High-performance Regulator IC Series for PCs

Ultra Low Dropout Linear Regulators for PC Chipsets with Power Good
BD3512MUV (3A)

● Description
The BD3512MUV ultra low-dropout linear chipset regulator operates from a very low input supply, and offers ideal performance in low input voltage to low output voltage applications. It incorporates a built-in N-MOSFET power transistor to minimize the input-to-output voltage differential to the ON resistance ($R_{ON}=100\, \Omega$) level. By lowering the dropout voltage in this way, the regulator realizes high current output ($I_{OMAX}=3.0\, \text{A}$) with reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier diode. Thus, the BD3512MUV is designed to enable significant package profile downsizing and cost reduction. An external resistor allows the entire range of output voltage configurations between 0.65 and 2.7V, while the NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power supply sequence is required.

● Features
1) Internal high-precision reference voltage circuit (0.65V±1%)
2) Built-in VCC undervoltage lockout circuit (VCC=3.80V)
3) NRCS (soft start) function reduces the magnitude of in-rush current
4) Internal Nch MOSFET driver offers low ON resistance (65mΩ typ)
5) Built-in current limit circuit (3.0A min)
6) Built-in thermal shutdown (TSD) circuit (Timer latch)
7) Variable output (0.65~2.7V)
8) High-power package VQFN020V4040 : 4.0×4.0×1.0(mm)
9) Tracking function

● Applications
Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances

Oct. 2008
Absolute maximum ratings (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage 1</td>
<td>VCC</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage 2</td>
<td>VIN</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage 3</td>
<td>VCC</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage 4</td>
<td>VD</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>IO</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Enable Input Voltage</td>
<td>Ven</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD Input Voltage</td>
<td>VPGOOD</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation 1</td>
<td>Pd1</td>
<td>0.34</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation 2</td>
<td>Pd2</td>
<td>0.70</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation 3</td>
<td>Pd3</td>
<td>1.21</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation 4</td>
<td>Pd4</td>
<td>3.56</td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Topr</td>
<td>-10~+100</td>
<td>℃</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-55~+125</td>
<td>℃</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td>+150</td>
<td>℃</td>
</tr>
</tbody>
</table>

*1 Should not exceed Pd.
*2 Reduced by 2.7mW/°C for each increase in Ta≥25°C (no heat sink)
*3 Reduced by 5.6mW for each increase in Ta of 1°C over 25°C. (when mounted on a board 74.2mm × 74.2mm × 1.6mm Glass-epoxy PCB.)

Operating Voltage (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage 1</td>
<td>VCC</td>
<td>4.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage 2</td>
<td>VIN</td>
<td>0.7</td>
<td>VCC-1</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage 3</td>
<td>VCC</td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Setting Range</td>
<td>Vo</td>
<td>VFB</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>Enable Input Voltage</td>
<td>Ven</td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
</tbody>
</table>

*VCC and VIN do not have to be implemented in the order listed.
★ This product is not designed for use in radioactive environments.
Electrical Characteristics (Unless otherwise specified, Ta=25°C, Vcc=5V, Ven=3V, VIN=1.7V, R1=3.9KΩ, R2=3.3KΩ)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias Current</td>
<td>Icc</td>
<td>-</td>
<td>1.4</td>
<td>2.2 mA</td>
</tr>
<tr>
<td>VCC Shutdown Mode Current</td>
<td>IST</td>
<td>-</td>
<td>0</td>
<td>10 μA Ven=0V</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>Io</td>
<td>3.0</td>
<td>-</td>
<td>- A</td>
</tr>
<tr>
<td>Output Voltage Temperature</td>
<td>Tcvo</td>
<td>-</td>
<td>0.01</td>
<td>- %/°C</td>
</tr>
<tr>
<td>Feedback Voltage 1</td>
<td>VFB1</td>
<td>0.643</td>
<td>0.650</td>
<td>0.657 V Io=0 to 3A Tj=-10 to 100°C</td>
</tr>
<tr>
<td>Feedback Voltage 2</td>
<td>VFB2</td>
<td>0.637</td>
<td>0.650</td>
<td>0.663 V Io=0 to 3A Tj=-10 to 100°C</td>
</tr>
<tr>
<td>Line Regulation 1</td>
<td>Reg.L1</td>
<td>-</td>
<td>0.1</td>
<td>0.5 %/°V Vcc=4.3V to 5.5V</td>
</tr>
<tr>
<td>Line Regulation 2</td>
<td>Reg.L2</td>
<td>-</td>
<td>0.1</td>
<td>0.5 %/°V VIN=1.5V to 3.3V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>Reg.L</td>
<td>-</td>
<td>0.5</td>
<td>10 mV Io=0 to 3A</td>
</tr>
<tr>
<td>Minimum dropout voltage</td>
<td>dVo</td>
<td>-</td>
<td>65</td>
<td>100 mV Io=1A,VIN=1.2V</td>
</tr>
<tr>
<td>Standby Discharge Current</td>
<td>Iden</td>
<td>-</td>
<td>1</td>
<td>- mA Ven=0V, Vo=1V</td>
</tr>
</tbody>
</table>

