø Power Contacts, 0.170 [4.32] Tail Length. Solder, Straight Printed Board Mount with Signal and 0.125 37 [3.18] Ø Power Contacts, 0.170 [4.32] Tail Length. *3 STEP 7 - LOCKING AND POLARIZING SYSTEMS 4 – Solder, Right Angle (90°) Printed Board Mount with Signal Contacts, 0.314 [7.98] Signal Contact Extension. 45 – Solder, Right Angle (90°) Printed Board Mount with Signal 0 None. VЗ _ Lock Tab, connector front panel mounted. V5 _ Lock Tab, connector rear panel mounted. and 0.078 [1.98] Ø Power Contacts, 0.314 [7.98] Signal Lock Lever, used with Hoods only. Fixed Female Jackscrews. _ VI Contact Extension. Т 47 - Solder, Right Angle (90°) Printed Board Mount with Signal T2 _ Fixed Female Jackscrews and 0.125 [3.18] Ø Power Contacts, 0.314 [7.98] Signal Contact Extension. Fixed Male and Female Polarized Jackscrews. _ T6 Rotating Male Jackscrews. F 65 - Solder, Straight Printed Board Mount with Signal and E2 Rotating Male Screw Locks Shielded Contacts MDS/FDS 4201D footprint, 0.170 [4.32] Rotating Male with Internal Hex for 3/32 Hex Drives Rotating Male and Female Polarized Jackscrews. F3 _ Signal Contact Tail Length. 84 – Solder, Right Angle (90°) Printed Board Mount with Signal _ F6 and Shielded Contacts MRT/FRT 4201D footprint, 0.314 *3 STEP 6 - HOODS AND PUSH-ON FASTENERS [7.98] Signal Contact Extension. 93 - Signal Omega type compliant and Power Bi-Spring type 0 - None compliant, termination length 0.225 [5.72]. AN – Lightweight Aluminum Hood, nickel finish AC - Lightweight Aluminum Hood, no finish H - Hood, Top Opening, Metal * STEP 5 - MOUNTING STYLE *4G - Hood, EMI/RFI, Die Cast Zinc - Mounting Hole, 0.120 [3.05] Ø 0 N – Push-on Fastener, for Right Angle (90°) Mounting Brackets - Mounting Hole, 0.154 [3.91] Ø 02 7 - Hood, Top or Side Opening, robust extended height, plastic Bracket, Mounting, Right Angle (90°) Metal with Cross Bar Bracket, Mounting, Right Angle (90°) Plastic with Cross Bar B3 and composite, with rotating male jackscrews **B**8 - Float Mounts, Universal F Float Mounts, Universal Threaded Post, Brass, 0.250 [6.35] Length Threaded Post, Nylon, 0.250 [6.35] Length Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector with 4-40 Thread Fixed Female Jackscrews with Cross Bar Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector with 0.120 [3.05] Ø Mounting Hole with Cross Bar Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector with 4-40 Threads with Cross Bar P P2 NOTES R2 *1 45W2 variant currently available in male only. *2 Power contacts are always supplied with "Closed Entry" female contacts. R6 *3 For additional information on accessories listed in steps R7 5, 6, 7 and 10, see Accessory Catalog. with 4-40 Threads with Cross Bar *4 When using G hood with CBDD variants, use the extended height hood. - Bracket, Mounting, Right Angle (90°) Metal, Swaged to Connector **R**8 See Accessories Catalog for extended G hood options. with 4-40 Locknut with Cross Bar *5 For stainless steel dimpled male versions, contact Technical Sales. - Swaged Spacer, 4-40 Threads, 0.250 [6.35] Length, Spacer length changes to 0.265 [6.73] when used in conjunction with Code 93 S *6 For technical, dimensional and PCB layout information on 15W4 variants, contact Technical Sales contacts - Swaged Spacer, 4-40 Threads, 0.125 [3.18] Length S5 - Swaged Locknut, 4-40 Threads S6 - Swaged Spacer with Push-on Fastener, 4-40 Threads, 0.250 [6.35] **DIMENSIONS ARE IN INCHES [MILLIMETERS].** Length ALL DIMENSIONS ARE SUBJECT TO CHANGE. 38

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO HIGH DENSITY CRIMP / SOLDER REMOVABLE CONTACTS

Combo-D D-Sub

Size 22 Removable Signal and Thermocouple Crimp Contacts

Size 16 Removable Power Contacts

Size 8 Removable Power, Shielded, Air and High Voltage Contacts

UL and CSA Recognition, for status contact Technical Sales

CBCD high density series connectors are quality connectors designed for use in sheltered, mildly corrosive environments having a wide range of temperature, pressure and humidity changes. CBCD series connectors offer mixed crimp-removable contact combinations of power, signal, and thermocouple contacts within the same connector body.

A wide assortment of cable support hoods and locking systems is available from stock.

CBCD series connectors also offer a blind mating connector system for applications requiring connector couplings in recessed areas or for mobile power coupling systems.

CBCD series connectors utilize precision machined contacts and meet applicable performance and dimensional requirements of IEC 60807-7, MIL-DTL-24308 and AS39029.

Non-magnetic versions are available, contact Technical Sales.

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Insulator:	Glass filled polyester per ASTM D 5927	MECHANICAL CHARACTERISTICS:				
insulator.	UL 94V-0, blue color.	Signal Contacts,				
Contacts:	Precision machined copper alloy.	Crimp Removable:	Size 22 contacts, male – 0.030 inch			
Contact Plating: <u>SIGNAL:</u>	Gold flash over nickel plate and gold 0.000050 [1.27µ] over nickel plate. Other finishes available upon request, see page 81.		[0.76mm] mating diameter. Terminations for 20, 22, 24, 26, 28 and 30 AWG. Female PosiBand closed entry design, see page 69 for details. Closed crimp barrel.			
POWER:	Gold flash over nickel. Other finishes available	Power Contacts,				
SHIELDED: HIGH VOLTAGE: Shells:	upon request, see page 81. For contact platings, see page 68. For contact platings, see page 68. Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other	Crimp Removable:	Size 16 contacts, male – 0.0625 inch [1.588mm] mating diameter. Terminations for 12, 14, 16, 18, 20, 22, and 24 AWG. Female closed entry design. Closed crimp barrel.			
Mounting Spacers:	materials and finishes available upon request. Copper alloy or steel with zinc plate and chromate seal or tin plate; stainless steel, passivated.		Size 8 contacts, male – 0.142 inch [3.61mm] mating diameter. Terminations for 6, 8, 10, 12, and 16 AWG. Female contact features Large Surface Area			
Jackscrew Systems:	Brass or steel with zinc plate and chromate seal or clear zinc plate or tin plate; stainless steel, passivated.		(L.S.A.) closed entry contact design utilizing BeCu mechanical retention member. Closed crimp barrel.			
Hoods:	Composite and plastic, UL 94V-0; brass or steel with zinc plate and chromate seal. Aluminum; aluminum with electroless nickel plate. For aluminum hoods, zinc content is 1% maximum. Die cast zinc.	Contact Retention In Insula SIGNAL SIZE 22 POWER SIZE 16 POWER SIZE 8	ator: 9 lbs. [40N]. 15 lbs. [67N] 22 lbs. [98N] - power, shielded and high voltage.			

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO **HIGH DENSITY CRIMP / SOLDER REMOVABLE CONTACTS**

TECHNICAL CHARACTERISTICS, continued

continued from previous page. . . .

MECHANICAL CHARACTERISTICS, continued:

Shells:	Male shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells and polarized jackscrews.
Locking Systems: Mechanical Operations:	Jackscrews and vibration locking systems. 1000 operations minimum per IEC 60512-5.

ELECTRICAL CHARACTERISTICS:

SIZE 22 CONTACTS

Contact Current Rating: Initial Contact Resistance: Proof Voltage:

5 amperes nominal. 0.005 ohms maximum. 1000 V r.m.s.

SIZE 16 CONTACTS

POWER CONTACTS Contact Current Rating - Tested per UL 1977: Standard Contact Material: 28 amperes. High Conductivity Contact Material: 40 amperes. See Temperature Rise Curves on page 2 for details. Initial Contact Resistance: Standard Contact Material: 0.0016 ohms max. Per IEC 60512-2, Test 2b.

Test 2b.

1000 V r.m.s.

High Conductivity Contact Material:

Proof Voltage:

0.001 ohms max. Per IEC 60512-2,

POWER CONTACTS For electrical characteristics, see page 4.

SIZE 8 CONTACTS

SHIELDED CONTACTS

For electrical characteristics, see page 69.

HIGH VOLTAGE CONTACTS For electrical characteristics, see page 69.

CONNECTOR

(

١

Insulation Resistance:	5 G ohms.
Clearance and	
Creepage Distance:	0.042 inch [1.06mm] minimum.
Working Voltage:	300 V r.m.s.

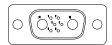
CLIMATIC CHARACTERISTICS:

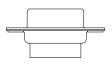
Temperature Range: Damp Heat, Steady State: -55°C to +125°C. 10 days.

THERMOCOUPLE CONTACTS:

Size 22 crimp contacts are available. See page 71 for details. PCB mount contacts are available in CBDD series, see page 27 for details.

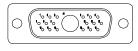
***1 CONTACT VARIANT**

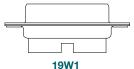

FACE VIEW OF MALE OR REAR VIEW OF FEMALE


SHELL SIZE 2 -

*2 45W2 variant currently available in female only. Contact Technical Sales for availability of male connector.

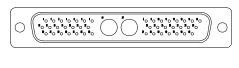
Note: Connectors can be kitted with all applicable removable contacts, contact Technical Sales for connector part number.

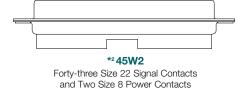

- SHELL SIZE 1 -

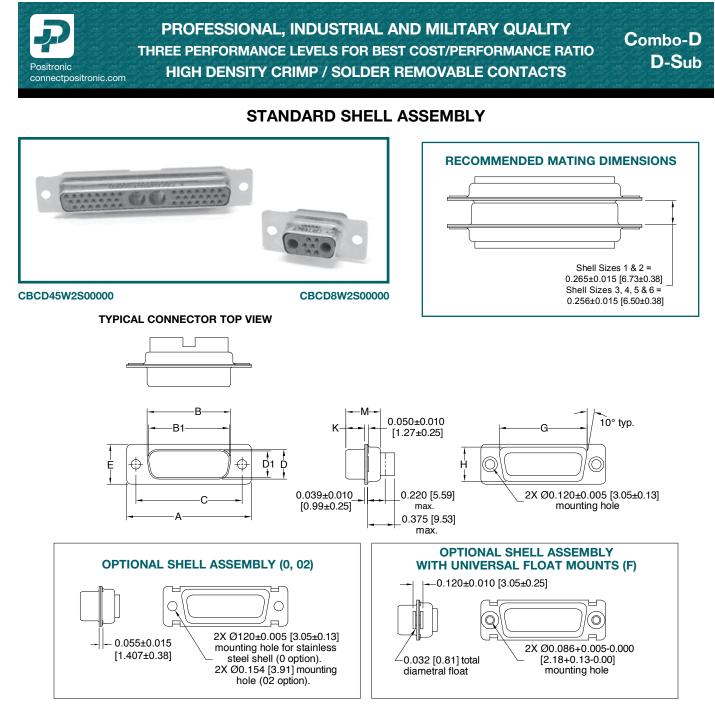


8W2 Six Size 22 Signal Contacts and Two Size 16 Power Contacts

NOTES:

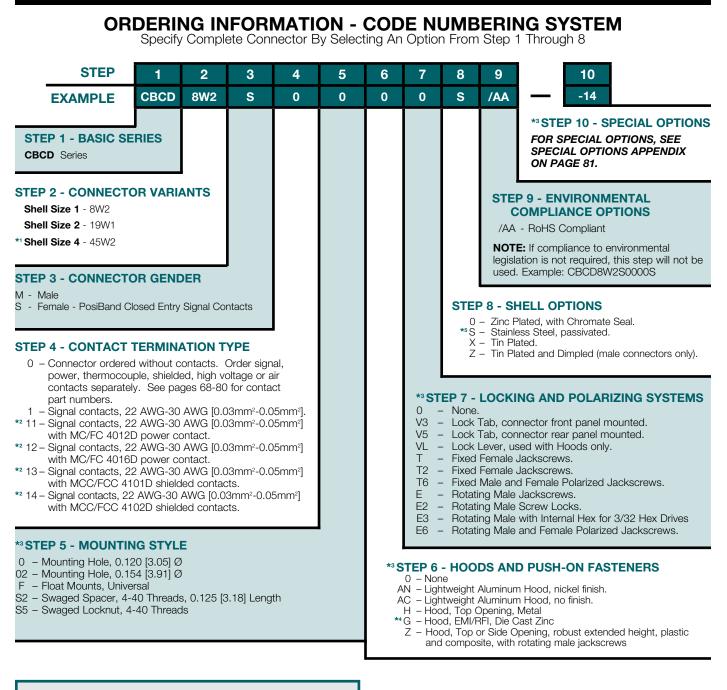


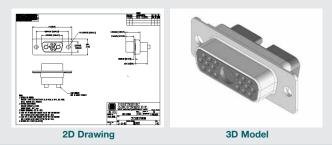



Eighteen Size 22 Signal Contacts and One Size 8 Power Contact

*1 Additional contact variants may be tooled at customer request.

