RENESAS

RL78/G13

RENESAS MCU

Datasheet

R01DS0131EJ0351 Rev.3.51 Dec 20, 2022

True low-power platform (66 μ A/MHz, and 0.57 μ A for operation with only RTC and LVD) for the general-purpose applications, with 1.6-V to 5.5-V operation, 16- to 512-Kbyte code flash memory, and 41 DMIPS at 32 MHz

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 µs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 µs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 2 to 32 KB
- Code flash memory
- Code flash memory: 16 to 512 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data Flash Memory

- Data flash memory: 4 KB to 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: +/- 1.0 % (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

- T_A = -40 to +85°C (A: Consumer applications, D: Industrial applications)
- T_A = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

DMA (Direct Memory Access) controller

- 2/4 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits × 16 bits = 32 bits (Unsigned or signed)
- 32 bits ÷ 32 bits = 32 bits (Unsigned)
- 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)

Serial interface

- Simplified SPI (CSI Note 1): 2 to 8 channels
- UART/UART (LIN-bus supported):2 to 4 channels
- I²C/Simplified I²C communication: 3 to 10 channels

Timer

- 16-bit timer: 8 to 16 channels
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- Analog input: 6 to 26 channels
- \bullet Internal reference voltage (1.45 V) and temperature sensor $^{\text{Note 2}}$

I/O port

- I/O port: 16 to 120 (N-ch open drain I/O [withstand voltage of 6 V]: 0 to 4, N-ch open drain I/O [VDD withstand voltage Note 3/EVDD withstand voltage Note 4]: 5 to 25)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- **Notes 1.** Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
 - 2. Can be selected only in HS (high-speed main) mode
 - 3. Products with 20 to 52 pins
 - 4. Products with 64 to 128 pins

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash	Data	RAM	RL78/G13							
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins		
128	8 KB	12	-	_	_	R5F100AG	R5F100BG	R5F100CG		
KB	-	KB	_	_	_	R5F101AG	R5F101BG	R5F101CG		
96	8 KB	8 KB	_	_	_	R5F100AF	R5F100BF	R5F100CF		
KB	-		-	-	-	R5F101AF	R5F101BF	R5F101CF		
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE		
KB	-	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE		
48	4 KB	3 KB	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD		
KB	-	Note	R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD		
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC		
KB	-		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC		
16	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA		
КВ	_		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA		

Flash	Data	RAM		RL78/G13							
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins	
512	8 KB	32 KB Note	_	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL	
KB	-	Note	_	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL	
384	8 KB	24 KB	-	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK	
KB	-		_	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK	
256	8 KB	20 KB	-	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ	
KB	-	Note	_	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ	
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH	
KB	-		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH	
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	_	
KB	-		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	-	
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	_	
KB	_		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	_	
64	4 KB	4 KB	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	_	-	-	
KB	-	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	_	_	_	
48	4 KB	3 KB	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	-	-	-	
KB	_	Note	R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	_	_	_	
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	-	_	-	
KB	-		R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	_	-	
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	_	-	-	-	-	
KB	-		R5F101EA	R5F101FA	R5F101GA	—	-	-	—	-	

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H

R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H

R5F100xJ, R5F101xJ (x = F, G, J, L, M, P):

R5F100xL, R5F101xL (x = F, G, J, L, M, P, S):

Start address FAF00H Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 List of Part Numbers

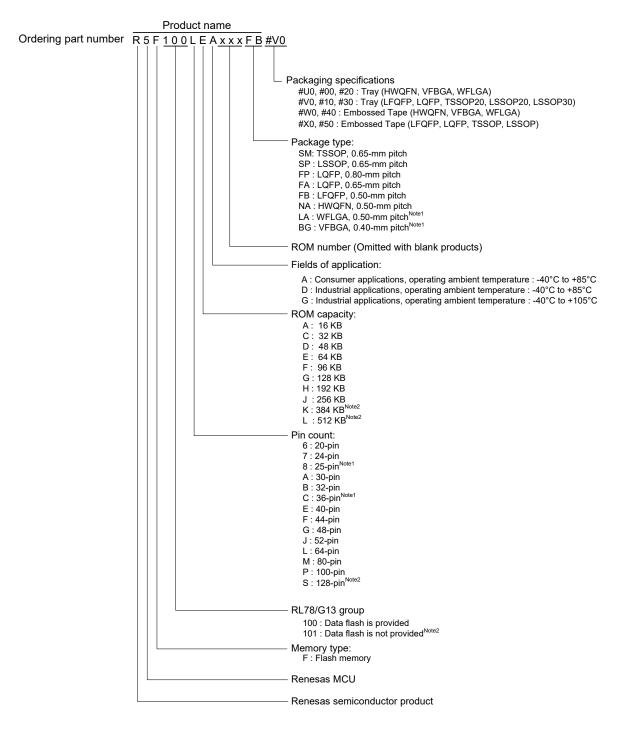


Figure 1-1. Part Number, Memory Size, and Package of RL78/G13

- **Notes 1.** Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)"
 - Products only for "A: Consumer applications (T_A = -40 to +85°C)", and "D: Industrial applications (T_A = -40 to +85°C)"

Pin	Package	Data flash	Fields of	Ordering Part Number	RENESAS Code	
count		-	Application _{Note}	Product Name	Packaging Specifications	
20 pins	20-pin plastic LSSOP	Mounted	A	R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP	#V0, #10, #30, #X0, #50	PLSP0020JC-A
	(7.62 mm (300),		D	R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP		
	0.65-mm pitch)		G	R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP		
		Not mounted	A	R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP	#V0, #10, #30, #X0, #50	PLSP0020JC-A
			D	R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP		
	20-pin plastic TSSOP	Mounted	A	R5F1006AASM, R5F1006CASM, R5F1006DASM, R5F1006EASM	#10, #30, #50	PTSP0020JI-A
	(4.4 x 6.5 mm, 0.65-mm pitch)		G	R5F1006AGSM, R5F1006CGSM, R5F1006DGSM, R5F1006EGSM		
		Not mounted	A	R5F1016AASM, R5F1016CASM, R5F1016DASM, R5F1016EASM		
24	24-pin plastic	Mounted	Inted A	R5F1007AANA, R5F1007CANA, R5F1007DANA,	#U0, #W0	PWQN0024KE-A
pins	HWQFN (4 × 4 mm, 0.5-mm pitch)			R5F1007EANA	#00, #20, #40	PWQN0024KF-A PWQN0024KH-A
			D	R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA	#U0, #W0	PWQN0024KE-A
			G	R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA		
	Not moun			R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007DGNA, R5F1007EGNA	#00, #20, #40	PWQN0024KF-A PWQN0024KH-A
		Not mounted	A	R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA	#U0, #W0 #00, #20, #40	PWQN0024KE-A PWQN0024KF-A PWQN0024KH-A
			D	R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA	#U0, #W0	PWQN0024KE-A
25 pins	25-pin plastic WFLGA	Mounted	A	R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA	#U0, #W0	PWLG0025KA-A
-	(3 × 3 mm, 0.5-mm		G	R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA		
	pitch)	Not mounted	А	R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018DALA, R5F1018EALA	#U0, #W0	PWLG0025KA-A

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

<R>

<R>

Pin	Package	Data flash	Fields of	Ordering Part Number		RENESAS Code	
count			Application Note	Product Name	Packaging Specifications		
30 pins	30-pin plastic	Mounted	A	R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP	#V0, #10, #30, #X0, #50	PLSP0030JB-B	
	LSSOP (7.62 mm		D	R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP			
	(300), 0.65-mm		G	R5F100AAGSP, R5F100ACGSP, R5F100ADGSP, R5F100AEGSP, R5F100AFGSP, R5F100AGGSP			
	pitch)	Not mounted	A	R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP	#V0, #10, #30, #X0, #50	PLSP0030JB-B	
			D	R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP			
32	32-pin	Mounted	А	R5F100BAANA, R5F100BCANA, R5F100BDANA,	#U0, #W0	PWQN0032KB-A	
pins	plastic HWQFN (5 × 5 mm, 0.5-mm pitch)	PFN 5 mm, nm		R5F100BEANA, R5F100BFANA, R5F100BGANA	#00, #20, #40	PWQN0032KE-A PWQN0032KG-A	
			D	R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA	#U0, #W0	PWQN0032KB-A	
			G		G	R5F100BAGNA, R5F100BCGNA, R5F100BDGNA, R5F100BEGNA, R5F100BFGNA, R5F100BGGNA	
					R5F100BAGNA, R5F100BCGNA, R5F100BDGNA, R5F100BEGNA, R5F100BFGNA, R5F100BGGNA	#00, #20, #40	PWQN0032KE-A PWQN0032KG-A
		Not	А	R5F101BAANA, R5F101BCANA, R5F101BDANA,	#U0, #W0	PWQN0032KB-A	
		mounted		R5F101BEANA, R5F101BFANA, R5F101BGANA	#00, #20, #40	PWQN0032KE-A PWQN0032KG-A	
			D	R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F101BFDNA, R5F101BGDNA	#U0, #W0	PWQN0032KB-A	
36 pins	36-pin Mounted	Mounted	A	R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA	#U0, #W0	PWLG0036KA-A	
	WFLGA (4 × 4 mm,		G	R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA			
	0.5-mm pitch)	Not mounted	А	R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA	#U0, #W0	PWLG0036KA-A	

Table 1-1. List of Ordering Part Number

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Pin	Package	Data flash	Fields of	Ordering Part Number		(3/8) RENESAS Code	
count			Application Note	Product Name	Packaging Specifications	-	
40 pins	40-pin plastic HWQFN	Mounted	A	R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA	#U0, #W0 #00, #20, #40	PWQN0040KC-A PWQN0040KD-A	
	(6 × 6 mm, 0.5-mm pitch)	٦,	D	R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA	#U0, #W0	PWQN0040KC-A	
			G		#U0, #W0 #00, #20, #40	PWQN0040KC-A PWQN0040KD-A	
		Not mounted	A		#U0, #W0	PWQN0040KC-A	
				R5F101EHANA	#00, #20, #40	PWQN0040KD-A	
			D	R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA	#U0, #W0	PWQN0040KC-A	
44	44-pin	Mounted	A	R5F100FAAFP, R5F100FCAFP, R5F100FDAFP,	#V0, #X0	PLQP0044GC-A	
pins	plastic LQFP (10 × 10 mm, 0.8-	ĸ		R5F100FEAFP, R5F100FFAFP, R5F100FGAFP, R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP	#10, #50	PLQP0044GC-A PLQP0044GC-D PLQP0044GE-A	
	mm pitch)				#30	PLQP0044GC-A PLQP0044GC-D	
			D	R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP, R5F100FHDFP, R5F100FJDFP	#V0, #X0	PLQP0044GC-A	
					#10, #30, #50	PLQP0044GC-A PLQP0044GC-D	
				R5F100FKDFP, R5F100FLDFP	#V0, #X0	PLQP0044GC-A	
					#10, #50	PLQP0044GC-A PLQP0044GC-D PLQP0044GE-A	
					#30	PLQP0044GC-A PLQP0044GC-D	
			G	R5F100FAGFP, R5F100FCGFP,R5F100FDGFP,	#V0, #X0	PLQP0044GC-A	
					R5F100FEGFP, R5F100FFGFP,R5F100FGGFP, R5F100FHGFP, R5F100FJGFP	#10, #50	PLQP0044GC-A PLQP0044GC-D PLQP0044GE-A
					#30	PLQP0044GC-A PLQP0044GC-D	
		Not A mounted	R5F101FAAFP, R5F101FCAFP, R5F101FDAFP,	#V0, #X0	PLQP0044GC-A		
			D	R5F101FEAFP, R5F101FFAFP,R5F101FGAFP, R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP	#10, #50	PLQP0044GC-A PLQP0044GC-D PLQP0044GE-A	
					#30	PLQP0044GC-A PLQP0044GC-D	
				R5F101FADFP, R5F101FCDFP, R5F101FDDFP,	#V0, #X0	PLQP0044GC-A	
				R5F101FEDFP, R5F101FFDFP,R5F101FGDFP, R5F101FHDFP, R5F101FJDFP	#10, #30, #50	PLQP0044GC-A PLQP0044GC-D	
				R5F101FKDFP, R5F101FLDFP	#V0, #X0	PLQP0044GC-A	
					#10, #50	PLQP0044GC-A PLQP0044GC-D PLQP0044GE-A	
					#30	PLQP0044GC-A PLQP0044GC-A PLQP0044GC-D	

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

<r></r>

(4/8)Pin **RENESAS** Code Package Data flash Fields of Ordering Part Number count Application Product Name Packaging Note Specifications R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, 48 48-pin #V0, #X0 PLQP0048KF-A Mounted А plastic R5F100GEAFB, R5F100GFAFB, R5F100GGAFB, pins #10, #50 PLQP0048KB-B LFQFP R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, PLQP0048KL-A (7 × 7 mm, R5F100GLAFB #30 PLQP0048KB-B 0.5-mm D R5F100GADFB,R5F100GCDFB, R5F100GDDFB, #V0, #X0 PLQP0048KF-A pitch) R5F100GEDFB, R5F100GFDFB, R5F100GGDFB, PLQP0048KB-B #10, #30, #50 R5F100GHDFB, R5F100GJDFB R5F100GKDFB, R5F100GLDFB #V0, #X0 PLQP0048KF-A #10, #50 PLQP0048KB-B PLQP0048KL-A #30 PLQP0048KB-B G R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, #V0, #X0 PLQP0048KF-A R5F100GEGFB, R5F100GFGFB, R5F100GGGFB, #10, #50 PLQP0048KB-B R5F100GHGFB, R5F100GJGFB PLQP0048KL-A #30 PLQP0048KB-B Not Α R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, #V0, #X0 PLQP0048KF-A mounted R5F101GEAFB, R5F101GFAFB, R5F101GGAFB, #10, #50 PLQP0048KB-B R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, PLQP0048KL-A R5F101GLAFB #30 PLQP0048KB-B D R5F101GADFB.R5F101GCDFB. R5F101GDDFB. #V0, #X0 PLQP0048KF-A R5F101GEDFB, R5F101GFDFB, R5F101GGDFB, #10, #30, #50 PLQP0048KB-B R5F101GHDFB, R5F101GJDFB R5F101GKDFB, R5F101GLDFB #V0, #X0 PLQP0048KF-A #10, #50 PLQP0048KB-B PLQP0048KL-A #30 PLQP0048KB-B 48-pin Mounted А R5F100GAANA, R5F100GCANA, R5F100GDANA, #U0, #W0 PWQN0048KB-A plastic R5F100GEANA, R5F100GFANA, R5F100GGANA, #00, #20, #40 PWQN0048KE-A HWQFN R5F100GHANA, R5F100GJANA, R5F100GKANA, (7 × 7 mm, R5F100GLANA 0.5-mm D R5F100GADNA, R5F100GCDNA, R5F100GDDNA, #U0. #W0 PWQN0048KB-A pitch) R5F100GEDNA, R5F100GFDNA, R5F100GGDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA R5F100GKDNA, R5F100GLDNA #00. #20. #40 PWQN0048KE-A G R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, PWQN0048KB-A #U0, #W0 R5F100GEGNA, R5F100GFGNA, R5F100GGGNA, #00, #20, #40 PWQN0048KE-A R5F100GHGNA, R5F100GJGNA Not Α R5F101GAANA, R5F101GCANA, R5F101GDANA, #U0, #W0 PWQN0048KB-A mounted R5F101GEANA, R5F101GFANA, R5F101GGANA, #00, #20, #40 PWQN0048KE-A R5F101GHANA, R5F101GJANA, R5F101GKANA, R5F101GLANA D R5F101GADNA, R5F101GCDNA, R5F101GDDNA, #U0, #W0 PWQN0048KB-A R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA R5F101GKDNA, R5F101GLDNA #00, #20, #40 PWQN0048KE-A

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

						(5/8)
Pin	Package	Data flash	Fields of	Ordering Part Number		RENESAS Code
count			Application	Product Name	Packaging	
			Note		Specifications	
52	52-pin plastic	Mounted	А	R5F100JCAFA, R5F100JDAFA, R5F100JEAFA,	#V0, #X0	PLQP0052JA-A
pins	LQFP (10 × 10			R5F100JFAFA, R5F100JGAFA, R5F100JHAFA,	#10, #30, #50	PLQP0052JA-A
	mm, 0.65-mm			R5F100JJAFA, R5F100JKAFA, R5F100JLAFA		PLQP0052JD-B
	pitch)		D	R5F100JCDFA, R5F100JDDFA, R5F100JEDFA,	#V0, #10, #30,	PLQP0052JA-A
				R5F100JFDFA, R5F100JGDFA, R5F100JHDFA,	#X0, #50	
				R5F100JJDFA, R5F100JKDFA, R5F100JLDFA		
			G	R5F100JCGFA, R5F100JDGFA, R5F100JEGFA,	#V0, #X0	PLQP0052JA-A
				R5F100JFGFA, R5F100JGGFA, R5F100JHGFA,	#10, #30, #50	PLQP0052JA-A
				R5F100JJGFA		PLQP0052JD-B
		Not	A	R5F101JCAFA, R5F101JDAFA, R5F101JEAFA,	#V0, #X0	PLQP0052JA-A
		mounted		R5F101JFAFA, R5F101JGAFA, R5F101JHAFA,	#10, #30, #50	PLQP0052JA-A
				R5F101JJAFA, R5F101JKAFA, R5F101JLAFA		PLQP0052JD-B
			D	R5F101JCDFA, R5F101JDDFA, R5F101JEDFA,	#V0, #10, #30,	PLQP0052JA-A
				R5F101JFDFA, R5F101JGDFA, R5F101JHDFA,	#X0, #50	
				R5F101JJDFA, R5F101JKDFA, R5F101JLDFA		

<R>

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

~1/~

Pin	Package	Data flash	Fields of	Ordering Part Number		RENESAS Code				
count			Application Note	Product Name	Packaging Specifications					
64	64-pin	Mounted	A	R5F100LCAFA, R5F100LDAFA, R5F100LEAFA,	#V0, #X0	PLQP0064JA-A				
pins	plastic			R5F100LFAFA, R5F100LGAFA,R5F100LHAFA,	#10, #30, #50	PLQP0064JA-A				
	LQFP			R5F100LJAFA, R5F100LKAFA, R5F100LLAFA		PLQP0064JB-A				
	(12 × 12 mm, 0.65-mm		D	R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA	#V0, #10, #30, #X0, #50	PLQP0064JA-A				
	pitch)		G	R5F100LCGFA, R5F100LDGFA, R5F100LEGFA,	#V0, #X0	PLQP0064JA-A				
				R5F100LFGFA, R5F100LGGFA,R5F100LHGFA,	#10, #30, #50	PLQP0064JA-A				
				R5F100LJGFA		PLQP0064JB-A				
	64-pin	Not	A	R5F101LCAFA, R5F101LDAFA, R5F101LEAFA,	#V0, #X0	PLQP0064JA-A				
	plastic LQFP	mounted		R5F101LFAFA, R5F101LGAFA,R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA	#10, #30, #50	PLQP0064JA-A PLQP0064JB-A				
	(12 × 12 mm, 0.65-mm		D	R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA	#V0, #10, #30, #X0, #50	PLQP0064JA-A				
	pitch)			RSF 101LJDFA, RSF 101LRDFA, RSF 101LLDFA						
-	64-pin	Mounted	А	R5F100LCAFB, R5F100LDAFB, R5F100LEAFB,	#V0, #X0	PLQP0064KF-A				
	plastic			R5F100LFAFB, R5F100LGAFB,R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB	#10, #50	PLQP0064KB-C				
	LFQFP				,	PLQP0064KL-A				
	(10 × 10				#30	PLQP0064KB-C				
			D	R5F100LCDFB, R5F100LDDFB, R5F100LEDFB,	#V0, #X0	PLQP0064KF-A				
				R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB	#10, #30, #50	PLQP0064KB-C				
				R5F100LKDFB, R5F100LLDFB	#V0, #X0	PLQP0064KF-A				
					#10, #50	PLQP0064KB-C				
						PLQP0064KL-A				
					#30	PLQP0064KB-C				
			G	R5F100LCGFB, R5F100LDGFB,R5F100LEGFB, R5F100LFGFB, R5F100LGGFB,R5F100LHGFB, R5F100LJGFB	#V0, #X0	PLQP0064KF-A				
					#10, #50	PLQP0064KB-C PLQP0064KL-A				
					#30	PLQP0064KB-C				
		Not A mounted	Not	Not	Not	А	R5F101LCAFB, R5F101LDAFB, R5F101LEAFB,	#V0, #X0	PLQP0064KF-A	
			ounted	R5F101LFAFB, R5F101LGAFB,R5F101LHAFB, R5F101LJAFB, R5F101LKAFB, R5F101LLAFB	#10, #50	PLQP0064KB-C				
						PLQP0064KL-A				
					#30	PLQP0064KB-C				
			D	D	-		D	R5F101LCDFB, R5F101LDDFB, R5F101LEDFB,	#V0, #X0	PLQP0064KF-A
						R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB	#10, #30, #50	PLQP0064KB-C		
				R5F101LKDFB, R5F101LLDFB	#V0, #X0	PLQP0064KF-A				
P V (4 0					#10, #50	PLQP0064KB-C PLQP0064KL-A				
					#30	PLQP0064KB-C				
	64-pin Mounte plastic VFBGA (4 × 4 mm, 0.4-mm pitch)	stic	Iastic FBGA I × 4 mm, G 4-mm	astic	A	R5F100LCABG, R5F100LDABG,R5F100LEABG, R5F100LFABG, R5F100LGABG,R5F100LHABG, R5F100LJABG	#U0, #W0	PVBG0064LA-A		
		(4 × 4 mm, 0.4-mm		G	R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG					
		Not mounted	A	R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG	#U0, #W0	PVBG0064LA-A				

