ISM95 Series

Product Feature: Low Jitter, Non-PLL Based Output CMOS Compatible Logic Levels Compatible with Leadfree Processing	Applications: Fibre Channel Server \& Storage Sonet/SDH 802.11/Wifi T1/E1, T3/E3 System Clock
Frequency Range	1.000 MHz to 156.250 MHz
Frequency Stability (Inclusive of Calibration Tolerance at $25^{\circ} \mathrm{C}$, Frequency Stability over Operating Temperature Range, Supply Voltage Change, Output Load Change, and First Year Aging at $25^{\circ} \mathrm{C}$)	$\pm 10 \mathrm{ppm}$ Maximum $\pm 15 \mathrm{ppm}$ Maximum $\pm 20 \mathrm{ppm}$ Maximum $\pm 25 \mathrm{ppm}$ Maximum $\pm 50 \mathrm{ppm}$ Maximum $\pm 100 \mathrm{ppm}$ Maximum
Operating Temperature Range	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & -10^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}, \\ & -10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & -30^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}, \\ & \text { or }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Supply Voltage (Vdd) ($\pm 5 \%$)	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.7 \mathrm{~V}, 3.0 \mathrm{~V}, 3.3 \mathrm{~V}, 1.62 \mathrm{~V}-3.63 \mathrm{~V}$
Input Current	20mA Maximum
Output Logic Type	CMOS
Output Drive Capability	15pF Maximum 30pF Maximum
Aging	$\pm 3 \mathrm{ppm} / \mathrm{year}$ Maximum
Duty Cycle (Measured at 50\% of waveform)	50 ± 5 (\%) or 50 ± 10 (\%)
Rise / Fall Time (Measured from 20\% to 80\% of waveform)	6nSec Maximum
Output Voltage Logic High	90\% of Vdd Minimum
Output Voltage Logic Low	10\% of Vdd Maximum
Pin 1 Connection	Tri-State (High Impedance)
Input Voltage Logic High	70% of Vdd Minimum or No Connect to Enable Output
Input Voltage Logic Low	30% of Vdd Maximum to Disable Output (High Impedance)
Standby Current (Disabled Output, High Impedance)	10ヶA Maximum
Startup Time	10mSec Maximum
RMS Phase Jitter (12 kHz to 20 MHz offset frequency)	1pSec Maximum
Period Jitter (RMS) (20k adjacent periods)	5pSec Maximum
Period Jitter (pk-pk) (100k adjacent periods)	50pSec Maximum

NOTES:
-All minimum and maximum limits are specified over temperature and rated operating voltage with 15 pF output unless otherwise stated.
\bullet A $0.1 \mu \mathrm{~F}$ bypass capacitor is recommended between Vdd (pad 4) and GND (pad 2) to minimize power supply noise.

Absolute Maximum Limits:

Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage Range	-0.3 Vdc to $\mathrm{Vdd}+0.3 \mathrm{Vdc}$
Electrostatic Discharge	2000 V Maximum
Solder Temperature	$260^{\circ} \mathrm{C}$ Maximum
Junction Temperature	$150^{\circ} \mathrm{C}$ Maximum

Environmental Specifications:

Mechanical Shock	MIL-STD-202, Method 213
Mechanical Vibration	MIL-STD-202, Method 204
Resistance to Soldering Heat	MIL-STD-202, Method 210
Solderability	J-STD-002
Gross Leak	MIL-STD-883, Method 1014
Fine Leak	MIL-STD-883, Method 1014
Moisture Sensitivity Level	MSL 1 (+260ㅇ)

Test Circuit: Enable/Disable Option

Waveform: Enable/Disable Option

Pb Free Solder Reflow Profile:

Package Information:

Termination $=\mathrm{e} 4$ (Au over Ni over W base metallization).
Terminal Plating Thickness: Gold $(0.3 \mu \mathrm{~m}$ to $1.0 \mu \mathrm{~m})$, Nickel $(1.27 \mu \mathrm{~m}$ to $8.89 \mu \mathrm{~m})$
Tape and Reel Information:

Part Number Guide		Sample Part Number:		SM95-3251BH - 20.000 MHZ			
Package	Input Voltage	Operating Temperature	Symmetry (Duty Cycle)	Output Drive Capability	Stability (in ppm)	Enable / Disable	Freaquency
ISM95 -	$3=3.3 \mathrm{~V}$	$1=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5=45 / 55$ Max.	$1=15 \mathrm{pF}$	A $= \pm 25$	$\mathrm{H}=$ Enable	-20.000 MHz
	$7=3.0 \mathrm{~V}$	$8=-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$6=40 / 60$ Max.	$6=30 \mathrm{pF}$	$B= \pm 50$	$\mathrm{O}=\mathrm{N} / \mathrm{C}$	
	$2=2.7 \mathrm{~V}$	$6=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			$C= \pm 100$		
	$6=2.5 \mathrm{~V}$	$3=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			$\mathrm{D}= \pm 15$		
	$1=1.8 \mathrm{~V}$	$4=-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			$E= \pm 10$		
	$8=1.62 \mathrm{~V}-3.63 \mathrm{~V}$	$2=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$F= \pm 20$		