SHELL SIZE 4 -




SHELL SIZES	VARIANT	A <u>±0.015</u> [0.38]	B <u>±0.005</u> [0.13]	B1 <u>±0.005</u> [0.13]	C <u>±0.005</u> [0.13]	D <u>±0.005</u> [0.13]	D1 <u>±0.005</u> [0.13]	E <u>±0.015</u> [0.38]	G <u>±0.010</u> [0.25]	H <u>±0.010</u> [0.25]	K <u>±0.005</u> [0.13]	M <u>±0.010</u> [0.25]
	8W2M	<u>1.213</u> [30.81]		<u>0.666</u> [16.92]	<u>0.984</u> [24.99]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
	8W2S	<u>1.213</u> [30.81]	<u>0.643</u> [16.33]		<u>0.984</u> [24.99]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>0.759</u> [19.28]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
2	19W1M	<u>1.541</u> [39.14]		<u>0.994</u> [25.25]	<u>1.312</u> [33.32]		<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.233</u> [5.92]	<u>0.422</u> [10.72]
2	19W1S	<u>1.541</u> [39.14]	<u>0.971</u> [24.66]		<u>1.312</u> [33.32]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>1.083</u> [27.51]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]
4	45W2S	<u>2.729</u> [69.32]	<u>2.159</u> [54.84]		<u>2.500</u> [63.50]	<u>0.311</u> [7.90]		<u>0.494</u> [12.55]	<u>2.272</u> [57.71]	<u>0.422</u> [10.72]	<u>0.243</u> [6.17]	<u>0.429</u> [10.90]

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 41 ALL DIMENSIONS ARE SUBJECT TO CHANGE. Combo-D D-Sub PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO HIGH DENSITY CRIMP / SOLDER REMOVABLE CONTACTS

NOTE: If you would like a 2D drawing or 3D model, once you've made your connector selection, please visit **www.connectpositronic.com**. If you can't find your specific part number on our web site, contact Technical Sales to have one created.

NOTES

*1 45W2 variant currently available in female only.

- *2 Available on 19W1 and 45W2 connectors only.
- *3 For additional information on accessories listed in steps 5, 6, 7 and 10, see Accessory Catalog.
- ** When using G hood with CBCD variants, use the extended height hood. See Accessories Catalog for extended G hood options.
- *5 For stainless steel dimpled male versions, contact Technical Sales.

For crimping information and crimp tools, see Application Tools section, page 82.

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO VERTICALLY STACKED STANDARD DENSITY PCB MOUNT

Combo-D D-Sub

The Combo-Dual Port connector series offers several combinations of power and signal contacts within the same connector assembly. Seventeen different combinations of power and signal contact stacked assemblies are available within four standard shell sizes. The connector assembly can be partially populated with either signal or power contacts installed in the connector bodies to customer selected contact positions. The stacked connectors may be spaced apart to two dimensional spacings.

On special order, the right angle (90°) printed board mount contacts may be replaced with size 8 power,

shielded or high voltage contacts having crimp or solder cup terminations. Signal contacts remain in dual port configuration.

Mounting angle brackets can be ordered riveted to the connector by specifying R2, R6, R7 and R8 options. Locking systems are available utilizing 4-40 threaded jackscrew systems, polarized or non-polarized, or with a quick-release vibration lock system for rear panel mounted connectors.

Combo-Dual Port series connectors comply with the dimensional requirements of IEC 60807-2 and DSCC 85039.

Brass or steel with zinc plate and

TECHNICAL CHARACTERISTICS

Jackscrew Systems:

MATERIALS AND FINISHES:

Insulator: Contacts: Contact Plating:	Glass filled polyester per ASTM D 5927 UL 94, blue color, and composite. Precision machined copper alloy.	Vibration Lock Systems: Non-magnetic versions are	chromate seal or clear zinc plate or tin plate; stainless steel, passivated. Lock tabs, steel with nickel plate. available, contact Technical Sales.	
<u>SIGNAL:</u> POWER:	Gold flash over nickel plate. Other finishes available upon request. Gold flash over nickel. Other finishes available upon request.	MECHANICAL CHAR	Size 20 contacts, male – 0.040 inch [1.02mm] mating diameter. Female	
Shells:	Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other materials and finishes available upon request.	Contact Retention	contact – rugged open entry. PosiBanc closed entry female options are also available.	
Mounting Spacers and Brackets:	Nylon; polyester; copper alloy or steel with zinc plate and chromate seal or tin plate; phosphor bronze with tin plate; stainless steel, passivated.	In Insulator: Contact Terminations:	9 lbs. [40N] Printed board mount with right angle (90°) terminations supported by alignment bar. Termination diameter	
Cross Bar: Push-On Fasteners:	Nylon, UL 94V-0, black color. Beryllium copper, tin plated.	Power Contacts:	0.028 inch [0.71mm]. Size 8 contact, male – 0.142 inch [3.61mm] mating diameter.	

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO VERTICALLY STACKED STANDARD DENSITY PCB MOUNT

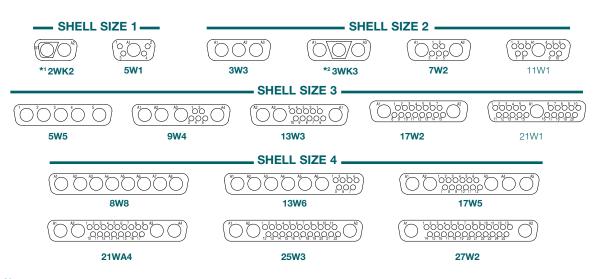
continued from previous page. . . .

MECHANICAL CHARACTERISTICS, continued:

Contact Retention	
In Insulator:	22 lbs. [98N]
Contact Terminations:	Printed board mount with right angle (90°) terminations of 0.078 inch [1.98mm] diameter.
Shells:	Male connector shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells and polarized jackscrews.
Mounting Bracket	Riveted fasteners with 0.120 inch
Riveted to Connector:	[3.05mm] diameter clearance hole, with 4-40 threads or 4-40 threads with nylon lock insert.
Mounting To	
Printed Board:	Rapid installation push-on fasteners.
Locking Systems:	Jackscrews and vibration locking system for either front or rear panel mounted connectors.
Mechanical Operations:	500 operations minimum per IEC 60512- 5.

ELECTRICAL CHARACTERISTICS:

SIZE 20 CONTACTS


Contact Current Rating: Initial Contact Resistance: Proof Voltage:	7.5 amperes nominal. 0.008 ohms maximum. 1000 V r.m.s.
SIZE 8 CONTACTS	
POWER CONTACTS Electrical characteristics for 0.0 see page 4.	78 inch diameter terminations,
CONNECTOR	
Insulation Resistance:	5 G ohms.
Clearance and Creepage	
Distance (minimum):	0.039 inch [1.0mm]
Working Voltage:	300 V r.m.s.

CLIMATIC CHARACTERISTICS:

Temperature Range:	-55°C to +125°C.
Damp Heat, Steady State:	10 days.

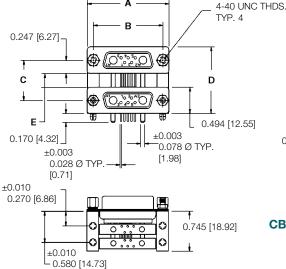
CONTACT VARIANTS

FACE VIEW OF MALE OR REAR VIEW OF FEMALE

Notes:

*1 2WK2 connectors have 1 male and 1 female contacts. Female connector should be loaded with female contact in A2 position.

*2 3WK3 male variant contains 2 male contacts and 1 female contact. Female variant contains 2 female contacts and 1 male contact


RIGHT ANGLE (90°) PRINTED BOARD MOUNT CONNECTOR 4 ROW CONNECTOR UNIT, 0.283 [7.19] CONTACT EXTENSION

See temperature rise curves on pages 1 and 2

NOTE:

Positronic

30 ampere 0.125 [3.18] Ø power contacts may be ordered at special request for a limited number of CBDP variants. Contact technical sales for details.

0.150 [3.81] TYP. **Typical Part Number:** CBDPB7W2MN8T2/7W2MN8T6X

0.283 [7.19] TYP.

0.112 [2.84] TYP.

±0.008 -0.036 [0.91]

0.220 [5.59] MAX.

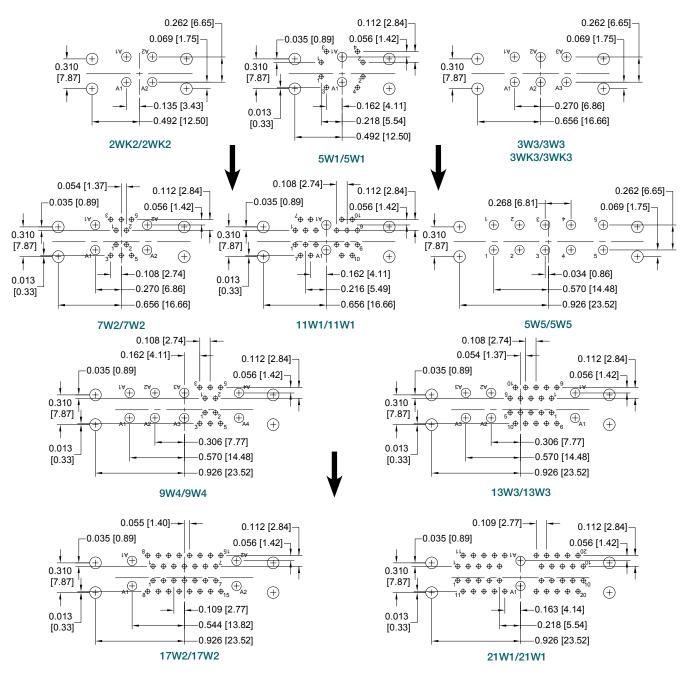
0.112 [2.84] TYP.

6 <u>6</u> 0]
1 <u>6</u> 1]

CONNECTOR VARIANT	А	В
SHELL SIZE 1	<u>1.213</u> [30.81]	<u>0.984</u> [24.99]
SHELL SIZE 2	<u>1.541</u> [39.14]	<u>1.312</u> [33.32]
SHELL SIZE 3	<u>2.088</u> [53.04]	<u>1.852</u> [47.04]
SHELL SIZE 4	<u>2.729</u> [69.32]	<u>2.500</u> [63.50]

Combo-D

D-Sub


Note: Printed board power contacts (size 8) may be replaced with a size 8 removable power, shielded, air or high voltage contact having solder or crimp terminations.

Positronic

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO VERTICALLY STACKED STANDARD DENSITY PCB MOUNT connectpositronic com

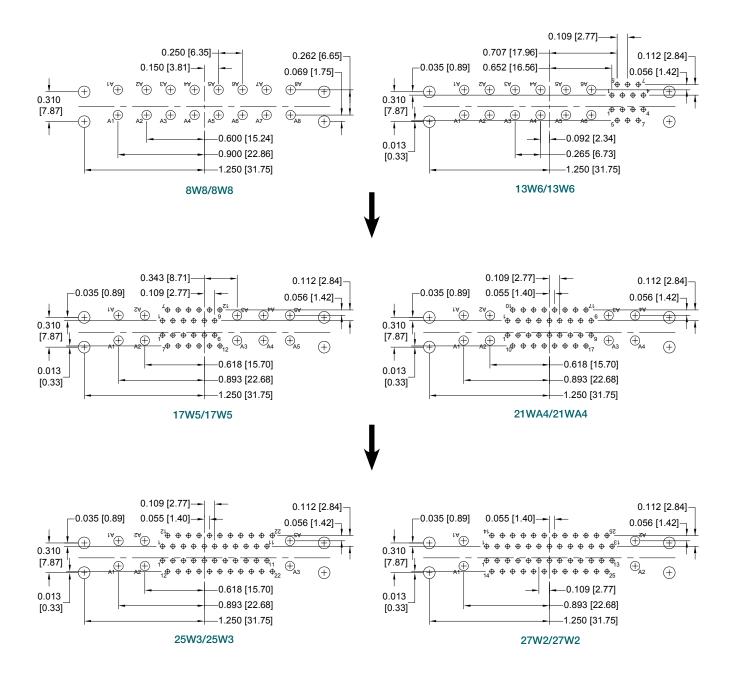
RIGHT ANGLE (90°) PRINTED BOARD CONTACT HOLE PATTERN

HOLE IDENTIFICATION SHOWN IS FOR FEMALE CONNECTOR OVER MALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROW.

SUGGESTED PRINTED BOARD HOLE SIZES:

Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.098 [2.49] Ø hole for 0.078 [1.98] Ø power contact termination positions. Suggest 0.123 ±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.

Mounting holes must move 0.020 [0.51] ±0.010 opposite direction of arrow for use of unriveted mounting bracket with connectors.


PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO VERTICALLY STACKED STANDARD DENSITY PCB MOUNT connectpositronic com

Combo-D

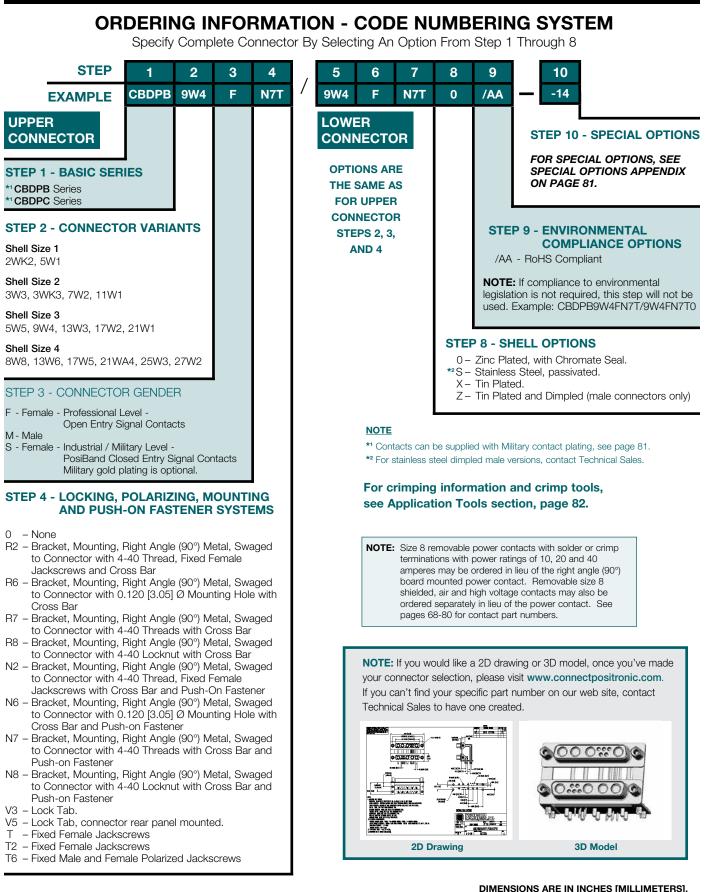
D-Sub

RIGHT ANGLE (90°) PRINTED BOARD CONTACT HOLE PATTERN

HOLE IDENTIFICATION SHOWN IS FOR FEMALE CONNECTOR OVER MALE CONNECTOR. MOUNT CONNECTOR WITH MATING FACE POSITIONED TO FOLLOW DIRECTION OF ARROW.