[ENABLE]

Enable Pin	Input Voltage High	Enhi	2	-	-	V
Enable Pin	Input Voltage Low	Enlow	-0.2	-	0.8	V
Enable Input Bias Current	Ien	-	6	10	μA Ven=3V	

[FEEDBACK]

| Feedback Pin Bias Current | IFB | -100 | 0 | 100 | nA |

[NRCS]

| NRCS Charge Current | Inrcs | 14 | 20 | 26 | μA Vnrsc=0.5V |
| NRCS Standby Voltage | VSTB | - | 0 | 50 | mV Ven=0V |

[UVLO]

VCC Undervoltage Lockout Voltage	VccUVLO	3.5	3.8	4.1	V Vcc:Sweep-up
VCC Undervoltage Lockout Voltage	VccUVLO	3.5	3.8	4.1	V Vcc:Sweep-up
Hysteresis Voltage	Vcchys	100	160	220	mV Vcc:Sweep-down
UD Undervoltage Lockout Voltage	VDUVLO	VREF x 0.6	VREF x 0.7	VREF x 0.8	V VD:Sweep-up

[SCP]

SCP Startup Voltage	VsSCP	VREF x 0.3	VREF x 0.4	VREF x 0.5	V
SCP Threshold Voltage	VsCP	1.05	1.15	1.25	V
SCP Charge Current	IsSCP	1.4	2	2.6	μA
SCP Standby Voltage	VsCPSTBY	-	-	50	mV

[PGOOD]

Low-side Threshold Voltage	VTHPGL	VREF x 0.87	VREF x 0.9	VREF x 0.93	V
High-side Threshold Voltage	VTHPSH	VREF x 1.07	VREF x 1.1	VREF x 1.13	V
PGDLY Charge Current	Ipgdly	1.4	2.0	2.6	μA ※

Ron
\[t_{pgdly} = \frac{G(pF) \times 1.23}{I_{pgdly} (\mu A)} \] (μ sec)
Fig. 1 Transient Response
(0 → 3A)
Co=22 μF, Cfb=1000pF

Fig. 2 Transient Response
(0 → 3A)
Co=100 μF

Fig. 3 Transient Response
(0 → 3A)
Co=100 μF, Cfb=1000pF

Fig. 4 Transient Response
(3 → 0A)
Co=22 μF, Cfb=1000pF

Fig. 5 Transient Response
(3 → 0A)
Co=100 μF

Fig. 6 Transient Response
(3 → 0A)
Co=100 μF, Cfb=1000pF

Fig. 7 Waveform at output start

Fig. 8 Waveform at output OFF

Fig. 9 Input sequence

Fig. 10 Input sequence

Fig. 11 Input sequence

Fig. 12 Input sequence
Reference Data

Fig.13 Input sequence

Fig.14 Input sequence

Fig.15 Tj-Vo

Fig.16 Tj-ICC

Fig.17 Tj-ISTB

Fig.18 Tj-INSTB

Fig.19 Tj-INRCS

Fig.20 Tj-IEN

Fig.21 Tj-RON
(VCC=5V/VO=1.2V)

