High-frequency, High-capacity
Coaxial Switch Supporting
Bandwidth to 26.5 GHz
■ ROHS compliant.
■ Superior high-frequency characteristics, such as an isolation of 60 dB min., insertion loss of 0.8 dB max., and V.SWR of 1.7 max. at 26.5 $\mathrm{GHz}(50 \Omega)$.

- Contact carry power of 120 W at 3 GHz .


■ High sensitivity with rated powe consumption of 700 mW for failsafe models and 500 mW for double-winding latching models.
■ Models with TTL-driven double-winding latching and indicator terminals are available.

## Application Examples

- Mobile phone stations and antenna devices
- Wireless devices, wireless LAN, and disaster prevention wireless
- Test equipment, measuring equipment, and jigs
- Broadcasting facilities (digital TV, cable TV, and satellite broadcasting)


## Ordering Information

Model Number Legend


## 1. Relay Function

None: Failsafe
K : Double-winding latching
T: TTL-driven double-winding latching (with self cut-off function)
2. Contact Form

12: SPDT
3. Terminal Shape

S: SMA
4. Frequency

4: $\quad 26.5 \mathrm{GHz}$
5. Characteristic Impedance

5: $50 \Omega$
6. Operating Terminal

None: Soldering terminal
P: Pin terminal
C: Connector cable
7. Indicator Terminal

None: No indicator terminal
N : Indicator terminal
8. Data Package

None: No data package
D: Data package

## Coaxial Switch - G9YA

## List of Models

Standard Models with Soldering Terminals

| Classification | Contact form | Indicator terminal | Data package | Rated coil voltage | Model packaging unit | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Failsafe | SPDT | No | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45 | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-D |  |
|  |  | Yes | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-N |  |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-ND |  |
| Double-winding latching | SPDT | No | No | $4.5,12,15,24$, and 28 VDC | G9YAK-12S-45 | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-D |  |
|  |  | Yes | No | $4.5,12,15,24$, and 28 VDC | G9YAK-12S-45-N |  |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-ND |  |
| TTL-driven double-winding latching (with self cutoff function) latching | SPDT | No | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45 | One per box |
|  |  |  | Yes | 5, 12, 15, and 24 VDC | G9YAT-12S-45-D |  |
|  |  | Yes | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45-N |  |
|  |  |  | Yes | $5,12,15$, and 24 VDC | G9YAT-12S-45-ND |  |

Standard Models with Pin Terminals

| Classification | Contact form | Indicator terminal | Data package | Rated coil voltage | Model packaging unit | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Failsafe | SPDT | No | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-P | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-PD |  |
|  |  | Yes | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-PN |  |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-PND |  |
| Double-winding latching | SPDT | No | No | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-P | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-PD |  |
|  |  | Yes | No | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-PN |  |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-PND |  |
| TTL-driven double-winding latching (with self cutoff function) latching | SPDT | No | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45-P | One per box |
|  |  |  | Yes | 5, 12, 15, and 24 VDC | G9YAT-12S-45-PD |  |
|  |  | Yes | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45-PN |  |
|  |  |  | Yes | 5, 12, 15, and 24 VDC | G9YAT-12S-45-PND |  |

## Coaxial Switch - G9YA

Standard Models with Connector Cables

| Classification | Contact form | Indicator terminal | Data package | Rated coil voltage | Model packaging unit | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Failsafe | SPDT | No | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-C | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-CD |  |
|  |  | Yes | No | 4.5, 12, 15, 24, and 28 VDC | G9YA-12S-45-CN |  |
|  |  |  | Yes | 4.5, 12, 15, 24 , and 28 VDC | G9YA-12S-45-CND |  |
| Double-winding latching | SPDT | No | No | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-C | One per box |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-CD |  |
|  |  | Yes | No | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-CN |  |
|  |  |  | Yes | 4.5, 12, 15, 24, and 28 VDC | G9YAK-12S-45-CND |  |
| TTL-driven double-winding latching (with self cutoff function) latching | SPDT | No | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45-C | One per box |
|  |  |  | Yes | 5, 12, 15, and 24 VDC | G9YAT-12S-45-CD |  |
|  |  | Yes | No | 5, 12, 15, and 24 VDC | G9YAT-12S-45-CN |  |
|  |  |  | Yes | 5, 12, 15, and 24 VDC | G9YAT-12S-45-CND |  |