SUGGESTED PRINTED BOARD HOLE SIZES:

Suggest 0.045 [1.14] Ø hole for signal contact termination positions. Suggest 0.098 [2.49] Ø hole for 0.078 [1.98] Ø power contact termination positions. Suggest 0.123 ±0.003 [3.12] Ø hole for mounting connector with push-on fasteners.


Mounting holes must move 0.020 [0.51] ±0.010 opposite direction of arrow for use of unriveted mounting bracket with connectors.

Positronic

PROFESSIONAL, INDUSTRIAL AND MILITARY QUALITY THREE PERFORMANCE LEVELS FOR BEST COST/PERFORMANCE RATIO VERTICALLY STACKED STANDARD DENSITY PCB MOUNT connectpositronic com

Positronic

CBDPB/CBDPC SERIES

COMBO-D CONNECTOR SAVERS GENDER CHANGERS

Combo-D D-Sub

Professional Quality Connectors ACBDP Series Size 20 "Open Entry" or PosiBand[®] "Closed Entry" Contact Design

Industrial /Military Quality Connectors - ACBMP Series Size 20 PosiBand® "Closed Entry" Contact Design Connector Saver

ACBDP and ACBMP series connectors are suitable for use in any applications requiring high performance characteristic. The normal density ACBDP and ACBMP series are available in standard Combo-D connector variants.

ACBDP and ACBMP series connectors utilize precision machined contacts for strength and durability. The ACBDP female contact features a rugged "Open Entry" design or PosiBand "Closed Entry" design for even higher reliability. ACBMP connectors features PosiBand "Closed Entry" contacts and military contact plating.

ACBDP and ACBMP series connectors can be mated to a connector which would normally experience high numbers of mating cycles. The ACBDP/ACBMP connector can be easily replaced, "Saving" a connector which is not easily replaced.

These connectors can also be used as a "gender changer". Connector Savers are also available in standard and high density D-subminiature versions, please consult our Professional, Industrial and Military Performance D-subminiature Connectors catalog for more information.

For high density 8W2, 19W1 and 45W2 adapter variants contact Technical Sales.

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Insulator:	Glass filled polyester per ASTM D 5927
	UL 94V-0, blue color.
SIGNAL CONTACTS:	
ACBDP Series:	Precision machined high tensile copper alloy open entry design.
ACBMP Series:	Precision machined copper alloy PosiBand closed entry design.
POWER CONTACTS:	Precision machined copper alloy closed entry design.
Contact Plating:	
ACBDP Series:	Gold flash over nickel plate.
ACBMP Series:	0.000050 [1.27µ] gold over nickel plate.
Shells:	Steel with tin plate; zinc plate with chromate seal; stainless steel passivated. Other materials and finishes available upon request.

ackscrew Systems:	Brass or steel with zinc plate and chromate seal or clear zinc plate or tin plate; stainless steel, passivated.	
Ion-magnetic versions	are available, contact Technical Sales.	
MECHANICAL CHARACTERISTICS:		

member.

 FIXED CONTACTS:

 SIGNAL CONTACTS:

 Size 20 contacts, male - 0.040 inch [1.02 mm] diameter. ACBDP series has female open entry contact or PosiBand closed entry contacts optional, see page 69 for details. ACBMP series offer female PosiBand closed entry contacts.

 POWER CONTACTS:
 Size 8 contacts, male - 0.142 inch [3.61 mm] diameter. Female contact features Large

Surface Area (L.S.A.) closed entry contact design utilizing BeCu mechanical retention

Combo-D **D-Sub**

COMBO-D **CONNECTOR SAVERS GENDER CHANGERS**

Positronia connectpositronic.com

TECHNICAL CHARACTERISTICS, continued

continued from previous page. . . .

MECHANICAL CHARACTERISTICS, continued:

Connector Saver:	Male to female or male to male.
Contact Retention:	
Signal: Power:	9 lbs. [40 N]. 22 lbs. [98 N].
Shells:	Male shells may be dimpled for EMI/ESD ground paths.
Polarization:	Trapezoidally shaped shells.
Mechanical Operations	:
ACBDP Series:	500 operations, minimum, per IEC 60512-5.
ACBMP Series:	1,000 operations, minimum, per IEC 60512-5.

ELECTRICAL CHARACTERISTICS:

SIZE 20 CONTACTS Contact Current Pating

Contact Current Rating:	7.5 amperes, nominal.
Initial Contact Resistance:	0.008 ohms, maximum.
Proof Voltage:	1,000 V r.m.s.
SIZE 8 CONTACTS	

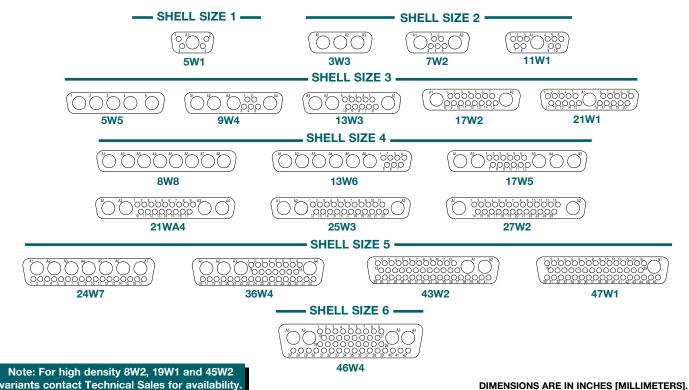
POWER CONTACTS

Contact Current Rating: 70 amperes, per UL 1977. See Temperature Rise Curves on pages 1-2. Initial Contact Resistance: 0.0005 ohms, maximum Proof Voltage: 1,000 V r.m.s. **CONNECTOR**

Insulation Resistance:	5 G ohms.
Clearance and	
Creepage Distance:	0.039 inch [
Working Voltage:	300 V r.m.s

[1.0 mm], minimum.

-55°C to +125°C.


CLIMATIC CHARACTERISTICS:

Temperature	Range:
-------------	--------

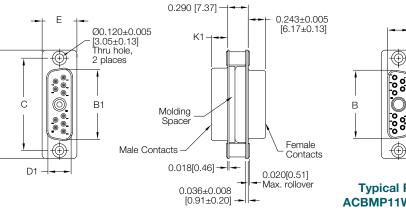
ACBDP/ACBMP SERIES SIZE 20 AND SIZE 8 CONTACT CONNECTOR SAVER

CONTACT VARIANTS

FACE VIEW OF MALE OR REAR VIEW OF FEMALE

COMBO-D CONNECTOR SAVERS GENDER CHANGERS

Combo-D D-Sub

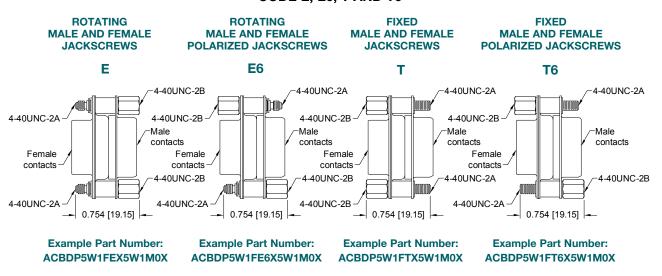

STANDARD SHELL ASSEMBLY DIMENSIONS

SIZE 20 AND SIZE 8 CONTACTS CODE 0 AND S

NOTE:

Code S = Swaged spacer with 4-40 UNC-2B threads.

А



Typical Part Number: ACBMP11W1F0011W1M00

D

CONNECTOR	A	В	B1	C	D	D1	E	K1
SIZE	±0.015	±0.005	±0.005	±0.005	±0.005	±0.005	±0.015	±0.005
SHELL SIZE 1	<u>1.213</u>	<u>0.643</u>	<u>0.666</u>	<u>0.984</u>	<u>0.311</u>	<u>0.329</u>	<u>0.494</u>	<u>0.233</u>
	[30.81]	[16.33]	[16.92]	[24.99]	[7.90]	[8.36]	[12.55]	[5.92]
SHELL SIZE 2	<u>1.541</u>	<u>0.971</u>	<u>0.994</u>	<u>1.312</u>	<u>0.311</u>	<u>0.329</u>	<u>0.494</u>	<u>0.233</u>
	[39.14]	[24.66]	[25.25]	[33.32]	[7.90]	[8.36]	[12.55]	[5.92]
SHELL SIZE 3			<u>1.534</u> [38.96]	<u>1.852</u> [47.04]	<u>0.311</u> [7.90]	<u>0.329</u> [8.36]	<u>0.494</u> [12.55]	<u>0.230</u> [5.84]
SHELL SIZE 4	<u>2.729</u>	<u>2.159</u>	<u>2.182</u>	<u>2.500</u>	<u>0.311</u>	<u>0.329</u>	<u>0.494</u>	<u>0.230</u>
	[69.32]	[54.84]	[55.42]	[63.50]	[7.90]	[8.36]	[12.55]	[5.84]
SHELL SIZE 5	<u>2.635</u>	<u>2.064</u>	<u>2.079</u>	<u>2.406</u>	<u>0.423</u>	<u>0.441</u>	<u>0.605</u>	<u>0.230</u>
	[66.93]	[52.43]	[52.81]	[61.11]	[10.74]	[11.20]	[15.37]	[5.84]
SHELL SIZE 6	<u>2.729</u>	<u>2.189</u>	<u>2.212</u>	<u>2.500</u>	<u>0.485</u>	<u>0.503</u>	<u>0.668</u>	<u>0.230</u>
	[69.32]	[55.60]	[56.18]	[63.50]	[12.32]	[12.78]	[16.97]	[5.84]

JACKSCREW SYSTEMS CODE E, E6, T AND T6

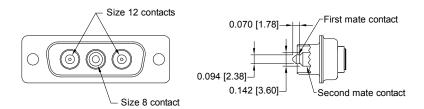
Combo-D D-Sub

ORDERING INFORMATION - CODE NUMBERING SYSTEM

Specify Complete Connector By Selecting An Option From Step 1 Through 9

STEP	1	2	3	4	5	6	7	8	9	10	11
EXAMPLE	ACBDP	11W1	F	S	X	11W1	М	S	X	/AA	-14
STEP 1 - BASIC S ACBDP - Professional Industrial Quality, see ACBMP - Military conf with "closed entry" fe nal contacts plated C [1.27µ] gold over nicl Choose "S" or "M" in	/ e Step 3. ormance emale sig- 0.000050 kel plate.									STE	STEP 11 - SPECIAL OPTIONS FOR SPECIAL OPTIONS, SEE SPECIAL OPTIONS APPENDIX ON PAGE 81.
STEP 2 - CONNEC Shell Size 1 5W1 Shell Size 2 3W3, 7W2, 11W1 Shell Size 3 5W5, 9W4, 13W3, 17W Shell Size 4 8W8, 13W6, 17W5, 21	V2, 21W1									/AA NOT I legisla step	COMPLIANCE OPTIONS - RoHS Compliant E: If compliance to environmental ation is not required, this will not be used. Example: DP11W1FSX11W1MSX
Shell Size 5 24W7, 36W4, 43W2, 4 Shell Size 6 46W4		0, 21 112							0 - *4 S - X -	Zinc Pla Stainles Tin Plate	
*1M - Male S - Female - Industri PosiBa	nts contact or availabiliti NNECTO ional Level intry Signal al / Military nd Closed B ts. Military (ry. - Contacts Level - Entry Sign	al					(*3 [*3 E(*3 =	TEP 8 - 0 - Swag S - Swag E - Rotat (Selec 6 - Rotat (Selec T - Fixed (Selec 6 - Fixed	2 [№] CO ged spac ged spac ing male ct 0 in St ing male ct 0 in St male ar ct 0 in St	and female polarized jackscrew ep 4) nd female jackscrews ep 4) d female polarized jackscrew
 *² STEP 4 - 1st CONNECTOR MATING STYLE 0 - Swaged spacer 0.120 [3.05µ] mounting hole S - Swaged spacer 4-40 UNC-2B threads *³ E - Rotating male and female jackscrews (Select 0 in Step 8) *³ E - Rotating male and female polarized jackscrew (Select 0 in Step 8) *³ T - Fixed male and female jackscrews (Select 0 in Step 8) *³ T - Fixed male and female jackscrews 						RIANT					
 NOTES STEP 5 - 1ST CONNECTOR SHELL OPTION 0 - Zinc Plated, with Chromate Seal. ** S - Stainless Steel, passivated. X - Tin Plated. Z - Tin Plated and Dimpled (male connectors only). NOTES ** Notes ** Male option in Step 3 available only on connector variants 5W1, 3W3, 7W2, 11W1, 177 21W1, 21W4, 27W2, 24W7, 46W4. ** Connector mating style for both connectors must be the same if 0 or S is used. If E, E ** For hardware information, see page 59. ** For stainless steel dimpled male versions, contact Technical Sales. ** Connector variant for both connectors must be the same.							nust be the same if 0 or S is used. If E, E6, ^r step must be 0. ntact Technical Sales.				