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

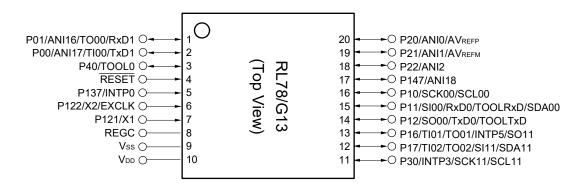
<r></r>	

(7/8)RENESAS Code Pin Data flash Fields of Package Ordering Part Number count Application Packaging Product Name Note Specifications 80 R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, #V0, #10, #30, PLQP0080JB-E 80-pin Mounted A plastic LQFP R5F100MJAFA, R5F100MKAFA, R5F100MLAFA #X0, #50 pins (14×14) D R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, mm, 0.65-R5F100MJDFA, R5F100MKDFA, R5F100MLDFA mm G R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, pitch) R5F100MJGFA Not А R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, #V0, #10, #30, PLQP0080JB-E mounted R5F101MJAFA, R5F101MKAFA, R5F101MLAFA #X0, #50 D R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA 80-pin Mounted А R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, #V0, #X0 PLQP0080KE-A plastic R5F100MJAFB, R5F100MKAFB, R5F100MLAFB #10, #50 PLQP0080KB-B LFQFP PLQP0080KJ-A (12 × 12 #30 PLQP0080KB-B mm, 0.5-mm D R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, #V0, #X0 PLQP0080KE-A pitch) R5F100MJDFB #10, #30, #50 PLQP0080KB-B R5F100MKDFB, R5F100MLDFB #V0, #X0 PLQP0080KE-A #10, #50 PLQP0080KB-B PLQP0080KJ-A #30 PLQP0080KB-B G R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, #V0, #X0 PLQP0080KE-A R5F100MJGFB PLQP0080KB-B #10, #50 PLQP0080KJ-A #30 PLQP0080KB-B Not R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, #V0, #X0 PLQP0080KE-A А mounted R5F101MJAFB, R5F101MKAFB, R5F101MLAFB #10, #50 PLQP0080KB-B PLQP0080KJ-A #30 PLQP0080KB-B R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, D #V0, #X0 PLQP0080KE-A R5F101MJDFB #10, #30, #50 PLQP0080KB-B R5F101MKDFB, R5F101MLDFB #V0, #X0 PLQP0080KE-A #10, #50 PLQP0080KB-B PLQP0080KJ-A #30 PLQP0080KB-B

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

<	R>

Table 1-1. List of Ordering Part Numbers	s
--	---

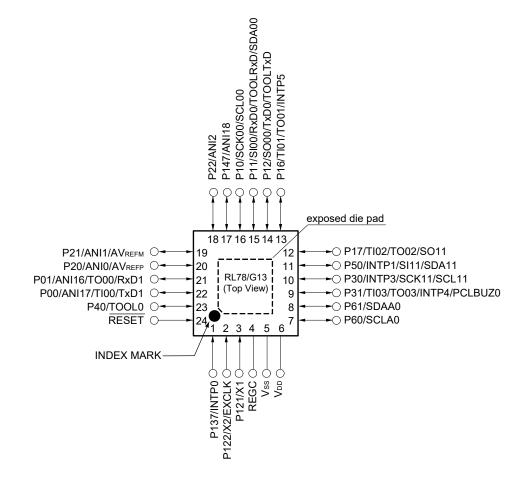

Pin	Package	Data flash	Fields of	Ordering Part Number		RENESAS Code		
count			Application Note	Product Name	Packaging Specifications			
100	100-pin	Mounted	A	R5F100PFAFB, R5F100PGAFB, R5F100PHAFB,	#V0, #X0	PLQP0100KE-A		
pins	plastic	mountou		R5F100PJAFB, R5F100PKAFB, R5F100PLAFB	#10, #50	PLQP0100KB-B		
pine	LFQFP				<i>"</i> 10, <i>"</i> 00	PLQP0100KP-A		
	(14 × 14				#30	PLQP0100KB-B		
	mm,		D	R5F100PFDFB, R5F100PGDFB, R5F100PHDFB,	#V0, #X0	PLQP0100KE-A		
	0.5-mm			R5F100PJDFB	#10, #30, #50	PLQP0100KB-B		
	pitch)			R5F100PKDFB, R5F100PLDFB	#V0, #X0	PLQP0100KE-A		
					#10, #50	PLQP0100KB-B		
						PLQP0100KP-A		
					#30	PLQP0100KB-B		
			G	R5F100PFGFB, R5F100PGGFB, R5F100PHGFB,	#V0, #X0	PLQP0100KE-A		
				R5F100PJGFB	#10, #50	PLQP0100KB-B		
						PLQP0100KP-A		
					#30	PLQP0100KB-B		
		Not	А	R5F101PFAFB, R5F101PGAFB, R5F101PHAFB,	#V0, #X0	PLQP0100KE-A		
		mounted	mounted		R5F101PJAFB, R5F101PKAFB, R5F101PLAFB	#10, #50	PLQP0100KB-B	
			D			PLQP0100KP-A		
					#30	PLQP0100KB-B		
				R5F101PFDFB, R5F101PGDFB, R5F101PHDFB, R5F101PJDFB	#V0, #X0	PLQP0100KE-A		
					#10, #30, #50	PLQP0100KB-B		
						R5F101PKDFB, R5F101PLDFB	#V0, #X0	PLQP0100KE-A
				#10, #50	PLQP0100KB-B			
						PLQP0100KP-A		
					#30	PLQP0100KB-B		
	100-pin	Mounted	Mounted	Mounted	А	R5F100PFAFA, R5F100PGAFA, R5F100PHAFA,	#V0, #10, #30,	PLQP0100JC-A
	plastic LQFP			R5F100PJAFA, R5F100PKAFA, R5F100PLAFA	#X0, #50			
	(14 × 20		D	R5F100PFDFA, R5F100PGDFA, R5F100PHDFA,				
	mm,		-	R5F100PJDFA, R5F100PKDFA, R5F100PLDFA	4			
	0.65-mm		G	R5F100PFGFA, R5F100PGGFA, R5F100PHGFA,				
	pitch)	NL-4	٨	R5F100PJGFA	10.10 11.40 11.00			
		Not	А	R5F101PFAFA, R5F101PGAFA, R5F101PHAFA,	#V0, #10, #30,	PLQP0100JC-A		
		mounted	D	R5F101PJAFA, R5F101PKAFA, R5F101PLAFA	#X0, #50			
			U	R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA				
128	128-pin	Mountod	٨	R5F100SHAFB, R5F100SJAFB, R5F100SKAFB,	#V0, #10, #30,	PLQP0128KD-A		
pins	plastic	Mounteu	ounted A	R5F100SLAFB	#X0, #50	FLQFUIZORD-A		
pins	LFQFP		D	R5F100SHDFB, R5F100SJDFB, R5F100SKDFB,	#7(0, #30			
	(14 × 20		D	R5F100SLDFB				
	mm,	Not	A	R5F101SHAFB, R5F101SJAFB, R5F101SKAFB,	#V0, #10, #30,	PLQP0128KD-A		
	0.5-mm	Not nounted			R5F101SLAFB	#X0, #50		
	pitch)	mountou	D	R5F101SHDFB, R5F101SJDFB, R5F101SKDFB,				
	pitony		2	R5F101SLDFB				

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

- 20-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)
- 20-pin plastic TSSOP (4.4 × 6.5 mm, 0.65-mm pitch)

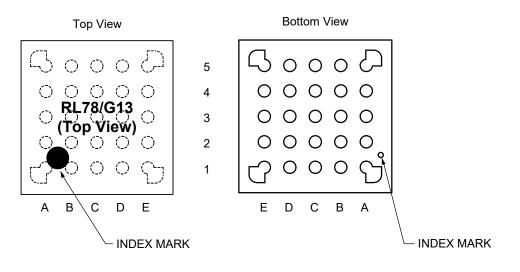

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remark For pin identification, see 1.4 Pin Identification.

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

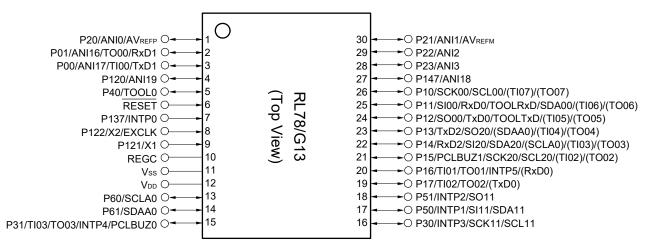

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. It is recommended to connect an exposed die pad to V_{ss} .

1.3.3 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50-mm pitch)

	А	В	С	D	Е	_
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVrefm	P10/SCK00/ SCL00	4
3	P121/X1	Vdd	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/Tl02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	А	В	С	D	E	-

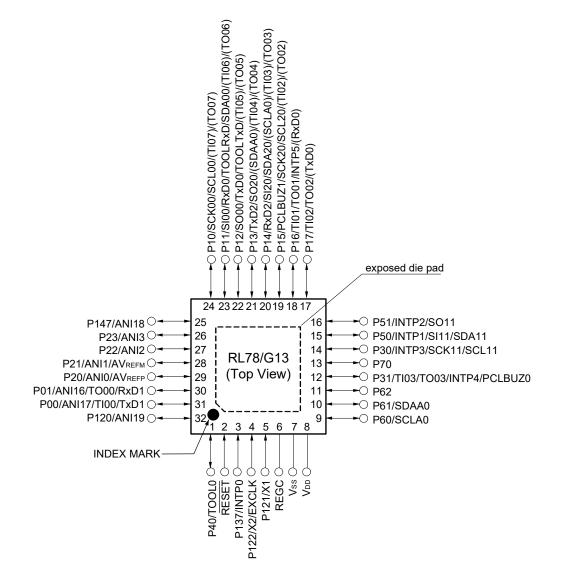

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remark For pin identification, see 1.4 Pin Identification.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

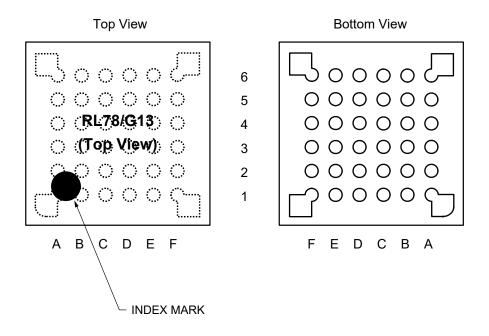

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

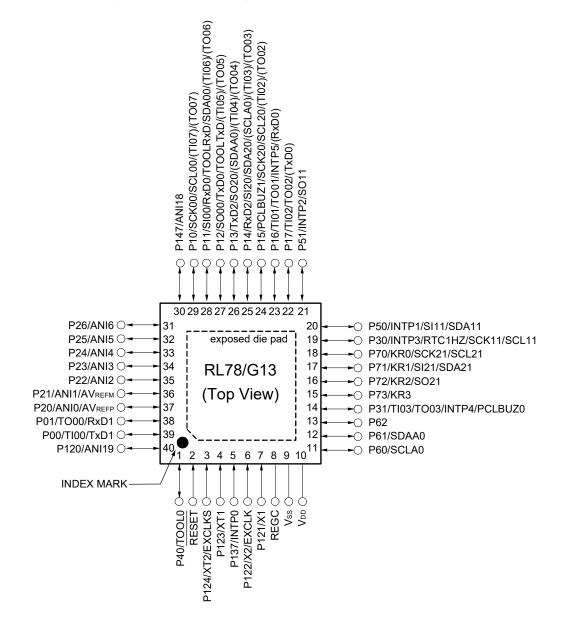

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5-mm pitch)

	А	В	С	D	E	F	
	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	
6							6
	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	
5							5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AVrefp	P21/ANI1/ AVrefm	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	А	В	С	D	E	F	-

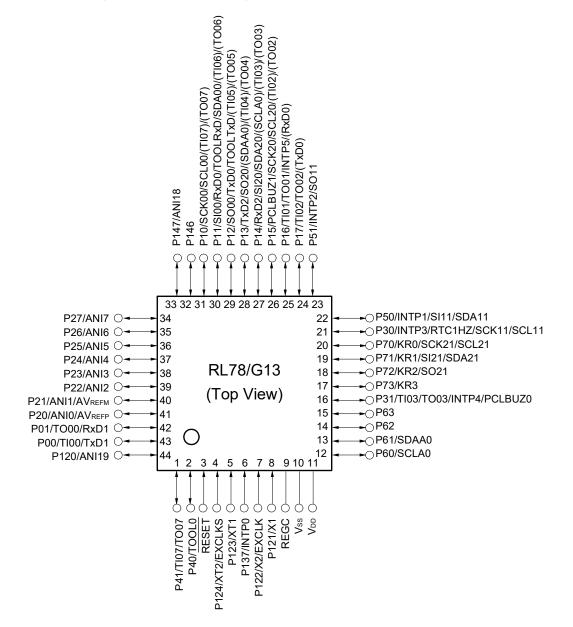

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.7 40-pin products

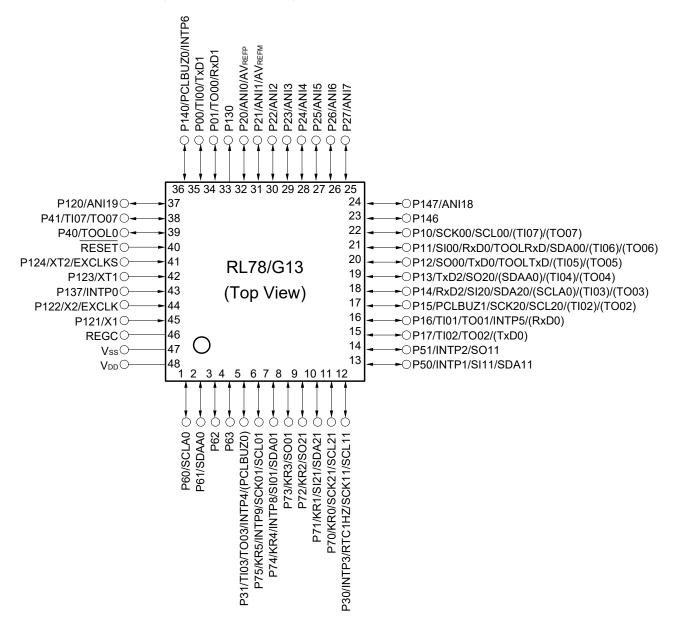
• 40-pin plastic HWQFN (6 × 6 mm, 0.5-mm pitch)


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

1.3.8 44-pin products

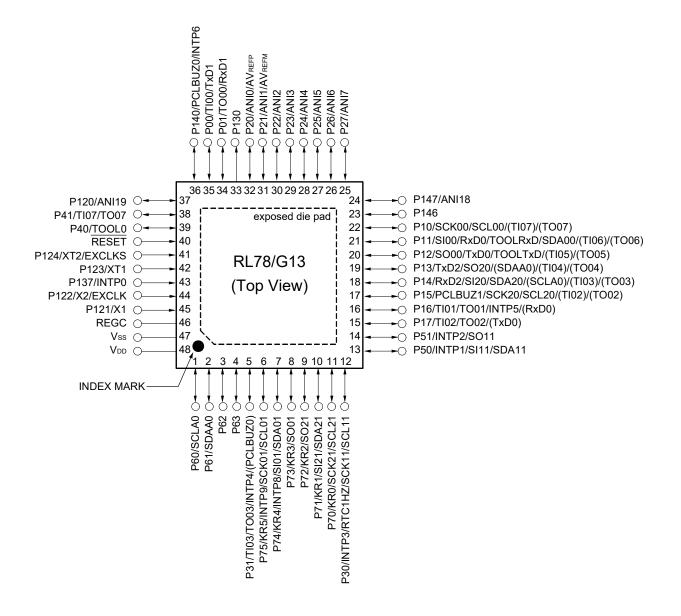
• 44-pin plastic LQFP (10 × 10 mm, 0.8-mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.9 48-pin products

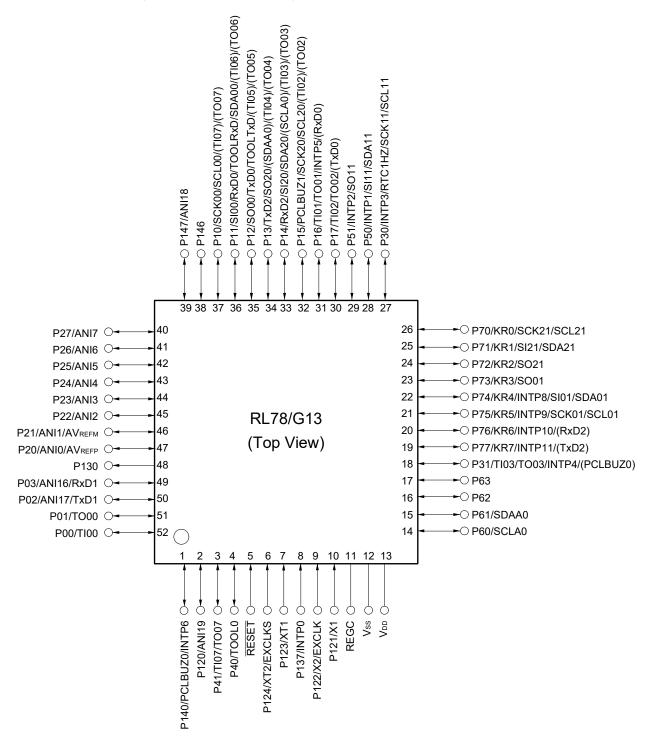

• 48-pin plastic LFQFP (7 × 7 mm, 0.5-mm pitch)

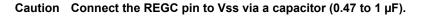
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. • 48-pin plastic HWQFN (7 × 7 mm, 0.5-mm pitch)

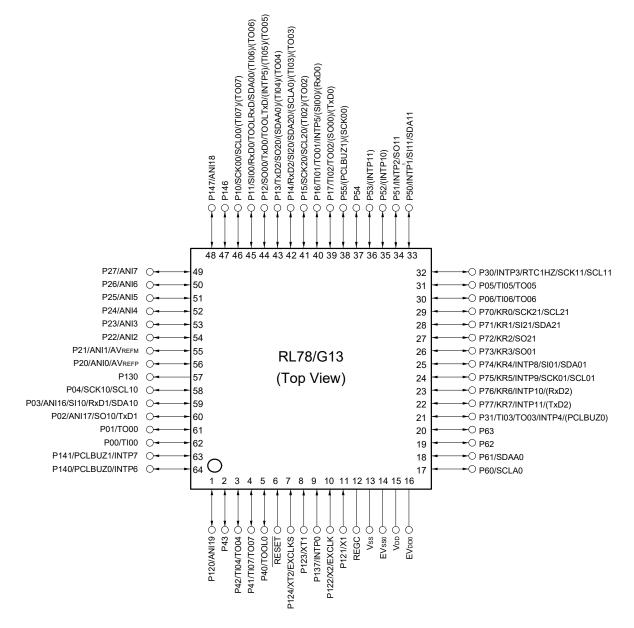
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.


- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

1.3.10 52-pin products

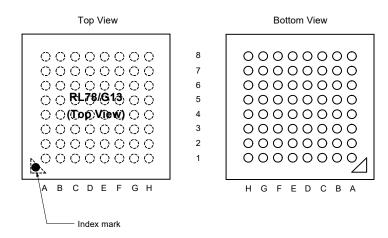
• 52-pin plastic LQFP (10 × 10 mm, 0.65-mm pitch)



Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.11 64-pin products


- 64-pin plastic LQFP (12 × 12 mm, 0.65-mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5-mm pitch)

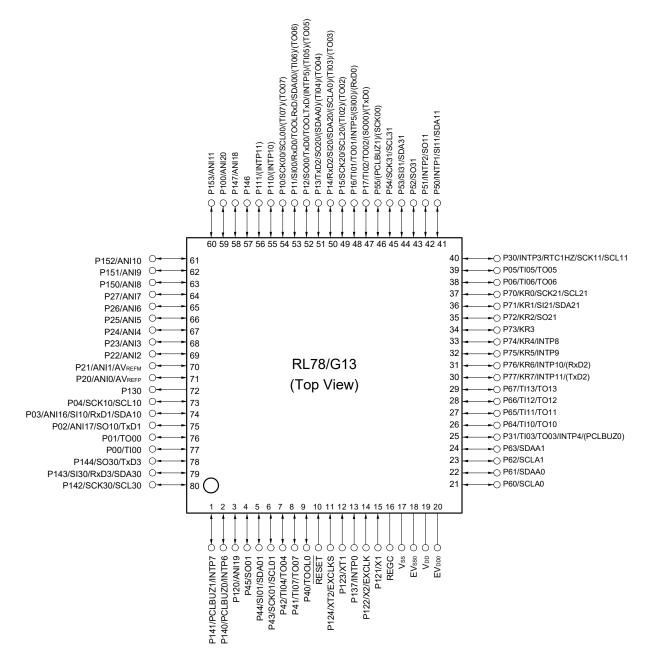
Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is no less than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

• 64-pin plastic VFBGA (4 × 4 mm, 0.4-mm pitch)

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05	C1	P51/INTP2/SO11	E1	P13/TxD2/SO20/ (SDAA0)/(TI04)/(TO04)	G1	P146
A2	P30/INTP3/RTC1HZ /SCK11/SCL11	C2	P71/KR1/SI21/SDA21	E2	P14/RxD2/SI20/SDA20 /(SCLA0)/(TI03)/(TO03)		P25/ANI5
A3	P70/KR0/SCK21 /SCL21	C3	P74/KR4/INTP8/SI01 /SDA01	E3	P15/SCK20/SCL20/ (TI02)/(TO02)	G3	P24/ANI4
A4	P75/KR5/INTP9 /SCK01/SCL01	C4	P52/(INTP10)	E4	P16/TI01/TO01/INTP5 /(SI00)/(RxD0)	G4	P22/ANI2
A5	P77/KR7/INTP11/ (TxD2)	C5	P53/(INTP11)	E5	P03/ANI16/SI10/RxD1 /SDA10	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/TI07/TO07	G6	P02/ANI17/SO10/TxD1
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00
A8	EVDD0	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/INTP1/SI11 /SDA11	D1	P55/(PCLBUZ1)/ (SCK00)	F1	P10/SCK00/SCL00/ (TI07)/(TO07)	H1	P147/ANI18
B2	P72/KR2/SO21	D2	P06/TI06/TO06	F2	P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06)	H2	P27/ANI7
В3	P73/KR3/SO01	D3	P17/TI02/TO02/ (SO00)/(TxD0)	F3	P12/SO00/TxD0 /TOOLTxD/(INTP5)/ (TI05)/(TO05)	H3	P26/ANI6
B4	P76/KR6/INTP10/ (RxD2)	D4	P54	F4	P21/ANI1/AVREFM	H4	P23/ANI3
B5	P31/TI03/TO03 /INTP4/(PCLBUZ0)	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	Vdd	D7	REGC	F7	P01/TO00	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

Cautions 1. Make EVsso pin the same potential as Vss pin.

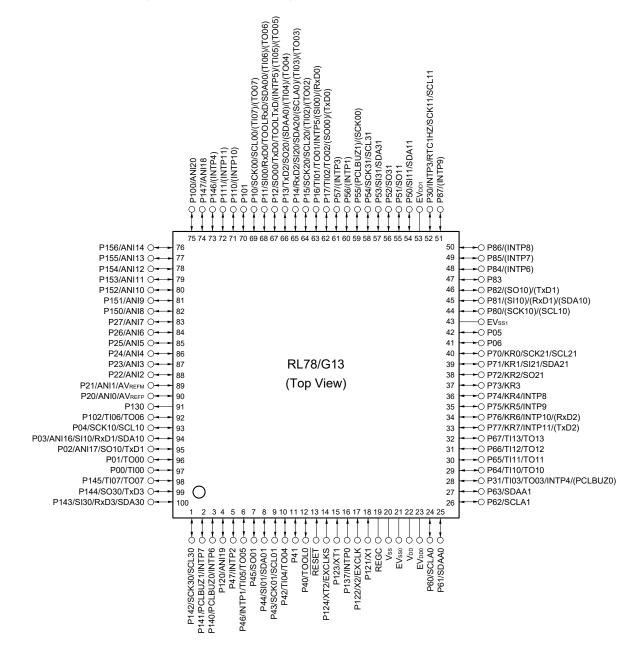

- 2. Make VDD pin the potential that is no less than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu\text{F}).$

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

1.3.12 80-pin products

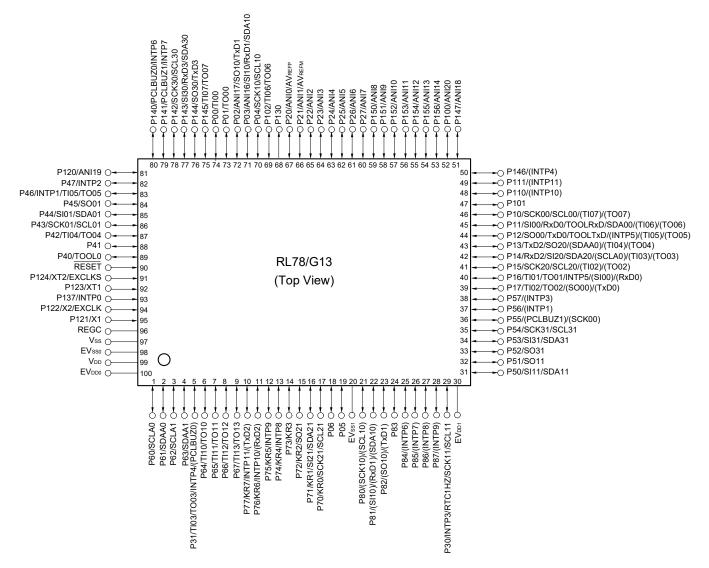
- 80-pin plastic LQFP (14 × 14 mm, 0.65-mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5-mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is no less than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

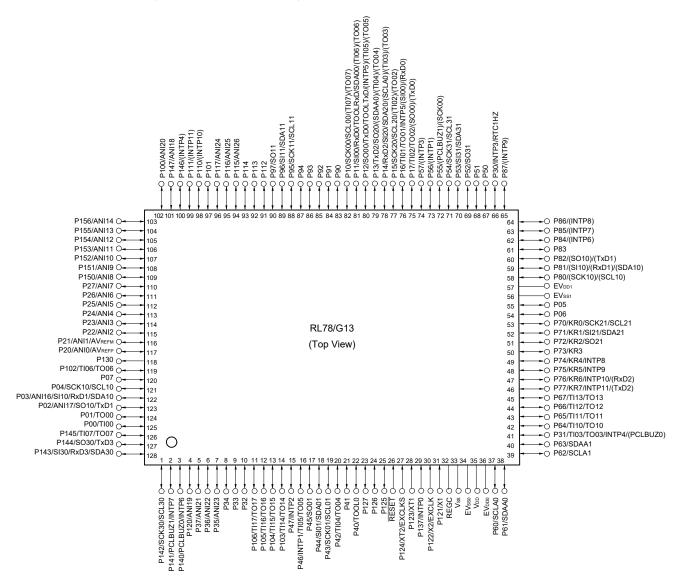
1.3.13 100-pin products


• 100-pin plastic LFQFP (14 × 14 mm, 0.5-mm pitch)

Cautions 1. Make EVss0 and EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is no less than EVDD0 and EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

• 100-pin plastic LQFP (14 × 20 mm, 0.65-mm pitch)



Cautions 1. Make EVss0 and EVss1 pins the same potential as Vss pin.

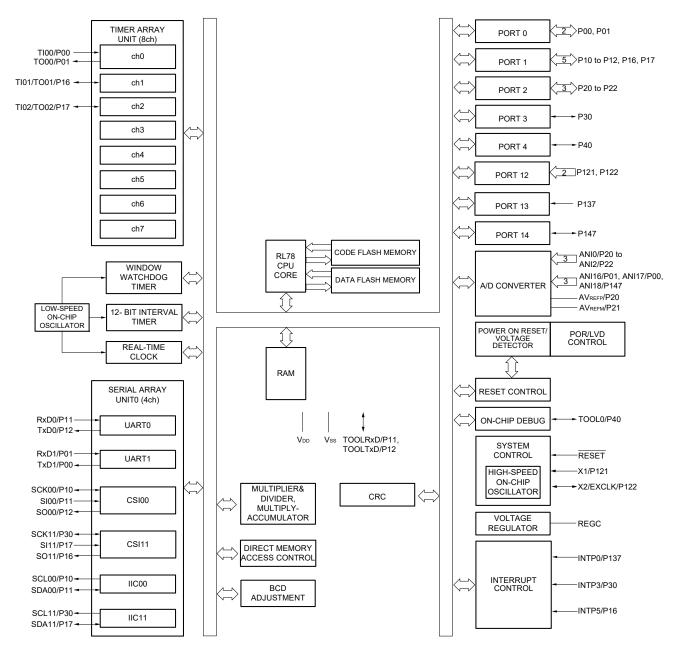
- 2. Make VDD pin the potential that is no less than EVDD0 and EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

1.3.14 128-pin products

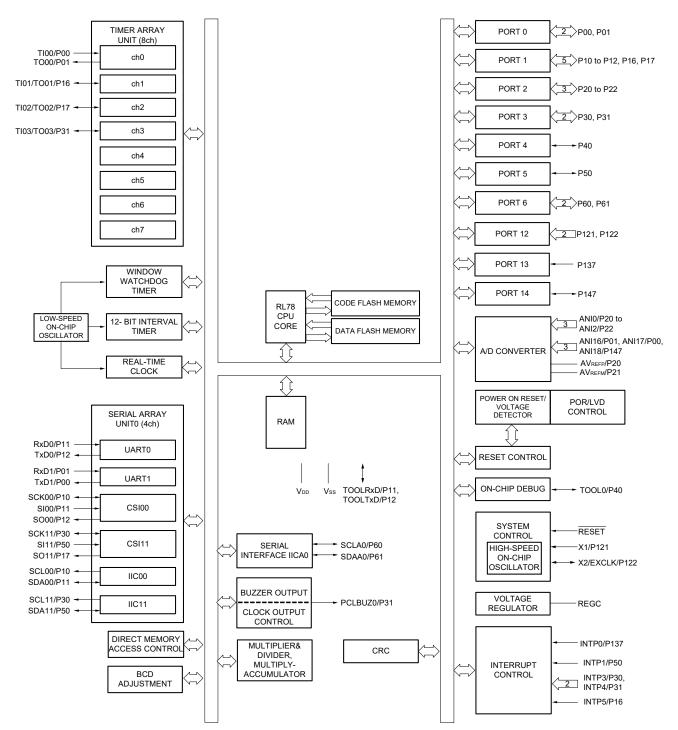
• 128-pin plastic LFQFP (14 × 20 mm, 0.5-mm pitch)

Cautions 1. Make EVsso and EVsso pins the same potential as Vss pin.

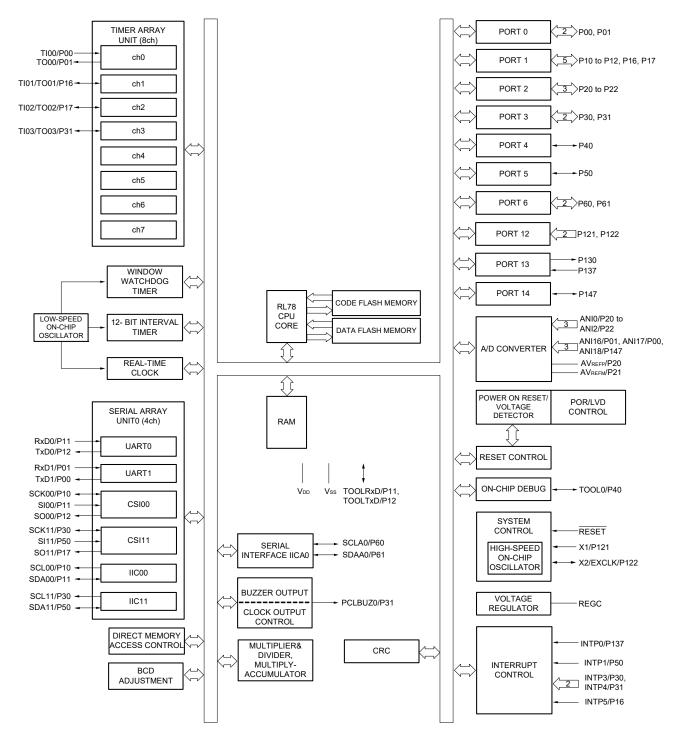
- 2. Make VDD pin the potential that is no less than EVDD0 and EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.


1.4 Pin Identification

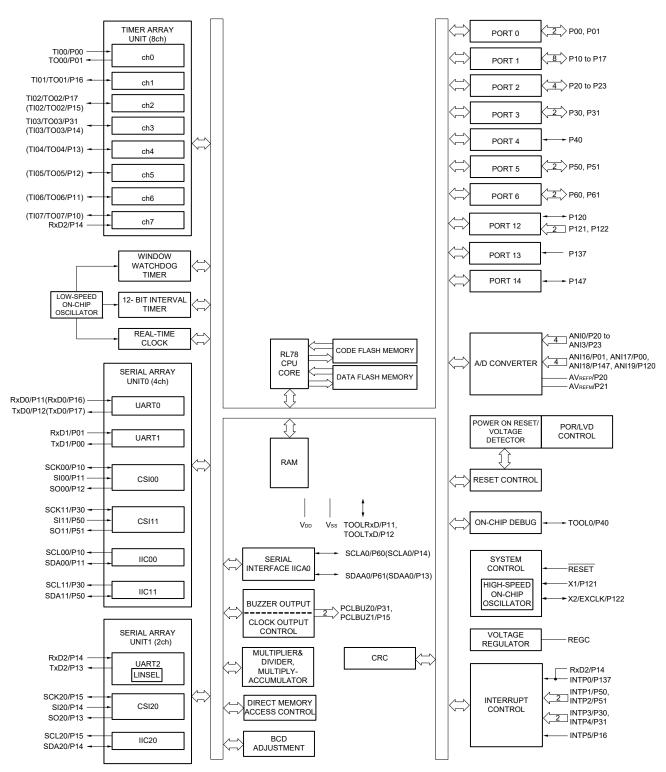
ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (– side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCLA0, SCLA1,	
EVDD0, EVDD1:	Power supply for port	SCK00, SCK01, SCK10,	
EVsso, EVss1:	Ground for port	SCK11, SCK20, SCK21,	
EXCLK:	External clock input (Main	SCK30, SCK31:	Serial clock input/output
	system clock)	SCL00, SCL01, SCL10,	
EXCLKS:	External clock input	SCL11, SCL20, SCL21,	
	(Subsystem clock)	SCL30, SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00,	
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	Vdd:	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1	Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		


