Freescale Semiconductor

Hardware Specification

Document Number: MCF5275EC Rev. 3, 09/2007

MCF5275 Integrated Microprocessor Family Hardware Specification

by: Microcontroller Division

The MCF5275 family is a highly integrated implementation of the ColdFire® family of reduced instruction set computing (RISC) microprocessors. This document describes pertinent features and functions characteristics of the MCF5275 family. The MCF5275 family includes the MCF5275, MCF5275L, MCF5274 and MCF5274L microprocessors. The differences between these parts are summarized in Table 1. This document is written from the perspective of the MCF5275 and unless otherwise noted, the information applies also to the MCF5275L, MCF5274 and MCF5274L.

The MCF5275 family delivers a new level of performance and integration on the popular version 2 ColdFire core with up to 159 (Dhrystone 2.1) MIPS @ 166MHz. These highly integrated microprocessors build upon the widely used peripheral mix on the popular MCF5272 ColdFire microprocessor (10/100 Mbps Ethernet MAC and USB device) by adding a second 10/100 Mbps Ethernet MAC (MCF5274 and MCF5275) and hardware encryption (MCF5275L and MCF5275).

Contents

1	MCF5275 Family Configurations	. 2
2	Block Diagram	. 3
3	Features	. 3
4	Signal Descriptions	. 4
5	Design Recommendations	. 9
6	Mechanicals/Pinouts	14
7	Ordering Information	18
8	Preliminary Electrical Characteristics	18
9	Documentation	43
10	Revision History	43

MCF5275 Family Configurations

In addition, the MCF5275 family features an enhanced multiply accumulate unit (EMAC), large on-chip memory (64 Kbytes SRAM, 16 Kbytes configurable cache), and a 16-bit DDR SDRAM memory controller.

These devices are ideal for cost-sensitive applications requiring significant control processing for file management, connectivity, data buffering, and user interface, as well as signal processing in a variety of key markets such as security, imaging, networking, gaming, and medical. This leading package of integration and high performance allows fast time to market through easy code reuse and extensive third party tool support.

To locate any published errata or updates for this document, refer to the ColdFire products website at http://www.freescale.com/coldfire.

1 MCF5275 Family Configurations

Table 1. MCF5275 Family Configurations

Module	MCF5274L	MCF5275L	MCF5274	MCF5275			
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•			
System Clock		up to 10	66 MHz	•			
Performance (Dhrystone 2.1 MIPS)		up to	159				
Instruction/Data Cache		16 Kbytes (d	configurable)				
Static RAM (SRAM)		64 K	bytes				
Interrupt Controllers (INTC)	2 2 2 2 2						
Edge Port Module (EPORT)	•	•	•	•			
External Interface Module (EIM)	•	•	•	•			
4-channel Direct-Memory Access (DMA)	•	•	•	•			
DDR SDRAM Controller	•	•	•	•			
Fast Ethernet Controller (FEC)	1	1	2	2			
Watchdog Timer Module (WDT)	•	•	•	•			
4-channel Programmable Interval Timer Module (PIT)	•	•	•	•			
32-bit DMA Timers	4	4	4	4			
USB	•	•	•	•			
QSPI	•	•	•	•			
UART(s)	3	3	3	3			
I ² C	•	•	•	•			
PWM	4	4	4	4			
General Purpose I/O Module (GPIO)	•	•	•	•			
CIM = Chip Configuration Module + Reset Controller Module	•	•	•	•			
Debug BDM	•	•	•	•			
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•			
Hardware Encryption	_	•	_	•			
Package	196 M	APBGA	256 M	APBGA			

2 Block Diagram

The superset device in the MCF5275 family comes in a 256 Mold Array Plastic Ball Grid Array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5275, the superset device.

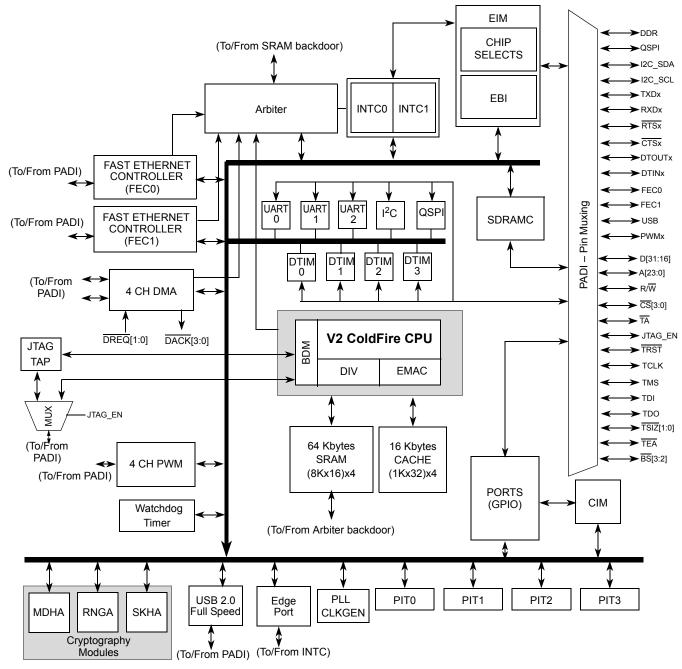


Figure 1. MCF5275 Block Diagram

3 Features

For a detailed feature list see the MCF5275 Reference Manual (MCF5275RM).

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5275 signals, consult the *MCF5275 Reference Manual* (MCF5275RM).

Table 2 lists the signals for the MCF5275 in functional group order. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Table 2. MCF5274 and MCF5275 Signal Information and Muxing

Signal Name	GPIO	GPIO Alternate1 Al		Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA						
Reset												
RESET	_	_	_	I	N15	K12						
RSTOUT	_	_	_	0	N14	L12						
	Clock											
EXTAL	_	_	_	I	L16	M14						
XTAL	_	_	_	0	M16	N14						
CLKOUT	_	_	_ 0		T12	P9						
		Mode	Selection									
CLKMOD[1:0]	_	_	_	I	N13, P13	M11, N11						
RCON	_	_	- –		P8	M6						
	Ex	ternal Memor	y Interface a	nd Po	rts							
A[23:21]	PADDR[7:5]	CS[6:4]	_	0	A11, B11, C11	A8, B8, C8						
A[20:0]	_	_	_	0	A12, B12, C12, A13, B13, C13, A14, B14, C14, B15, C15, B16, C16, D14, D15, E14:16, F14:16	C10, B10, A11, C11, B11, A12, D11, C12, B13, C13, D12, E11,						

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA	
D[31:16]			_	0	M1, N1, N2, N3, P1, P2, R1, R2, P3, R3, T3, N4, P4, R4, T4, N5	J3, L1, K2, K3, M1, L2, L3, L4, K4, J4, M2, N1, N2, M3, M4, N3	
BS[3:2]	PBS[3:2]	CAS[3:2]	_	0	M3, R5	K1, L5	
ŌĒ	PBUSCTL[7]	_	_	0	K1	H4	
TA	PBUSCTL[6]	_	_	I	L13	K14	
TEA	PBUSCTL[5]	DREQ1	_	I	Т8	_	
R/W	PBUSCTL[4]	_	_	0	P7	L6	
TSIZ1	PBUSCTL[3]	DACK1	_	0	D16	B14	
TSIZ0	PBUSCTL[2]	DACK0	_	0	G16	E14	
TS	PBUSCTL[1]	DACK2	_	0	L4	H2	
TIP	PBUSCTL[0]	DREQ0	_	0	P6	_	
		Chij	Selects				
CS[7:1]	PCS[7:1]	_	_	0	D10:13, E13, F13, N7	D8, A9, A10, D10, B12, C14, P4	
CS0	_	_	_ O R6			N5	
		DDR SDR	AM Controll	er	I		
DDR_CLKOUT	_	_	_	0	T7	P6	
DDR_CLKOUT	_		_	0	T6	P5	
SD_CS[1:0]	PSDRAM[7:6]	CS[3:2]	_	0	M2, T5	H3, M5	
SD_SRAS	PSDRAM[5]	_	_	0	L2	H1	
SD_SCAS	PSDRAM[4]	_	_	0	L1	G3	
SD_WE	PSDRAM[3]	_	_	0	K2	G4	
SD_A10	_	_	_	0	N6	N4	
SD_DQS[3:2]	PSDRAM[2:1]	_	_	I/O	M4, P5	J2, P3	
SD_CKE	PSDRAM[0]	_	_	0	L3	J1	
SD_VREF	_	_	_	I	A15, T2	A13, P2	
		External	nterrupts Po	ort			
ĪRQ[7:5]	PIRQ[7:5]	_	_	I	G13, H16, H15	F14, G13, G14	
ĪRQ[4]	PIRQ[4]	DREQ2	_	I	H14	H11	
ĪRQ[3:2]	PIRQ[3:2]	DREQ[3:2]		I	J14, J13	H14, H12	