## Specifications

## - Ratings

Indicator Rating

| Rating | 100 mA max. at 30 V |
| :--- | :--- |
| Contact resistance | $1 \Omega \operatorname{max.}$ (See note 2.) |

Note: 1. The above values are initial values.
2. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.

High Frequency Characteristics

| Frequency | $\mathbf{1}$ GHi max. | $\mathbf{4}$ GHi max. | $\mathbf{8} \mathbf{~ G H i ~ m a x . ~}$ | $\mathbf{1 2 . 4}$ GHi max. | $\mathbf{1 8}$ GHi max. | 26.5 GHi max. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Insertion loss | 0.2 dIB | 0.3 dB | 0.4 dB | 0.5 dB | 0.8 dB |  |
| Isolation | 85 dIB | 80 dB | 70 dB | 65 dB | 60 dB |  |
| V.SWR | 1.1 | 1.15 | 1.25 | 1.35 | 1.5 | 1.7 |

Note: The above values are initial values.

Failsafe Model
G9YA-12S-45

| Frequency <br> Item | Rated current | Coil resistance | Must operate voltage | Must release voltage | Maximum voltage | Power consumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.5 VDC | 155.2 mA | $29 \Omega$ | $80 \%$ max. of rated voltage | $10 \%$ min. of rated voltage | $150 \%$ of rated voltage | Approx. <br> 700 mW |
| 12 VDC | 58.5 mA | $205 \Omega$ |  |  |  |  |
| 15 VDC | 46.7 mA | $321 \Omega$ |  |  |  |  |
| 24 VDC | 29.2 mA | $822 \Omega$ |  |  |  |  |
| 28 VDC | 25.0 mA | 1,118 $\Omega$ |  |  |  |  |

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

## Coaxial Switch - G9YA

Double-winding Latching Model

## G9YAK-12S-45

| Frequency Item | Rated current | Coil resistance voltage | Must set voltage | Must reset voltage | Maximum voltage | Power consumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.5 VDC | 109.8 mA | $41 \Omega$ | $80 \%$ max. of rated voltage | $10 \%$ min. of rated voltage | $150 \%$ of rated voltage | Approx. 500 mW |
| 12 VDC | 41.7 mA | $288 \Omega$ |  |  |  |  |
| 15 VDC | 33.3 mA | $450 \Omega$ |  |  |  |  |
| 24 VDC | 20.8 mA | 1,152 $\Omega$ |  |  |  |  |
| 28 VDC | 17.9 mA | 1,568 $\Omega$ |  |  |  |  |

## TTL-driven Latching Model

## G9YAT-12S-45

| Item ${ }^{\text {Frequency }}$ | Rated current |  | Electronic self cut-off | Switching frequency |
| :---: | :---: | :---: | :---: | :---: |
|  | On | Off |  |  |
| 5 VDC | 2.4 to 5.5 V | 0 to 0.5 V | Yes | 180 operations per minute max. <br> (ON time: OFF time $=1: 1$ ) |
| 12 VDC |  |  |  |  |
| 15 VDC |  |  |  |  |
| 24 VDC |  |  |  |  |

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

## Models with Indicator Terminals

Note: An extra 140 to 300 mW of power consumption is added to models with indicator terminals, due to the operating coil and voltage specifications.