1.5 Block Diagram

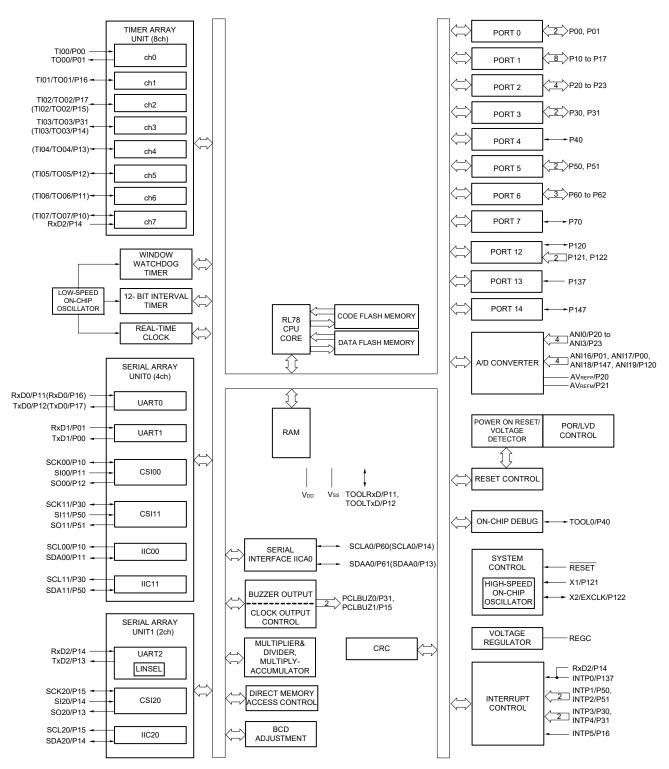
1.5.1 20-pin products



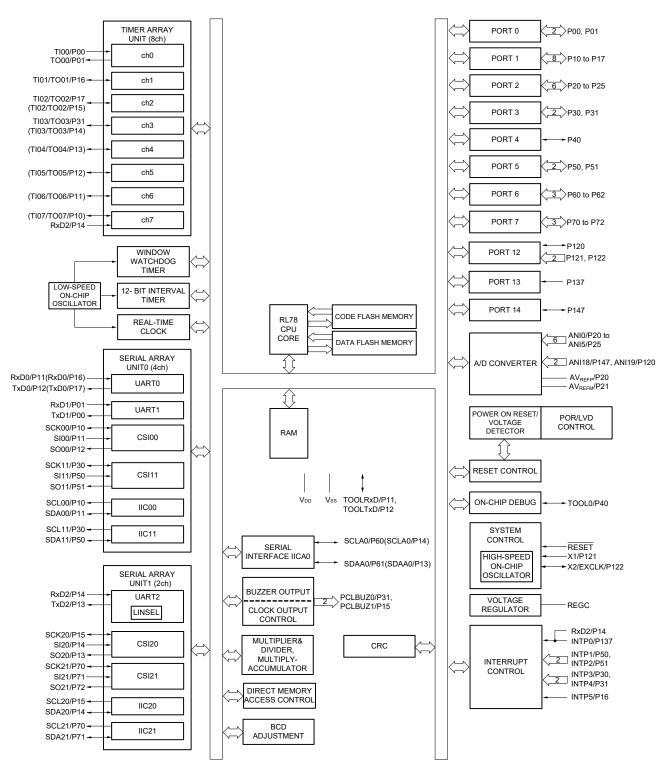
1.5.2 24-pin products



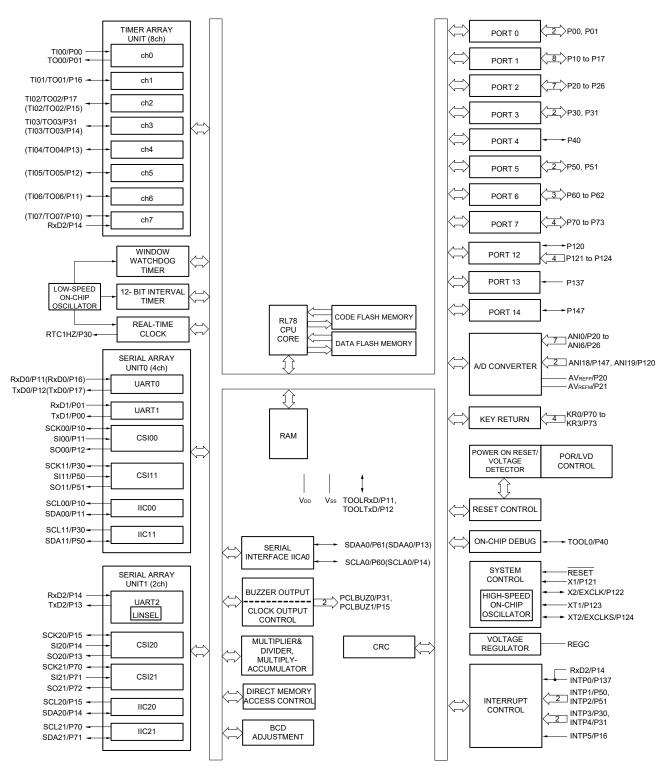
1.5.3 25-pin products



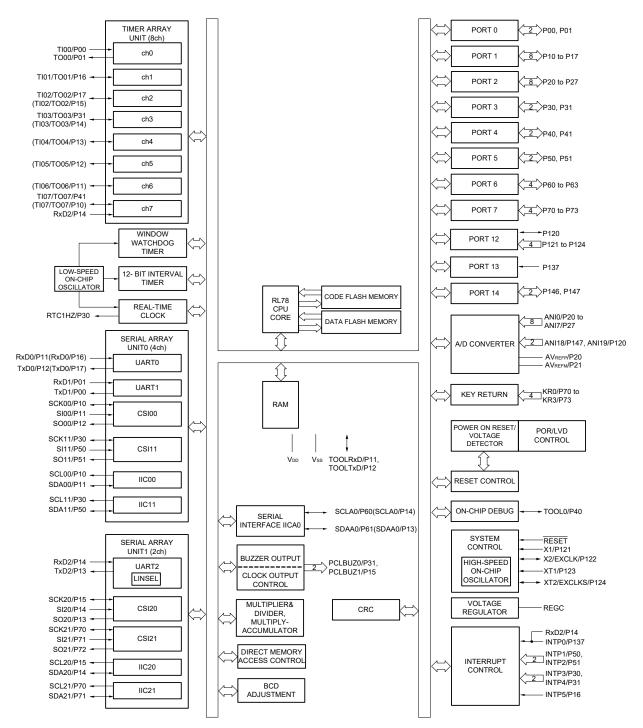
1.5.4 30-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

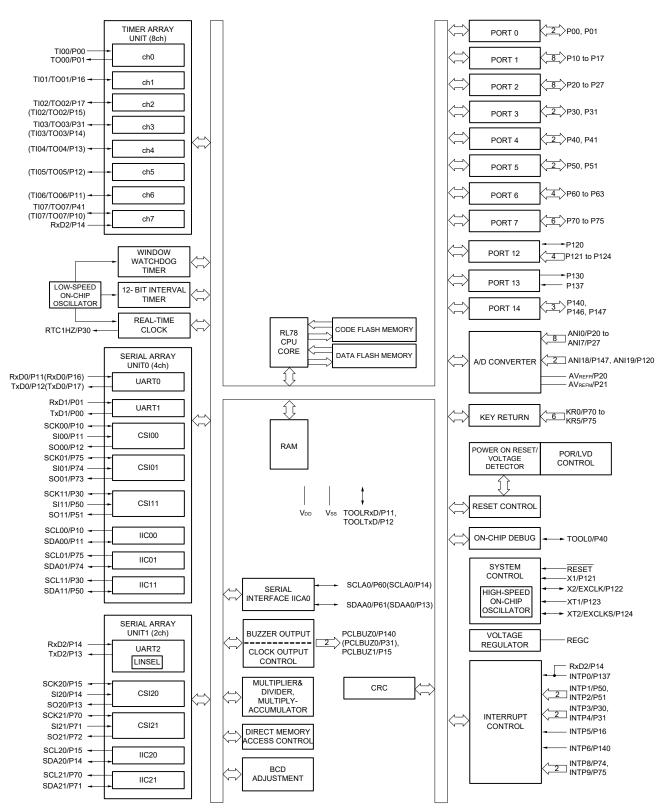
1.5.5 32-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.6 36-pin products

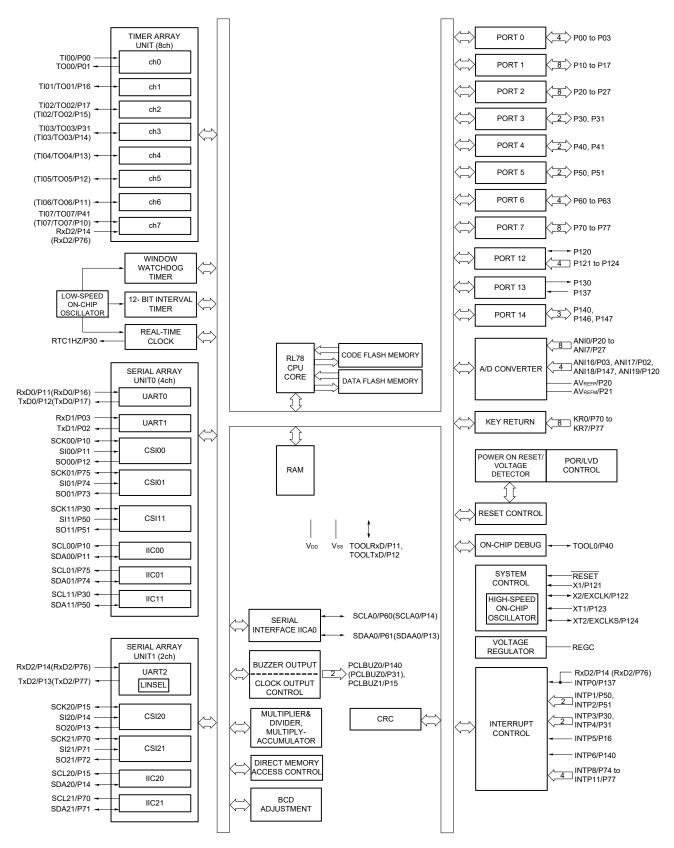

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

1.5.7 40-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

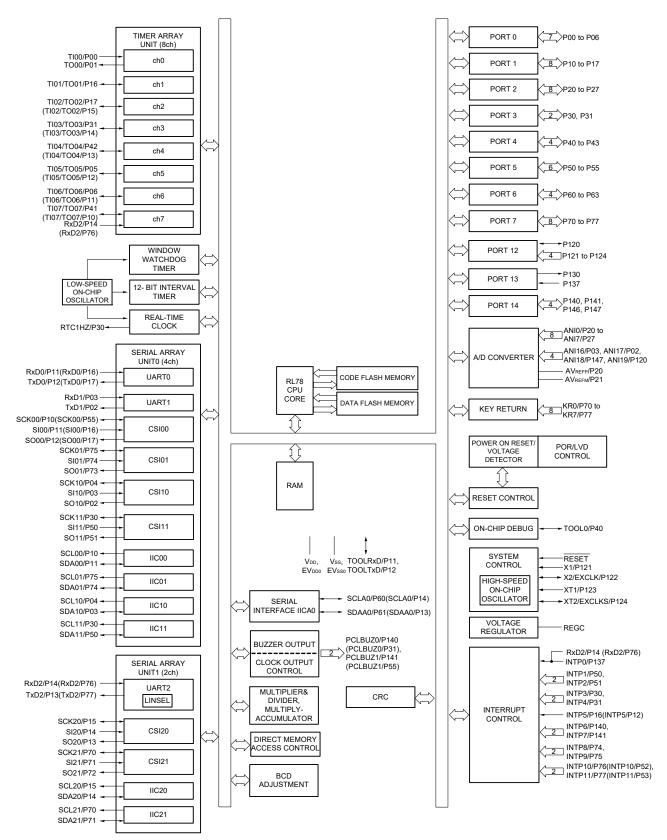
1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.


1.5.9 48-pin products

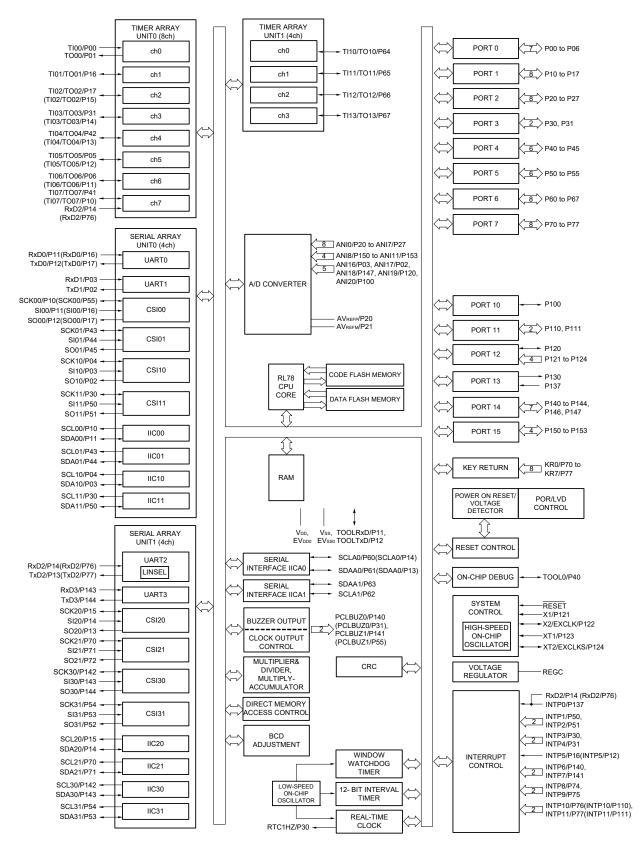
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

RENESAS

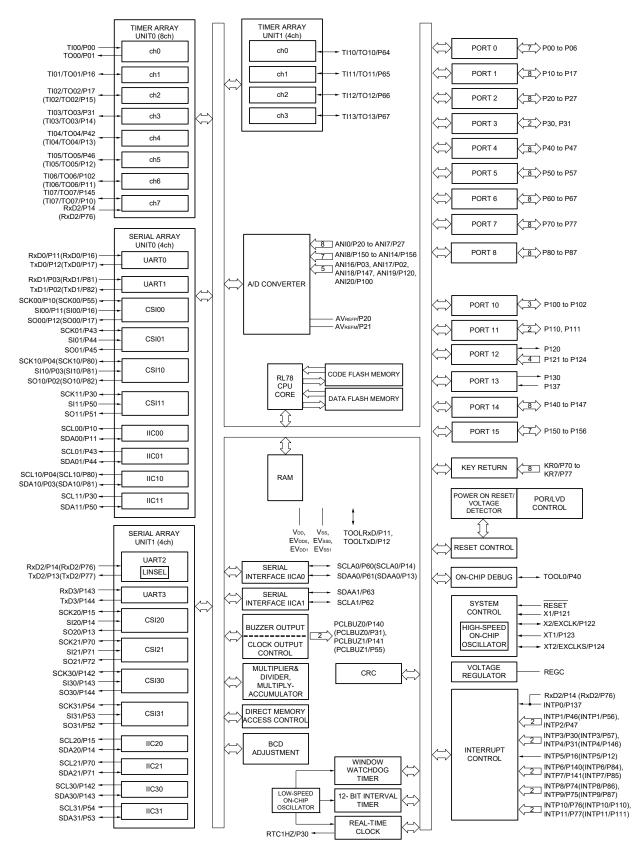

1.5.10 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

RENESAS

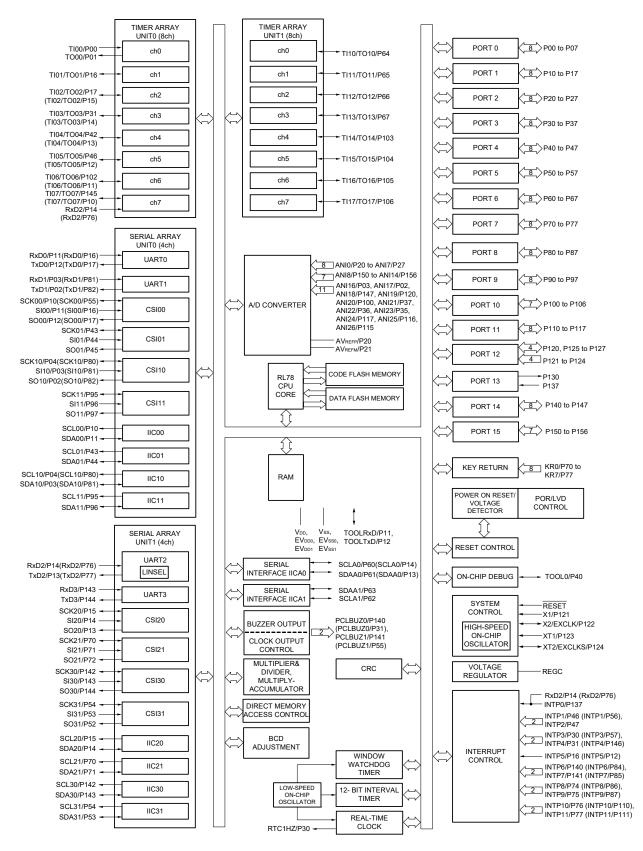

1.5.11 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.


1.5.12 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/G13 User's Manual.

RENESAS


1.5.13 100-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

clock clock	y (KB) (KB) h-speed system	20-pin R5 F10 06 X 16 to 64 4 - 2 to 4 ^{Note1} 1 MB X1 (crystal/cel HS (High-spee LS (Low-spee LV (Low-volta HS (High-spee LV (Low-volta	R5F10007x 16 to 2 to 4 2 to 4 ramic) osci ed main) m ed main) m d main) m	– 4 ^{Note1} illation, e node: 1 t node: 1 t		R5F1018x 6 -	30-r R5F1000Ax 16 to 4 to 8 2 to 12	R5F101Ax 128 -	32-r R5 100 8 × 16 to 4 to 8 2 to 12	R5F101Bx 128 -	36- R5F100Cx 16 to 4 to 8	R5F101Cx 128
Data flash memory (RAM (KB) Address space Main system clock High- clock Bigh- clock Bigh- clock Bigh- clock Bigh- clock Bigh- bigh- clock Bigh- Bigh- oscilla Subsystem clock Low-speed on-chip of General-purpose reg Minimum instruction Instruction set	h-speed system k	16 to 64 4 - 2 to 4 ^{Note1} 1 MB X1 (crystal/cet HS (High-spectrum) HS (High-spectrum) LS (Low-spectrum) LV (Low-volta)	16 tr 4 2 to 4 ramic) osci ed main) m ed main) m d main) m	o 64 – 4 ^{Note1} illation, e node: 1 t	16 to 4 2 to 4 external n	- 64	16 to 4 to 8	128	16 to 4 to 8	128 _	16 to 4 to 8	128 _
Data flash memory (RAM (KB) Address space Main system clock High- clock Bubsystem clock Low-speed on-chip of General-purpose reg Minimum instruction Instruction set	h-speed system k	4 – 2 to 4 ^{Note1} 1 MB X1 (crystal/ce HS (High-spec HS (High-spec LS (Low-spec LV (Low-volta	4 2 to 4 ramic) osci ed main) m ed main) m d main) m	– 4 ^{Note1} illation, e node: 1 t node: 1 t	4 2 to 4 external m	-	4 to 8	-	4 to 8	-	4 to 8	_
RAM (KB) Address space Main system clock High- clock Bubsystem clock Low-speed on-chip of General-purpose reg Minimum instruction Instruction set	h-speed system k	2 to 4 ^{Note1} 1 MB X1 (crystal/ce HS (High-spec HS (High-spec LS (Low-spec LV (Low-volta	2 to 4 ramic) osci ed main) m ed main) m d main) m	illation, e node: 1 t node: 1 t	2 to 4 external m	 Note1				 Note1		_
Address space Main system Clock High- Clock High- Subsystem Clock Low-speed on-chip of General-purpose reg Minimum instruction Instruction set	h-speed on-chip	1 MB X1 (crystal/ce HS (High-spec HS (High-spec LS (Low-spec LV (Low-volta	ramic) osci ed main) m ed main) m d main) m	illation, e node: 1 t node: 1 t	external n	Note1	2 to 12	2 ^{Note1}	2 to 12	Note1	0.4- 4	
Main system clock High- clock Subsystem clock Subsystem clock Low-speed on-chip of General-purpose reg Minimum instruction	h-speed on-chip	X1 (crystal/cet HS (High-spec HS (High-spec LS (Low-spec LV (Low-volta	ed main) m ed main) m d main) mo	node: 1 t node: 1 t							2 10 1	2 ^{Note1}
clock clock High- oscill Subsystem clock Low-speed on-chip of General-purpose reg Minimum instruction	h-speed on-chip	HS (High-spee HS (High-spee LS (Low-spee LV (Low-volta	ed main) m ed main) m d main) mo	node: 1 t node: 1 t							•	
Subsystem clock Low-speed on-chip of General-purpose reg Minimum instruction Instruction set	• •	HS (High-spee	,		o 16 MHz o 8 MHz ('	z (V _{DD} = z (V _{DD} = V _{DD} = 1.	2.7 to 5.9 2.4 to 5.9 8 to 5.5 \	5 V), 5 V), 5 V), /),	EXCLK)			
Low-speed on-chip of General-purpose reg Minimum instruction		HS (High-spee LS (Low-spee	IS (High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V), IS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), S (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), V (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)									
General-purpose rec Minimum instruction						_						
Minimum instruction	oscillator	15 kHz (TYP.)										
Instruction set	egisters	(8-bit register × 8) × 4 banks										
	n execution time	0.03125 μ s (High-speed on-chip oscillator: fi $_{H}$ = 32 MHz operation)										
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)										
I/O port Total		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
	al	16	2	0	21	1	26	3	28	}	32	2
СМО	OS I/O	13 (N-ch O.D. I/C [Vɒɒ withstand voltage]: 5)) (N-ch C	thstand	15 (N-ch O [V⊳⊳ with voltage	.D. I/O hstand	21 (N-ch O [V₀₀ with voltage	.D. I/O hstand	22 (N-ch O [Vɒ⊳ with voltage	.D. I/O nstand	20 (N-ch C [V _{DD} wit voltage	.D. I/O hstand
СМО	OS input	3		3	3		3		3		3	• (
СМО	OS output	_	-	_	1		-		-		_	
	O.D. I/O stand voltage: 6 V)	_	2	2	2		2		3		3	
Timer 16-bit	oit timer					8 chai	nnels				•	
Watc	tchdog timer					1 cha	nnel					
Real-1	I-time clock (RTC)					1 chann	iel ^{Note 2}					
12-bit	bit interval timer (IT)					1 cha	nnel					
Time	er output	3 channels (PWM outputs 2 ^{Note 3})	4 chann (PWM o	nels outputs:	3 ^{Note 3})		4 channels (PWM outputs: 3 ^{Note 3}), 8 channels (PWM outputs: 7 ^{Note 3}) ^{Note 4}					
RTC												

