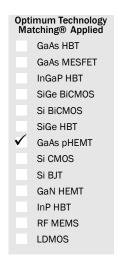
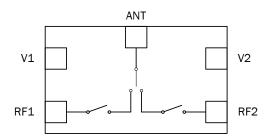



### 10W GaAs WIDEBAND SPDT SWITCH




Package: 3mmx3mm QFN






### **Product Description**

The FMS2031-001 is a 10-Watt, low loss, single-pole, dual-throw, Gallium Arsenide antenna switch. The die is fabricated using the RFMD FL05  $0.5\,\mu m$  switch process technology, which offers leading edge performance optimized for switch applications. The FMS2031-001 is designed for use in WiMax, L-, S-, and C-band wireless applications and WLAN access points where high linearity switching is required.





#### **Features**

- High Isolation: 36dB Typ. at 3.5GHz
- Low Insertion Loss: 0.5dB Typ. at 2.5GHz
- Low Insertion Loss: 0.96dB Typ. at 6GHz
- P<sub>1dB</sub> 42dBm at 5GHz
- Operates from a Single Positive Voltage
- Less than 10 μA Control Current at 35 dBm Input Power

### **Applications**

- WiMax
- L-, S-, and C-band Digital Cellular
- WLAN Applications

| Parameter                                              | Specification |      | Unit | Condition |                                                                              |
|--------------------------------------------------------|---------------|------|------|-----------|------------------------------------------------------------------------------|
| r arameter                                             | Min.          | Тур. | Max. | UIIIL     | Condition                                                                    |
| Electrical Specifications                              |               |      |      |           | $T_{AMBIENT}$ =25 °C, $V_{CTRL}$ =0V/2.7V, $Z_{IN}$ = $Z_{OUT}$ =50 $\Omega$ |
| Insertion Loss                                         |               | 0.5  | 0.6  | dB        | 2.3GHz to 2.7GHz                                                             |
|                                                        |               | 0.55 | 0.7  | dB        | 3.3GHz to 3.8GHz                                                             |
|                                                        |               | 0.9  |      | dB        | 4.9GHz to 5.9GHz                                                             |
| Return Loss                                            |               | 27.5 |      | dB        | 2.3 GHz to 2.7 GHz                                                           |
|                                                        |               | 21.5 |      | dB        | 3.3GHz to 3.8GHz                                                             |
|                                                        |               | TBD  |      | dB        | 4.9GHz to 5.9GHz                                                             |
| Isolation                                              | 30            | 32.5 |      | dB        | 2.3 GHz to 2.7 GHz                                                           |
|                                                        | 30            | 35   |      | dB        | 3.3GHz to 3.8GHz                                                             |
|                                                        |               | 23   |      | dB        | 4.9GHz to 5.9GHz                                                             |
| P <sub>IN</sub> at 0.1dB Compression Point             |               | 39.5 |      | dBm       | 2.3GHz to 2.7GHz                                                             |
|                                                        |               | 38.5 |      | dBm       | 3.3GHz to 3.8GHz                                                             |
|                                                        |               | 38   |      | dBm       | 4.9GHz to 5.9GHz                                                             |
| P <sub>IN</sub> at 0.5dB Compression Point             |               | 41   |      | dBm       | 2.3GHz to 2.7GHz                                                             |
|                                                        |               | 41   |      | dBm       | 3.3GHz to 3.8GHz                                                             |
|                                                        |               | 41   |      | dBm       | 4.9GHz to 5.9GHz                                                             |
| EVM (Contribution Due to Switch)                       |               | Δ0.5 |      | %         | 35dBm at 5.9GHz (OFDM WLAN 54)                                               |
| OIP3                                                   |               | 65   |      | dBm       | +15dBm 1980MHz, +15dBm 1940MHz                                               |
| Switching Speed: T <sub>RISE</sub> , T <sub>FALL</sub> |               | <300 |      | ns        | 10% to 90% RF and 90% to 10% RF                                              |
| Switching Speed: T <sub>ON</sub> , T <sub>OFF</sub>    |               | <800 |      | ns        | 50% control to 90% RF and 50% control to 10% RF                              |
| Control Current                                        |               | <5   | 10   | μА        | +35dBm RF input @ 0.96GHz                                                    |