UNIQUE FEATURES



Positronic Industries is **known** around the world **for offering** our customers **flexibility** when choosing connectors.

In addition to allowing **customers** to **create** part numbers for **particular applications**, Positronic offers a **wide variety** of features and accessories within our products.

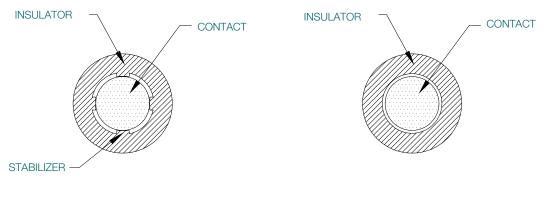
> Positronic is also **eager** to modify existing products **to meet unique customer requirements.** If you do not find what you need with this catalog, please **contact us** for assistance.

SEQUENTIAL MATING CONTACTS

Note: A third level can be accomplished with signal contacts where applicable.

Three levels of sequential mating are possible:

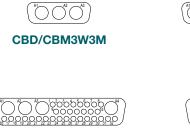
- First mate accomplished by a size 12 power contact. Male contact diameter is 0.094 inch.
- Second mate accomplished by a size 8 power contact. Male contact diameter is 0.142 inch.
- Third mate accomplished by size 20 signal contacts, as applicable.


CONTACT TECHNICAL SALES FOR MORE INFORMATION!

UNIQUE FEATURES

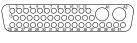
SIZE 8 CONTACT STABILIZATION FEATURE

MINIMIZES FLOAT IN SIZE 8 CONTACT POSITIONS



WITH STABILIZER

WITHOUT STABILIZER


CBD size 8 male contacts are removed toward the rear after utilizing front release tooling. Space must be provided between the contact and the connector molding so the tooling can slide over the mating portion of the contact. This fact allows the contact to float. In some applications this float creates problems in alignment during mating. Many male contact CBD variants offer an integral stabilizing feature to minimize problems created by float in size 8 contacts. An alternate tool is used to remove the contact if necessary. Tool number is 4311-0-1-0.

The stabilization feature is currently available for the following male contact variants:

CBC36W4M

CBC43W2M

Add MOS -1570.4 to end of part number. Example: CBD3W3M00000-1570.4

UNIQUE FEATURES

Combo-D **D-Sub**

COMBO-D CONNECTORS WITH *1100 AMP HIGH CURRENT REMOVABLE CRIMP POWER CONTACT

HIGH CONDUCTIVITY SIZE 8 CONTACTS WHICH CAN BE TERMINATED TO 6 AWG WIRE ALLOW VERY HIGH CURRENTS TO BE CARRIED THROUGH COMBO-D TYPE CONNECTORS.

TECHNICAL CHARACTERISTICS

MATERIALS AND FINISHES:

Contacts: Plating: Standard Finish: **Optional Finishes:** High conductivity copper alloy.

Gold flash over nickel plate. 0.000030 [0.76 µ] gold over nickel by adding "-14" suffix onto part number. Example: FC4006D-14 0.000050 inch [1.27µ] gold over nickel by adding "-15" suffix onto part number. Example: MC4006D-14

CLIMATIC CHARACTERISTICS:

Temperature Range: -55°C to +125°C.

ELECTRICAL CHARACTERISTICS:

POWER CONTACTS Contact Current Rating:

Initial Contact Resistance:

See Temperature Rise Curve on page 64. 0.0003 ohms max. per IEC 60512-2, Test 2b. 1900 V r.m.s. 450 V r.m.s.

MECHANICAL CHARACTERISTICS:

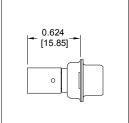
MALE CONTACT

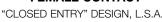
Size 8 Removable Contacts: Durability: Vibration: Shock:

Proof Voltage:

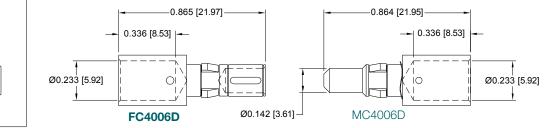
Working Voltage:

Rear insertion, front release. 500 cycles minimum. 20g from 10 Hz to 500 Hz. 30g-11ms.


*1 per UL 1977 Testing


100 AMP HIGH CURRENT REMOVABLE CRIMP POWER CONTACT

CONTACTS USED WITH 6 AWG WIRE 6 AWG [16.0mm²] max.


*1 CONTACTS ORDERED SEPARATELY SIZE 8

Note: Connectors can be kitted with all applicable removable contacts, contact Technical Sales for connector part number.

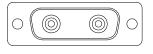
MATERIAL: High conductivity copper alloy.

PLATING:

STANDARD FINISH: Gold flash over nickel plate.

OPTIONAL FINISHES: 0.000030 [0.76 μ] gold over nickel by adding "-14" suffix onto part number. Example: FC4006D-14 0.000050 inch [1.27µ] gold over nickel by adding "-15" suffix onto part number. Example: MC4006D-15.

*2 NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum


reduced contact resistance during operation.

mating surfaces between male and female contact and

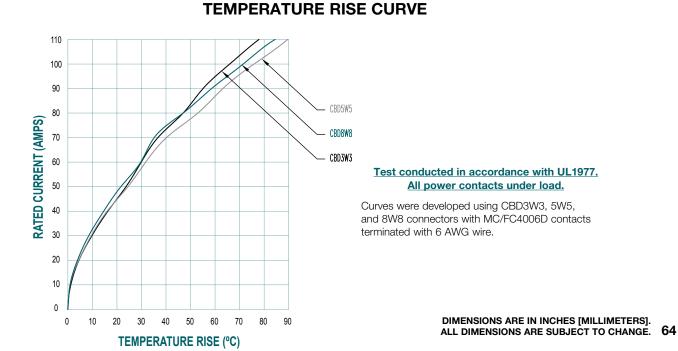
SELECTIVELY LOADED COMBO-D CONNECTORS FOR USE WITH 100 AMP* HIGH CURRENT REMOVABLE CRIMP POWER CONTACT

COMBO-D CONNECTORS WITH TWO CONTACT POSITIONS

CBD3W3M00000-1841.0

CBD3W3F00000-1841.0

COMBO-D CONNECTORS WITH THREE CONTACT POSITIONS

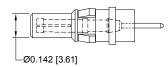


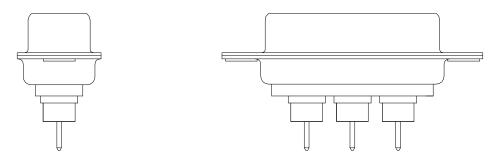
CBD5W5F00000-1841.1

C

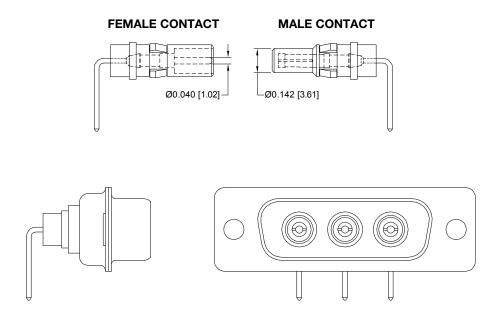
COMBO-D CONNECTORS WITH FOUR CONTACT POSITIONS



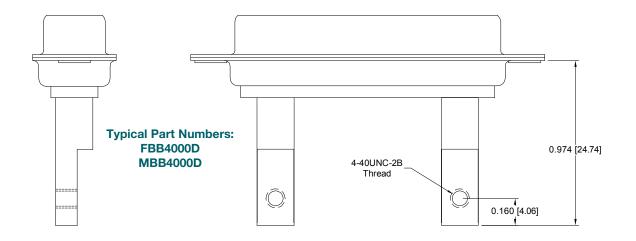



STRAIGHT PRINTED BOARD MOUNT HIGH VOLTAGE CONTACT SIZE 8

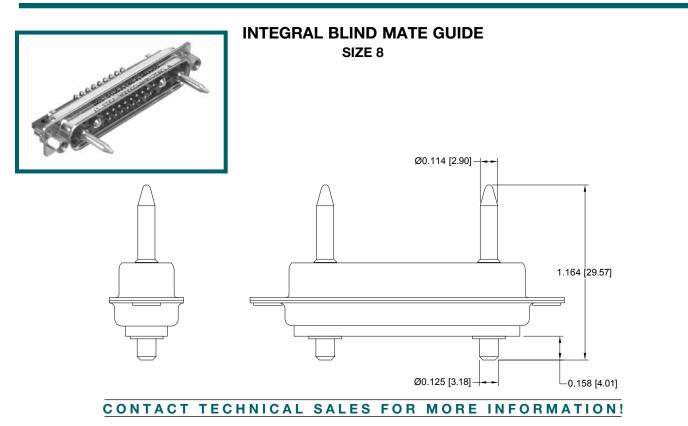
MALE CONTACT



CONTACT TECHNICAL SALES FOR MORE INFORMATION!

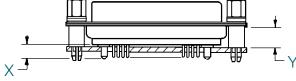

RIGHT ANGLE (90°) PRINTED BOARD MOUNT HIGH VOLTAGE CONTACT SIZE 8

CONTACT TECHNICAL SALES FOR MORE INFORMATION!

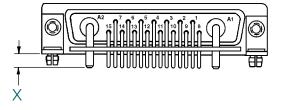


BUS BAR CONTACT SIZE 8 POWER CONTACT

Power contacts can be offered with terminations suitable for use with bus bars.


CONTACT TECHNICAL SALES FOR MORE INFORMATION!

CUSTOMER SPECIFIED CONTACT TERMINATION LENGTH


Positronic can supply CB series connectors with customer specified termination lengths. We have a wide variety of options available.

PCB spacer height can be adjusted according to contact termination length

*Note:

RIGHT ANGLE (90°) PRINTED BOARD MOUNT

X and Y contact termination lengths can be custom designed to fit your application requirements.

CONTACT TECHNICAL SALES FOR MORE INFORMATION!

Connectors Designed To Customer Specifications

Positronic Combo-D connectors can be modified to customers specifications.

Examples: select loading of contacts for cost savings or to gain creepage and clearance distances; longer PCB terminations; customer specified hardware; sealing for water resistance.

Contact Technical Sales with your particular requirements.

REMOVABLE CONTACT TECHNICAL CHARACTERISTICS

SIZE 22 REMOVABLE CONTACT

MATERIALS AND FINISHES:

Precision machined copper alloy with gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.

MECHANICAL CHARACTERISTICS:

Insert contact to rear face of insulator, release from rear face of insulator. Size 22 contacts, 0.030 inch [0.76 mm] mating diameter male contacts. Female PosiBand closed entry contact design. Terminations for 20, 22, 24, 26, 28, and 30 AWG. Closed barrel crimp.

5 amperes nominal.

0.010 ohms maximum.

ELECTRICAL CHARACTERISTICS:

Contact Current Rating: Initial Contact Resistance:

THERMOCOUPLE CONTACTS:

Straight and right angle (90°) PCB mount contacts are available, contact Technical Sales for details.

Size 22 crimp contacts are available, see page 71 for details.

SIZE 20 REMOVABLE CONTACT

MATERIALS AND FINISHES:

Precision machined copper alloy with gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.

MECHANICAL CHARACTERISTICS:

Insert contact to rear face of insulator, release from rear face of insulator. Size 20 contacts, 0.040 inch [1.02 mm] mating diameter male contacts. Female PosiBand closed entry or rugged open entry contact design.

ELECTRICAL CHARACTERISTICS:

Contact Current Rating: Initial Contact Resistance:

THERMOCOUPLE CONTACTS:

Straight and right angle (90°) PCB mount contacts are available, contact Technical Sales for details.

test 2b.

Size 20 crimp contacts are available, see page 74 for details.

SIZE 16 REMOVABLE CONTACT

MATERIALS AND FINISHES:

STANDARD:	Precision machined copper alloy with gold
	flash over nickel. Other finishes are available,
	see pages 69 and 81 for optional finishes.

7.5 amperes nominal.

0.008 ohms max. per IEC 60512-2,

HIGH CONDUCTIVITY: High conductivity copper alloy, gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.

MECHANICAL CHARACTERISTICS:

STANDARD AND

HIGH CONDUCTIVITY: Insert contact to rear face of insulator, release from front face of insulator. Size 16 contacts, 0.0625 inch [1.588mm] mating diameter male contacts. Female PosiBand closed entry contact design. Terminations for 12, 14, 16, 18, 20, 22, 24, 26, and 28 AWG.

ELECTRICAL CHARACTERISTICS:

Contact Current Rating - Tested per UL 1977:	
Standard Contact Material:	28 amperes.

olunda a oonlaol matonan	20 0.
High Conductivity Contact Material:	40 a
See Temperature Rise Curves on page 2 for	details.
Initial Contact Resistance:	

Standard Contact Material:	

High Conductivity Contact Material: 2, Test 2b. 0.001 ohms max. Per IEC 60512-2,

Test 2b.

0.0016 ohms max. Per IEC 60512-

40 amperes.

SIZE 8 REMOVABLE CONTACT

MATERIALS AND FINISHES:

STANDARD:	Precision machined copper alloy with gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.
HIGH CONDUCTIVITY:	High conductivity copper alloy, gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.
HIGH VOLTAGE:	
Insulator Material:	PTFE teflon
Contacts:	Precision machined copper alloy with 0.000030 inch [0.76µ] gold over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.
SHIELDED:	
Dielectric Material:	PTFE teflon
Inner Contacts:	Precision machined copper alloy with 0.000030 inch [0.76µ] gold over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.
Outer Contacts:	Precision machined copper alloy with gold flash over nickel. Other finishes are available, see pages 69 and 81 for optional finishes.
AIR LINE COUPLER:	Stainless steel, see page 80.
MECHANICAL CHAR	ACTERISTICS:
STANDARD AND	
HIGH CONDUCTIVITY:	Insert contact to rear face of insulator, release from front face of insulator. Size 8 contacts, 0.142 inch [3.61 mm] mating diameter male contacts, closed entry female contacts.
HIGH VOLTAGE:	Insert contact to rear face of insulator, release from front face of insulator. Size 8 contacts. Straight and right angle (90°) terminations. 0.041 inch [1.04 mm] minimum hole diameter.
Durability:	500 cycles minimum.