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H

R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Notes 2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock ($f_{\rm IL}$) is selected

The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

Ite	m	20-	pin	24-	-pin	25	-pin	30-	-pin	32	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzz	er output				1		1		2		2	2	
												_	
8/10-bit resolution	A/D converter	6 chani	nels	6 chan	nels	6 chan	nels	8 chan	nels	8 chan	nels	8 chan	nels
Serial interface	 [20-pin, 24-pin, 25-pin products] Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel Simplified SPI (CSI): 2 channel/simplified I²C: 2 channel/UART (UART supporting LIN-bus): 1 channel 												
	I ² C bus	101		1 chan		1 chan		1 chan		1 chan		1 chan	
Multiplier and divid accumulator DMA controller	ler/muluply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 2 channels 											
Vectored interrupt	Internal		23		24		24		27		27		27
sources	External		3		5		5		6		6	1	6
Key interrupt			-		-		-	_	-		-	1	-
Reset	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 												
Power-on-reset cir	cuit	Pow	er-on-re		1.51 V (1	TYP.)							
Voltage detector		• Risir	ng edge ng edge	: '	1.67 V to	0 4.06 V 0 3.98 V	· ·	,					
On-chip debug fur	iction	Provide	ed										
Power supply volta	age			5 V (T _A = 5 V (T _A =									
Operating ambient	temperature	T _A = 40	to +85°	C (A: Co	nsumer			Industria	l applica	tions)			

4. When setting to PIOR = 1

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

											(1/2	
	Item	40-	pin	44-	pin	48-	pin	52-	pin	64-p	oin	
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx	
Code flash m	emony (KB)		× 0 192		o 512		× 0 512		o 512	^ 32 to		
Data flash me		4 to 8		4 to 8		4 to 8		4 to 8		4 to 8		
RAM (KB)		2 to 1	6 ^{Note1}	2 to 3	2Note1	2 to 3	2Note1	2 to 3	2Note1	2 to 32	Note1	
Address spac	e	1 MB	•								-	
Main system clock	High-speed system clock	1 MBX1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (High-speed main) mode:1 to 20 MHz (V_{DD} = 2.7 to 5.5 V),HS (High-speed main) mode:1 to 16 MHz (V_{DD} = 2.4 to 5.5 V),LS (Low-speed main) mode:1 to 8 MHz (V_{DD} = 1.8 to 5.5 V),LV (Low-voltage main) mode:1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)										
	High-speed on-chip oscillator	HS (High LS (Low-	HS (High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)									
Subsystem cl	ock	XT1 (crys 32.768 k	,	ation, exte	rnal subsy	/stem cloc	k input (E	XCLKS)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)									
General-purp	ose registers	(8-bit reg	ister × 8)	× 4 banks								
Minimum inst	ruction execution time	0.03125 µs (High-speed on-chip oscillator: f⊮ = 32 MHz operation)										
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)										
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)										
Instruction se	L.	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	3	6	2	10	2	14	2	18	5	8	
	CMOS I/O	(N-ch ([V _{DD} wi	28 D.D. I/O thstand e]: 10)	(N-ch ([V _{DD} w	31 O.D. I/O ithstand je]: 10)	(N-ch ([V _{DD} w	34 O.D. I/O ithstand je]: 11)	(N-ch ([V _{DD} w	38 O.D. I/O ithstand je]: 13)	4 (N-ch C [V _{DD} wit voltage	D.D. I/O thstand	
	CMOS input		5		5		5		5	5	5	
	CMOS output		_		_		1		1	1		
	N-ch O.D. I/O (withstand voltage: 6 V)	:	3		4		4		4	4	ļ	
Timer	16-bit timer					8 cha	nnels					
	Watchdog timer					1 cha	annel					
	Real-time clock (RTC)					1 cha	annel					
	12-bit interval timer (IT)			1			annel			1		
	Timer output	4 channels outputs: 3 8 channels outputs: 7	^{Note 2}), 6 (PWM	/M 5 channels (PWM outputs: 4 Note 2), 8 0 8 channels (PWM outputs: 7 Note 2) Note 3 00 /M 00						8 channels outputs: 7		
	RTC output	1 channe		n clock: f-	- 20 760	2 VU-)						
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F R5F100xJ, R5F	ses RAM s and sta 101xD (> 101xE (x	in self-pr rt addres c = E to C c = E to C	ogrammi s of the F G, J, L): G, J, L):	RĂM area Start ado Start ado	ewriting o as used b	y the flas 300H =00H	a flash mo sh library	emory. are shov	wn below.		

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Notes 2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

Ite	m	40-	pin	44	-pin	48-	-pin	52-	-pin	64	-pin		
		R5	R5	R5	R5	R5	R5	R5	R5	R5	R5		
		F10	R5F101E	F10	F10	F10	F10	F10	F10	F10	F10		
		R5F100Ex)1Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx		
Clock output/buzz	er output		2		2		2		2		2		
•				Hz, 9.76 k	Hz, 1.25 N	1Hz, 2.5 M	IHz, 5 MH	z, 10 MHz		1			
				ock: fmain =									
		• 256 Hz	z, 512 Hz,	1.024 kHz	z, 2.048 kH	lz, 4.096 k	KHz, 8.192	kHz, 16.3	84 kHz, 3	2.768 kHz			
		(Subsy	stem cloo	ck: fsuв = 3	2.768 kHz	operation)	1					
8/10-bit resolution	A/D converter	9 channels 10 channels 10 channels 12 channels 12 channels							nels				
Serial interface		[40-pin, 4	4-pin pro	ducts]									
		-		CSI): 1 cha									
		-	-	CSI): 1 cha									
		-	ied SPI (0	CSI): 2 cha	innels/sim	plified I ² C:	2 channel	s/UART (l	JART sup	porting LI	N-bus): 1		
		channel	0										
		[48-pin, 5		-		115 L 120	.						
				CSI): 2 cha CSI): 1 cha									
			•	CSI): 1 cha CSI): 2 cha	•					porting L I	N-bue) 1		
		channel		501). Z 018	1111013/3111	Silled I C.			UAITI Sup		1 -DU3).		
		[64-pin pr	oducts										
			-			116 - 1120	0						
		 Simplif 	ied SPI ((CSI): 2 cha	innels/simi	Dilitied I-C:	2 channe	S/UART: 1	l channel				
		-	ied SPI ((ied SPI ((
		 Simplif 	ied SPI (CSI): 2 cha CSI): 2 cha CSI): 2 cha	innels/sim	olified I ² C:	2 channel	s/UART: 1	1 channel	porting LI	N-bus) : 1		
		 Simplif 	ied SPI (CSI): 2 cha	innels/sim	olified I ² C:	2 channel	s/UART: 1	1 channel	porting LI	N-bus): 1		
	l²C bus	SimplifSimplif	ied SPI (0 ied SPI (0	CSI): 2 cha	innels/sim innels/sim	olified I ² C:	2 channel 2 channel	s/UART: 1	l channel JART sup	porting LI			
Multiplier and divi		 Simplif Simplif channel 1 channel 	ied SPI ((ied SPI ((CSI): 2 cha CSI): 2 cha 1 channe	innels/sim innels/sim el	olified I ² C: olified I ² C: 1 channe	2 channel 2 channel	s/UART: 1 s/UART (l	l channel JART sup				
		 Simplif Simplif channel 1 channe 16 bits 	ied SPI (0 ied SPI (0 I × 16 bits	CSI): 2 cha CSI): 2 cha	innels/sim innels/sim el Jnsigned o	olified I ² C: olified I ² C: 1 channe	2 channel 2 channel	s/UART: 1 s/UART (l	l channel JART sup				
Multiplier and divid		 Simplif Simplif channel 1 channe 16 bits 32 bits 	ied SPI ((ied SPI ((I × 16 bits ÷ 32 bits	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I	unnels/sim unnels/sim el Unsigned (Unsigned)	olified I ² C: olified I ² C: 1 channe or signed)	2 channe 2 channe el	s/UART: 1 s/UART (l	l channel JART sup				
		 Simplif Simplif channel 1 channe 16 bits 32 bits 	ied SPI ((ied SPI ((x 16 bits ÷ 32 bits × 16 bits	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l	unnels/sim unnels/sim el Unsigned (Unsigned)	olified I ² C: olified I ² C: 1 channe or signed)	2 channe 2 channe el	s/UART: 1 s/UART (l	l channel JART sup				
accumulator DMA controller		 Simplif Simplif channel 1 channel 16 bits 32 bits 16 bits 2 channel 	ied SPI ((ied SPI ((x 16 bits ÷ 32 bits × 16 bits	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits =	unnels/sim unnels/sim el Unsigned (Unsigned)	olified I ² C: olified I ² C: 1 channe or signed) nsigned o	2 channe 2 channe el	s/UART: 1 s/UART (l	l channel JART sup	1 channe			
accumulator	der/multiply-	 Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2 	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits =	Innels/sim Innels/sim I Jnsigned (Jnsigned) 32 bits (U	olified I ² C: olified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el r signed)	s/UART: 1 s/UART (l 1 channe	l channel JART sup ट।	1 channe	el		
accumulator DMA controller Vectored	der/multiply-	 Simplif Simplif Simplif channel 1 channel 16 bits 32 bits 16 bits 2 channel 2 	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is Is	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits =	Innels/sim Innels/sim Jnsigned (Jnsigned) 32 bits (U	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el r signed) 27	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 원 27	1 channe	el 27		
accumulator DMA controller Vectored interrupt sources Key interrupt	der/multiply-	Simplif Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2	ied SPI ((ied SPI () × 16 bits ÷ 32 bits × 16 bits Is 57 7 4	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits =	Innels/sim Innels/sim Jnsigned (Jnsigned) 32 bits (U 27 7	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el <u>r signed)</u> 27 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored interrupt sources	der/multiply-	Simplif Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2 7 7 4 • Reset	ied SPI ((ied SPI () × 16 bits ÷ 32 bits × 16 bits Is 7 7 4 5 8 7 7 4 8 8 7 7 7 4 8 8 8 7 7 7 4 8 8 8 8	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I + 32 bits = 2 7 7 pin	Innels/sim Innels/sim Jnsigned (Jnsigned) 32 bits (U 27 7 4	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el <u>r signed)</u> 27 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt	der/multiply-	Simplif Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2 7	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits =	Innels/sim Innels/sim Jnsigned (Jnsigned) 32 bits (U 27 7 4 timer	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el <u>r signed)</u> 27 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt	der/multiply-	Simplif Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2 . Reset Interna Interna	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits = 	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel el <u>r signed)</u> 27 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt	der/multiply-	Simplif Simplif Simplif channel 1 channe 16 bits 32 bits 16 bits 2 channe 2 4 Reset I Interna Interna Interna	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE ⁻ 1 reset by I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I + 32 bits = 7 T pin watchdog power-on	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector	olified I ² C: Dified I ² C: 1 channe or signed) nsigned o	2 channel 2 channel r signed) 27 10 6	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt	der/multiply-	 Simplif Simplif Simplif channel 1 channel 1 channel 1 channel 1 channel 32 bits 32 bits 32 bits 2 channel 2 channel 2 channel 2 channel 2 channel 2 channel 32 bits 32 bits<td>ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE I reset by I reset by I reset by I reset by I reset by</td><td>CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de voltage de r illegal ins RAM pari</td><td>Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error</td><td>ecution ^{Not}</td><td>2 channel 2 channel el r signed) 27 10 6</td><td>s/UART: 1 s/UART (L 1 channe</td><td>1 channel JART sup 의 27 12</td><td>1 channe</td><td>el 27 13</td>	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE I reset by I reset by I reset by I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de voltage de r illegal ins RAM pari	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error	ecution ^{Not}	2 channel 2 channel el r signed) 27 10 6	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt	der/multiply-	 Simplif Simplif Simplif channel 1 channel 1 channel 1 channel 1 channel 32 bits 32 bits 32 bits 2 channel 2 channel 2 channel 2 channel 2 channel 2 channel 32 bits 32 bits<td>ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE I reset by I reset by I reset by I reset by I reset by</td><td>CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage du</td><td>Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error</td><td>ecution ^{Not}</td><td>2 channel 2 channel el r signed) 27 10 6</td><td>s/UART: 1 s/UART (L 1 channe</td><td>1 channel JART sup 의 27 12</td><td>1 channe</td><td>el 27 13</td>	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 4 by RESE I reset by I reset by I reset by I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage du	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error	ecution ^{Not}	2 channel 2 channel el r signed) 27 10 6	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt Reset	der/multiply-	 Simplif Simplif Simplif Channel 1 channel 2 channel 3 channel 3 channel 4 channel<td>ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE I reset by I reset by</td><td>CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits = T pin watchdog power-on voltage du villegal ins RAM pari villegal-me 1.51 V</td><td>Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.)</td><td>ecution ^{Not}</td><td>2 channel 2 channel el r signed) 27 10 6</td><td>s/UART: 1 s/UART (L 1 channe</td><td>1 channel JART sup 의 27 12</td><td>1 channe</td><td>el 27 13</td>	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I + 32 bits = T pin watchdog power-on voltage du villegal ins RAM pari villegal-me 1.51 V	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.)	ecution ^{Not}	2 channel 2 channel el r signed) 27 10 6	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored interrupt sources Key interrupt	der/multiply-	 Simplif Simplif Simplif Channel 1 channel 2 channel 3 channel 3 channel 4 channel<td>ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE I reset by I reset by</td><td>CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage do villegal ins RAM pari villegal-me</td><td>Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.)</td><td>ecution ^{Not}</td><td>2 channel 2 channel r signed) 27 10 6</td><td>s/UART: 1 s/UART (L 1 channe</td><td>1 channel JART sup 의 27 12</td><td>1 channe</td><td>el 27 13</td>	ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE I reset by I reset by	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage do villegal ins RAM pari villegal-me	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.)	ecution ^{Not}	2 channel 2 channel r signed) 27 10 6	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator <u>DMA controller</u> Vectored nterrupt sources Key interrupt Reset Power-on-reset ci	der/multiply-	 Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 3 2 bits 3 2 bits 1 6 bits 2 channel 4 a channel 1 nterna 1 nterna<!--</td--><td>ied SPI ((ied SPI ((x 16 bits ÷ 32 bits x 16 bits x 16</td><td>CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de illegal ins RAM pari 1.51 V set: 1.50 V 1.67 V</td><td>Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acces (TYP.) (TYP.) to 4.06 V (</td><td>ecution Not</td><td>2 channel 2 channel 2 channel 2 1 27 10 6 te 10 10 10 10 10 10 10 10 10 10</td><td>s/UART: 1 s/UART (L 1 channe</td><td>1 channel JART sup 의 27 12</td><td>1 channe</td><td>el 27 13</td>	ied SPI ((ied SPI ((x 16 bits ÷ 32 bits x 16	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de illegal ins RAM pari 1.51 V set: 1.50 V 1.67 V	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acces (TYP.) (TYP.) to 4.06 V (ecution Not	2 channel 2 channel 2 channel 2 1 27 10 6 te 10 10 10 10 10 10 10 10 10 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored nterrupt sources Key interrupt Reset Power-on-reset ci Voltage detector	der/multiply-	 Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 32 bits 2 channel 32 bits 32 bi	ied SPI ((ied SPI ((x 16 bits ÷ 32 bits x 16	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de illegal ins RAM pari 1.51 V set: 1.50 V 1.67 V	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.) (TYP.)	ecution Not	2 channel 2 channel 2 channel 2 1 27 10 6 te 10 10 10 10 10 10 10 10 10 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator <u>DMA controller</u> Vectored nterrupt sources Key interrupt Reset Power-on-reset ci Voltage detector <u>On-chip debug fur</u>	Internal External rcuit	 Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 1 channel 2 channel 1 channel 1 nterna 1	ied SPI ((ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE il reset by il reset by edge : edge :	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bit	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.) (TYP.) to 4.06 V (to 3.98 V (ecution Not	2 channel 2 channel 2 channel 2 1 27 10 6 te 10 10 10 10 10 10 10 10 10 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator DMA controller Vectored Interrupt sources Key interrupt Reset	Internal External rcuit	 Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 1 channel 2 channel 1 channel 1 nterna 1	ied SPI ((ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits Is 7 7 7 4 by RESE il reset by il reset by edge : edge :	CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (l = 32 bits (l + 32 bits = T pin watchdog power-on voltage de illegal ins RAM pari 1.51 V set: 1.50 V 1.67 V	Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.) (TYP.) to 4.06 V (to 3.98 V (ecution Not	2 channel 2 channel 2 channel 2 1 27 10 6 te 10 10 10 10 10 10 10 10 10 10	s/UART: 1 s/UART (L 1 channe	1 channel JART sup 의 27 12	1 channe	el 27 13		
accumulator <u>DMA controller</u> Vectored nterrupt sources Key interrupt Reset Power-on-reset ci Voltage detector <u>Dn-chip debug fur</u>	Internal External rcuit	 Simplif Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 1 channel 2 channel 1 channel 1 channel 2 channel 2 channel 2 channel 2 channel 2 channel 1 channel	ied SPI ((ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits is 7 7 4 by RESE il reset by il reset by con-reset: -down-rese edge : edge : to 5.5 V (CSI): 2 cha CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I = 32 bits (I = 32 bits = 2 cha = 32 bits (I = 32 bits (I = 32 bits = = 32 bits (I = 32 bi	Innels/sim Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.) (TYP.) to 4.06 V (to 3.98 V (0 +85°C) 0 +105°C)	ecution Not	2 channel 2 channel 2 channel r signed) 27 10 6 te te	s/UART: 1 s/UART (L	1 channel JART sup 27 12 8	1 channe	el 27 13		
Accumulator DMA controller /ectored nterrupt sources Key interrupt Reset Power-on-reset ci /oltage detector Dn-chip debug fur	der/multiply-	 Simplif Simplif Simplif Simplif Channel 1 channel 1 channel 1 channel 1 channel 1 channel 1 channel 2 channel 1 channel 1 channel 2 channel 2 channel 2 channel 2 channel 2 channel 1 channel	ied SPI ((ied SPI ((ied SPI ((× 16 bits ÷ 32 bits × 16 bits is 7 7 4 by RESE il reset by il reset by con-reset: -down-rese edge : edge : to 5.5 V (CSI): 2 cha CSI): 2 cha 1 channe = 32 bits (I = 32 bits (I = 32 bits (I = 32 bits = T pin watchdog power-on voltage du illegal ins RAM pari villegal-me 1.51 V 5et: 1.50 V 1.63 V (T _A = -40 to	Innels/sim Innels/sim Innels/sim Jnsigned of Jnsigned) 32 bits (U 27 7 4 timer -reset etector truction ex ty error mory acce (TYP.) (TYP.) to 4.06 V (to 3.98 V (0 +85°C) 0 +105°C)	ecution Not	2 channel 2 channel 2 channel r signed) 27 10 6 te te	s/UART: 1 s/UART (L	1 channel JART sup 27 12 8	1 channe	el 27 13		

3. When setting to PIOR = 1

Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. [80-pin, 100-pin, 128-pin products]

Caution	This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set
	to 00H.