### Absolute Maximum Ratings<sup>1</sup>

| Parameter                    | Rating     | Unit |
|------------------------------|------------|------|
| Max Input Power              | +41        | dBm  |
| Control Voltage              | +6         | V    |
| Operating Temperature        | -40 to 85  | °C   |
| Maximum Junction Temperature | 125        | °C   |
| Storage Temperature          | -55 to 150 | °C   |



At high powers, the dissipation in the switch can be significant and the resulting thermal effects need to be taken in to account. The device should be mounted with appropriate heat sinking to take this into account.

with appropriate heat sinking to take this into account. The maximum allowable junction temperature is  $T_{JMAX}$  = 125 °C and for the thermal calculation, the dissipation within the switch should be taken as  $\eta$  = 5.5%. This should include the power input to the switch and anything reflected back from an external mismatch.

The thermal resistance of the FET should be taken as  $R_{TH} = 70$  °C/W.

 $T_J = T_{OP} + P_{IN} . \eta. R_{TH}$ , where  $T_J < T_{JMAX}$ 



Caution! ESD sensitive device.

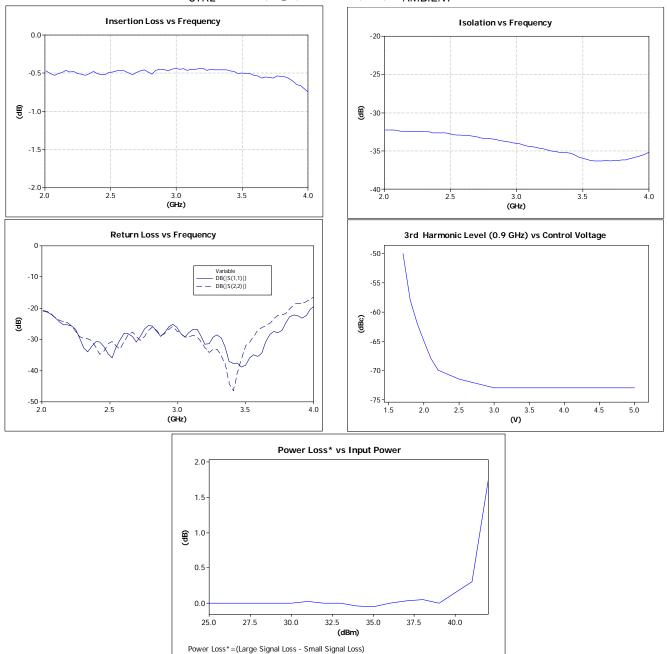
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

### **Truth Table**

| Switch State | VC1  | VC2  | ANT - RF1      | ANT - RF2      |
|--------------|------|------|----------------|----------------|
| Α            | High | Low  | Insertion loss | Isolation      |
| В            | Low  | High | Isolation      | Insertion Loss |


Note: External DC blocking capacitors are required on all RF ports (typ: 9pF). All unused ports terminated in  $50\Omega$ .

High: +2.7V to +6V. Low: +0V to +0.2V.

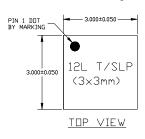


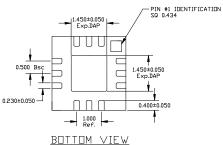
# Typical Measured Performance on Evaluation Board (De-embedded)

Measurement Conditions:  $V_{CTRL}$  = 2.7 V (high) and 0 V (low),  $T_{AMBIENT}$  = 25 °C unless otherwise stated.



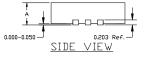



### **Part Identification**

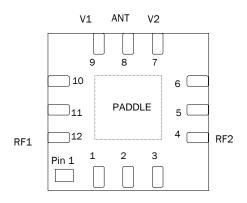



First row: Device code "2031". Second row: Trace Code, to be assigned by SubCon.