Fig.22 Tj-RON
(VCC=5V/VO=1.5V)

Fig.23 VCC-RON
Pin Layout

```
Vo2  Vo1  VIN5  VIN4  VIN3
15    14    13    12    11
Vo3   16
Vo4   17
Vo5   18
FB    19
NRCS  20
```

- FIN
- GND1
- SCP
- PGDLY
- PG
- VCC

Pin Function Table

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>PIN Name</th>
<th>PIN Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND1</td>
<td>Ground Pin 1</td>
</tr>
<tr>
<td>2</td>
<td>SCP</td>
<td>SCP Delay Time Setting Capacitor Connection Pin</td>
</tr>
<tr>
<td>3</td>
<td>PGDLY</td>
<td>PGOOD Delay Setting Capacitor Connection Pin</td>
</tr>
<tr>
<td>4</td>
<td>PG</td>
<td>Power Good Pin</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>Power Supply Pin</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>Power Supply Pin</td>
</tr>
<tr>
<td>7</td>
<td>EN</td>
<td>Enable Input Pin</td>
</tr>
<tr>
<td>8</td>
<td>VD</td>
<td>VIN Input Voltage Detect Pin</td>
</tr>
<tr>
<td>9</td>
<td>VIN1</td>
<td>Input Voltage Pin 1</td>
</tr>
<tr>
<td>10</td>
<td>VIN2</td>
<td>Input Voltage Pin 2</td>
</tr>
<tr>
<td>11</td>
<td>VIN3</td>
<td>Input Voltage Pin 3</td>
</tr>
<tr>
<td>12</td>
<td>VIN4</td>
<td>Input Voltage Pin 4</td>
</tr>
<tr>
<td>13</td>
<td>VIN5</td>
<td>Input Voltage Pin 5</td>
</tr>
<tr>
<td>14</td>
<td>Vo1</td>
<td>Output Voltage Pin 1</td>
</tr>
<tr>
<td>15</td>
<td>Vo2</td>
<td>Output Voltage Pin 2</td>
</tr>
<tr>
<td>16</td>
<td>Vo3</td>
<td>Output Voltage Pin 3</td>
</tr>
<tr>
<td>17</td>
<td>Vo4</td>
<td>Output Voltage Pin 4</td>
</tr>
<tr>
<td>18</td>
<td>Vo5</td>
<td>Output Voltage Pin 5</td>
</tr>
<tr>
<td>19</td>
<td>FB</td>
<td>Reference Voltage Feedback Pin</td>
</tr>
<tr>
<td>20</td>
<td>NRCS</td>
<td>In-rush Current Protection (NRCS) Capacitor Connection Pin</td>
</tr>
</tbody>
</table>

* Please short N.C to the GND line.
Operation of Each Block

- **AMP**
 This is an error amp compares the reference voltage (0.65V) with V_O to drive the output Nch FET ($R_{on}=50\,\text{m}\Omega$). Frequency optimization helps to realize rapid transient response, and to support the use of ceramic capacitors on the output. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to V_{CC}. When EN is OFF, or when UVLO is active, output goes LOW and the output of the NchFET switches OFF.

- **EN**
 The EN block controls the regulator’s ON/OFF state via the EN logic input pin. In the OFF position, circuit voltage is maintained at $0\,\mu\text{A}$, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the NRCS pin V_O, thereby draining the excess charge and preventing the IC on the load side from malfunctioning. Since no electrical connection is required (e.g. between the V_{CC} pin and the ESD prevention diode), module operation is independent of the input sequence.

- **UVLO**
 To prevent malfunctions that can occur during a momentary decrease in V_{CC}, the UVLO circuit switches the output OFF, and (like the EN block) discharges NRCS and V_O. Once the UVLO threshold voltage (TYP3.80V) is reached, the power-on reset is triggered and output continues.

- **CURRENT LIMIT**
 When output is ON, the current limit function monitors the internal IC output current against the parameter value. When current exceeds this level, the current limit module lowers the output current to protect the load IC. When the overcurrent state is eliminated, output voltage is restored to the parameter value.