	Item	80-	pin	100)-pin	128	3-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Code flash m	emory (KB)	96 to	512	96 t	o 512	192	to 512			
Data flash me	emory (KB)	8	_	8	_	8	_			
RAM (KB)		8 to 32	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1			
Address spac	e	1 MB		L						
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	l main) mode: 1 l main) mode: 1 main) mode: 1	external main system to 20 MHz (V_{DD} = to 16 MHz (V_{DD} = to 8 MHz (V_{DD} = to 4 MHz (V_{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),	EXCLK)				
	High-speed on-chip oscillatorHS (High-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)									
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purp	ose register	(8-bit register × 8) × 4 banks								
Minimum inst	ruction execution time	0.03125 μs (High-speed on-chip oscillator: f _H = 32 MHz operation)								
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)								
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)								
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total		'4		92	-	20			
·	CMOS I/O	(N-ch O.D. I/O	64 [EV₀₀ withstand e]: 21)	(N-ch O.D. I/O	32 [EV _{DD} withstand ge]: 24)	(N-ch O.D. I/O	10 [EV₀₀ withstan ge]: 25)			
	CMOS input	:	5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 ch	annels	16 ch	annels			
	Watchdog timer	1 cha	nnel	1 cha	annel	1 ch	annel			
	Real-time clock (RTC)	1 cha	nnel	1 cha	annel	1 ch	annel			
	12-bit interval timer (IT)	1 cha	nnel	1 cha	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs:	10 ^{Note 2})	12 channels (PWM outputs:	10 ^{Note 2})	16 channels (PWM outputs:	14 ^{Note 2})			
	RTC output	1 channel ● 1 Hz (subsys	tem clock: fsue =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Notes 2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

12	121
1/	121

lte	m	80-	pin	100	-pin	128	3-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Clock output/buzz	er output		2		2		2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 								
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels				
Serial interface		 Simplified SP Simplified SP Simplified SP 1 channel 	I (CSI): 2 channe I (CSI): 2 channe	ts] els/simplified I ² C: els/simplified I ² C: els/simplified I ² C: els/simplified I ² C:	2 channels/UAF 2 channels/UAF	RT: 1 channel RT (UART suppor	ting LIN-bus):			
	I ² C bus	2 channels		2 channels		2 channels				
Multiplier and divio accumulator	der/multiply-	• 32 bits ÷ 32 bi	ts = 32 bits (Uns	signed or signed) signed) bits (Unsigned o	r signed)					
DMA controller		4 channels								
Vectored	Internal	3	37	3	37		41			
interrupt sources	External	1	3	1	13	13				
Key interrupt			8		8		8			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 								
Power-on-reset ci	rcuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 								
Voltage detector		 Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages) 								
On-chip debug fur	nction	Provided								
Power supply volt	age	V_{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V_{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)								
Operating ambien	t temperature		C (A: Consumer °C (G: Industrial	applications, D: Ii applications)	ndustrial applicat	ions)				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

This chapter describes the following electrical specifications.

- Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxAxx, R5F101xxAxx
 - D: Industrial applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxDxx, R5F101xxDxx
 - G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C R5F100xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with Vss.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product in the RL78/G13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute M	Maximum	Ratings	(T _A =	25°C)	(1/2)
------------	---------	---------	-------------------	-------	-------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD0} +0.3 and -0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂ P60 to P63 (N-ch open-drain)		-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_{DD0} +0.3 and -0.3 to $\text{AV}_{\text{REF}}(+)$ +0.3 $^{\text{Notes 2, 3}}$	V
	V _{AI2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF}(+): + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/ crystal resonator	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.0		20.0	MHz
frequency (fx) ^{Note}		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	MHz
		$1.8 V \le V_{DD} \le 2.4 V$	1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G13 User's Manual.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.0		+1.0	%
clock frequency accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іонт	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	1.6 V ≤ EV _{DD0} ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
		$(\text{When duty} \le 70\% \text{ Note }^3)$	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 1.8 \text{ V}$			-2.5	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to 2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-80.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P87, P90 to P97, P100, P101, P110 to P117, P146, P147	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-10.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 1.8 \text{ V}$			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ EV _{DD0} ≤ 5.5 V			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ V _{DD} ≤ 5.5 V			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- **2.** However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is –100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			70.0	mA
		P40 to P47, P102 to P106, P120, P125	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			15.0	mA
		to P127, P130, P140 to P145 (When duty ≤ 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			9.0	mA
			1.6 V ≤ EV _{DD0} < 1.8 V			4.5	mA
		P31, P50 to P57, P60 to P67,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			80.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			20.0	mA
		P147 (When duty ≤ 70% ^{Note 3})	1.6 V ≤ EV _{DD0} < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/5)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and Io∟ = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EVDD0		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 V \le EV_{DD0} < 4.0 V$	2.0		EVDD0	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156		0.7Vdd		Vdd	V
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	_	0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_H of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	4.0 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −10.0 mA	EV _{DD0} – 1.5			V
		P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120,	4.0 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −3.0 mA	EV _{DD0} - 0.7			V
		P125 to P127, P130, P140 to P147	2.7 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −2.0 mA	EV _{DD0} - 0.6			V
			1.8 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −1.5 mA	EV _{DD0} - 0.5			V
			1.6 V ≤ EV _{DD0} < 5.5 V, Іон1 = −1.0 mA	EV _{DD0} - 0.5			V
	Voh2	P20 to P27, P150 to P156	1.6 V ≤ V _{DD} ≤ 5.5 V, Іон2 = −100 µА	$V_{\text{DD}} - 0.5$			V
Output voltage, Volta		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	$4.0 V \le EV_{DD0} \le 5.5 V$, Ioli = 20 mA			1.3	~
		P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$1.8 V \le EV_{DD0} \le 5.5 V$, $I_{OL1} = 0.6 mA$			0.4	V
			$1.6 V \le EV_{DD0} < 5.5 V,$ $I_{OL1} = 0.3 mA$			0.4	V
	Vol2	P20 to P27, P150 to P156	$1.6 V \le V_{DD} \le 5.5 V$, $I_{OL2} = 400 \ \mu A$			0.4	V
	Vol3	P60 to P63	$4.0 V \le EV_{DD0} \le 5.5 V$, $I_{OL3} = 15.0 mA$			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol3 = 2.0 mA			0.4	V
			$1.6 V \le EV_{DD0} < 5.5 V$, $I_{OL3} = 1.0 mA$			0.4	V

(T _A = −40 to +85°C, 1.6 V ≤ EV _{DD0} = EV _{DD1} ≤	$V_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss} = \text{EVss} = 0 \text{ V} (4/5)$
---	---

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μA
	Ilih2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low						-1	μA	
	Ilil2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (high-	fiH = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				fili = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				fili = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fili = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
		mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA	
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA	
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA
		spee		V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low- speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} ,	Normal operation Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V		Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4	operation	Resonator connection		4.3	5.6	μA
			T _A = +50°C							
			fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA	
			Note 4 T _A = +70°C	operation	Resonator connection		4.4	6.4	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.6	7.7	μA
				ISUB - 32.700 KHZ Note 4	operation	Resonator connection		4.0	7.8	μΑ μΑ
				T _A = +85°C				7.7	7.0	μΑ

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 V \le V_{DD} \le 5.5 V@1 \text{ MHz to } 8 \text{ MHz}$
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	fı⊢ = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.54	1.63	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.54	1.63	mA
Note I				f⊮ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				f⊮ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	f⊮ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	fı⊣ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA	
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	fs∪в = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fs∪в = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fs∪в = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
ourrent		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	f⊪ = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode _{Note 5}		operation	V _{DD} = 2.0 V		1.3	1.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA
		mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA	
			V _{DD} = 3.0 V	operation	Resonator connection		3.6	5.7	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	m/	
				V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.2	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	mA
			LS (low- speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.2	2.0	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	m/
				f _{MX} = 8 MHz ^{Note 2} ,	,	Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			clock operation	Note 4 T _A = -40°C	operation	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				Note 4 T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fs∪в = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				Note 4	operation	Resonator connection		5.1	7.7	μA
				T _A = +50°С fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
			Note 4	operation	Resonator connection		5.3	9.4	μΑ	
				T _A = +70°C						
				f _{SUB} = 32.768 kHz Note 4	Normal operation	Square wave input		5.7	13.3	μΑ
				T _A = +85°C		Resonator connection		5.8	13.4	μA

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

Parameter	Symbol			MIN.	TYP.	MAX.	Uni		
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.86	mA
			speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-speed main) mode Note 7	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
					V _{DD} = 2.0 V		290	620	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		440	680	μA
			HS (high- speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	1.28	m/
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	m/
				V _{DD} = 3.0 V	Resonator connection		0.48	1.28	m/
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	m
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	m
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	m
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	m
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μı
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
				$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
	I _{DD3} Note 6	STOP mode ^{Note 8}	$T_A = -40^{\circ}C$				0.19	0.52	μA
			T _A = +25°C				0.25	0.52	μı
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C				1.00	7.95	μA

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 - $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni
Supply current ^{Note 1}	DD1	Operating mode	HS (high- speed main) mode ^{Note 5}	f⊪ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.6		mA
					operation	V _{DD} = 3.0 V		2.6		mA
					Normal operation	V _{DD} = 5.0 V		6.1	9.5	mA
						V _{DD} = 3.0 V		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		4.8	7.4	mA
					operation	V _{DD} = 3.0 V		4.8	7.4	mA
				fill = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		3.5	5.3	mA
				ot	operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		1.5	2.0	mA
			voltage main) mode ^{Note 5}			V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-			3.9	6.1	mA		
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		3.9	6.1	m/
				V _{DD} = 3.0 V		Resonator connection		4.1	6.3	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		2.5	3.7	mA
				V _{DD} = 5.0 V		Resonator connection		2.5	3.7	m/
				f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		2.5	3.7	mA
				V _{DD} = 3.0 V		Resonator connection		2.5	3.7	mA
			LS (low- speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} ,	Normal operation Normal	Square wave input		1.4	2.2	mA
				V _{DD} = 3.0 V		Resonator connection		1.4	2.2	mA
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.4	2.2	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.2	mA
			Subsystem clock operation	fsub = 32.768 kHz Note 4	Normal operation	Square wave input		5.4	6.5	μA
				T _A = -40°C		Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				Note 4 T _A = +25°C	operation	Resonator connection		5.6	6.6	μA
				fsuв = 32.768 kHz	Normal operation	Square wave input		5.6	9.4	μA
				Note 4		Resonator connection		5.7	9.5	μA
				T _A = +50°C						
				fsub = 32.768 kHz Note 4	Normal operation	Square wave input		5.9	12.0	μA
				T _A = +70°C		Resonator connection		6.0	12.1	μA
				fs∪B = 32.768 kHz Note 4	Normal operation	Square wave input		6.6	16.3	μA
				T₄ = +85°C	operation	Resonator connection		6.7	16.4	μA

- **Notes 1.** Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions MIN.						MAX.	Unit
Supply current Note 1	IDD2	HALT	HS (high- speed main)	fill = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.89	mA
	Note 2	mode			V _{DD} = 3.0 V		0.62	1.89	mA
			mode Note 7	fiн = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA
					V _{DD} = 3.0 V		0.50	1.48	mA
				fін = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-speed main) mode Note 7	fiH = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
					V _{DD} = 2.0 V		290	620	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		460	700	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		460	700	μA
			HS (high- speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.68	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.68	m/
				V _{DD} = 3.0 V	Resonator connection		0.28	0.76	m/
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				V _{DD} = 3.0 V	Resonator connection		160	450	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				V _{DD} = 2.0 V	Resonator connection		160	450	μA
			Subsystem clock operation	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
				$T_A = -40^{\circ}C$	Resonator connection		0.50	0.85	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				T _A = +50°C	Resonator connection		0.66	3.68	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
				T _A = +70°C	Resonator connection		0.99	6.29	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				T _A = +85°C	Resonator connection		1.71	10.65	μA
	IDD3 ^{Note 6}	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μA
			T _A = +25°C				0.26	0.54	μA
			T _A = +50°C				0.35	3.37	μA
			T _A = +70°C				0.68	5.98	μA
			T _A = +85°C				1.40	10.34	μA

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 - 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Low-speed on- chip oscillator operating current	_{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	_{IT} Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	TMPS Note 1				75.0		μA
LVD operating current	I _{LVI} Notes 1, 7				0.08		μA
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		Simplified SPI (CS	SI)/UART operation		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

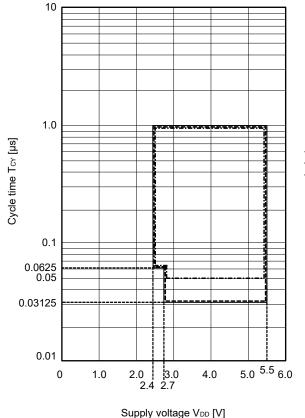
- **Notes 7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - 9. Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high-speed	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.03125		1	μs
instruction execution time)		clock (fmain) operation	main) mode	$2.4 V \le V_{DD} \le 2.7 V$	0.0625		1	μs
		operation	LS (low-speed main) mode	1.8 V≤V _{DD} ≤5.5 V	0.125		1	μs
			LV (low-voltage main) mode	1.6 V≤V _{DD} ≤5.5 V	0.25		1	μs
		Subsystem c operation	lock (fsuв)	1.8 V≤V _{DD} ≤5.5 V	28.5	30.5	31.3	μs
		In the self	HS (high-speed	2.7 V≤V _{DD} ≤5.5 V	0.03125		1	μs
		programming mode	main) mode	$2.4 V \le V_{DD} \le 2.7 V$	0.0625		1	μs
		mode	LS (low-speed main) mode	1.8 V≤V _{DD} ≤5.5 V	0.125		1	μs
			LV (low-voltage main) mode	1.8 V≤V _{DD} ≤5.5 V	0.25		1	μs
External system clock frequency	fex	$2.7 V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{DD} <$	2.7 V		1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input high-	texн, texL	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$			24			ns
level width, low-level width		$2.4 \text{ V} \leq \text{V}_{DD} <$	2.7 V		30			ns
		1.8 V ≤ V _{DD} <	2.4 V		60			ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			120			ns
	texhs, texls				13.7			μs
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	ed 4.0 V ≤	≦ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V ≤	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V ≤	≦ EV _{DD0} < 2.7 V			4	MHz
			1.6 V ≤	≦ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	d 1.8 V ≤	≦ EV _{DD0} ≤ 5.5 V			4	MHz
		main) mode	1.6 V ≤	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	ge 1.6 V ≤	≦ EV _{DD0} ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V ≤	≦ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V ≤	≦ EV _{DD0} < 4.0 V			8	MHz
			1.8 V ≤	≦ EV _{DD0} < 2.7 V			4	MHz
			1.6 V ≤	≦ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	d 1.8 V ≤	≦ EV _{DD0} ≤ 5.5 V			4	MHz
		main) mode	1.6 V ≤	≦ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta	ge 1.8 V ≤	≦ EV _{DD0} ≤ 5.5 V			4	MHz
		main) mode	1.6 V ≤	≦ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level width,	tinth,	INTP0	1.6 V ≤	≤ V _{DD} ≤ 5.5 V	1			μs
low-level width	t intl	INTP1 to INT	P11 1.6 V ≤	≤ EV _{DD0} ≤ 5.5 V	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	1.8 V ≤	≤ EV _{DD0} ≤ 5.5 V	250			ns
			1.6 V ≤	≤ EV _{DD0} < 1.8 V	1			μs
RESET low-level width	t _{RSL}				10			μs

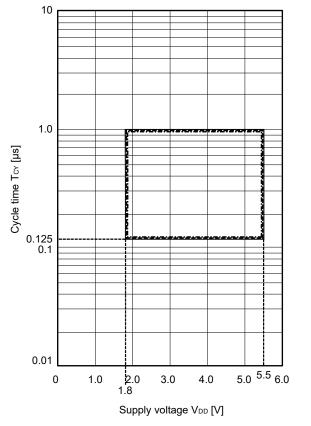
(Note and Remark are listed on the next page.)



Note The following conditions are required for low voltage interface when EVDD0 < VDD 1.8 V ≤ EV_{DD0} < 2.7 V : MIN. 125 ns 1.6 V ≤ EV_{DD0} < 1.8 V : MIN. 250 ns

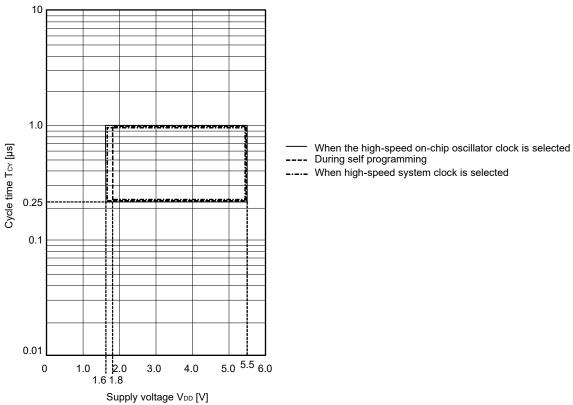
Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation


TCY vs VDD (HS (high-speed main) mode)

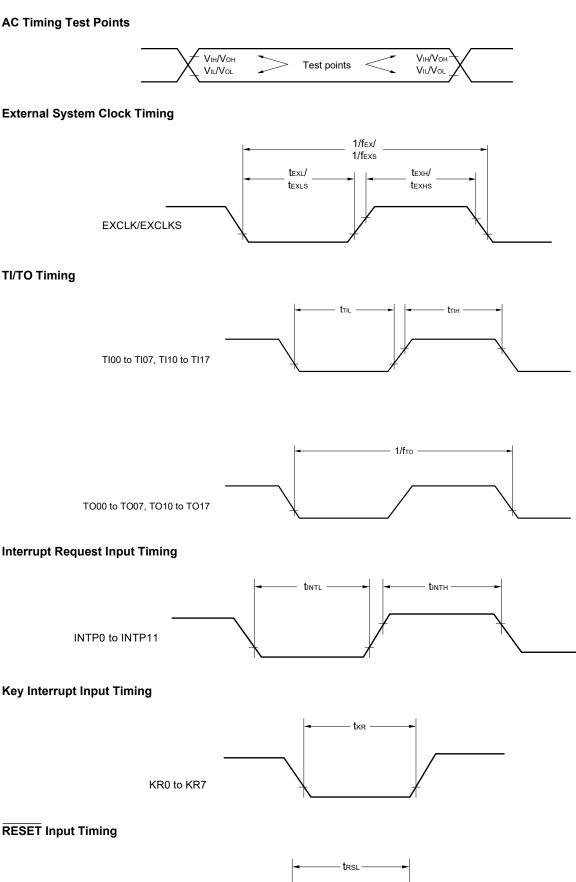
When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected ----

.._



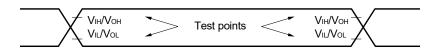
TCY VS VDD (LS (low-speed main) mode)

----- When the high-speed on-chip oscillator clock is selected


---- During self programming ---- When high-speed system clock is selected

TCY VS VDD (LV (low-voltage main) mode)

AC Timing Test Points



RESET

RENESAS

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

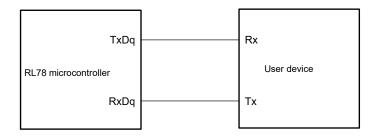
Parameter	Symbol	Conditions	、 U	h-speed Mode	-	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V≤ EV _{DD0} ≤ 5.5 V		fмск/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		fмск/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		fмск/6 Note 2		fмск/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		fмск/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		_		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

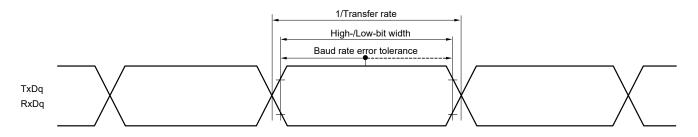
2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$: MAX. 2.6 Mbps

1.8 V ≤ EV_{DD0} < 2.4 V : MAX. 1.3 Mbps


1.6 V ≤ EV_{DD0} < 1.8 V : MAX. 0.6 Mbps

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$ $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$ LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$ LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(1A40 10 - 03 0, 2			\geq VDD \geq 5.5 V, VSS =		L V 331 -	-0 •)		r		
Parameter	Symbol		Conditions	、 U	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 2/fclк	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	62.5		250		500		ns
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	83.3		250		500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	4.0 V ≤ EV _{DD}	₀ ≤ 5.5 V	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DD}	₀ ≤ 5.5 V	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsiĸ1	4.0 V ≤ EV _{DD}	₀ ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DD}	₀ ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	2.7 V ≤ EV _{DD}	₀ ≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Not	e 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high main)	n-speed	LS (low	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tĸcy1 ≥ 4/fcLk	2.7 V ≤ EV _{DD0} ≤ 5.5 V	125		500		1000		ns
			2.4 V ≤ EV _{DD0} ≤ 5.5 V	250		500		1000		ns
			1.8 V ≤ EV _{DD0} ≤ 5.5 V	500		500		1000		ns
			1.7 V ≤ EV _{DD0} ≤ 5.5 V	1000		1000		1000		ns
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	-		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	4.0 V ≤ EV _{DD}	o ≤ 5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _{DD}	o ≤ 5.5 V	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		2.4 V ≤ EVDD	o ≤ 5.5 V	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		1.8 V ≤ EV _{DD}	o ≤ 5.5 V	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		1.7 V ≤ EV _{DD}	o ≤ 5.5 V	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		1.6 V ≤ EV _{DD}	o ≤ 5.5 V	_		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsiĸ1	4.0 V ≤ EVDD	o ≤ 5.5 V	44		110		110		ns
(to SCKp↑) Note 1		2.7 V ≤ EVDD	o ≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EV _{DD}	o ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV _{DD}	o ≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EV _{DD}	o ≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EV _{DD}	o ≤ 5.5 V	-		220		220		ns
SIp hold time	tksi1	1.7 V ≤ EV _{DD}	o ≤ 5.5 V	19		19		19		ns
(from SCKp↑) ^{Note 2}		1.6 V ≤ EV _{DD}	o ≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	1.7 V ≤ EV _{DD} C = 30 pF ^{Note}			25		25		25	ns
output ^{Note 3}		1.6 V ≤ EV _{DD} C = 30 pF ^{Note}			-		25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- (4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input) (1/2)

Parameter	Symbol	Condit	ions		peed main) ode		/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		-		_		ns
Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	8/fмск		Ι		-		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V	/	_		6/f _{мск} and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 — 7		tксү2/2 — 7		tксү2/2 - 7		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 — 8		tксү2/2 — 8		tксү2/2 — 8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 66		tксү2/2 – 66		tксү2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V	/	_		tксү2/2 – 66		tксү2/2 - 66		ns

1	TA = -40 to +85°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, Vss = EVss0 = EVss1 = 0 V	١
	$1A = -40 10 + 05 0$, $1.0 \neq 2 E \neq 000 = E \neq 001 2 \neq 00 2 = 5.5 \neq$, $455 = E \neq 550 = E \neq 551 = 0 \neq$,

(Notes, Caution, and Remarks are listed on the next page.)