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
ĪRQ1	PIRQ[1]	_	_	I	K13	J13
			FEC0			
FEC0_MDIO	PFECI2C[5]	I2C_SDA	U2RXD	I/O	A7	А3
FEC0_MDC	PFECI2C[4]	I2C_SCL	U2TXD	0	B7	C5
FEC0_TXCLK	PFEC0H[7]	_	_	I	C3	C1
FEC0_TXEN	PFEC0H[6]	_	_	0	D4	C3
FEC0_TXD[0]	PFEC0H[5]	_	_	0	G4	D2
FEC0_COL	PFEC0H[4]	_	_	I	A6	B4
FEC0_RXCLK	PFEC0H[3]	_	_	I	B6	В3
FEC0_RXDV	PFEC0H[2]	_	_	I	B5	C4
FEC0_RXD[0]	PFEC0H[1]	_	_	I	C6	D5
FEC0_CRS	PFEC0H[0]	_	_	I	C7	A2
FEC0_TXD[3:1]	PFEC0L[7:5]	_	_	0	E3, F3, F4	D1, E3, D3
FEC0_TXER	PFEC0L[4]	_	_	0	D3	C2
FEC0_RXD[3:1]	PFEC0L[3:1]	_	_	I	D5, C5, D6	D4, B1, B2
FEC0_RXER	PFEC0L[0]	_	_	I	C4	E4
			FEC1			
FEC1_MDIO	PFECI2C[3]	_	_	I/O	G1	_
FEC1_MDC	PFECI2C[2]	_	_	0	G2	_
FEC1_TXCLK	PFEC1H[7]	_	_	I	C1	_
FEC1_TXEN	PFEC1H[6]	_	_	0	D2	_
FEC1_TXD[0]	PFEC1H[5]	_	_	0	F1	_
FEC1_COL	PFEC1H[4]	_	_	I	A 5	_
FEC1_RXCLK	PFEC1H[3]	_	_	I	B4	_
FEC1_RXDV	PFEC1H[2]	_	_	I	A3	_
FEC1_RXD[0]	PFEC1H[1]	_	_	I	В3	_
FEC1_CRS	PFEC1H[0]	_	_	I	A4	_
FEC1_TXD[3:1]	PFEC1L[7:5]			0	E1, E2, F2	
FEC1_TXER	PFEC1L[4]	_	_	0	D1	_
FEC1_RXD[3:1]	PFEC1L[3:1]	_	_	I	B1, B2, A2	_
FEC1_RXER	PFEC1L[0]	_	_	I	C2	_

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
			l ² C			
I2C_SDA	PFECI2C[1]	U2RXD	_	I/O	B10	B7
I2C_SCL	PFECI2C[0]	U2TXD	U2TXD — I/O			A7
			DMA			
DACK[3:0] and Please PCS3/PWM3 fr DACK1, TSIZ0 DREQ2	_	_				
			QSPI			
QSPI_CS[3:2]	PQSPI[6:5]	PWM[3:2]	DACK[3:2]	0	R13, N12	P10, N9
QSPI_CS1	PQSPI[4]	_	_	0	T14	N10
QSPI_CS0	PQSPI[3]	_	_	0	P12	M9
QSPI_CLK	PQSPI[2]	I2C_SCL	_	0	T15	L11
QSPI_DIN	PQSPI[1]	I2C_SDA	_	I	T13	M10
QSPI_DOUT	PQSPI[0]	_	_	0	R12	L10
		ι	JARTs			
U2RXD	PUARTH[3]	_	_	I	Т9	_
U2TXD	PUARTH[2]	_	_	0	R9	_
U2CTS	PUARTH[1]	PWM1	_	I	P9	_
U2RTS	PUARTH[0]	PWM0	_	0	R8	_
U1RXD	PUARTL[7]	_	_	I	A9	A6
U1TXD	PUARTL[6]	_	_	0	В9	D7
U1CTS	PUARTL[5]	_	_	I	C9	C7
U1RTS	PUARTL[4]	_	_	0	D9	В6
U0RXD	PUARTL[3]	_	_	I	A8	A4
U0TXD	PUARTL[2]	_	_	0	B8	A 5
U0CTS	PUARTL[1]			I	C8	C6
U0RTS	PUARTL[0]	_	_	0	D7	B5
			USB			
USB_SPEED	PUSBH[0]	_	_	I/O	G14	G11
USB_CLK	PUSBL[7]	_	_	I	G15	F12

MCF5274 MCF5274L Dir.1 **GPIO** Signal Name Alternate1 Alternate2 MCF5275 MCF5275L **256 MAPBGA 196 MAPBGA VSSPLL** I L13 K16 VSS A1, A10, A16, F7, F8, G6:9, E5, E12, F6, H6:9, J7, J8 F11, G7:10, H7:10, J1, J7:10, K7:10, L6, L11, M5, N16, R7, T1, T16 **OVDD** E6:8, F5, F7, F8, E5:7, F5, F6, H10, J9, J10, G5, G6, H5, H6, J11, J12, K11, K8:10 K12, L9, L10, L12. M9:11 **VDD** D8, H13, K4, N8 D6, G5, G12, L7 SD_VDD E9:11, F9, F10, E8:10, F9, F10, F12, G11, G12, G10, H5, J5, J6, H11, H12, J5, K5:7 J6, K5, K6, L5, L7, L8, M6, M7, **M8**

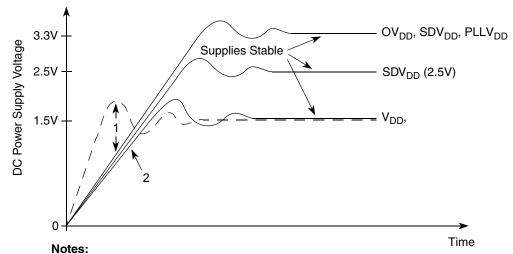
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

5 Design Recommendations

5.1 Layout

- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF5275.
- See application note AN1259 System Design and Layout Techniques for Noise Reduction in MCU-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

5.2 Power Supply


• 33uF, 0.1 μF, and 0.01 μF across each power supply

Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.

If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 2 shows situations in sequencing the I/O V_{DD} (OV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PLLV_{DD}), and Core V_{DD} (V_{DD}).

- 1. VDD should not exceed OVDD, SDVDD or PLLVDD by more than 0.4 V at any time, including power-up.
- Recommended that VDD should track OVDD/SDVDD/PLLVDD up to 0.9 V, then separate for completion of ramps.
- Input voltage must not be greater than the supply voltage (OVDD, SDVDD, VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.
- 4. Use 1 ms or slower rise time for all supplies.

Figure 2. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and OV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 3.3V) and OV_{DD} are specified relative to V_{DD} .