20g from 10 Hz to 500 Hz. 30g-11ms.

... continued on next page

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

Vibration:

Shock:

REMOVABLE CONTACT TECHNICAL CHARACTERISTICS

continued from previous page . . .

MECHANICAL CHARACTERISTICS, continued:

SHIELDED:	Insert contact to rear face of insulator, release from front face of insulator. Size 8 contacts. See page 78 table of cable sizes for contact termination dimensions.
Durability: Vibration: Shock:	500 cycles minimum. 20g from 10 Hz to 500 Hz. 30g-11ms.
	logart contact to rear face of inculator

Insert contact to rear face of insulator, AIR LINE COUPLER: release from front face of insulator.

ELECTRICAL CHARACTERISTICS:

POWER CONTACTS:

For electrical characteristics, see page 4.

HIGH VOLTAGE:

Flash over Voltage: Proof Voltage: Initial Contact Resistance:

SHIELDED:

Initial Contact Resistance: Nominal Impedance: Insertion Loss:

0.008 ohms maximum. 50 ohms. -0.46 dB at 1 GHz

0.008 ohms maximum.

3600 V r.m.s.

2700 V r.m.s.

۱ 1.15 average at 1 GHz 1.56 average at 2 GHz Above values measured using frequency domain techniques. Proof Voltage: 1000 V r.m.s.

-1.5 dB at 2 GHz

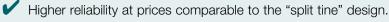
OPTIONAL PLATING FINISHES

-14	0.000030 [0.76 μ] gold over nickel by adding "-14" suffix onto part number. Example: FC120N4-14.
-15	0.000050 inch [1.27µ] gold over nickel by adding "-15". Example: FC120N4-15.

RoHS OPTIONS:

/AA

Environmental Compliance Option: RoHS compliant can be achieved by adding "/AA" suffix onto part number. Examples: FC120N4/AA or for optional finishes use FC120N4/AA-14.


What makes Positronic's **PosiBand® contact** interface significant?

Legacy "split tine" contact with sleeve
PosiBand spring member placed on base contact

- Higher reliability in harsh environments and repeated mating cycles.
 - PosiBand crimp contacts do not need to be annealed. Split tine D-subminiature contacts are commonly annealed at the crimp barrel, with the possibility of reliability problems at the contact interface if the annealing is performed incorrectly.
- Electrical and mechanical function of the contact interface are separated since the PosiBand contact is a two-piece design. Contact normal force is provided by the "Posiband spring member", which allows higher mechanical reliability. The

electrical continuity path is supported through the base contact, which allows a greater number of electrical paths on a "micro" level when compared to split tine contact design.

PosiBand is protected by US Patent 7,115,002.

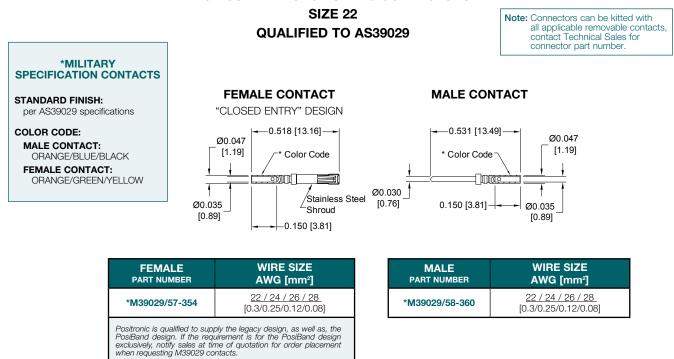
For a detailed white paper visit: www.connectpositronic.com/posiband

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 69 ALL DIMENSIONS ARE SUBJECT TO CHANGE.

Authentic Positronic

PosiBand


authentic Positronic PosiBand

REMOVABLE CONTACTS

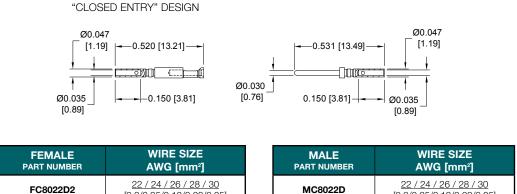
Positronic connectpositronic.com

REMOVABLE CRIMP SIGNAL CONTACT

FOR USE WITH CBCD SERIES CONNECTORS

REMOVABLE CRIMP SIGNAL CONTACT

FOR USE WITH CBCD SERIES CONNECTORS

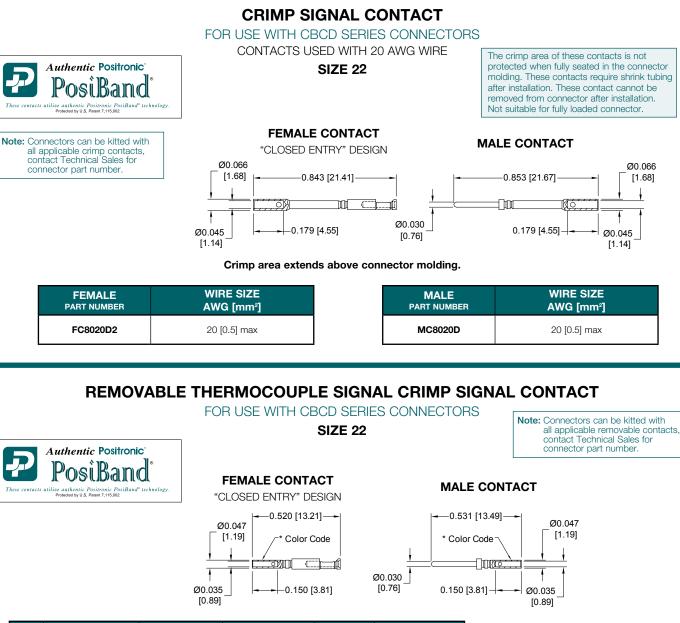

SIZE 22

FEMALE CONTACT

[0.3/0.25/0.12/0.08/0.05]

Note: Connectors can be kitted with all applicable removable contacts, contact Technical Sales for connector part number.

MALE CONTACT



For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

[0.3/0.25/0.12/0.08/0.05]

REMOVABLE CONTACTS

For more information on the availability of Type J thermocouple contacts, please contact Technical Sales.

For more information about thermocouple contacts with PCB solder termination, please contact Technical Sales.

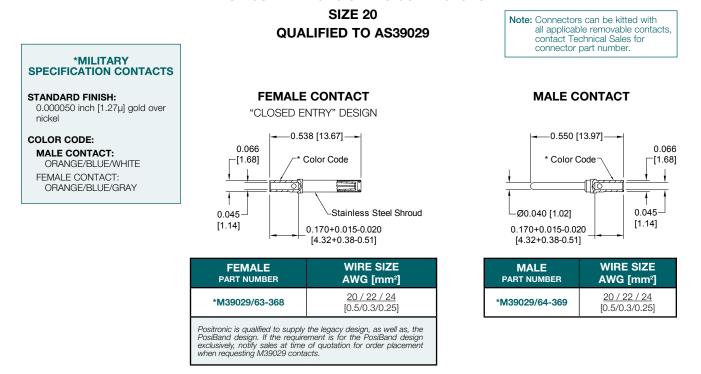
Chromel® and Alumel® are registered trademarks of Hoskins Manufacturing Company

FEMALE COLOR WIRE SIZE MALE TYPE MATERIAL AWG [mm²] PART NUMBER PART NUMBER CODE* <u>22 / 24 / 26</u> [0.3 / 0.25 / 0.12] FC8022D2CH MC8022DCH CHROMEL (+) WHITE κ 22 / 24 / 26 ALUMEL (-) FC8022D2AL MC8022DAL GREEN [0.3 / 0.25 / 0.12] COPPER (+) <u>22 / 24 / 26</u> FC8022D2CU MC8022DCU RED with gold flash [0.3/0.25/0.12] т <u>22 / 24 / 26</u> CONSTANTAN (-) FC8022D2CO MC8022DCO YELLOW [0.3/0.25/0.12] 22 / 24 / 26 FC8022D2CH MC8022DCH WHITE CHROMEL (+) [0.3/0.25/0.12] Е 22 / 24 / 26 CONSTANTAN (-) FC8022D2CO MC8022DCO YELLOW 0.3 / 0.25 / 0.12]

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE.

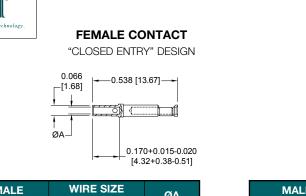
71


Combo-D D-Sub

REMOVABLE CONTACTS

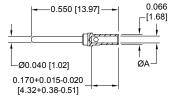
Positronic connectpositronic.com

MILITARY LEVEL REMOVABLE CRIMP SIGNAL CONTACT


FOR USE WITH CBC SERIES CONNECTORS

INDUSTRIAL / MILITARY LEVEL REMOVABLE CRIMP SIGNAL CONTACT

FOR USE WITH CBC SERIES CONNECTORS
SIZE 20


FEMALE PART NUMBER	WIRE SIZE AWG [mm²]	ØA
FC6020D2	<u>20 / 22 / 24</u> [0.5/0.3/0.25]	<u>0.045</u> [1.14]
FC6026D2	<u>26 / 28 / 30</u> [0.12/0.08/0.05]	<u>0.027</u> [0.69]

MALE CONTACT

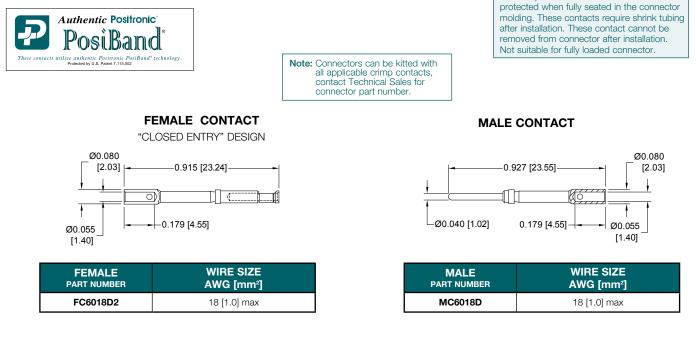
Note: Connectors can be kitted with

contact Technical Sales for connector part number.

all applicable removable contacts,

MALE PART NUMBER	WIRE SIZE AWG [mm²]	ØA
MC6020D	<u>20 / 22 / 24</u> [0.5/0.3/0.25]	<u>0.045</u> [1.14]
MC6026D	<u>26 / 28 / 30</u> [0.12/0.08/0.05]	<u>0.027</u> [0.69]

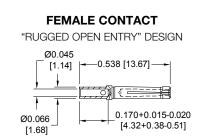
For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.


The crimp area of these contacts is not

INDUSTRIAL / MILITARY LEVEL CRIMP SIGNAL CONTACT

FOR USE WITH CBC SERIES CONNECTORS

CONTACTS USED WITH 18 AWG WIRE


SIZE 20

PROFESSIONAL LEVEL REMOVABLE CRIMP SIGNAL CONTACT

FOR USE WITH CBC AND QB SERIES CONNECTORS

SIZE 20

Note: Connectors can be kitted with all applicable removable contacts, contact Technical Sales for connector part number.

FEMALE	WIRE SIZE
PART NUMBER	AWG [mm²]
FC6520D	<u>20 / 22 / 24</u> [0.5/0.3/0.25]

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 73 ALL DIMENSIONS ARE SUBJECT TO CHANGE.