- **NRCS (Non Rush Current on Start-up)**
 The soft start function enabled by connecting an external capacitor between the NRCS pin and ground. Output ramp-up can be set for any period up to the time the NRCS pin reaches V_{FB} (0.65V). During startup, the NRCS pin serves as a $20\,\mu\text{A}$ (TYP) constant current source to charge the external capacitor. Capacitors with low susceptibility ($0.001\,\mu\text{F} \sim 1\,\mu\text{F}$) to temperature are recommended, in order to assure a stable soft-start time.

- **TSD (Thermal Shut down)**
 The shutdown (TSD) circuit automatically is latched OFF when the chip temperature exceeds the threshold temperature after the programmed time period elapses, thus serving to protect the IC against “thermal runaway” and heat damage. Because the TSD circuit is intended to shut down the IC only in the presence of extreme heat, it is crucial that the T_j (max) parameter not be exceeded in the thermal design, in order to avoid potential problems with the TSD.

- **VIN**
 The V_{IN} line acts as the major current supply line, and is connected to the output NchFET drain. Since no electrical connection (such as between the V_{CC} pin and the ESD protection diode) is necessary, V_{IN} operates independent of the input sequence. However, since an output NchFET body diode exists between V_{IN} and V_O, a V_{IN}-V_O electric (diode) connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to V_{IN} from V_O.

- **PGOOD**
 It outputs the status of the output voltage. This is open drain pin and connects to V_{CC} pin through the pull-up resistance (100kΩ or so). When the output voltage range is $V_O \times 0.9$ to $V_O \times 1.1$ (TYP), the status is high.
VIN ON/OFF

VIN

VD

VCC

EN

NRCS

Vo

PGOOD

$V_{O} = V_{REF} \times 0.7 \text{(typ)}$

$V_{O} \times 0.9$

$0.65V \text{(typ)}$

60 μs (typ; $C = 100pF$)

UVLO (latch)

(detect in VD)
BD3512MUV Evaluation Board Schematic

![Schematic Diagram](image)

BD3512MUV Evaluation Board Standard Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Manufacturer</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>-</td>
<td>ROHM</td>
<td>BD3512MUV</td>
</tr>
<tr>
<td>C2</td>
<td>100pF</td>
<td>MURATA</td>
<td>CRM1882C1H101JA01</td>
</tr>
<tr>
<td>C3</td>
<td>100pF</td>
<td>MURATA</td>
<td>CRM1882C1H101JA01</td>
</tr>
<tr>
<td>R4</td>
<td>100kΩ</td>
<td>ROHM</td>
<td>MCR03EZPF1003</td>
</tr>
<tr>
<td>C5</td>
<td>0.1uF</td>
<td>KYOCERA</td>
<td>CM05104K100A</td>
</tr>
<tr>
<td>C6</td>
<td>1uF</td>
<td>KYOCERA</td>
<td>CM10SB105K06A</td>
</tr>
<tr>
<td>R7</td>
<td>0Ω</td>
<td>-</td>
<td>jumper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Manufacturer</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8</td>
<td>3.9kΩ</td>
<td>ROHM</td>
<td>MCR03EZPF3901</td>
</tr>
<tr>
<td>R9</td>
<td>3.3kΩ</td>
<td>ROHM</td>
<td>MCR03EZPF3301</td>
</tr>
<tr>
<td>C9</td>
<td>10uF</td>
<td>KYOCERA</td>
<td>CM21B106M06A</td>
</tr>
<tr>
<td>C16</td>
<td>22uF</td>
<td>KYOCERA</td>
<td>CM316B226M06A</td>
</tr>
<tr>
<td>R18</td>
<td>3.3kΩ</td>
<td>ROHM</td>
<td>MCR03EZPF3301</td>
</tr>
<tr>
<td>R19</td>
<td>3.9kΩ</td>
<td>ROHM</td>
<td>MCR03EZPF3901</td>
</tr>
<tr>
<td>V20</td>
<td>0.01uF</td>
<td>MURATA</td>
<td>GRM188B11H102KA01</td>
</tr>
</tbody>
</table>