5.2.1.1 Power Up Sequence

If OV_{DD}/SDV_{DD} are powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD}/SDV_{DD} powers up before V_{DD} must powered up. V_{DD} should not lead the OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ by more than 0.4 V during power ramp-up or high current will be in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 μ s to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 µs or slower rise time for all supplies.
- V_{DD}/PLLV_{DD} and OV_{DD}/SDV_{DD} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD}/SD V_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ must power down. V_{DD} should not lag OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ going low by more than 0.4 V during power down or undesired high current will be in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/SDV_{DD}/PLLV_{DD} supplies.

5.3 Decoupling

- Place the decoupling capacitors as close to the pins as possible, but they can be outside the footprint
 of the package.
- $0.1 \mu F$ and $0.01 \mu F$ at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See electricals.

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

5.7 Interface Recommendations

5.7.1 DDR SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Table 3. Synchronous DRAM Signal Connections

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SDRAM_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
SD_WE	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5275. One SDRAM_CS signal selects one SDRAM block and connects to the corresponding CS signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
BS[3:2]	Column address strobe. For synchronous operation, BS[3:2] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
DDR_CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5275 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Table 4. MII Mode

Signal Description	MCF5275 Pin
Transmit clock	FECn_TXCLK
Transmit enable	FECn_TXEN
Transmit data	FECn_TXD[3:0]
Transmit error	FECn_TXER

Table 4. MII Mode (continued)

Signal Description	MCF5275 Pin
Collision	FECn_COL
Carrier sense	FECn_CRS
Receive clock	FECn_RXCLK
Receive enable	FECn_RXDV
Receive data	FECn_RXD[3:0]
Receive error	FECn_RXER
Management channel clock	FEC <i>n</i> _MDC
Management channel serial data	FECn_MDIO

The serial mode interface operates in what is generally referred to as AMD mode. The MCF5275 configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.

Table 5. Seven-Wire Mode Configuration

Signal Description	MCF5275 Pin
Transmit clock	FECn_TXCLK
Transmit enable	FECn_TXEN
Transmit data	FECn_TXD[0]
Collision	FECn_COL
Receive clock	FECn_RXCLK
Receive enable	FECn_RXDV
Receive data	FECn_RXD[0]
Unused, configure as PB14	FECn_RXER
Unused input, tie to ground	FECn_CRS
Unused, configure as PB[13:11]	FECn_RXD[3:1]
Unused output, ignore	FECn_TXER
Unused, configure as PB[10:8]	FECn_TXD[3:1]
Unused, configure as PB15	FECn_MDC
Input after reset, connect to ground	FEC <i>n</i> _MDIO

Refer to the M5275EVB evaluation board user's manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5275 site by navigating to: http://www.freescale.com/coldfire.

5.7.3 BDM

Use the BDM interface as shown in the M5275EVB evaluation board user's manual. The schematics for this board are accessible at the MCF5275 site by navigating to: http://www.freescale.com/coldfire.

6 Mechanicals/Pinouts

6.1 256 MAPBGA Pinout

Figure 3 is a consolidated MCF5274/75 pinout for the 256 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	VSS	FEC1_ RXD1	FEC1_ RXDV	FEC1_ CRS	FEC1_ COL	FEC0_ COL	FEC0_ MDIO	U0RXD	U1RXD	VSS	A23	A20	A17	A14	SD_ VREF	VSS	А
В	FEC1_ RXD3	FEC1_ RXD2	FEC1_ RXD0	FEC1_ RXCLK	FEC0_ RXDV	FEC0_ RXCLK	FEC0_ MDC	U0TXD	U1TXD	I2C_ SDA	A22	A19	A16	A13	A11	A9	В
С	FEC1_ TXCLK	FEC1_ RXER	FEC0_ TXCLK	FEC0_ RXER	FEC0_ RXD2	FEC0_ RXD0	FEC0_ CRS	U0CTS	U1CTS	I2C_ SCL	A21	A18	A15	A12	A10	A8	С
D	FEC1_ TXER	FEC1_ TXEN	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXD3	FEC0_ RXD1	U0RTS	VDD	U1RTS	CS7	CS6	CS5	CS4	A7	A6	TSIZ1	D
Е	FEC1_ TXD3	FEC1_ TXD2	FEC0_ TXD3	NC	VSS	OVDD	OVDD	OVDD	SD_VDD	SD_VDD	SD_VDD	VSS	CS3	A5	A4	A3	Е
F	FEC1_ TXD0	FEC1_ TXD1	FEC0_ TXD2	FEC0_ TXD1	OVDD	VSS	OVDD	OVDD	SD_VDD	SD_VDD	VSS	SD_VDD	CS2	A2	A1	A0	F
G	FEC1_ MDIO	FEC1_ MDC	DT0OUT	FEC0_ TXD0	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	ĪRQ7	USB_ SPEED	USB_ CLK	TSIZ0	G
Н	DT1IN	DT1OUT	DT0IN	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	VDD	ĪRQ4	ĪRQ5	ĪRQ6	Н
J	VSS	DT2IN	DT2OUT	DT3IN	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	IRQ2	IRQ3	USB_RP	USB_RN	J
K	ŌE	SD_WE	DT3OUT	VDD	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	ĪRQ1	USB_TN	USB_TP	VSSPLL	K
L	SD_ SCAS	SD_ SRAS	SD_CKE	TS	SD_VDD	VSS	SD_VDD	SD_VDD	OVDD	OVDD	VSS	OVDD	TA	USB_ TXEN	USB_ RXD	EXTAL	L
М	D31	SD_CS1	BS3	SD_DQS3	VSS	SD_VDD	SD_VDD	SD_VDD	OVDD	OVDD	OVDD	NC	USB_ SUSP	PLL_ TEST	VDDPLL	XTAL	М
N	D30	D29	D28	D20	D16	SD_A10	CS1	VDD	TEST	DDATA2	DDATA0	QSPI_ CS2	CLK MOD1	RSTOUT	RESET	VSS	N
Р	D27	D26	D23	D19	SD_DQS2	TIP	R/W	RCON	U2CTS	DDATA3	DDATA1	QSPI_ CS0	CLK MOD0	TRST/ DSCLK	TDO/ DSO	TCLK/ PSTCLK	Р
R	D25	D24	D22	D18	BS2	CS0	VSS	U2RTS	U2TXD	PST2	PST0	QSPI_ DOUT	QSPI_ CS3	JTAG_ EN	TMS/ BKPT	TDI/DSI	R
Т	VSS	SD_ VREF	D21	D17	SD_CS0	DDR_CLK OUT	DDR_CLK OUT	TEA	U2RXD	PST3	PST1	CLKOUT	QSPI_ DIN	QSPI_ CS1	QSPI_ CLK	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 3. MCF5274 and MCF5275 Pinout (256 MAPBGA)

6.2 Package Dimensions - 256 MAPBGA

Figure 6 shows MCF5275 256 MAPBGA package dimensions.