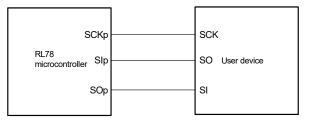
(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input) (2/2)

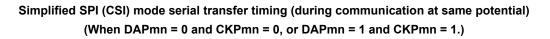
Parameter	Symbol		Conditions	HS (high-sp Mo	,	LS (low-sp Mo	,	, , , ,		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.]
SIp setup time	tsik2	2.7 V ≤ E	V _{DD0} ≤ 5.5 V	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		1.8 V ≤ E	V _{DD0} ≤ 5.5 V	1/fмск+30		1/fмск+30		1/fмск+30		ns
		1.7 V ≤ E	V _{DD0} ≤ 5.5 V	1/fмск+40		1/fмск+40		1/fмск+40		ns
		1.6 V ≤ E	VDD0 ≤ 5.5 V	-		1/fмск+40		1/fмск+40		ns
SIp hold time	tksi2	1.8 V ≤ E	V _{DD0} ≤ 5.5 V	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from SCKp↑) _{Note 2}		1.7 V ≤ E	V _{DD0} ≤ 5.5 V	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns
		1.6 V ≤ E	EV _{DD0} ≤ 5.5 V	-		1/fмск+ 250		1/fмск+ 250		ns
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF ^{Note 4}	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/f _{мск} + 44		2/f _{мск} + 110		2/f _{мск} + 110	ns
output ^{Note 3}			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/f _{мск} + 75		2/fмск+ 110		2/f _{мск} + 110	ns
			1.8 V ≤ EV _{DD0} ≤ 5.5 V		2/f _{мск} + 110		2/fмск+ 110		2/f _{мск} + 110	ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/f _{мск} + 220		2/fмск+ 220		2/fмск+ 220	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		-		2/fмск+ 220		2/fмск+ 220	ns

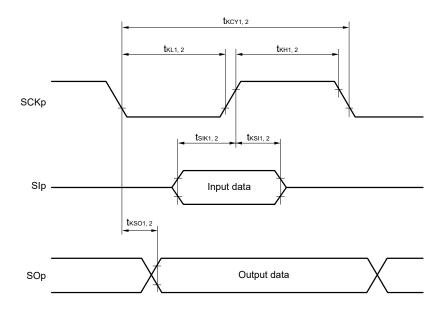
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

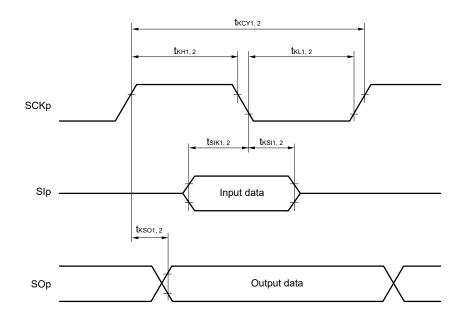
Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

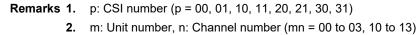
- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)


> fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(5) During communication at same potential (simplified l^2C mode) (1/2)

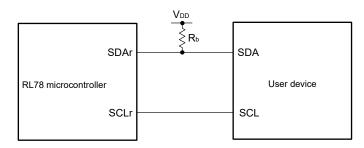
Parameter	Symbol	Conditions	()	h-speed Mode	``	v-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	2.7 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ		1000 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V ≤ EV _{DD0} < 2.7 V, C₅ = 100 pF, R₅ = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		1.7 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.7 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
		1.6 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		1850		1850		ns
Hold time when SCLr = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V ≤ EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5 \text{ k}\Omega$	-		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

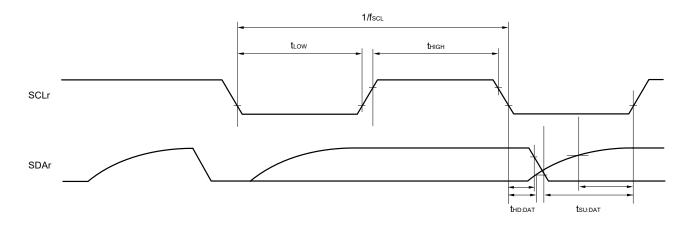
Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	•	/-speed Mode	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	1/f _{МСК} + 85 ^{Note2}		1/fмск + 145 Note2		1/fмск + 145 Note2		ns
		$1.8 V \le EV_{DD0} \le 5.5 V$, C _b = 100 pF, R _b = 3 kΩ	1/fмск + 145 Note2		1/fмск + 145 Note2		1/fмск + 145 Note2		ns
		$1.8 V \le EV_{DD0} < 2.7 V,$ C _b = 100 pF, R _b = 5 kΩ	1/fмск + 230 Note2		1/fмск + 230 Note2		1/fмск + 230 Note2		ns
		$1.7 V \le EV_{DD0} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ	1/fмск + 290 Note2		1/fмск + 290 Note2		1/fмск + 290 Note2		ns
		1.6 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		1/fмск + 290 Note2		1/fмск + 290 Note2		ns
Data hold time (transmission)	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	0	305	0	305	0	305	ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		1.7 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ EV _{DD0} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	-	0	405	0	405	ns

(5) During communication at same potential (simplified l^2C mode) (2/2)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions			h-speed Mode		/-speed Mode	LV (low main)	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 V ≤ EV_{DD0} ≤ 5.5 V,$ $2.7 V ≤ V_b ≤ 4.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			2.7 V ≤ EV _{DD0} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			fмск/6 Notes 1 to 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 4		5.3		1.3		0.6	Mbps

(T_A = -40 to +85°C, 1.8 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 2.6 Mbps

 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode:	32 MHz (2.7 V ≤ V _{DD} ≤ 5.5 V)
	16 MHz (2.4 V ≤ V _{DD} ≤ 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V _{DD} \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V ≤ V _{DD} ≤ 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 20- to 52-pin products)/EVbb tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

Parameter	Symbol		Conditions		speed	high- I main) ode	`	v-speed Mode	voltage	(low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$			Note 1		Note 1		Note 1	bps
			2.7 V ≤ V _b ≤ 4.0 V	Theoretical value of the maximum transfer rate		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
				$C_b = 50 \text{ pF}, R_b =$ 1.4 k Ω , V _b = 2.7 V							
			2.7 V ≤ EV _{DD0} < 4.0 V,			Note 3		Note 3		Note 3	bps
			2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
				$C_b = 50 \text{ pF}, R_b =$ 2.7 k Ω , V _b = 2.3 V							
			$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$							

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

 This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Notes 3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

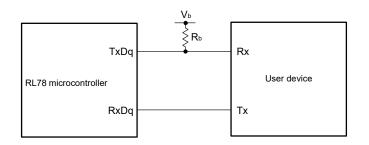
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$ [bps]

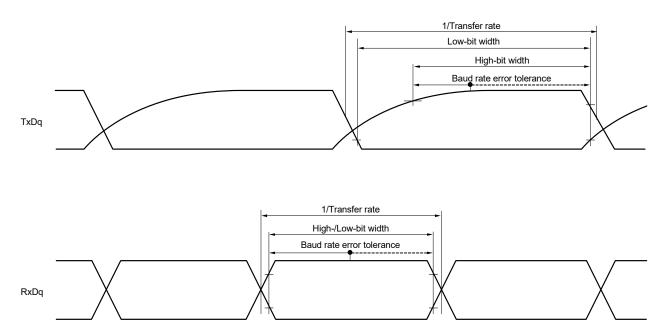
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- **5.** Use it with $EV_{DD0} \ge V_{b}$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 20- to 52-pin products)/EVbb tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. $R_b[\Omega]$:Communication line (TxDq) pull-up resistance,

- Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2)

Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	•	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2/fс∟к	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	200		1150		1150		ns
			2.7 V \leq EV _{DD0} $<$ 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 20 pF, R _b = 2.7 kΩ	300		1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DDC}$ $2.7 V \le V_b \le 4$ $C_b = 20 \text{ pF, F}$	s ≤ 5.5 V, I.0 V,	tксү1/2 – 50		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \leq EV_{DDC}$ $2.3 V \leq V_b \leq 2$ $C_b = 20 \text{ pF, F}$	2.7 V,	tксү1/2 – 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟ı	$4.0 V \leq EV_{DDC}$ $2.7 V \leq V_b \leq 4$ $C_b = 20 \text{ pF, F}$	I.0 V,	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \leq EV_{DDC}$ $2.3 V \leq V_b \leq 2$ $C_b = 20 \text{ pF, F}$	2.7 V,	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$4.0 V \leq EV_{DDC}$ $2.7 V \leq V_b \leq 4$ $C_b = 20 \text{ pF, F}$	I.0 V,	58		479		479		ns
		$2.7 V \le EV_{DDC}$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, R}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \leq EV_{DDC}$ $2.7 V \leq V_b \leq 4$ $C_b = 20 \text{ pF, R}$	o ≤ 5.5 V, I.0 V,	10		10		10		ns
		$2.7 V \le EV_{DDC}$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, F}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$4.0 V \leq EV_{DDC}$ $2.7 V \leq V_b \leq 4$ $C_b = 20 \text{ pF, R}$	o ≤ 5.5 V, I.0 V,		60		60		60	ns
		$2.7 V \le EV_{DDC}$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, R}$	o < 4.0 V, 2.7 V,		130		130		130	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

Parameter	Symbol	Conditions		h-speed Mode	-	v-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,	23		110		110		ns
		C_b = 20 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	33		110		110		ns
		C_b = 20 pF, R_b = 2.7 k Ω							
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,	10		10		10		ns
		C_b = 20 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	10		10		10		ns
		C_b = 20 pF, R_b = 2.7 k Ω							
Delay time from SCKp↑ to	tkso1	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,		10		10		10	ns
SOp output Note 2		C_b = 20 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$		10		10		10	ns
		C_b = 20 pF, R_b = 2.7 k Ω							

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions		h-speed Mode	LS (low main)	•		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 4/fc∟к	4.0 V \leq EV _{DD0} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 30 pF, R _b = 1.4 k Ω	300		1150		1150		ns
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	500		1150		1150		ns
			C_b = 30 pF, R_b = 2.7 k Ω							
			$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V^{Note},$	1150		1150		1150		ns
			C _b = 30 pF, R _b = 5.5 kΩ							
SCKp high-level width	t кн1	$4.0 V \leq EV_{DD}$ $2.7 V \leq V_b \leq 4$		tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		C _b = 30 pF, F	R _b = 1.4 kΩ							
		$2.7 V \le EV_{DD}$ $2.3 V \le V_b \le 2$	2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		C₀ = 30 pF, F								
		$1.8 V \le EV_{DD}$ $1.6 V \le V_b \le 2$		tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
		C _b = 30 pF, F	R _b = 5.5 kΩ							
SCKp low-level width	t KL1	$4.0 V \leq EV_{DD}$ $2.7 V \leq V_b \leq 4$,	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		C _b = 30 pF, F	R _b = 1.4 kΩ							
		$2.7 V \leq EV_{DD}$ $2.3 V \leq V_b \leq 2$,	tксү1/2 – 18		tксү1/2 — 50		tксү1/2 — 50		ns
		C₀ = 30 pF, F	R _b = 2.7 kΩ							
		$1.8 V \le EV_{DD}$ $1.6 V \le V_b \le 2$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		C _b = 30 pF, F	R _b = 5.5 kΩ							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	、 U	h-speed Mode	· ·	beed main) bde	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0 V \le EV_{DD0} \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V,$	81		479		479		ns
(III)		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	177		479		479		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
			479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD0} \le 5.5 V,$ $2.7 V \le V_b \le 4.0 V,$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
			19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↓ to	tkso1	$4.0 V \le EV_{DD0} \le 5.5 V,$ $2.7 V \le V_b \le 4.0 V,$		100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
				483		483		483	ns
	1	C_b = 30 pF, R_b = 5.5 k Ω							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $EV_{DD0} \ge V_b$.

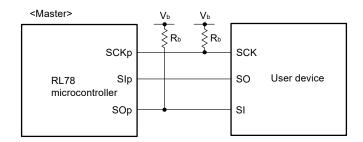
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (3/3)

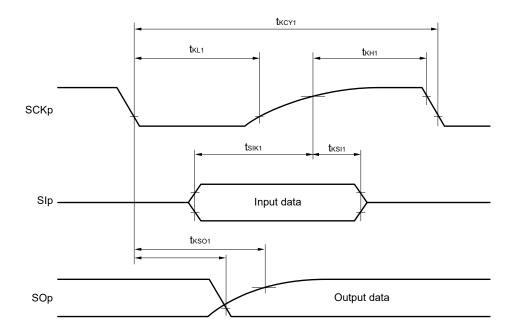
Parameter	Symbol	Conditions	、 U	h-speed Mode	LS (low-sp Mo	beed main) bde	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsik1	$4.0 V \le EV_{DD0} \le 5.5 V,$ $2.7 V \le V_b \le 4.0 V,$	44		110		110		ns
(I V)		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq E V_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$	110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↓) ^{Note 1}	tksi1	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,	19		19		19		ns
,		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
			19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↑ to	tkso1	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$,		25		25		25	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

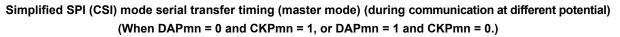

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

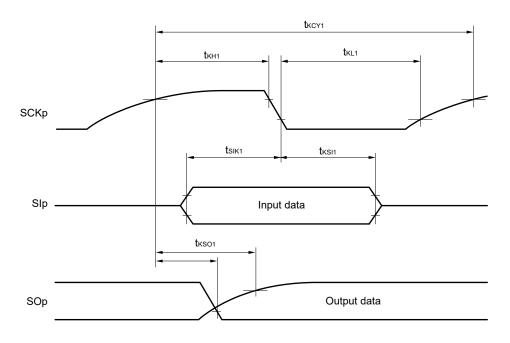
2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2))
---	---

Parameter	Symbol	Co	nditions		h-speed Mode		v-speed Mode	•	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V,$ $2.7 V \le V_b \le 4.0 V$	24 MHz < fмск	14/ fмск		_		-		ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск		_		-		ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск		_		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск		-		ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	24 MHz < fмск	20/ fмск		_		-		ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск		-		-		ns
			16 MHz < fмск ≤ 20 MHz	14/ f _{мск}		-		-		ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/ fмск		-		ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V^{Note 2}$		48/ fмск		Ι		-		ns
			20 MHz < fмск ≤ 24 MHz	36/ fмск		-		_		ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск		Ι		_		ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		-		ns
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

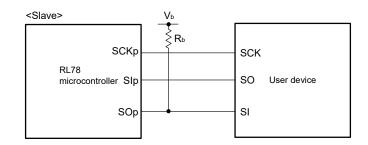
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V},$	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$ (2/2)

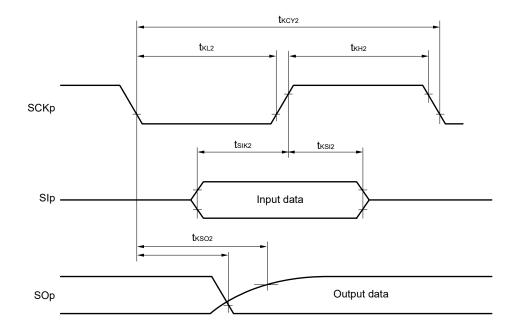
Parameter	Symbol	Conditions	HS (hig	h-speed Mode	LS (lov		`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$4.0 V \le EV_{DD0} \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V$	tксү2/2 — 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	tксү2/2 — 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 V \le EV_{DD0} \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output	tkso2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
Note 5		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$ \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

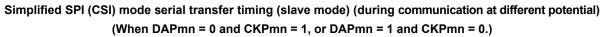

2. Use it with $EV_{DD0} \ge V_{b}$.

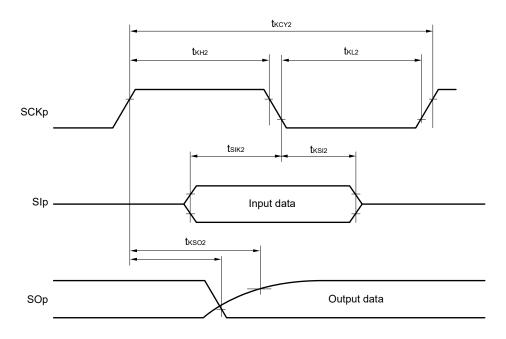
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



Simplified SPI (CSI) mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

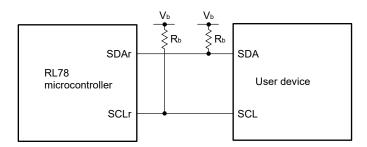
2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)

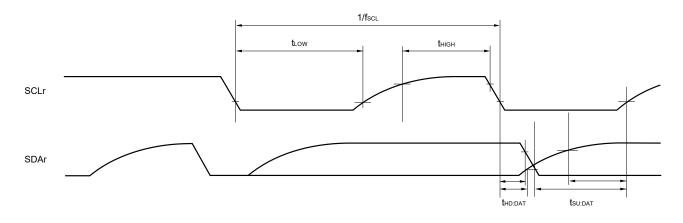
Parameter	Symbol	Conditions		h-speed Mode		v-speed Mode	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL			1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = 'L"	tLOW		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1150		1550		1550		ns
			1550		1550		1550		ns
Hold time when SCLr = 'H"	tніgн		245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	610		610		610		ns

Parameter	Symbol	Conditions	HS (higl main)	•	``	/-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{МСК} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
			1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$ \begin{split} 1.8 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	1/fмск + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
Data hold time (transmission)	thd:dat		0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
			0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)


Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)