REMOVABLE CONTACTS

Positronic connectpositronic.com

REMOVABLE THERMOCOUPLE CRIMP CONTACT FOR USE WITH CBC SERIES CONNECTORS Note: Connectors can be kitted with all applicable removable contacts, SIZE 20 contact Technical Sales for connector part number. Authentic Positronic FEMALE CONTACT "CLOSED ENTRY" DESIGN PosiBand MALE CONTACT -0.550 [13.97]--0.538 [13.67]-ØΑ Color Code * Color Code ØA 1¢ ØB ØВ Ø0.040 [1.02] 0.170+0.015-0.020 0.170+0.015-0.020 [4.32+0.38-0.51] [4.32+0.38-0.51] FEMALE COLOR MALE WIRE SIZE TYPE MATERIAL ØA ØВ For more information on AWG [mm²] PART NUMBER PART NUMBER CODE FC6020D2CH^{TT} MC6020DCH[†] 20 / 22 / 24 [0.5 / 0.3 / 0.25] 0.066 [1.68] 0.045 [1.14] the availability of Type J CHROMEL (+) WHITE thermocouple contacts, FC6026D2CH MC6026DCH 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] κ FC6020D2AI # MC6020DAI 1 0.066 [1.68] 0.045 [1.14] and information about 20 / 22 / 24 [0.5 / 0.3 / 0.25] ALUMEL (-) GREEN thermocouple contacts FC6026D2AL MC6026DAL 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] with PCB solder termi-0.045 [1.14] FC6020D2CU** MC6020DCU⁺ 20 / 22 / 24 [0.5 / 0.3 / 0.25] 0.066 [1.68] COPPER (+) RFD nation, please contact with gold flash FC6026D2CU MC6026DCU 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] т **Technical Sales.** 0.045 [1.14] FC6020D2C0# MC6020DC01 20 / 22 / 24 [0.5 / 0.3 / 0.25] 0.066 [1.68] CONSTANTAN (-) YELLOW FC6026D2C0 MC6026DC0 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] Chromel[®] and Alumel[®] are regis-tered trademarks of FC6020D2CH** MC6020DCH⁺ 20 / 22 / 24 [0.5 / 0.3 / 0.25] 0.066 [1.68] 0.045 [1.14] CHROMEL (+) WHITE Hoskins Manufacturing FC6026D2CH MC6026DCH 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] Company. Е 20 / 22 / 24 [0.5 / 0.3 / 0.25] 0.066 [1.68] 0.045 [1.14] FC6020D2C0** MC6020DC0⁺ YELLOW CONSTANTAN (-) FC6026D2C0 MC6026DC0 26 / 28 / 30 [0.12 / 0.08 / 0.05] 0.048 [1.23] 0.027 [0.69] ⁺⁺Dimensionally equivalent to M39029/63-368 [†]Dimensionally equivalent to M39029/64-369 **REMOVABLE CRIMP POWER CONTACT** FOR USE WITH CBCD SERIES CONNECTORS Note: Connectors can be kitted with all applicable removable contacts, Authentic Positronic **SIZE 16** contact Technical Sales for connector part number. osiBand ***1 FEMALE CONTACT** MALE CONTACT "CLOSED ENTRY" DESIGN, L.S.A. ØA ±0.003 0.681 [17.30] -0.684 [17.37] [±0.08] ØA±0.003 [±0.08] oľ ίo ØB ±0.003 ØB ±0.003 -0.255 [6.48] 0.255 [6.48] [±0.08] [±0.08] $0.0.0625 \pm 0.001$ [1.588 ± 0.025] WIRE SIZE WIRE SIZE FEMALE MALE ØA ØВ ØA ØВ PART NUMBER AWG [mm²] PART NUMBER AWG [mm²] N/A MC112NS-133.0 0.098 [2.49] FC112N4S 12 / [4.0] 0.098 [2.49] 12 / [4.0] N/A "S" in FC112N4 MC112N-133.0 12 / [4.0] N/A 0.098 [2.49] 12 / [4.0] N/A 0.098 [2.49] part number FC114N4 MC114N-133.0 14-16 [2.5-1.5] 0.105 [2.67] 0.081 [2.06] indicates high conductiv-14-16 [2.5-1.5] 0.105 [2.67] 0.081 [2.06]

*1 NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contact and reduced contact resistance during operation.

0.067 [1.70]

0.045 [1.14]

16-18 [1.5-1.0]

20-22-24

0 5-0 3-0 25

0.093 [2.36]

0.068 [1.73]

FC116N4

FC120N4

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

ity copper alloy material. MC116N-133.0

MC120N-133.0

16-18 [1.5-1.0]

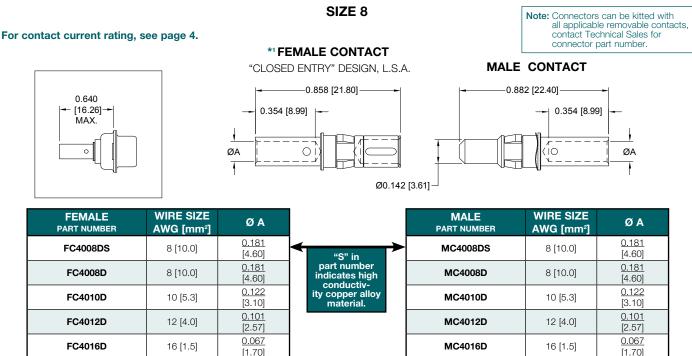
20-22-24

[0.5-0.3-0.25]

0.093 [2.36]

0.068 [1.73]

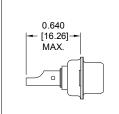
0.067 [1.70]


0.045 [1.14]

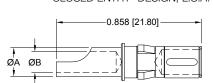
REMOVABLE CONTACTS

REMOVABLE CRIMP POWER CONTACT

FOR USE WITH CBD, CBC, CBCD AND CBDD SERIES CONNECTORS


* NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contact and reduced contact resistance during operation.

REMOVABLE SOLDER CUP POWER CONTACT


FOR USE WITH CBD, CBC, CBCD AND CBDD SERIES CONNECTORS

SIZE 8

For contact current rating, see page 4.

***1 FEMALE CONTACT** "CLOSED ENTRY" DESIGN, L.S.A.

Ø0.142 [3.61]-

	ØB	ØA
	<u>†</u>	

MALE CONTACT

0.882 [22.40]

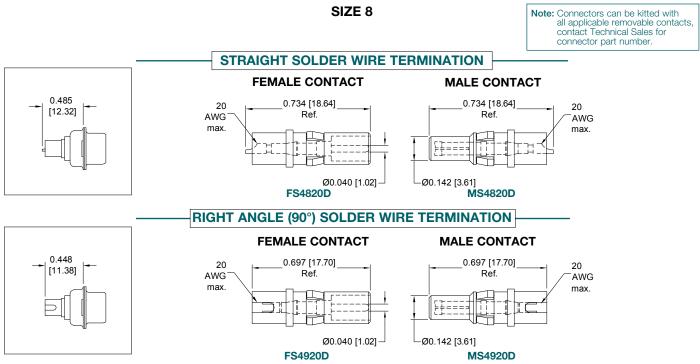
MALE PART NUMBER	WIRE SIZE AWG [mm ²]	ØA	ØВ
MS4008D	8 [10.0]	<u>0.219</u> [5.56]	<u>0.188</u> [4.78]
MS4012D	12 [4.0]	<u>0.143</u> [3.63]	<u>0.112</u> [2.84]
MS4016D	16 [1.5]	<u>0.100</u> [2.54]	<u>0.069</u> [1.75]

Note: Connectors can be kitted with

all applicable removable contacts, contact Technical Sales for connector part number.

WIRE SIZE FEMALE ØΑ ØВ PART NUMBER AWG [mm²] 0.219 0.188 FS4008D 8 [10.0] [5.56] [4.78]0.143 0.112 FS4012D 12 [4.0] [3.63] [2.84] 0.100 0.069 FS4016D 16 [1.5] [1.75] [2.54]

*1 NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contact and reduced contact resistance during operation.

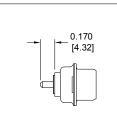

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 75 ALL DIMENSIONS ARE SUBJECT TO CHANGE.

Positronic connectpositronic.com

REMOVABLE HIGH VOLTAGE POWER CONTACT

FOR USE WITH CBD, CBC, CBCD AND CBDD SERIES CONNECTORS

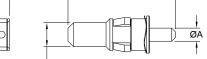

STRAIGHT PRINTED BOARD MOUNT POWER CONTACT

FOR USE WITH CBD AND CBDD SERIES CONNECTORS

SIZE 8

Positronic recommends printed circuit board termination contacts be supplied installed in the connector. Contact technical sales for part number information.

For contact current rating, see page 4.



FEMALE PART NUMBER	ØA	CONTACT CODE
FDS4314D	<u>0.078</u> [1.98]	35
FDS4312D	<u>0.094</u> [2.39]	36
FDS4310D	<u>0.125</u> [3.18]	37

"CLOSED ENTRY" DESIGN, L	S.A

***1 FEMALE CONTACT**

Ø0.142 [3.61]-

MALE PART NUMBER	ØA	CONTACT CODE
MDS4314D	<u>0.078</u> [1.98]	35
MDS4312D	<u>0.094</u> [2.39]	36
MDS4310D	<u>0.125</u> [3.18]	37

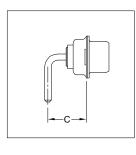
** NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contact and reduced contact resistance during operation.

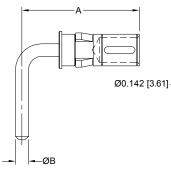
For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

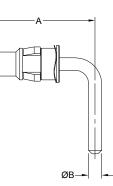
RIGHT ANGLE (90°) PRINTED BOARD MOUNT POWER CONTACT

FOR USE WITH CBD AND CBDD SERIES CONNECTORS

SIZE 8


Positronic recommends printed circuit board termination contacts be supplied installed in the connector. Contact technical sales for part number information.

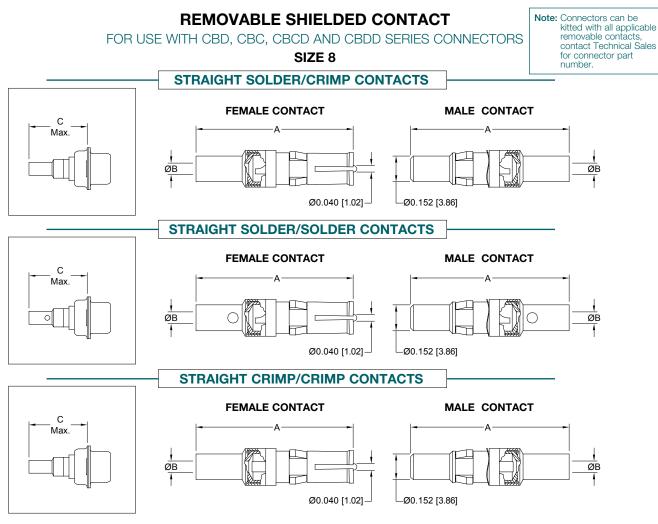

For contact current rating, see page 4.


*1 FEMALE CONTACT

"CLOSED ENTRY" DESIGN, L.S.A.

MALE CONTACT

FEMALE PART NUMBER	A REF.	ØВ	С	SHELL SIZE	CONTACT CODE
FRT4314D	<u>0.580</u> [14.73]	<u>0.078</u> [1.98]	<u>0.339</u> [8.61]	1, 2, 3 & 4	55
FRT4414D	<u>0.692</u> [17.58]	<u>0.078</u> [1.98]	<u>0.451</u> [11.46]	5	55
FRT4714D	<u>0.661</u> [16.79]	<u>0.078</u> [1.98]	<u>0.420</u> [10.67]	1, 2, 3 & 4	75
FRT4814D	<u>0.773</u> [19.63]	<u>0.078</u> [1.98]	<u>0.520</u> [13.21]	5	75
FRT4310D	<u>1.051</u> [26.70]	<u>0.125</u> [3.18]	<u>0.810</u> [20.57]	1, 2, 3 & 4	57
FRT4410D	<u>1.051</u> [26.70]	<u>0.125</u> [3.18]	<u>0.810</u> [20.57]	5	57


MALE PART NUMBER	A REF.	ØB	С	SHELL SIZE	CONTACT CODE
MRT4314D	<u>0.580</u> [14.73]	<u>0.078</u> [1.98]	<u>0.339</u> [8.61]	1, 2, 3 & 4	55
MRT4414D	<u>0.692</u> [17.58]	<u>0.078</u> [1.98]	<u>0.451</u> [11.46]	5	55
MRT4714D	<u>0.661</u> [16.79]	<u>0.078</u> [1.98]	<u>0.420</u> [10.67]	1, 2, 3 & 4	75
MRT4814D	<u>0.773</u> [19.63]	<u>0.078</u> [1.98]	<u>0.520</u> [13.21]	5	75
MRT4310D	<u>1.051</u> [26.70]	<u>0.125</u> [3.18]	<u>0.810</u> [20.57]	1, 2, 3 & 4	57
MRT4410D	<u>1.051</u> [26.70]	<u>0.125</u> [3.18]	<u>0.810</u> [20.57]	5	57

*1NOTE: Female contacts feature Large Surface Area (L.S.A.) closed entry contact design which provides maximum mating surfaces between male and female contact and reduced contact resistance during operation.

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

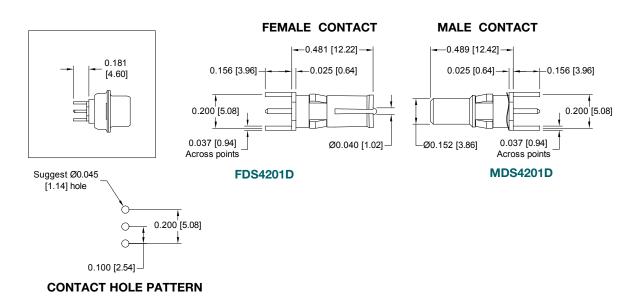
DIMENSIONS ARE IN INCHES [MILLIMETERS]. 77 ALL DIMENSIONS ARE SUBJECT TO CHANGE.

TYPE OF CONTACT	FEMALE PART NUMBER	MALE PART NUMBER	А	ØВ	C MAX.	RG CABLE NUMBER
SOLDER/CRIMP	FC4101D	MC4101D	0.929 [23.60]	0.040 [1.02]	0.739 [18.77]	178 B/U 196 B/U
SOLDER/CRIMP	FC4102D	MC4102D	0.929 [23.60]	0.067 [1.70]	0.739 [18.77]	179 B/U 316 /U
SOLDER/CRIMP	FC4103D	MC4103D	1.037 [26.34]	0.108 [2.74]	0.847 [21.51]	180 B/U
SOLDER/CRIMP	FC4104D	MC4104D	1.037 [26.34]	0.120 [3.05]	0.847 [21.51]	58 B/U
SOLDER/SOLDER	FS4101D	MS4101D	0.929 [23.60]	0.040 [1.02]	0.739 [18.77]	178 B/U 196 B/U
SOLDER/SOLDER	FS4102D	MS4102D	0.929 [23.60]	0.067 [1.70]	0.739 [18.77]	179 B/U 316 /U
SOLDER/SOLDER	FS4103D	MS4103D	1.037 [26.34]	0.108 [2.74]	0.847 [21.51]	180 B/U
SOLDER/SOLDER	FS4104D	MS4104D	1.037 [26.34]	0.120 [3.05]	0.847 [21.51]	58 B/U
CRIMP/CRIMP	FCC4101D	MCC4101D	0.929 [23.60]	0.040 [1.02]	0.739 [18.77]	178 B/U 196 B/U
CRIMP/CRIMP	FCC4102D	MCC4102D	0.929 [23.60]	0.067 [1.70]	0.739 [18.77]	179 B/U 316 /U
CRIMP/CRIMP	FCC4103D	MCC4103D	1.037 [26.34]	0.108 [2.74]	0.847 [21.51]	180 B/U
CRIMP/CRIMP	FCC4104D	MCC4104D	1.037 [26.34]	0.120 [3.05]	0.847 [21.51]	58 B/U

SHIELDED CONTACTS

Two-step crimping action for signal and shielding conductors.