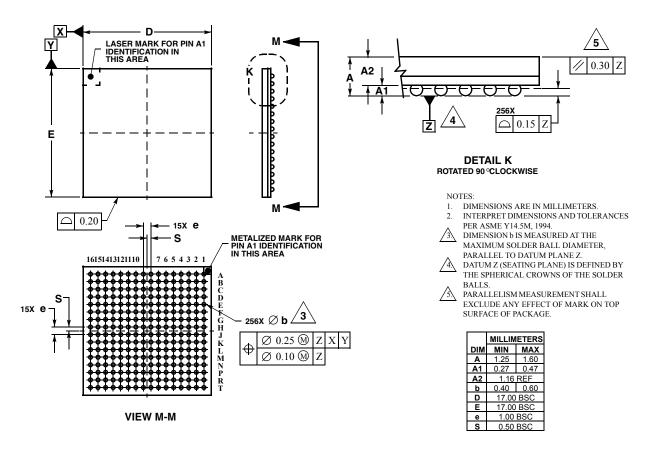


Figure 4. 256 MAPBGA Package Dimensions

6.3 196 MAPBGA Pinout

Figure 5 is a consolidated MCF5274L/75L pinout for the 196 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	NC	FEC0_ CRS	FECO_ MDIO	U0RXD	U0TXD	U1RXD	I2C_SCL	A23	CS6	CS5	A15	A12	SD_ VREF	NC	Α
В	FEC0_ RXD2	FEC0_ RXD1	FEC0_ RXCLK	FEC0_ COL	U0RTS	U1RTS	I2C_SDA	A22	A20	A16	A13	CS3	A9	TSIZ1	В
С	FECO_ TXCLK	FECO_ TXER	FEC0_ TXEN	FEC0_ RXDV	FECO_ MDC	U0CTS	U1CTS	A21	A18	A17	A14	A10	A8	CS2	С
D	FEC0_ TXD3	FEC0_ TXD0	FEC0_ TXD1	FEC0_ RXD3	FEC0_ RXD0	VDD	U1TXD	CS7	A19	CS4	A11	A7	A5	A2	D
Е	DT0IN	DT0OUT	FEC0_ TXD2	FEC0_ RXER	OVDD	OVDD	OVDD	SD_VDD2	SD_VDD2	SD_VDD2	A6	A4	A1	TSIZ0	Е
F	DT1IN	DT10UT	DT2IN	DT2OUT	OVDD	OVDD	VSS	VSS	SD_VDD2	SD_VDD2	А3	USB_CLK	A0	ĪRQ7	F
G	DT3OUT	DT3IN	SD_CAS	SD_WE	VDD	VSS	VSS	VSS	VSS	SD_VDD2	USB_ SPEED	VDD	ĪRQ6	ĪRQ5	G
Н	SD_SRAS	TS	SD_CS1	ŌĒ	SD_VDD1	VSS	VSS	VSS	VSS	OVDD	IRQ4	ĪRQ2	USB_RN	ĪRQ3	Н
J	SD_CKE	SD_DQS3	D31	D22	SD_VDD1	SD_VDD1	VSS	VSS	OVDD	OVDD	USB_RP	USB_TP	ĪRQ1	USB_TN	J
К	BS3	D29	D28	D23	SD_VDD1	SD_VDD1	SD_VDD1	OVDD	OVDD	OVDD	TDO/DSO	RESET	USB_ TXEN	TA	Κ
L	D30	D26	D25	D24	BS2	R/W	VDD	PST2	DDATA0	QSPI_ DOUT	QSPI_CLK	RSTOUT	VSSPLL	USB_RXD	L
М	D27	D21	D18	D17	SD_CS0	RCON	DDATA3	PST1	QSPI_ CS0	QSPI_DIN	CLKMOD1	TDI/DSI	VDDPLL	EXTAL	М
N	D20	D19	D16	SD_A10	CS0	TEST	DDATA2	PST0	QSPI_ CS2	QSPI_ CS1	CLKMOD0	TMS/BKPT	USB_ SUSP	XTAL	Ν
Р	NC	SD_ VREF	SD_DQS2	CS1	DDR_CLK OUT	DDR_CLK OUT	PST3	DDATA1	CLKOUT	QSPI_ CS3	JTAG_EN	TCLK/PST CLK	TRST/DSC LK	NC	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 5. MCF5274L and MCF5275L Pinout (196 MAPBGA)

6.4 Package Dimensions - 196 MAPBGA

Figure 6 shows MCF5275 196 MAPBGA package dimensions.

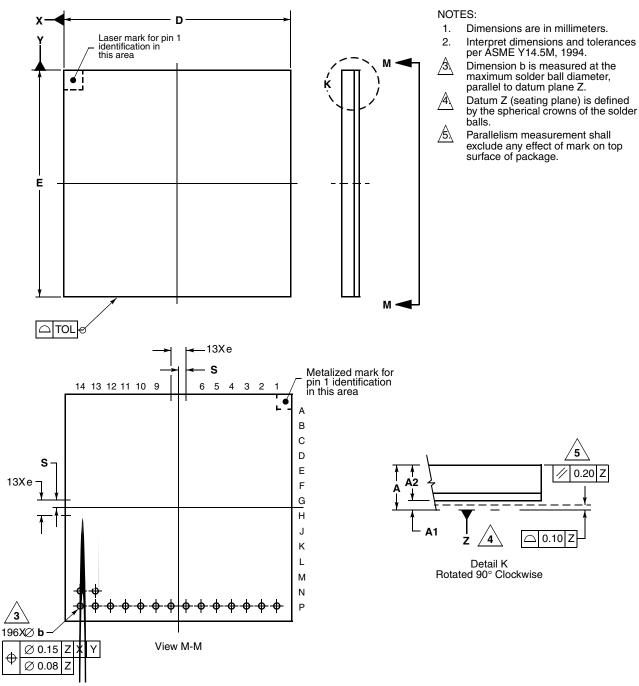


Figure 6. 196 MAPBGA Package Dimensions

7 Ordering Information

Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF5274LVM166	MCF5274L RISC Microprocessor	196 MAPBGA	166 MHz	0° to +70° C
MCF5274LCVM166	WOI 3274L 11130 MICIOPIOCESSOI	190 MAI BAA	100 1011 12	-40° to +85° C
MCF5274VM166	MCF5274 RISC Microprocessor	r 256 MAPBGA 166 MHz	166 MHz	0° to +70° C
MCF5274CVM166	MOI 3274 THOC MICroprocessor		100 1011 12	-40° to +85° C
MCF5275LCVM166	MCF5275L RISC Microprocessor	196 MAPBGA	166 MHz	-40° to +85° C
MCF5275CVM166	MCF5275 RISC Microprocessor	256 MAPBGA	166 MHz	-40° to +85° C

8 Preliminary Electrical Characteristics

This appendix contains electrical specification tables and reference timing diagrams for the MCF5275 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5275.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

8.1 Maximum Ratings

Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V_{DD}	- 0.5 to +2.0	V
I/O Pad Supply Voltage (3.3V)	OV_{DD}	- 0.3 to +4.0	V
Memory Interface SSTL 2.5V Pad Supply Voltage	SDV _{DD}	- 0.3 to + 2.8	V
Memory Interface SSTL 3.3V Pad Supply Voltage	SDV _{DD}	- 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	- 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	- 0.3 to + 4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V

Table 7. Absolute Maximum Ratings^{1, 2} (continued)

Rating	Symbol	Value	Unit
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{4, 5}	I _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	- 65 to 150	°C

- Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.
- This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or O V_{DD}).
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁴ All functional non-supply pins are internally clamped to V_{SS} and O V_{DD}.
- Power supply must maintain regulation within operating O V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > O V_{DD}) is greater than I_{DD}, the injection current may flow out of O V_{DD} and could result in external power supply going out of regulation. Ensure the external O V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions.