## Coaxial Switch - G9YA

## Characteristics

| Type |  | Failsafe model | Double-winding Latching | TTL-driven latching model |
| :---: | :---: | :---: | :---: | :---: |
| Item Model |  | G9YA-12S-45 | G9YAK-12S-45 | G9YAT-12S-45 |
| Contact resistance (See note 3.) |  | $100 \mathrm{~m} \Omega$ max. |  |  |
| Operate (set) time |  | 15 ms max. |  |  |
| Release (reset) time |  | 15 ms max. |  |  |
| Minimum set/reset signal width |  | 100 ms |  |  |
| Insulation resistance (See note 4.) |  | $1000 \mathrm{M} \Omega$ min. (at 500 VDC$)$ |  |  |
| Dielectric strength | Coil and contacts | $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min |  |  |
|  | Coil and ground, contacts and ground | $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min |  |  |
|  | Contacts of same polarity | $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min |  |  |
| Vibration resistance | Destruction | 10 to 55 Hz , 2-mm single amplitude ( 5.0 mm double amplitude) |  |  |
|  | Malfunction | 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ single amplitude ( 3.0 mm double amplitude) |  |  |
| Shock resistance | Destruction | $1,000 \mathrm{~m} / \mathrm{s}^{2}$ |  |  |
|  | Malfunction | $500 \mathrm{~m} / \mathrm{s}^{2}$ |  |  |
| Endurance | Mechanical | 5,000,000 operations min. (at 36,000 operations/hour) |  |  |
|  | Electrical | $5,000,000$ operations min. <br> $3 \mathrm{GHz}, 5 \mathrm{~W} 50 \Omega$, V.SWR1.2 max.(at switching frequency of 1,800 operations per hour) |  |  |
| Ambient temperature |  | Operating: $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |
| Ambient humidity |  | Operating: 5\% to $85 \%$ |  |  |
| Weight |  | Approx. 50 g |  |  |

Note: 1. The above values are initial values.
2. Rated and characteristic (initial) values are for a standard temperature of $23^{\circ} \mathrm{C}$ and a humidity of $65 \%$ unless otherwise indicated.
3. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
4. The insulation resistance was measured with a 500-VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.

## Engineering Data

High-frequency Characteristics (Isolation) (See notes 1 and 2.)


High-frequency Characteristics (Insertion Loss) (See notes 1 and 2.)

High-frequency Characteristics (Return Loss, V.SWR) (See notes 1 and 2.)


Note: 1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
2. The high-frequency characteristics will vary according to the connectors. Be sure to check operation including durability at the actual device before use.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.

## Models with Soldering Terminals

G9YA-12S-45- $\square$
G9YAK-12S-45- $\square$
G9YAT-12S-45- $\square$


| Model | G9YA-12S-45- $\square$ | G9YAK-12S-45- $\square$ | G9YAT-12S-45- $\square$ |
| :---: | :---: | :---: | :---: |
| Indicator terminal Type | Failsafe | Double-winding latching | TTL-driven double-winding |
| Without indicator terminals | $\text { GND } \underset{+}{T_{+}}$ |  |  |
| With indicator terminals |  |  |  |

## Coaxial Switch - G9YA

## Models with Pin Terminals

G9YA-12S-45-P $\square$
G9YAK-12S-45-P $\square$
G9YAT-12S-45-P $\square$


Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Pin Terminal arrangement

| Pin number |  | Indicator |  |  |  | Coil |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Without indicator terminals | Failsafe |  |  |  |  |  | GND |  | + |
|  | Double-winding latching |  |  |  |  |  | GND | 1 | 2 |
|  | TTL-driven doublewinding latching |  |  |  |  | V | GND | Logic 1 | Logic 2 |
| With indicator terminals | Failsafe |  | NC | COM | NO |  | GND |  | + |
|  | Double-winding latching |  | 1 | COM | 2 |  | GND | 1 | 2 |
|  | TTL-driven double winding latching |  | 1 | COM | 2 | V | GND | Logic 1 | Logic 2 |