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.



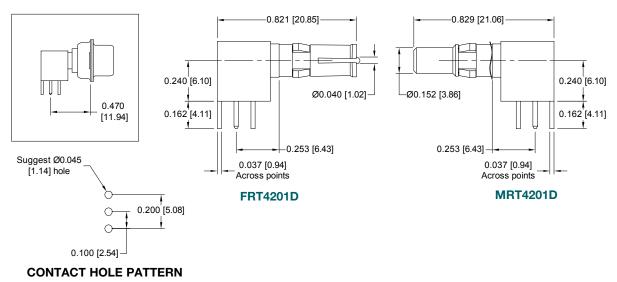
STRAIGHT PRINTED BOARD MOUNTED SHIELDED CONTACT

FOR USE WITH CBD AND CBDD SERIES CONNECTORS

SIZE 8

Positronic recommends printed circuit board termination contacts be supplied installed in the connector. Contact technical sales for part number information.

RIGHT ANGLE (90°) PRINTED BOARD MOUNT SHIELDED CONTACT


FOR USE WITH CBD AND CBDD SERIES CONNECTORS

SIZE 8

Positronic recommends printed circuit board termination contacts be supplied installed in the connector. Contact technical sales for part number information.

FEMALE CONTACT

MALE CONTACT

For information regarding crimp tool and crimping tool techniques, see Application Tools section, page 82.

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE.

MODIFICATION (MOS) SUFFIXES

Specify complete connector by selecting a base part number from the desired series Ordering Information Page. Once base part number is selected, add desired modifications (MOS) number below to the end of the part number.

Example part number: CBD17W2F55R7NT2X/AA-14-1062.1 (Ordering information pages can be found at the end of each series)

SERIES	CONNECTOR VARIANT	GENDER	TERMINATION TYPE AVAILABLE	MODIFICATIONS OF STANDARD OF STANDARD (MOS) SUFFIXES	DESCRIPTION OF MODIFICATION
CBD	3W3	F/M	0	-1841.0	Allows for molding to have positions A1 and A3 tooled only. Position A2 no molded but numbering will remain.
CBD	5W5	F/M	0	-1841.1	Allows for molding to have positions 1, 3 and 5 tooled only. Positions 2 and 4 not molded but numbering will remain.
CBD	8W8	F / M	0	-1841.2	Allows for molding to have positions A1,A3,A5 and A7 tooled only. Positions A2,A4,A6 and A8 not molded but numbering will remain.
🗲 CBD, CBM	3W3, 8W8	М	0	-1570.4	Integral stabilizing feature used to minimize size 8 contacts from floating in
🗲 СВС	36W4, 43W2	IVI	0	-1370.4	the molding. Use tool number 4311-0-1-0 to remove contact if necessary.
CBD, CBC, CBDD, CBHD, CBCD, CBDP*, ACBDP, ACBMP	ALL	F / M	ALL	-14	Allows connector with signal contacts installed, for signal contacts only to be plated 0.000030 [0.76 μ] gold over nickel.
CBD, CBC, CBDD, CBHD, CBCD, ACBDP, ACBMP	ALL	F/M	ALL	-14-1062.1	Allows connector with signal and power contacts installed, for both signal and power contacts to be plated 0.00030 [0.76 μ] gold over nickel
CBD, CBC, CBDD, CBHD, CBCD, CBDP*, ACBDP, ACBMP	ALL	F/M	ALL	-15	Allows connector with signal contacts installed, for signal contacts only to be plated 0.000050 inch [1.27µ] gold over nickel.
CBD, CBC, CBDD, CBHD, CBCD, ACBDP, ACBMP	ALL	F/M	ALL	-15-1062.0	Allows connector with signal and power contacts installed, for both signal and power contacts to be plated 0.000050 inch [1.27µ] gold over nickel.
CBD, CBM, CBC, CBDD, CBHD, CBCD	ALL	F/M	ALL	-1062.0	Allows connector with power contacts installed, for the power contacts or to be plated 0.000050 inch [1.27µ] gold over nickel.
CBD, CBM, CBC, CBDD, CBHD, CBCD	ALL	F / M	ALL	-1062.1	Allows connector with power contacts installed, for the power contacts on to be plated 0.00030 [0.76 μ] gold over nickel.
CBD, CBM, CBC, CBDD, CBHD, CBCD	ALL	F/M	ALL	-759.0	Allows connectors to be supplied with blind mate guides, lockwashers and hexnuts installed. For connectors with a 4-40 threaded mounting style install blind mate guides only. For connectors with a R3/R6 mounting style install special blind mate guides with lockwashers and hexnuts. See D-subminiature Accessories catalog for more details.
CBD, CBM, CBC, CBDD, CBHD, CBCD	ALL	F/M	ALL	-759.1	Allows connector, with any contacts to include blind mate mounting plate. See D-subminiature Accessories catalog for more details.
QB	FOR CONTACTS	F	FC40**D CONTACTS	-1817.0	Allows for contacts to have a crimp barrel with a length of 0.310 [7.87].
QB	7W2, 9W4	М	56, 57	-1865.0	Connector with standard right angle (90°) brackets replaced with 4535-78-0 right angle (90°) brackets.
QB	7W2	М	N/A	-1845.0	Allows for a connector to be supplied with inverted bend. Contact tail length below bracket of 0.122 [3.10] max. Alignment bar not required.

IANY OTHER SPECIAL OPTIONS ARE AVAILABLE REFER TO D-SUBMINIATURE ACCESSORIES CATALO CONSULT TECHNICAL SALES OR VISIT OUR WEBSITE AT WWW.CONNECTPOSITRONIC.COM

APPLICATION TOOLS SECTION

CBD / CBM / CBC / CBCD connectors are offered with removable crimp contacts. Positronic recognizes the importance of supplying application tooling to support our customers' use of our products. Information on application tooling is available on our web site at www.connectpositronic.com/tooling

There you will find **downloadable PDF** cross reference charts for removable and compliant press-fit contacts. These charts will **supply part numbers** for insertion, removal and crimping tools, along with **information regarding use** of tools and techniques.

CONTACT APPLICATION TOOLS CROSS REFERENCE LIST

USE INDICATED POSITRONIC TOOLS FOR BEST RESULTS

																			1.5														Sico
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	Contact Size
MS4*20D	MS410*D	MS401*D	MS4008D	MDS4*1*D	MDS4201D	MCC4104D	MCC4103D	MCC4102D	MCC4101D	MC410*D	MC401*D	MC4008DS	MC4008D	MA4063S	FS4*20D	FS410*D	FS401*D	FS4008D	FRT4*1*D	FRT 4201 D	FDS4*0*D	FCC4104D	FCC4103D	FCC4102D	FCC4101D	FC410*D	FC4012D-1817.0	FC401*D	FC4008DS	FC4008D-1817.0	FC4008D	FA4063S	Positronic Contact P/N
						9504-15-0-0	9504-15-0-0	9504-13-0-0	9504-14-0-0	9504-0-0-0	9509-0-0-0	9504-19-0-0	9504-19-0-0									9504-15-0-0	9504-15-0-0	9504-13-0-0	9504-14-0-0	9504-0-0-0	9509-0-0-0	9509-0-0-0	9504-19-0-0	9504-19-0-0	9504-19-0-0		Handle & Positioner P/N
						9504-1-0-0	9504-1-0-0	9504-1-0-0	9504-1-0-0	9504-1-0-0	9509-1-0-0	9504-1-0-0	9504-1-0-0									9504-1-0-0	9504-1-0-0	9504-1-0-0	9504-1-0-0	9504-1-0-0	9509-1-0-0	9509-1-0-0	9504-1-0-0	9504-1-0-0	9504-1-0-0		Hand Crimp Tool P/N
						HX4	HX4	HX4	HX4	HX4	M310	HX4	HX4									HX4	HX4	HX4	HX4	HX4	M310	M310	HX4	HX4	HX4		Mfg. Cross
						M22520/5-01	M22520/5-01	M22520/5-01	M22520/5-01	M22520/5-01		M22520/5-01	M22520/5-01									M22520/5-01	M22520/5-01	M22520/5-01	M22520/5-01	M22520/5-01			M22520/5-01	M22520/5-01	M22520/5-01		Mil Equiv
						9504-15-1-0	9504-15-1-0	9504-13-1-0	9504-14-1-0	9504-2-0-0	9509-2-0-0	9504-19-1-0	9504-19-1-0									9504-15-1-0	9504-15-1-0	9504-13-1-0	9504-14-1-0	9504-2-0-0	9509-2-0-0	9509-2-0-0	9504-19-1-0	9504-19-1-0	9504-19-1-0		Positioner
						Y877	Y877	Y937	Y878	Y322	TP-974	Y524	Y524									Y877	Y877	Y937	Y878	Y322	TP-974	TP-974	Y524	Y524	Y524		Mfg. Cross
																																	Mil Equiv
						N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A									N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		Insertion Tool
																																	Mfg. Cross
																																	Mil Equiv
4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	4311-0-0-0	Removal Tool
P+	P+	P+	P+	Р +	Р +	P+	P +	Р +	P +	P+	P+	P+	P+	P+	Р +	P+	P+	P+	P+	P +	P+	P+	P+	P+	P+	P+	Mfg. Cross						
																																	Mil Equiv

DIMENSIONS ARE IN INCHES [MILLIMETERS]. 83 ALL DIMENSIONS ARE SUBJECT TO CHANGE. Combo-D D-Sub

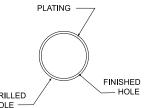
CONTACT APPLICATION TOOLS CROSS REFERENCE LIST

USE INDICATED POSITRONIC TOOLS FOR BEST RESULTS

16	16	16	16	16	16	20	20	20	20	20	20	20	20	20	20	20	20	22	22	13	12	12	22	22	22	Contact Size	
MC120N-133.0	MC112NS-133.0	MC11*N-133.0	FC120N4	FC112N4S	FC11*N4	MC6026D** Thermocouple	MC6026D	MC6020D** Thermocouple	MC6020D	MC6018D	M39029/6*-36*	FC6520D	FC6026D2** Thermocouple	FC6026D2	FC6020D2** Thermocouple	FC6020D2	FC6018D2	M39029/58-360	M39029/57-354	MC8022D** Thermocouple	MC8022D	MC8020D	FC8022D2** Thermocouple	FC8022D2	FC8020D2	act Positronic e Contact P/N	* for complete listing of contact part numbers, see removable contact section pages 68-80
																										Handle & Positioner P/N	y of contact part r
9501-0-0-0	9509-4-0-0	9501-0-0-0	9501-0-0-0	9509-4-0-0	9501-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	9507-0-0-0	Hand Crimp Tool P/N	numbers, see r
AF8	GS222	AF8	AF8	GS222	AF8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	AFM8	Mfg. Cross	emovable c
M22520/1-01		M22520/1-01	M22520/1-01		M22520/1-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	M22520/2-01	Mil Equiv	ontact section pa
9502-17-0-0	9509-5-0-0	9502-17-0-0	T.B.D.	9509-5-0-0	T.B.D.	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-11-0-0	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-5-0-0	9502-11-0-0	9502-4-0-0	9502-3-0-0	9502-4-0-0	9502-4-0-0	9502-29-0-0	9502-3-0-0	9502-3-0-0	9502-29-0-0	Positioner	ages 68-80.
TP1110	TP1366	TP1110	T.B.D.	TP1366	T.B.D.	K13-1	K13-1	K13-1	K13-1	K774	K13-1	K13-1	K13-1	K13-1	K13-1	K13-1	K774	K42	K41	K-42	K-42	K1665	K-41	K-41	K1665	Mfg. Cross	
						M22520/2-08	M22520/2-08	M22520/2-08	M22520/2-08		M22520/2-08	M22520/2-08	M22520/2-08	M22520/2-08	M22520/2-08	M22520/2-08		M22520/2-09	M22520/2-06	M22520/2-09	M22520/2-09		M22520/2-06	M22520/2-06		Mil Equiv	
9099-0-0-0	9099-0-0-0	9099-0-0-0	9099-0-0-0	9099-0-0-0	0-0-0-0-0	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04		Insertion Tool	
ITH 1094	ITH 1094	ITH 1094	ITH 1094	ITH 1094	ITH 1094	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-1	91067-1	91067-1	91067-1	91067-1	91067-1	91067-1		Mfg. Cross	
M81969/18-01	M81969/18-01	M81969/18-01	M81969/18-01	M81969/18-01	M81969/18-01	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04		Mil Equiv	
9081-0-0-0	9081-0-0-0	9081-0-0-0	9081-0-0-0	9081-0-0-0	9081-0-0-0	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04		Removal Tool	
RTG 2103	RTG 2103	RTG 2103	RTG 2103	RTG 2103	RTG 2103	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-2	91067-1	91067-1	91067-1	91067-1	91067-1	91067-1	91067-1		Mfg. Cross	
RTG 2103 M81969/20-01	M81969/20-01	M81969/20-01	RTG 2103 M81969/20-01	M81969/20-01	M81969/20-01	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-02	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04	M81969/1-04		Mil Equiv	

DIMENSIONS ARE IN INCHES [MILLIMETERS]. ALL DIMENSIONS ARE SUBJECT TO CHANGE. 84

SUGGESTED PRINTED BOARD HOLE SIZES FOR COMPLIANT PRESS-FIT CONNECTORS


Traditionally, tin-lead has been a popular plating for printed circuit board (PCB) holes. However, many PCB hole platings must now be RoHS Compliant. Positronic is pleased to offer **PCB HOLE SIZE FOR RoHS** PCB plating as shown below.