8.2 Thermal Characteristics

Table 8 lists thermal resistance values

Table 8. Thermal characteristics

Characteristic		Symbol	256MBGA	196MBGA	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	°C/W
Junction to board		θ_{JB}	15 ³	20 ³	°C/W
Junction to case		$\theta_{\sf JC}$	10 ⁴	10 ⁴	°C/W
Junction to top of package	Natural convection	Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		T _j	105	105	°C

 $[\]theta_{JMA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Preliminary Electrical Characteristics

- Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_{.I}) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA}) (1)$$

Where:

T_A = Ambient Temperature, °C

Θ_{JMA} = Package Thermal Resistance, Junction-to-Ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 $P_{INT} = I_{DD} \times V_{DD}$, Watts - Chip Internal Power

P_{I/O} = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \degree C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \, ^{\circ}C) + \Theta_{JMA} \times P_D^2$$
 (3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

8.3 ESD Protection

Table 9. ESD Protection Characteristics 1, 2

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V
ESD Target for Machine Model	MM	200	V
HBM Circuit Description	R _{series}	1500	Ω
	С	100	pF
MM Circuit Description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) positive pulses negative pulses	_	1 1	_
Number of pulses per pin (MM) positive pulses negative pulses	_	3 3	
Interval of Pulses	_	1	sec

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

8.4 DC Electrical Specifications

Table 10. DC Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	V _{DD}	1.4	1.6	V
I/O Pad Supply Voltage	OV _{DD}	3.0	3.6	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	2.3	2.7	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	3.0	3.6	V
SSTL Memory pads reference voltage (SD V _{DD} = 2.5V)	V _{REF}	0.5 SD V _{DD}	2	V
SSTL Memory pads reference voltage (SD V _{DD} = 3.3V)	V _{REF}	0.45 SD V _{DD}	_2	V
Input High Voltage 3.3V I/O Pads	V _{IH}	0.7 x OV _{DD}	OV _{DD} + 0.3	V
Input Low Voltage 3.3V I/O Pads	V _{IL}	V _{SS} - 0.3	0.35 x OV _{DD}	V
Output High Voltage 3.3V I/O Pads I _{OH} = -2.0 mA	V _{OH}	OV _{DD} - 0.5	_	٧
Output Low Voltage 3.3V I/O Pads I _{OL} = 2.0mA	V _{OL}	_	0.5	٧
Input Hysteresis 3.3V I/O Pads	V _{HYS}	0.06 x V _{DD}	_	mV
Input High Voltage SSTL 3.3V/2.5V ³	V _{IH}	V _{REF} + 0.3	SDV _{DD} + 0.3	V
Input Low Voltage SSTL 3.3V/2.5V ³	V _{IL}	V _{SS} - 0.3	V _{REF} - 0.3	V
Output High Voltage SSTL 3.3V/2.5V ⁴ $I_{OH} = -5.0 \text{ mA}$	V _{OH}	SDV _{DD} - 0.25V	_	V
Output Low Voltage SSTL 3.3V/2.5V ⁴ I _{OL} = 5.0 mA	V _{OL}	_	0.35	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	1.0	μА
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	l _{OZ}	-1.0	1.0	μА
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μА
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Preliminary Electrical Characteristics

Table 10. DC Electrical Specifications¹ (continued)

Characteristic	Symbol	Min	Max	Unit
Load Capacitance ⁷ Low Drive Strength High Drive Strength	CL		25 50	pF
Core Operating Supply Current ⁸ Master Mode WAIT DOZE STOP	I _{DD}	_ _ _ _	175 15 10 100	mA mA mA μA
I/O Pad Operating Supply Current Master Mode Low Power Modes	Ol _{DD}		250 250	mA μA
DC Injection Current ^{3, 9, 10, 11} V _{NEGCLAMP} = V _{SS} – 0.3 V, V _{POSCLAMP} = V _{DD} + 0.3 Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	l _{IC}	-1.0 -10	1.0 10	mA

Refer to Table 11 for additional PLL specifications.

 $^{^2}$ V_{REF} is specified as a nominal value only instead of a range, so no maximum value is listed.

This specification is guaranteed by design and is not 100% tested.

⁴ The actual V_{OH} and V_{OL} values for SSTL pads are dependent on the termination and drive strength used. The specifications numbers assume no parallel termination.

⁵ Refer to the MCF5274 signals chapter for pins having weak internal pull-up devices.

⁶ This parameter is characterized before qualification rather than 100% tested.

⁷ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination.

⁸ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

 $^{^{9}}$ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD} .

¹⁰ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

8.5 Oscillator and Phase Lock Loop (PLLMRFM) Electrical Specifications

Table 11. PLL Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
PLL Reference Frequency Range Crystal reference External reference 1:1 Mode (NOTE: f _{sys/2} = 2 × fref_1:1)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 83	MHz
Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{core}	0 f _{ref} / 32	166 83 83	MHz MHz MHz
Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	TBD	TBD	MHz
Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
EXTAL Input High Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{IHEXT} V _{IHEXT}	TBD TBD	TBD TBD	V
EXTAL Input Low Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{ILEXT} V _{ILEXT}	TBD TBD	TBD TBD	V
XTAL Output High Voltage I _{OH} = 1.0 mA	V _{OH}	TBD	_	V
XTAL Output Low Voltage I _{OL} = 1.0 mA	V _{OL}	_	TBD	V
XTAL Load Capacitance ⁷		5	30	pF
PLL Lock Time ⁸	t _{lpII}	_	750	μS
Power-up To Lock Time ^{6, 9} With Crystal Reference Without Crystal Reference ¹⁰	t _{lplk}		11 750	ms μs
1:1 Mode Clock Skew (between CLKOUT and EXTAL) 11	t _{skew}	-1	1	ns
Duty Cycle of reference ⁵	t _{dc}	40	60	% f _{sys/2}
Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
CLKOUT Period Jitter, ^{5, 6, 9,12, 13} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5 .01	% f _{sys/2}
Frequency Modulation Range Limit ¹⁴ , ¹⁵ (f _{sys/2} Max must not be exceeded)	C_{mod}	0.8	2.2	% f _{sys/2}
ICO Frequency. f _{ico} = f _{ref} * 2 * (MFD+2) ¹⁶	f _{ico}	48	83	MHz

All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

^{3 &}quot;Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

Preliminary Electrical Characteristics

- Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- This parameter is guaranteed by characterization before qualification rather than 100% tested.
- Proper PC board layout procedures must be followed to achieve specifications.
- Load capacitance determined from crystal manufacturer specifications and includes circuit board parasitics.
- This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDPLL} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- $t_{|p|} = (64 * 4 * 5 + 5 x \tau) \times T_{ref}$, where $t_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $t_{ref} = 1.57 \times 10^{-6} \times 2 (MFD + 2)$
- ¹¹ PLL is operating in 1:1 PLL mode.
- ¹² Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the jitter percentage for a given interval.
- ¹³ Based on slow system clock of 33MHz maximum frequency.
- ¹⁴ Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100KHz.
- 15 Modulation rate selected must not result in $f_{\text{sys/2}}$ value greater than the $f_{\text{sys/2}}$ maximum specified value. Modulation range determined by hardware design. $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

External Interface Timing Characteristics 8.6

Table 12 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Table 12. Processor Bus Input Timing Specifications

Name	Characteristic ¹	Symbol	Min	Max	Unit	
В0	CLKOUT	t _{CYC}	12	_	ns	
	Control Inputs					
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	_	ns	
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	_	ns	
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	_	ns	
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	_	ns	
	Data Inputs					
B4	Data input (D[31:16]) valid to CLKOUT high	t _{DIVCH}	4	_	ns	
B5	CLKOUT high to data input (D[31:16]) invalid	t _{CHDII}	0	_	ns	

Timing specifications have been indicated taking into account the full drive strength for the pads.

TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Timings listed in Table 12 are shown in Figure 7.

* The timings are also valid for inputs sampled on the negative clock edge.

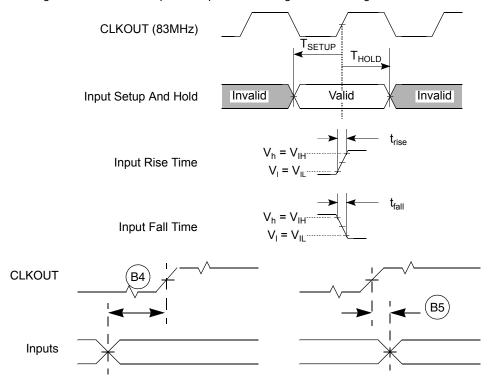


Figure 7. General Input Timing Requirements

8.7 Processor Bus Output Timing Specifications

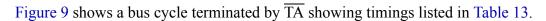
Table 13 lists processor bus output timings.