## **Package Drawing**


QFN 12-Lead 3mmx3mm





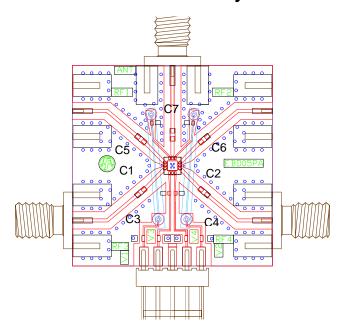



|    |      | TSLP  | SLP   |
|----|------|-------|-------|
|    | MAX. | 0.800 | 0.900 |
| ΙΑ | NDM. | 0.750 | 0.850 |
|    | MIN  | 0.700 | 0.000 |



## **Pad Layout**

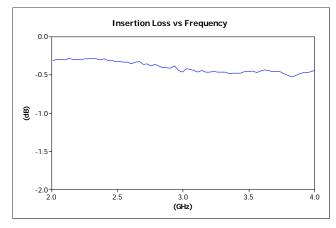


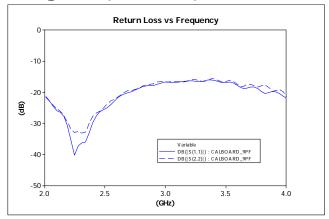

| Pin | Function | Description |
|-----|----------|-------------|
| 1   | NC       | No connect. |
| 2   | NC       | No connect. |
| 3   | NC       | No connect. |
| 4   | RF2      |             |
| 5   | NC       | No connect. |
| 6   | NC       | No connect. |
| 7   | V2       |             |
| 8   | ANT RF   |             |
| 9   | V1       |             |
| 10  | NC       | No connect. |
| 11  | NC       | No connect. |
| 12  | RF1      |             |
|     | Paddle   | Ground.     |

## **Tape and Reel Specification**

Tape and reel information on this material is in accordance with EIA-481-1 except where exceptions are identified.




## **Evaluation Board Layout**




#### **Bill of Materials**

| Label      | Component                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
| C3, C4     | Capacitor, 470 pF, 0603                                                                                                          |
| C1, C2, C7 | Capacitor, 9pF, 0402                                                                                                             |
| C5, C6     | Capacitor, 47 pF, 0402                                                                                                           |
| Board      | Preferred evaluation board material is 0.25 mm thick ROGERS RT4350. All RF tracks should be $50\Omega$ characteristic impedance. |

## **Evaluation Board De-embedding Data (Measured)**







### **Preferred Assembly Instructions**

This package is compatible with both lead free and leaded solder reflow processes as defined within IPC/JEDEC J-STD-020C. The maximum package temperature should not exceed 260 °C.

### **Handling Precautions**



To avoid damage to the devices, care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing.

### **ESD Rating**

These devices should be treated as Class 1A (250V to 500V), using the Human Body Model, as defined in JEDEC Standard No. 22-A114. Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

### **MSL Rating**

The device has an MSL rating of Level 1. To determine this rating, preconditioning was performed to the device per the Pb-free solder profile defined within IPC/JEDEC J-STD-020, Moisture/Reflow sensitivity classification for non-hermetic solid state surface mount devices.

### **Application Notes and Design Data**

Application Notes and design data including S-parameters are available on request at www.RFMD.com.

### Reliability

An MTTF of in excess of nine million hours at a channel temperature 150°C is achieved for the process used to manufacture this device.

### **Disclaimers**

This product is not designed for use in any space-based or life-sustaining/supporting equipment.

### **Ordering Information**

| Delivery Quantity | Ordering Code  |
|-------------------|----------------|
| Reel of 1000      | FMS2031-001    |
| Reel of 100       | FMS2031-001SR  |
| Bag of 25         | FMS2031-001SQ  |
| Bag of 5          | FMS2031-001SB  |
| Evaluation Board  | FMS2031-001-EB |