A & BI-SPR	ING COMPLIAN	T PRESS-FIT COM	NTACT HOLE			
CONTACT	RECOMMENDED	RECOMMENDED	FINISHED			
SIZE / TYPE	DRILL HOLE SIZE	PLATING	HOLE SIZES			
22	<u>ø0.0453±0.0010</u>		<u>ø0.0394+0.0035-0.0024</u>			
OMEGA	[ø1.150±0.025]		[ø1.000+0.090-0.060]			
20	<u>ø0.0453±0.0010</u>	0.0006 [15µ]	<u>ø0.0394+0.0035-0.0024</u>			
OMEGA	[ø1.150±0.025]	minimum solder	[ø1.000+0.090-0.060]			
16	<u>ø0.069±0.001</u>	over 0.0010 [25µ]	<u>ø0.0630+0.0035-0.0024</u>			
BI-SPRING	[ø1.750±0.025]	min. copper	[ø1.600+0.090-0.060]			
8	<u>ø0.125±0.001</u>		<u>ø0.119±0.002</u>			
BI-SPRING	[ø3.180±0.025]		[ø3.02±0.05]			
	RoHS PCB PLATI	NG OPTIONS				
22	<u>ø0.047±0.001</u>		<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]		[ø1.09±0.05]			
20	<u>ø0.047±0.001</u>	0.0010 [25u]	<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]		[ø1.09±0.05]			
16	<u>ø0.069±0.001</u>	min. copper	<u>ø0.0630+0.0035-0.0024</u>			
BI-SPRING	[ø1.750±0.025]		[ø1.600+0.090-0.060]			
8	<u>ø0.125±0.001</u>		<u>ø0.119±0.002</u>			
BI-SPRING	[ø3.180±0.025]		[ø3.02±0.05]			
22	<u>ø0.047±0.001</u>		<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]		[ø1.09±0.05]			
20	<u>ø0.047±0.001</u>	0.000033±0.000006	<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]	[0.85±0.15µ]	[ø1.09±0.05]			
16 BI-SPRING	<u>ø0.069±0.001</u> [ø1.750±0.025]	immersion tin over 0.0010 [25µ] min. copper	<u>ø0.0630+0.0035-0.0024</u> [ø1.600+0.090-0.060]			
8	<u>ø0.125±0.001</u>		<u>ø0.119±0.002</u>			
BI-SPRING	[ø3.180±0.025]		[ø3.02±0.05]			
22	<u>ø0.047±0.001</u>		<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]		[ø1.09±0.05]			
20	<u>ø0.047±0.001</u>	0.000013±0.000007	<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]	[0.34±0.17µ]	[ø1.09±0.05]			
16 BI-SPRING	<u>ø0.069±0.001</u> [ø1.750±0.025]	immersion silver over 0.0010 [25µ] min. copper	<u>ø0.0630+0.0035-0.0024</u> [ø1.600+0.090-0.060]			
8	<u>ø0.125±0.001</u>		<u>ø0.119±0.002</u>			
BI-SPRING	[ø3.180±0.025]		[ø3.02±0.05]			
22	<u>ø0.047±0.001</u>	0.000000 10.05-1	<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]		[ø1.09±0.05]			
20	<u>ø0.047±0.001</u>	immersion gold over	<u>ø0.043±0.002</u>			
OMEGA	[ø1.19±0.025]	0.000177±0.000059	[ø1.09±0.05]			
16	<u>ø0.069±0.001</u>	nickel per IPC-4552	<u>ø0.0630+0.0035-0.0024</u>			
BI-SPRING	[ø1.750±0.025]	over 0.0010 [25µ]	[ø1.600+0.090-0.060]			
8	<u>ø0.125±0.001</u>	min. copper	<u>ø0.119±0.002</u>			
BI-SPRING	[ø3.180±0.025]		[ø3.02±0.05]			
	CONTACT SIZE / TYPE 22 OMEGA 20 OMEGA BI-SPRING 8 BI-SPRING 22 OMEGA 20 OMEGA 16 BI-SPRING 22 OMEGA 20 OMEGA 16 BI-SPRING 22 OMEGA 20 OMEGA 16 BI-SPRING 8 BI-SPRING 22 OMEGA 20 OMEGA	CONTACT SIZE / TYPE RECOMMENDED DRILL HOLE SIZE 22 OMEGA @0.0453±0.0010 [ø1.150±0.025] 20 OMEGA @0.0453±0.0010 [ø1.150±0.025] 16 BI-SPRING @0.069±0.001 [ø1.750±0.025] 8 @0.125±0.001 [ø1.19±0.025] 8 @0.047±0.001 [ø1.19±0.025] 0MEGA @0.047±0.001 [ø1.19±0.025] 16 @0.069±0.001 [ø1.19±0.025] 16 @0.069±0.001 [ø1.19±0.025] 16 @0.069±0.001 [ø1.19±0.025] 8 @0.125±0.001 [ø1.19±0.025] 8 @0.125±0.001 [ø1.19±0.025] 16 @0.069±0.001 [ø1.19±0.025] 20 @0.047±0.001 [ø1.19±0.025] 21 @0.047±0.001 [ø1.19±0.025] 22 @0.047±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 22 @0.047±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] 38 @0.125±0.001 [ø1.19±0.025] <t< td=""><td>SIZE / TYPE DRILL HOLE SIZE PLATING 22 OMEGA @0.0453±0.0010 [ø1.150±0.025] 0.0006 [15µ] minimum solder over 0.0010 [25µ] min. copper 16 BI-SPRING @0.069±0.001 [ø1.750±0.025] 0.0006 [15µ] minimum solder over 0.0010 [25µ] min. copper 8 BI-SPRING @0.125±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 20 OMEGA @0.047±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 16 BI-SPRING @0.047±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 20 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000033±0.00006 [0.35±0.15µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000033±0.000006 [0.35±0.15µ] immersion tin over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 3 BI-SPRING @0.125±0.001 [ø1.19±0.025] 0.0000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 3 BI-SPRING @0.047±0.001 [ø1.19±0.025] 0.0000013±0.000007 [0.34±0.17µ] immersion s</td></t<>	SIZE / TYPE DRILL HOLE SIZE PLATING 22 OMEGA @0.0453±0.0010 [ø1.150±0.025] 0.0006 [15µ] minimum solder over 0.0010 [25µ] min. copper 16 BI-SPRING @0.069±0.001 [ø1.750±0.025] 0.0006 [15µ] minimum solder over 0.0010 [25µ] min. copper 8 BI-SPRING @0.125±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 20 OMEGA @0.047±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 16 BI-SPRING @0.047±0.001 [ø1.19±0.025] 0.0010 [25µ] min. copper 20 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000033±0.00006 [0.35±0.15µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000033±0.000006 [0.35±0.15µ] immersion tin over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 22 OMEGA @0.047±0.001 [ø1.19±0.025] 0.000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 3 BI-SPRING @0.125±0.001 [ø1.19±0.025] 0.0000013±0.00007 [0.34±0.17µ] immersion silver over 0.0010 [25µ] min. copper 3 BI-SPRING @0.047±0.001 [ø1.19±0.025] 0.0000013±0.000007 [0.34±0.17µ] immersion s			

"Bi-Spring" Termination utilized on signal contacts

"Omega" Termination utilized on signal contacts

COMPLIANT PRESS-FIT TERMINATION CONTACT HOLE

NOTE: For PCB plating compositions not shown, consult Technical Sales.

COMPLIANT PRESS-FIT USER INFORMATION

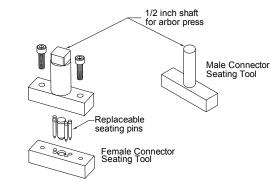
When properly used, Positronic Industries Bi-Spring Power or Omega Signal Press-Fit terminations provide reliable service even under severe conditions.

Connectors utilizing this leading technology press-fit contact are easy to install:

- 1. Inexpensive installation tooling is available from Positronic, to choose the proper installation tool refer to page 86 for part number ordering information.
- 2. Insert the connector into the P.C. board or backplane and seat connector fully.
- 3. Secure the connector to the P.C. board or backplane using two self-tapping screws. The screws should be 4-40 threads supplied by customer.

APPLICATION TOOLS

SEATING


TOOLS

APPLICATION TOOLS

Positronic connectpositronic.com

COMPLIANT PRESS-FIT CONNECTOR INSTALLATION TOOLS

USE INDICATED POSITRONIC TOOLS FOR BEST RESULTS

Positronic offers expert assistance in adapting application tooling to your manufacturing environment. Contact our application tooling specialist for assistance.

POSITRONIC RECOMMENDED TOOLS FOR COMPLIANT PRESS-FIT CONNECTORS AND CONTACTS

SHELL SIZE	CONNECTOR VARIANT	CONNECTOR SEATING TOOL WITH ARBOR PRESS SHAFT		ARBOR PRESS FOR SEATING TOOLS	REPLACEMENT PINS FOR CONNECTOR
		FEMALE P / N	MALE P / N		SEATING TOOL
	2WK2	9512-44-0-41	9512-44-0-41		For <u>8W2 Size 22</u> Female contacts use pin p / n 9512-41-3-41
1	5W1	9512-18-0-41	9512-1-0-41		
	8W2	9512-41-0-41	9512-40-0-41		
	3W3	9512-19-0-41	9512-2-0-41		
2	ЗЖКЗ	9512-39-0-41	9512-38-0-41		
	7W2	9512-20-0-41	9512-2-0-41		For <u>19W1 Size 22</u> Female contacts use pin p / n 855-347-29-41
	11W1	9512-21-0-41	9512-2-0-41		
	19W1	9512-42-0-41	9512-2-0-41		
	5W5	9512-22-0-41	9512-3-0-41		
	9W4	9512-23-0-41	9512-3-0-41		For <u>Size 20</u> Female contacts use pin p / n
3	13W3	9512-24-0-41	9512-3-0-41		
	17W2	9512-25-0-41	9512-3-0-41	Use 1 ton capacity	855-347-18-41
	21W1	9512-26-0-41	9512-3-0-41	4 inch throat	5 0: 10
	8W8	9512-27-0-41	9512-4-0-41		For <u>Size 16</u> Female contacts
	13W6	9512-28-0-41	9512-4-0-41		use pin p / n 855-347-28-41
4	17W5	9512-29-0-41	9512-4-0-41		000-047-20-41
4	21WA4	9512-30-0-41	9512-4-0-41		For <u>Size 8</u>
	25W3	9512-31-0-41	9512-4-0-41		Female contacts use pin p / n
	27W2	9512-32-0-41	9512-4-0-41		855-347-19-41
	24W7	9512-33-0-41	9512-5-0-41		
5	36W4	9512-34-0-41	9512-5-0-41		Male contacts don't use replaceable pins
) D	43W2	9512-35-0-41	9512-5-0-41		
	47W1	9512-36-0-41	9512-5-0-41		
6	46W4	9512-37-0-41	9512-16-0-41		

Positronic[®] offers a variety of QPL connector products

D-SUBMINIATURE CONNECTORS

MIL PREFIX	POSITRONIC SERIES
MIL-DTL-24308/1	HDC
MIL-DTL-24308/2	RD, DD
MIL-DTL-24308/3	HDC
MIL-DTL-24308/4	RD, DD
MIL-DTL-24308/5	HDC
MIL-DTL-24308/6	RD, DD
MIL-DTL-24308/7	HDC
MIL-DTL-24308/8	RD, DD
MIL-DTL-24308/23	HDC, DD

MIL PREFIX	POSITRONIC SERIES
MIL-DTL-24308/24	HDC, DD
MIL-DTL-24308/25	HDC, RD, DD
MIL-DTL-24308/26	HDC, RD, DD
GSFC S-311-P4	SND, SDD, SCBC, SCBM
GSFC S-311-P10	SND, SCBM
SAE AS39029/57	DD
SAE AS39029/58	DD
SAE AS39029/63	RD
SAE AS39029/64	RD

RECTANGULAR CONNECTORS

MIL PREFIX	POSITRONIC SERIES
MIL-DTL-28748/3	GMCT
MIL-DTL-28748/4	GMCT
MIL-DTL-28748/5	GM
MIL-DTL-28748/6	GM
MIL-DTL-28748/7	SGM

MIL PREFIX	POSITRONIC SERIES
MIL-DTL-28748/8	SGM
MIL-C-28748/13	SGMC
MIL-C-28748/14	SGMC
SAE AS39029/34	SGMC, GMCT
SAE AS39029/35	SGMC, GMCT

For a complete QPL listing available to download in PDF format, visit the desired connector family home page and click on link "Qualified Product Listing (PDF)" on our website at:

www.connectpositronic.com

or enter the URL link below to download the QPL PDF file immediately!

www.connectpositronic.com/qpl/catalog

Positronic sales office listed on the back of this catalog.

Positronic[®]

P

an Amphenol company

Divisional Headquarters

Positronic | Americas 1325 N Eldon Ave Springfield MO 65803 USA

+1 800 641 4054 info@connectpositronic.com

Positronic | Europe Z.I. d'Engachies 46, route d'Engachies F-32020 Auch Cedex 9 France

G

Positronic | Asia 3014A Ubi Rd 1 #07-01 Singapore 408703 +33 5 6263 4491 contact@connectpositronic.com

+65 6842 1419 singapore@connectpositronic.com

 $\left(\right)$

n

Sales Offices

Positronic has local sales representation all over the world. To find the nearest sales office, please visit www.connectpositronic.com/sales

2

C