Table 13. External Bus Output Timing Specifications

Name	Characteristic	Symbol	Min	Max	Unit
	Control Outp	uts			
B6a	CLKOUT high to chip selects (CS[7:0]) valid ¹	t _{CHCV}	_	0.5t _{CYC} + 5.5	ns
B6b	CLKOUT high to byte enables (BS[3:2]) valid ¹	t _{CHBV}	_	0.5t _{CYC} + 5.5	ns
В6с	CLKOUT high to output enable (OE) valid ¹	t _{CHOV}	_	0.5t _{CYC} + 5.5	ns
B7	CLKOUT high to control output (BS[3:2], OE) invalid	t _{CHCOI}	0.5t _{CYC} + 1.0	_	ns
В7а	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} + 1.0	_	ns
	Address and Attribut	te Outputs			
B8	CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	_	9	ns
B9	CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.0	_	ns

Preliminary Electrical Characteristics

Table 13. External Bus Output Timing Specifications (continued)


Name	Characteristic	Symbol	Min	Max	Unit	
Data Outputs						
B11	CLKOUT high to data output (D[31:16]) valid	t _{CHDOV}	_	9	ns	
B12	CLKOUT high to data output (D[31:16]) invalid	t _{CHDOI}	1.0	_	ns	
B13	CLKOUT high to data output (D[31:16]) high impedance	t _{CHDOZ}	_	9	ns	

¹ CS, BS, and OE transition after the falling edge of CLKOUT.

Read/write bus timings listed in Table 13 are shown in Figure 8, Figure 9, and Figure 10.

Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing

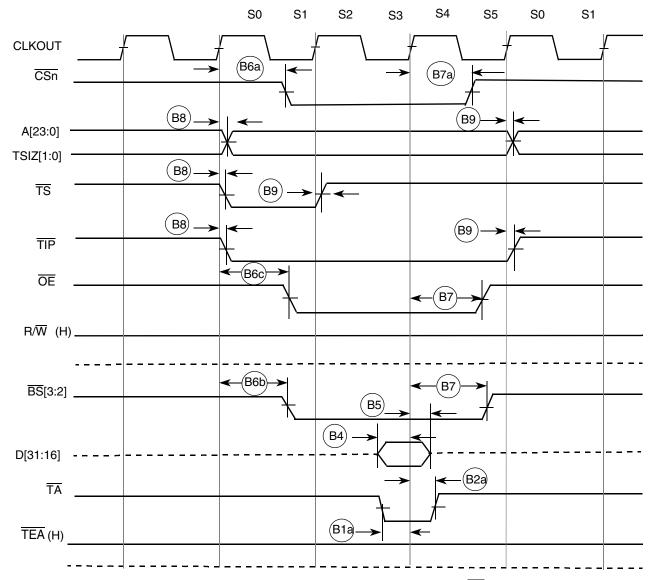


Figure 9. SRAM Read Bus Cycle Terminated by TA

Preliminary Electrical Characteristics					
MCF52	75 Integrated Microprocess	or Family Hardware Speci	fication, Rev. 3		

8.8 DDR SDRAM AC Timing Characteristics

The DDR SDRAM controller uses SSTL2 and I/O drivers. Class I or Class II drive strength is available and is user programmable. DDR Clock timing specifications are given in Table 14 and Figure 11.

Symbol	Characteristic	Min	Max	Unit
V _{MP}	Clock output mid-point voltage	1.05	1.45	V
V _{OUT}	Clock output voltage level	-0.3	SDV _{DD} + 0.3	V
V _{ID}	Clock output differential voltage (peak to peak swing)	0.7	SDV _{DD} + 0.6	V
V _{IX}	Clock crossing point voltage	1.05	1.45	V

¹ SD V_{DD} is nominally 2.5V.

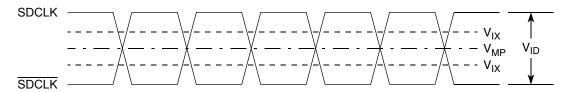


Figure 11. DDR Clock Timing Diagram

When using the DDR SDRAM controller the timing numbers in Table 15 must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.

Table 15. DDR Timing

NUM	Characteristic ¹	Symbol	Min	Max	Unit
	Frequency of operation ²		TBD	83	MHz
DD1	Clock Period (DDR_CLKOUT)	t _{CK}	12	TBD	ns
DD2	Pulse Width High ³	t _{CKH}	0.45	0.55	t _{CK}
DD3	Pulse Width Low ³	t _{CKI}	0.45	0.55	t _{CK}
DD4	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS[1:0], SD_SCAS, SD_SRAS, SD_WE valid	t _{CMV}	_	0.5 x t _{CK} + 1	ns
DD5	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS, SD_SCAS, SD_SRAS, SD_WE invalid	t _{CMH}	2	_	ns
DD6	Write command to first SD_DQS Latching Transition	t _{DQSS}	_	1.25	t _{CK}
DD7	SD_DQS high to Data and DM valid (write) - setup ^{4,5}	t _{QS}	1.5	_	ns
DD8	SD_DQS high to Data and DM invalid (write) - hold ⁴	t _{QH}	1	_	ns
DD9	SD_DQS high to Data valid (read) - setup ⁶	t _{IS}	_	1	ns
DD10	SD_DQS high to Data invalid (read) - hold ⁷	t _{IH}	0.25 x t _{CK} + 1	_	ns
DD11	SD_DQS falling edge to CLKOUT high - setup	t _{DSS}	0.5	_	ns
DD12	SD_DQS falling edge to CLKOUT high - hold	t _{DSH}	0.5	_	ns

Preliminary Electrical Characteristics

Table 15. DDR Timing (continued)

NUM	Characteristic ¹	Symbol	Min	Max	Unit
DD13	DQS input read preamble width (t _{RPRE})	t _{RPRE}	0.9	1.1	t _{CK}
DD14	DQS input read postamble width (t _{RPST})	t _{RPST}	0.4	0.6	t _{CK}
DD15	DQS output write preamble width (t _{WPRE})	t _{WPRE}	0.25	_	t _{CK}
DD16	DQS output write postamble width (t _{WPST})	t _{WPST}	0.4	0.6	t _{CK}

All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.

Figure 13 shows a DDR SDRAM write cycle.

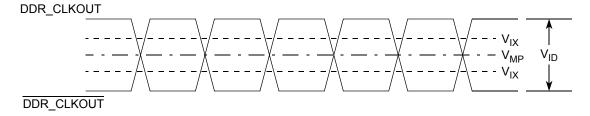


Figure 12. DDR_CLKOUT and DDR_CLKOUT Crossover Timing

² DDR_CLKOUT operates at half the frequency of the PLLMRFM output and the ColdFire core.

 $^{^3}$ $t_{CKH} + t_{CKL}$ must be less than or equal to t_{CK} .

⁴ D[31:24] is relative to SD_DQS3 and D[23:16] is relative to SD_DQS2.

The first data beat is valid before the first rising edge of SD_DQS and after the SD_DQS write preamble. The remaining data beats are valid for each subsequent SD_DQS edge

Data input skew is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).

⁷ Data input hold is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the first data line becomes invalid.