## - Models with Connector Cables

G9YA-12S-45-C $\square$
G9YAK-12S-45-C $\square$
G9YAT-12S-45-C $\square$


Pin Terminal arrangement

| Pin number |  | Indicator |  |  |  | Coil |  |  |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| Without indicator terminals | Failsafe |  |  |  |  |  |  | GND | + |  |
|  | Double-winding latching |  |  |  |  |  |  | GND | 1 | 2 |
|  | TTL-driven doublewinding latching |  |  |  |  |  | V | GND | Logic 1 | Logic 2 |
| With indicator terminals | Failsafe |  | NC | COM | NO |  |  | GND | + |  |
|  | Double-winding latching |  | 1 | COM | 2 |  |  | GND | 1 | 2 |
|  | TTL-driven double winding latching |  | 1 | COM | 2 |  | V | GND | Logic 1 | Logic 2 |

## Precautions

## - Precautions for Correct Use

## Relay handing

- Relays are precision components. Do not subject the Relay to vibration or shock in excess of the standard values, whether before or after mounting. The original performance cannot be maintained if the Relay is subjected to abnormal vibration or shock or dropped. Also, do not subject the Relay to vibration or shock in excess of the rated values when it is still packaged.
- Avoid subjecting the Relay to direct sunlight when it is being used, stored or transported. Keep the Relay at conditions of normal temperature, humidity, and pressure.
- The Relay is not sealed. It cannot be washed.
- Be absolutely sure not to wire the Relay incorrectly. Incorrect wiring will result in failure of Relay functions and damage or fire in the Relay, in addition to affecting external circuits.
- Recommended torque for mounting the SMA connectors is the MIL-C-39012 standard of $0.90 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$. The conditions, however, depend on the compatibility with the material of the connectors.
- Use of two or more Relays may result in change in the Relay characteristics due to interference in the magnetic fields generated by the Relays. Be sure to check operation using the actual devices before use.
- Use a power supply for the coil operating power supply with a maximum ripple of $5 \%$. Be sure to check operation using the actual devices before use.
- Operation in excess of the coil ratings, contact ratings, switching service life or other specifications may result in abnormal heat generation, smoke, or fire.


## Latching Relay Mounting

Make sure that the vibration or shock generated from other devices (e.g., Relays) on the same panel during operation or resetting do not exceed the values provided in the catalog, otherwise the latching Relay that has been set may be reset or vice versa. The latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the latching Relay may be set accidentally. Be sure to apply a reset signal before use.

## Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will deteriorate the insulation, causing a film to develop on the contact surfaces. We recommend using a latching Relay (magnetic-holding Relay) in this kind of circuit. If a failsafe Relay must be used in this kind of circuit, use a full-loop circuit design toprovide protection against possible poor connections and coil disconnection.

## Using Relays in an Atmosphere Containing Corrosive Gas (Silicon, Sulfuric, or Organic Gas)

Do not use Relays in a location where silicon gas, sulfuric gas (SO2, H2S), or organic gas is present. If Relays are used for a long period in an atmosphere of sulfuric gas or organic gas, contact surfaces may become corroded and cause contact instability and obstruction, and terminal soldering characteristics may be degraded. If Relays are stored or used for a long time in an atmosphere of silicon gas, a silicon coating will be generated on contact surfaces, causing contact failure.

## Connecting to Coil Terminals and Indicator Terminals

## I. Models with Soldering Terminals

Perform manual soldering under the following conditions.
Soldering iron tip temperature: 280 to $300^{\circ} \mathrm{C}$
Soldering time: Approx. 3 s max.

## II. Models with Pin Terminals

Heed the following precautions when using models with pin terminals.

1. Connectors for use: Straight dip type for panels Male connectors: HKP-8M29 (Honda Tsushin Kogyo) Refer to the general catalog of Honda Tsushin Kogyo for connector models and specifications.
2. The sockets do not have a lock mechanism. Pulling the lead wires, shock, or long-term vibration may cause the connectors to become disconnected. Heed the following precautions.

- Securely fix the Relay and connectors and make sure that no force is pulling on the lead wires during use.
- Fully insert the socket into the Relay connector.

3. Do not solder the lead wires directly to the pin connectors.

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