BD3512MUV Evaluation Board Layout

Silk Screen (Top)

![Silk Screen (Top)](image)

Silk Screen (Bottom)

![Silk Screen (Bottom)](image)

TOP Layer

![TOP Layer](image)

Middle Layer_1

![Middle Layer_1](image)

Middle Layer_2

![Middle Layer_2](image)

Bottom Layer

![Bottom Layer](image)
Recommended Circuit Example

R18/R19 3.3k/3.9k

IC output voltage can be set with a configuration formula \(V_{FB} \times \frac{(R18+R19)}{R19} \) using the values for the internal reference output voltage \(V_{FB} \) and the output voltage resistors \(R18 \), \(R19 \). Select resistance values that will avoid the impact of the FB bias current (±100nA). The recommended total resistance value is 10KΩ.

R4 100k

This is the pull-up resistance for open drain pin. It is recommended to set the value about 100kΩ.

C16 22 μF

To assure output voltage stability, please be certain the Vo1~Vo5 pins and the GND pins are connected. Output capacitors play a role in loop gain phase compensation and in mitigating output fluctuation during rapid changes in load level. Insufficient capacitance may cause oscillation, while high equivalent series resistance (ESR) will exacerbate output voltage fluctuation under rapid load change conditions. While a 22 μF ceramic capacitor is recommended, actual stability is highly dependent on temperature and load conditions. Also, note that connecting different types of capacitors in series may result in insufficient total phase compensation, thus causing oscillation. In light of this information, please confirm operation across a variety of temperature and load conditions.

C6/C5 1 μF/0.1 μF

Input capacitors reduce the output impedance of the voltage supply source connected to the (VCC) input pins. If the impedance of this power supply were to increase, input voltage (VCC) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 1 μF / 0.1 μF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions.

C9 10 μF

Input capacitors reduce the output impedance of the voltage supply source connected to the (VIN) input pins. If the impedance of this power supply were to increase, input voltage (VIN) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 10 μF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions.

C20 0.01 μF

The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush current from going through the load (VIN to VO) and impacting output capacitors at power supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the UVLO function is deactivated. The temporary reference voltage is proportionate to time, due to the current charge of the NRCS pin capacitor, and output voltage start-up is proportionate to this reference voltage. Capacitors with low susceptibility to temperature are recommended, in order to assure a stable soft-start time.

C_RFB 1000pF

This component is employed when the C16 capacitor causes, or may cause, oscillation. It provides more precise internal phase correction.
Heat Loss

Thermal design should allow operation within the following conditions. Note that the temperatures listed are the allowed temperature limits, and thermal design should allow sufficient margin from the limits.

1. Ambient temperature T_a can be no higher than 100 $^\circ$C.
2. Chip junction temperature (T_j) can be no higher than 150$^\circ$C.

Chip junction temperature can be determined as follows:

① Calculation based on ambient temperature (T_a)

\[
T_j = T_a + \theta_{j-a} \times W
\]

<Reference values>

θ_{j-a}: VQFN020V4040 249.5$^\circ$C/W IC only
- 160.1$^\circ$C/W 1-layer substrate (copper foil area : 0mm2)
- 82.6$^\circ$C/W 4-layer substrate (copper foil area : 10.29mm2)
- 31.2$^\circ$C/W 4-layer substrate (copper foil area : 5505mm2)

Substrate size: 74.2 \times 74.2 \times 1.6mm3 (substrate with thermal via)

It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate). This package is so small (size: 2.9mm \times 3.0mm) that it is not available to layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below enable to get the superior heat radiation characteristic. (This figure is the image. It is recommended that the VIA size and the number is designed suitable for the actual situation.).