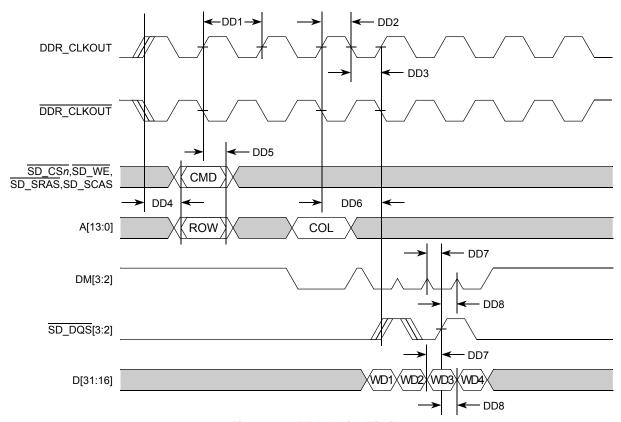
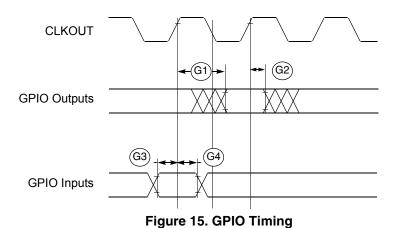


Figure 13. DDR Write Timing

Preliminary Electrical Characteristics


Figure 14. DDR Read Timing

8.9 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR control, timers, UARTS, FEC0, FEC1, Interrupts and USB interfaces. When in GPIO mode the timing specification for these pins is given in Table 16 and Figure 15.

Table 16. GPIO Timing

NUM	Characteristic	Symbol	Min	Max	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.0	_	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	_	ns
G4	CLKOUT High to GPIO Input Invalid	t			

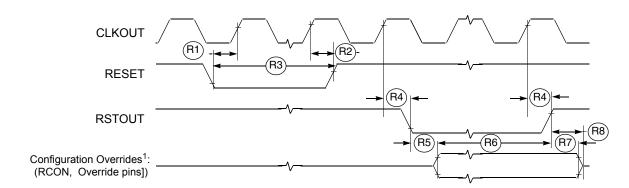

8.10 Reset and Configuration Override Timing

Table 17. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_A = T_L \text{ to } T_H)^1$

	^						
NUM	Characteristic	Symbol	Min	Max	Unit		
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	_	ns		
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	_	ns		
R3	RESET Input valid Time ²	t _{RIVT}	5	_	t _{CYC}		
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	_	10	ns		
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	_	ns		
R6	Configuration Override Setup Time to RSTOUT invalid	t _{cos}	20	_	t _{CYC}		
R7	Configuration Override Hold Time after RSTOUT invalid	t _{СОН}	0	_	ns		
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1 x t _{CYC}	ns		

All AC timing is shown with respect to 50% OV_{DD} levels unless otherwise noted.

During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

1. Refer to the Coldfire Integration Module (CIM) section for more information.

RESET and Configuration Override Timing

8.11 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.

8.11.1 MII Receive Signal Timing (FECn_RXD[3:0], FECn_RXDV, FECn_RXER, and FECn_RXCLK)

The receiver functions correctly up to a FECn_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FECn_RXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic	Min	Max	Unit
M1	FECn_RXD[3:0], FECn_RXDV, FECn_RXER to FECn_RXCLK setup	5	_	ns
M2	FECn_RXCLK to FECn_RXD[3:0], FECn_RXDV, FECn_RXER hold	5	_	ns
МЗ	FECn_RXCLK pulse width high	35%	65%	FECn_RXCLK period
M4	FECn_RXCLK pulse width low	35%	65%	FEC <i>n</i> _RXCLK period

Figure 16 shows MII receive signal timings listed in Table 18.

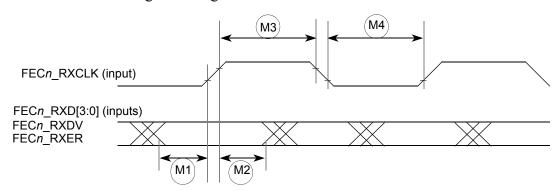


Figure 16. MII Receive Signal Timing Diagram

8.11.2 MII Transmit Signal Timing (FEC*n_*TXD[3:0], FEC*n_*TXEN, FEC*n_*TXER, FEC*n_*TXCLK)

Table 19 lists MII transmit channel timings.

The transmitter functions correctly up to a FEC n_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC n_TXCLK frequency.

Table 19. MII Transmit Channel Timing

Num	Characteristic	Min	Max	Unit
M5	FEC <i>n_</i> TXCLK to FEC <i>n_</i> TXD[3:0], FEC <i>n_</i> TXEN, FEC <i>n_</i> TXER invalid	5	_	ns
M6	FEC <i>n_</i> TXCLK to FEC <i>n_</i> TXD[3:0], FEC <i>n_</i> TXEN, FEC <i>n_</i> TXER valid	_	25	ns
M7	FECn_TXCLK pulse width high	35%	65%	FECn_TXCLK period
M8	FECn_TXCLK pulse width low	35%	65%	FECn_TXCLK period

Figure 17 shows MII transmit signal timings listed in Table 19.

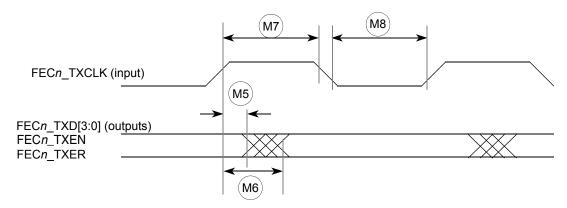


Figure 17. MII Transmit Signal Timing Diagram

8.11.3 MII Async Inputs Signal Timing (FECn_CRS and FECn_COL)

Table 20 lists MII asynchronous inputs signal timing.

Table 20. MII Asynchronous Input Signal Timing

Num	Characteristic	Min	Max	Unit
M9	FECn_CRS, FECn_COL minimum pulse width	1.5	_	FECn_TXCLK period

Figure 18 shows MII asynchronous input timings listed in Table 20.

Figure 18. MII Async Inputs Timing Diagram

8.11.4 MII Serial Management Channel Timing (FEC*n_MDIO* and FEC*n_MDC*)

Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Num	Characteristic	Min	Max	Unit
M10	FECn_MDC falling edge to FECn_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	FECn_MDC falling edge to FECn_MDIO output valid (max prop delay)	_	25	ns
M12	FECn_MDIO (input) to FECn_MDC rising edge setup	10	_	ns
M13	FECn_MDIO (input) to FECn_MDC rising edge hold	0	_	ns
M14	FECn_MDC pulse width high	40%	60%	MDC period
M15	FECn_MDC pulse width low	40%	60%	MDC period

Figure 19 shows MII serial management channel timings listed in Table 21.

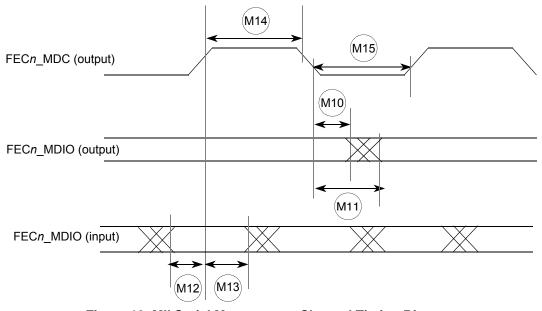


Figure 19. MII Serial Management Channel Timing Diagram

8.11.5 USB Interface AC Timing Specifications

Table 22 lists USB Interface timings.

Figure 20

8.12 I²C Input/Output Timing Specifications

Table 23 lists specifications for the I²C input timing parameters shown in Figure 21.

Table 23. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
l1	Start condition hold time	2 x t _{CYC}	_	ns
12	Clock low period	8 x t _{CYC}	_	ns
13	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	4 x t _{CYC}	_	ns
17	Data setup time	0	_	ns
18	Start condition setup time (for repeated start condition only)	2 x t _{CYC}	_	ns
19	Stop condition setup time	2 x t _{CYC}	_	ns

Table 24 lists specifications for the I²C output timing parameters shown in Figure 21.

Table 24. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
I1 ¹	Start condition hold time	6 x t _{CYC}	_	ns
I2 ¹	Clock low period	10 x t _{CYC}	_	ns
13 ²	I2C_SCL/I2C_SDA rise time $(V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V})$	_	_	μs
I4 ¹	Data hold time	7 x t _{CYC}	_	ns
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns
I6 ¹	Clock high time	10 x t _{CYC}	_	ns
I7 ¹	Data setup time	2 x t _{CYC}	_	ns
I8 ¹	Start condition setup time (for repeated start condition only)	20 x t _{CYC}	_	ns
I9 ¹	Stop condition setup time	10 x t _{CYC}	_	ns

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 24. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 24 are minimum values.

Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

Figure 21 shows timing for the values in Table 23 and Table 24.

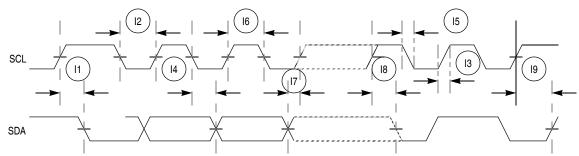
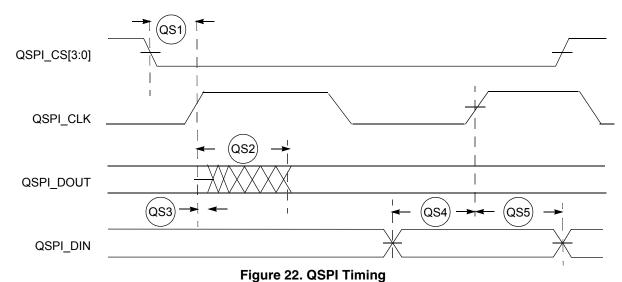


Figure 21. I²C Input/Output Timings

8.13 DMA Timers Timing Specifications

Table 25. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Max	Unit
T1	T0IN / T1IN / T2IN / T3IN cycle time	3 x t _{CYC}	_	ns
T2	T0IN / T1IN / T2IN / T3IN pulse width	1 x t _{CYC}	_	ns


¹ All timing references to CLKOUT are given to its rising edge.

8.14 QSPI Electrical Specifications

Table 26. QSPI Modules AC Timing Specifications

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

Preliminary Electrical Characteristics

JTAG and Boundary Scan Timing 8.15

Table 27. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4 x t _{CYC}	_	ns
J3	TCLK Clock Pulse Width	t _{JCW}	26	_	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	_	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	_	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	_	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	_	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	_	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	_	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

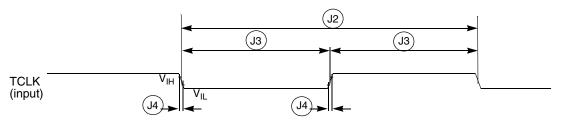


Figure 23. Test Clock Input Timing

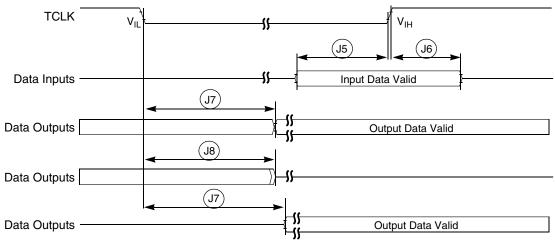


Figure 24. Boundary Scan (JTAG) Timing

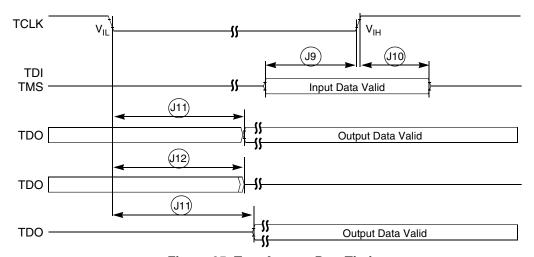


Figure 25. Test Access Port Timing

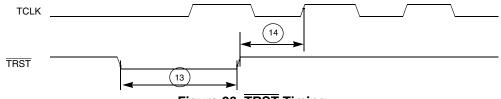


Figure 26. TRST Timing

8.16 Debug AC Timing Specifications

Table 28 lists specifications for the debug AC timing parameters shown in Figure 28.

Table 28. Debug AC Timing Specification

Num	Characteristic	166 MHz		Unite
	Characteristic	Min	Max	Units
D0	PSTCLK cycle time	_	0.5	t _{CYC}
D1	PST, DDATA to PSTCLK setup	4	_	ns
D2	CLKOUT to PST, DDATA hold	1.0	_	ns
D3	DSI-to-DSCLK setup	1 x t _{CYC}	_	ns
D4 ¹	DSCLK-to-DSO hold	4 x t _{CYC}	_	ns
D5	DSCLK cycle time	5 x t _{CYC}	_	ns
D6	BKPT input data setup time to PSTCLK Rise	4	_	ns
D7	BKPT input data hold time to PSTCLK Rise	1.5	_	ns
D8	PSTCLK high to BKPT high Z	0.0	10.0	ns

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

Figure 27 shows real-time trace timing for the values in Table 28.

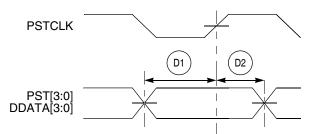


Figure 27. Real-Time Trace AC Timing

Figure 28 shows BDM serial port AC timing for the values in Table 28.

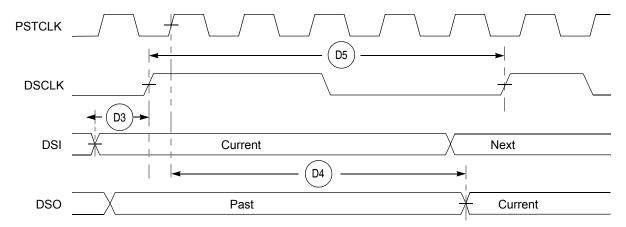


Figure 28. BDM Serial Port AC Timing

9 Documentation

Documentation regarding the MCF5275 and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire.

10 Revision History

Table 29 provides a revision history for this hardware specification.

Table 29. Document Revision History

Rev. No.	Substantive Change(s)		
0	Initial release.		
1	Added Figure 6.		
1.1	Removed duplicate information in the module description sections. The information is all in the Signals Description Table.		
1.2	Removed Overview, Features, Signal Descriptions, Modes of Operation, and Address Multiplexing sections. This information can be found in the MCF5275 Reference Manual. Removed list of documentation in Section 9, "Documentation.". An up-to-date list is always available on our web site. Changed CLKOUT -> PSTCLK in Section 8.16, "Debug AC Timing Specifications." Table 10: Update V _{DD} spec from 1.35-1.65 to 1.4-1.6. Table 13: Timings B6a, B6b, B6c, B7, B7a, B9, B12 updated: B6a, B6b, B6c maximum changed from "0.5t _{CYC} + 5" to "0.5t _{CYC} + 5.5" B7, B7a minimum changed from "0.5t _{CYC} + 1.5" to "0.5t _{CYC} + 1.0" B9, B11 minimum changed from "1.5" to "1.0"		
1.3	Added Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions." Added thermal characteristics for 196 MAPBGA in Table 8. Updated package dimensions drawing, Figure 6.		
2	Removed second sentence from Section 8.11.1, "MII Receive Signal Timing (FECn_RXD[3:0], FECn_RXDV, FECn_RXER, and FECn_RXCLK)," and Section 8.11.2, "MII Transmit Signal Timing (FECn_TXD[3:0], FECn_TXEN, FECn_TXER, FECn_TXCLK)," regarding no minimum frequency requirement for TXCLK. Removed third and fourth paragraphs from Section 8.11.2, "MII Transmit Signal Timing (FECn_TXD[3:0], FECn_TXEN, FECn_TXER, FECn_TXCLK)," as this feature is not supported on this device.		
3	Corrected Ordering Information, Table 6. Figure 2: Moved PLLV _{DD} from 1.5V to 3.3V supply line and corrected relevant text in sections below table. Table 10: Corrected maximum "Input High Voltage 3.3V I/O Pads", V _{IH} specification.		

How to Reach Us:

Home Page:

www.freescale.com

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver. Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5275EC

Rev. 3 09/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