Most of the heat loss that occurs in the BD3512MUV is generated from the output Nch FET. Power loss is determined by the total V_{IN}-V_o voltage and output current. Be sure to confirm the system input and output voltage and the output current conditions in relation to the heat dissipation characteristics of the V_{IN} and V_o in the design. Bearing in mind that heat dissipation may vary substantially depending on the substrate employed (due to the power package incorporated in the BD3512MUV) make certain to factor conditions such as substrate size into the thermal design.

\[
\text{Power consumption (W)} = \left\{ \text{Input voltage (} V_{IN} \text{- Output voltage (} V_o \text{))} \right\} \times I_o(Ave)
\]

Example) Where V_{IN}=1.5V, V_o=1.25V, $I_o(Ave)$ = 4A,

\[
\text{Power consumption (W)} = \left\{ 1.5(V)-1.2(V) \right\} \times 4.0(A)
\]

\[
= 1.0(W)
\]
Input-Output Equivalent Circuit Diagram
Operation Notes

1. Absolute maximum ratings
 An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2. Connecting the power supply connector backward
 Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

3. Power supply lines
 Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.

4. GND voltage
 The potential of GND pin must be minimum potential in all operating conditions.

5. Thermal design
 Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

6. Inter-pin shorts and mounting errors
 Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.

7. Actions in strong electromagnetic field
 Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

8. ASO
 When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.

9. Thermal shutdown circuit
 The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

<table>
<thead>
<tr>
<th></th>
<th>TSD on temperature [°C] (typ.)</th>
<th>Hysteresis temperature [°C] (typ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD3512MUV</td>
<td>175</td>
<td>15</td>
</tr>
</tbody>
</table>

10. Testing on application boards
 When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC’s power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.
11. Regarding input pin of the IC
 This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:
 When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
 When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

 When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

Heat Dissipation Characteristics

\(\theta_{j-a}=35.1 \, ^\circ C/W \) for 4 layers (Copper foil area : 5505mm\(^2\))
\(\theta_{j-a}=103.3 \, ^\circ C/W \) for 4 layers (Copper foil area : 10.29m\(^2\))
\(\theta_{j-a}=178.6 \, ^\circ C/W \) for no copper foil area
\(\theta_{j-a}=367.6 \, ^\circ C/W \) for IC only.

\[P_{d} \, [W] \]

Power dissipation (\(P_{d}\)): 0 to 4 W
Ambient temperature (\(T_{a}\)): 0 to 150°C

\(P_{d} \) vs. \(T_{a} \)

Example of IC structure
Type Designations (Ordering Information)

- **Product Name**: BD3512
- **Package Type**: MUV : VQFN020V4040

E2 Emboss tape reel opposite draw-out side: 1 pin

VQFN020V4040

Dimension

(Unit:mm)

<Tape and Reel information>

- **Tape**: Embossed carrier tape (with dry pack)
- **Quantity**: 2500pcs
- **Direction of feed**: E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

※When you order, please order in times the amount of package quantity.

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO., LTD.

Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing, circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams and information, described herein, are intended only as illustrations of such devices and not as specifications for such devices. ROHM CO., LTD. disclaim any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

Upon the sale of any such devices, other than for buyer's right to use such devices itself, re-sale or otherwise dispose of the same, limited right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to such buyer.

The products described herein utilize silicon as the main material.

The products described herein are not designed to be use for medical products.

Contact us for further information about the products.

- **San Diego**: TEL: +1-858-621-3630 FAX: +1-619-621-3970
- **Atlanta**: TEL: +1-770-575-5072 FAX: +1-770-575-6981
- **Chicago**: TEL: +1-847-386-1006 FAX: +1-847-386-1161
- **Dallas**: TEL: +1-603-877-3596 FAX: +1-603-877-2793
- **Denver**: TEL: +1-303-785-0990 FAX: +1-303-785-0998
- **Detroit**: TEL: +1-313-264-9320 FAX: +1-313-264-9642
- **Nashville**: TEL: +1-615-620-6700 FAX: +1-615-620-6702
- **Mexico**: TEL: +52-54-724-2001 FAX: +52-54-723-2002
- **Dusseldorf**: TEL: +49-2154-92170 FAX: +49-2154-921700
- **Munich**: TEL: +49-89-1816-448 FAX: +49-89-1617176
- **Stuttgart**: TEL: +49-711-722-3170 FAX: +49-711-722-3172
- **France**: TEL: +33-3-8437-3202 FAX: +33-1-1671-3000
- **Singapore**: TEL: +65-9906-306700 FAX: +65-9906-307898
- **Japan**: TEL: +81-3-6846-6750 FAX: +81-3-6846-6798
- **Europe**: TEL: +39-36-9725-44491 FAX: +39-36-7205-4499
- **Italy**: TEL: +39-36-9720-3536 FAX: +39-36-9720-3537
- **Oulu**: TEL: +358-8-5792390 FAX: +358-9-5792391
- **Barcelona**: TEL: +34-937-242020 FAX: +34-937-244101
- **Hungary**: TEL: +36-1-4777398 FAX: +36-1-4777395
- **Poland**: TEL: +48-22-5775270 FAX: +48-22-5775281
- **Russia**: TEL: +7-499-728-4174 FAX: +7-499-728-4174
- **South Korea**: TEL: +82-81-981-7000 FAX: +82-81-981-7115
- **Mexico**: TEL: +52-54-724-8025 FAX: +52-54-724-8996
- **Taiwan**: TEL: +886-2-2302-1911 FAX: +886-2-2302-1983
- **Shanghai**: TEL: +86-21-3540-1727 FAX: +86-21-3540-1686
- **Hangzhou**: TEL: +86-571-8266387 FAX: +86-571-82663871
- **Nanjing**: TEL: +86-25-8693-0015 FAX: +86-25-8693-0093
- **Shenzhen**: TEL: +86-755-82702820 FAX: +86-755-82702820
- **Shanghai**: TEL: +86-21-5057-3000 FAX: +86-21-5057-3000
- **Kochi**: TEL: +81-885-35-3210 FAX: +81-885-35-3450
- **Fukuoka**: TEL: +81-92-6400-6598 FAX: +81-92-6400-6630
- **Guangzhou**: TEL: +86-20-379-6100 FAX: +86-20-379-6100
- **Kobuk**: TEL: +81-90-725-1554 FAX: +81-90-725-1554
- **Kamakura**: TEL: +81-462-520-7098 FAX: +81-462-520-7098
- **Kamakura**: TEL: +81-462-520-7098 FAX: +81-462-520-7098
- **Kamakura**: TEL: +81-462-520-7098 FAX: +81-462-520-7098
- **Nagano**: TEL: +81-26-635-2061 FAX: +81-26-635-2061
- **Tokyo**: TEL: +81-3-3712-0400 FAX: +81-3-3712-0490
- **Kanazawa**: TEL: +81-76-273-0999 FAX: +81-76-273-0999
- **Osaka**: TEL: +81-6-6505-2712 FAX: +81-6-6505-2712
- **Kobe**: TEL: +81-6-6690-2401 FAX: +81-6-6690-2401
- **Sapporo**: TEL: +81-11-811-2322 FAX: +81-11-811-2322
- **Chiba**: TEL: +81-43-247-6872 FAX: +81-43-247-6872
- **Philippines**: TEL: +63-2-645-1282 FAX: +63-2-645-1282
- **Thailand**: TEL: +66-2-254-8080 FAX: +66-2-254-8080
- **Penang**: TEL: +60-4-228-2401 FAX: +60-4-228-2401
- **Kuala Lumpur**: TEL: +60-3-792-2401 FAX: +60-3-792-2401
- **Kyoto**: TEL: +85-7-385-1259 FAX: +85-7-385-1259
- **Yokohama**: TEL: +81-4-5-725-2250 FAX: +81-4-5-725-2250

Excellence in Electronics

ROHM CO., LTD.

2-1 Saka Mihara-cho, Urayasu, Chiba 279-0856, Japan

TEL: +81-75-331-2012 FAX: +81-75-331-0172

URL: http://www.rohm.com

Published by

ROHM LSI Development Headquarters
LSI Business Promotion Group

Catalog No.08T429A '08.10 ROHM ©
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System
www.rohm.com

Contact us : webmaster@rohm.co.jp