2.5.2 Serial interface IICA

(1) I²C standard mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter Syr		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode:	2.7 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
		fc∟κ≥1 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.7 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	-	_	0	100	0	100	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.	5 V	4.7		4.7		4.7		μs
		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	-	4.0		4.0		μs
Hold time when SCLA0 =	t∟ow	2.7 V ≤ EVDD0 ≤ 5.5 V		4.7		4.7		4.7		μs
"L"		1.8 V ≤ EV _{DD0} ≤ 5.5 V		4.7		4.7		4.7		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	4.7		4.7		μs
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V			_	4.0		4.0		μs
Data setup time	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		250		250		250		ns
(reception)		1.8 V ≤ EV _{DD0} ≤ 5.5 V		250		250		250		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		250		250		250		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	250		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.	5 V	0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		0	3.45	0	3.45	0	3.45	μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		0	3.45	0	3.45	0	3.45	μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	0	3.45	0	3.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	4.0		4.0		μs
Bus-free time	tвuғ	2.7 V ≤ EV _{DD0} ≤ 5.5 V		4.7		4.7		4.7		μs
		1.8 V ≤ EVDD0 ≤ 5.5 V		4.7		4.7		4.7		μs
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		-	_	4.7		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fc∟κ ≥ 3.5 MHz	2.7 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
			1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.6		0.6		0.6		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		100		100		100		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		100		100		100		μs
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.	5 V	0.6		0.6		0.6		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		0.6		0.6		0.6		μs
Bus-free time	tвuғ	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1.3		1.3		1.3		μs
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

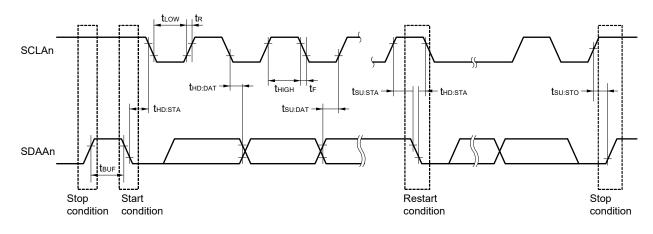
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions HS (high-s main) Mc MIN. M					LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN. MAX.		MIN. MAX.		
SCLA0 clock frequency	fscL	Fast mode plus: fc∟κ≥ 10 MHz	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0	1000	_	-	-	-	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.26		-		-		μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.26		_		_		μs
Hold time when SCLA0 = "L"	t∟ow	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.5		_		-		μs
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.26		-		-		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		50		-		-		μs
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0	0.45	-		-		μs
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.26	26 –		-	-	μs	
Bus-free time	t BUF	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.5		-		-		μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}$, $R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI14	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3).	Refer to 2.6.1 (4) .
ANI16 to ANI26	Refer to 2.6.1 (2) .		
Internal reference voltage	Refer to 2.6.1 (1).		_
Temperature sensor output			
voltage			

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+) = AV}_{REFP}, \text{ Reference voltage (-) = AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale errorNotes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 5		
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (h	0	V _{TMPS25} Note 5			V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V},$
Reference voltage (+) = AVREFP, Reference voltage (–) = AVREFM = 0 V)

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±5.0	LSB
		$EV_{DD0} = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 5}}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target ANI pin : ANI16 to	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs
		ANI26	1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
			1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} = AV_{REFP} = V_{DD} ^{Notes 3, 4}$	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		EVDD0 = AV _{REFP} = V _{DD} Notes 3, 4	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
error Note 1		EVDD0 = AV _{REFP} = V _{DD} Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AV _{REFP} and EVDD0	V

Notes 1. Excludes quantization error (±1/2 LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ Reference voltage (-)} = \text{V}_{\text{SS}}$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3		1.2	±10.5	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI26	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
Conversion time	t CONV	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal reference voltage, and	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μs
	temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS} 10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR	
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
	Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high		h-speed main) mode)	V _{BGR} Note 4			V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hig	5		1	V	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{Note 3}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{Note 4}, \text{ HS (high-speed main) mode}$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error (±1/2 LSB).

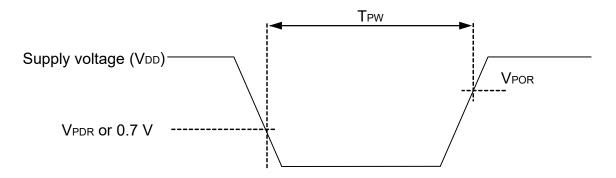
2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	The power supply voltage is rising.		1.51	1.55	V
	VPDR	The power supply voltage is falling.	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	The power supply voltage is rising.	3.98	4.06	4.14	V
voltage			The power supply voltage is falling.	3.90	3.98	4.06	V
		VLVD1	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD2	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD3	The power supply voltage is rising.	2.96	3.02	3.08	V
			The power supply voltage is falling.	2.90	2.96	3.02	V
		VLVD4	The power supply voltage is rising.	2.86	2.92	2.97	V
			The power supply voltage is falling.	2.80	2.86	2.91	V
		VLVD5	The power supply voltage is rising.	2.76	2.81	2.87	V
			The power supply voltage is falling.	2.70	2.75	2.81	V
		VLVD6	The power supply voltage is rising.	2.66	2.71	2.76	V
			The power supply voltage is falling.	2.60	2.65	2.70	V
		VLVD7	The power supply voltage is rising.	2.56	2.61	2.66	V
			The power supply voltage is falling.	2.50	2.55	2.60	V
		VLVD8	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLVD9	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD10	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLVD11	The power supply voltage is rising.	1.84	1.88	1.91	V
			The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD12	The power supply voltage is rising.	1.74	1.77	1.81	V
			The power supply voltage is falling.	1.70	1.73	1.77	V
		VLVD13	The power supply voltage is rising.	1.64	1.67	1.70	V
			The power supply voltage is falling.	1.60	1.63	1.66	V
Minimum pu	ılse width	t∟w		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

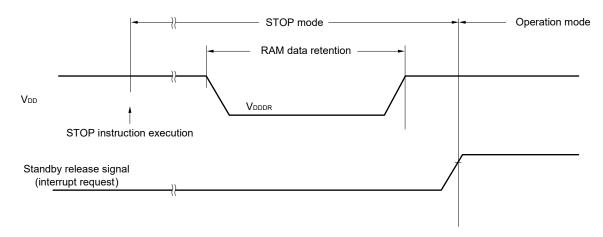
(T_A = -40 to +85°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2, VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2, VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1, 0	2.40	2.45	2.50	V	
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

|--|

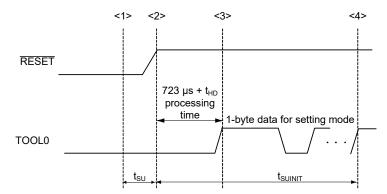
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fськ	1.8 V ≤ VDD ≤ 5.5 V	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product in the RL78/G13 User's Manual.
 - Please contact Renesas Electronics sales office for derating of operation under T_A = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- **Remark** When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see 2. **ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C)**.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Appl	ication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8 V \le V_{DD} \le 5.5 V$	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	Simplified SPI (CSI): fcLK/2 (supporting 16	Simplified SPI (CSI): fcLK/4
	Mbps), fclk/4	Simplified I ² C communication
	Simplified I ² C communication	
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

(Remark is listed on the next page.)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EV _{SS0} = EV _{SS1}	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	Vı2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vaii	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3} $$	V
	VAI2	ANI0 to ANI14	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}}(+)$ +0.3 $^{\text{Notes 2, 3}}$	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та	In normal operation	on mode	-40 to +105	°C
Storage temperature	Tstg		J	-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G13 User's Manual.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions		TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		–20 to +85°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.0		+1.0	%
		–40 to –20°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	2.4 V ≤ EV _{DD0} ≤ 5.5 V			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-30.0	mA
	P125 to P127 (When duty ≤ Total of P05, I P50 to P57, P P87, P90 to P P117, P146, F (When duty ≤ Total of all pin (When duty ≤ Iон2 Per pin for P2 Total of all pin	P125 to P127, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to 2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-19.0	mA
		P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EV _{DD0} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-60.0	mA
		Per pin for P20 to P27, P150 to P156	$2,4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ V _{DD} ≤ 5.5 V			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- **2.** Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and I_{OH} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	lol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 ^{Note 2}	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			40.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			15.0	mA
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 2.7 \text{ V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			40.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty ≤ 70% ^{Note 3})	2,4 V ≤ EV _{DD0} < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				80.0	mA
	Iol2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2,4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$	(2/5)	۱.
(1A+0 to + 105 0, 2.+ v 2 Evolut - Evolut 2 volu 2 5.5 v, vss - Evsst - Evsst - 0 v) (210	,

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (Io_L × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EVddo	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156		0.7Vdd		Vdd	V
	VIH4	P60 to P63	0.7EV _{DD0}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	121 to P124, P137, EXCLK, EXCLKS, RESET 0.8VDD VD	VDD	V		
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3Vdd	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

Caution The maximum value of V_H of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{D00}, even in the N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	4.0 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −3.0 mA	EV _{DD0} – 0.7			V
		P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120,	2.7 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −2.0 mA	EV _{DD0} – 0.6			V
			2.4 V ≤ EV _{DD0} ≤ 5.5 V, Іон1 = −1.5 mA	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	2.4 V ≤ V _{DD} ≤ 5.5 V, Іон2 = −100 µА	Vdd - 0.5			V
Output voltage, low	Vol1	P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Ioli = 8.5 mA			0.7	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Ioli = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol1 = 0.6 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iol3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ lol3 = 2.0 mA			0.4	V

(T _A = -40 to +105°C, 2.4 V ≤ EV _{DD0} = EV _{DD1} ≤ V _{DD} ≤ 5.5 V, V _{SS} = I	EVsso = EVss1 = 0 V) (4/5)
---	----------------------------

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μA
	Ilih2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso				-1	μA
	Ilil2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso,	In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = E$	$V_{SS1} = 0 V$	(5/5)

3.3.2 Supply current characteristics

Parameter	Symbol			Conditions	3		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operation	V _{DD} = 3.0 V		4.6	7.5	mA
				f⊪ = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	V _{DD} = 3.0 V		3.7	5.8	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operation	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.9	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.0	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.9	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.0	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.9	mA
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.9	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.9	mA	
				Resonator connection		1.9	2.9	mA		
		Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA	
			clock operation	Note 4	operation	Resonator connection		4.2	5.0	μA
			operation	T _A = -40°C						
				fsuв = 32.768 kHz Note 4	Normal operation	Square wave input		4.1	4.9	μA
					operation	Resonator connection		4.2	5.0	μA
				$T_A = +25^{\circ}C$					<u> </u>	
				fsuв = 32.768 kHz Note 4	Normal operation	Square wave input		4.2	5.5	μA
					operation	Resonator connection		4.3	5.6	μA
				$T_A = +50^{\circ}C$	Name	Courses ways innut		4.0		
				fsuв = 32.768 kHz Note 4	Normal operation	Square wave input		4.3	6.3	μA
				T _A = +70°C		Resonator connection		4.4	6.4	μA
				Га – +70 С fsuв = 32.768 kHz	Normal	Square wave input		4.6	7.7	μA
				Note 4	operation	Resonator connection		4.0	7.8	μA
				T _A = +85°C				4.7	7.0	μΑ
			fs	fsuв = 32.768 kHz	Normal	Square wave input		6.9	19.7	μA
					operation	Resonator connection		7.0	19.8	μΑ
				T _A = +105°C						P

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	fıн = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.54	2.90	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.54	2.90	mA
Note 1				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	2.30	mA
					V _{DD} = 3.0 V		0.44	2.30	mA
				fıн = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.70	mA
					V _{DD} = 3.0 V		0.40	1.70	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
		clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA	
			operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μΑ
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				T _A = +105°C	Resonator connection		3.20	15.56	μA
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			$T_{A} = +50^{\circ}C$ $T_{A} = +70^{\circ}C$				0.30	1.10	μA
							0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA
			T _A = +105°C				2.94	15.30	μA

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (2/2)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	mbol		Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operation	V _{DD} = 3.0 V		5.2	9.2	mA
				f⊪ = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operation	V _{DD} = 3.0 V		4.1	7.0	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operation	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.9	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.6	6.0	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.9	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.6	6.0	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.5	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.5	mA
			V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.5	mA	
			clock operation T _A =	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
				Note 4 T _A = -40° C	operation	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				Note 4 T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				Note 4 T _A = +50°C	operation	Resonator connection		5.1	7.7	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4 T _A = +70°C	operation	Resonator connection		5.3	9.4	μA
					Square wave input		5.7	13.3	μA	
			No T.	Note 4 T _A = +85°C	operation	Resonator connection		5.8	13.4	μA
				fsue = 32.768 kHz Normal Sq		Square wave input		10.0	46.0	μA
				Note 4 T _A = +105°C	operation	Resonator connection		10.0	46.0	μA

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (T_A = −40 to +105°C, 2.4 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

- Notes 1. Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz
 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	3.40	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	3.40	mA
			mode	fin = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
				T _A = -40°C	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
		-	T _A = +85°C				1.00	7.95	μA
			T _A = +105°C				5.00	40.00	μA

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

- Notes 1. Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	I⊤ Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter		When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, AV _{REFP} = V_{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, low-voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	mA
		Simplified SPI (CSI)	/UART operation		0.70	1.54	mA

(3) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

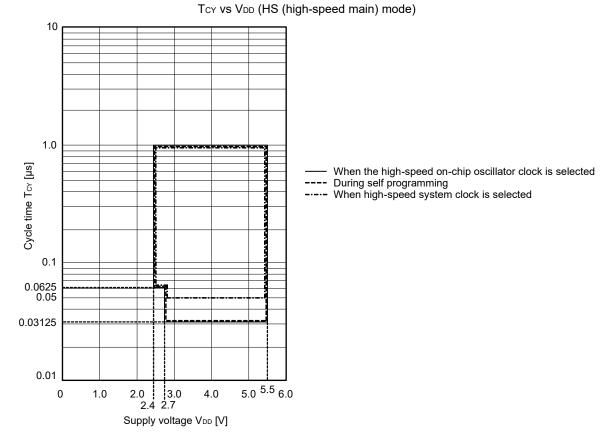
Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.

- **Notes 7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - 8. Current flowing only during data flash rewrite.
 - **9.** Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- **Remarks 1.** fill: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

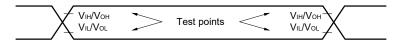
3.4 AC Characteristics

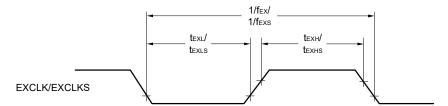
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system		$2.7\text{V} \leq \text{V}_{\text{DD}} \leq 5.5\text{V}$	0.03125		1	μs
		clock (fmain) operation	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem of operation	lock (fsuв)	$2.4 V \le V_{DD} \le 5.5 V$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μs
		programming main) m mode	main) mode	$2.4 V \le V_{DD} \le 2.7 V$	0.0625		1	μs
External system clock frequency	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	1.0		16.0	MHz		
	fexs		32		35	kHz		
External system clock input high- evel width, low-level width	texh, texl	2.7 V ≤ V _{DD} ≤	≦ 5.5 V		24			ns
		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
	texhs, texls		13.7			μs		
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	ed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	2.4 V ≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 V$	1			μs
low-level width	t intl	INTP1 to INT	P11 2.4 V	≤ EV _{DD0} ≤ 5.5 V	1			μs
Key interrupt input low-level width	t KR	KR0 to KR7	2.4 V	≤ EV _{DD0} ≤ 5.5 V	250			ns
RESET low-level width	t _{RSL}				10			μs

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ 2.4V $\leq EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

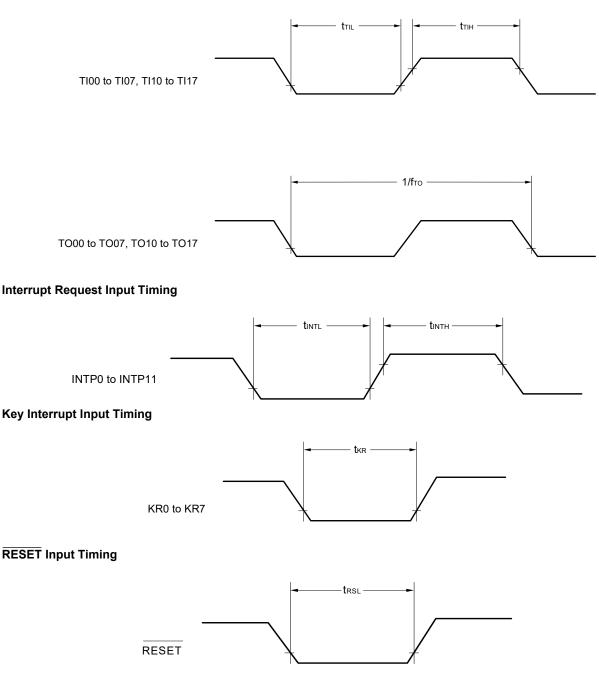
Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

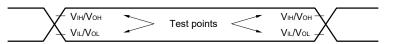


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points



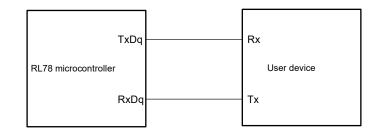
External System Clock Timing



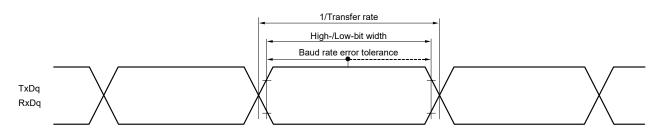
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - The following conditions are required for low voltage interface when EvDD₀ < VDD.
 2.4 V ≤ EVDD₀ < 2.7 V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

RENESAS

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tĸcy1 ≥ 4/fc∟ĸ	2.7 V ≤ EV _{DD0} ≤ 5.5 V	250		ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	500		ns
SCKp high-/low-level width	tкн1, tкL1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tkcy1/2 - 24		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy1/2 – 36		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy1/2 - 76		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsıkı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		66		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		113		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso1	C = 30 pF ^{Note 4}			50	ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

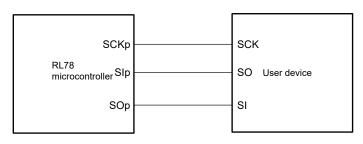
- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

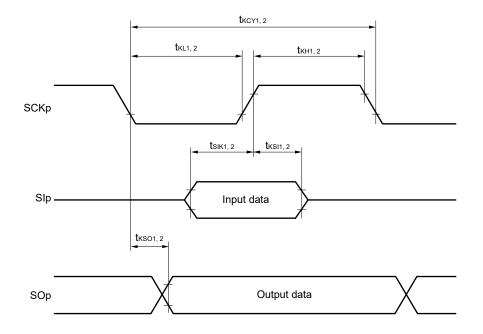
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	t ксү2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	20 MHz < fмск	16/f мск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V	16 MHz < fмск	16/f мск		ns
			fмск ≤ 16 MHz	12/f мск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		16/f мск		ns
				12/fмск and 1000		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 – 14		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V	,	tксү2/2 – 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	/	1/fмск+40		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	/	1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1/fмск+62		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск+66	ns
			2.4 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск+113	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

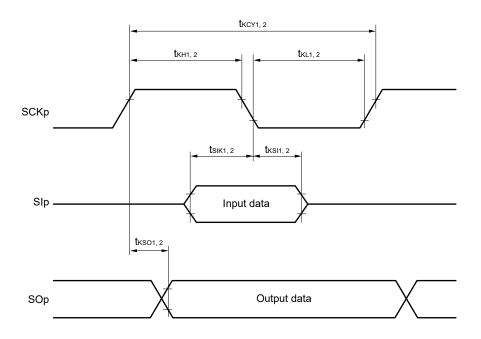

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),


n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

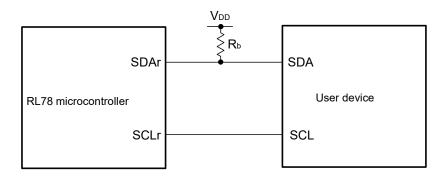
2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	ymbol Conditions		HS (high-speed main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	2.7 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ		400 ^{Note1}	kHz
		2.4 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ		100 ^{Note1}	kHz
Hold time when SCLr = "L"	t∟ow	2.7 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	1200		ns
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns
Hold time when SCLr = "H"	tніgн	2.7 V \leq EV _{DD0} \leq 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	1200		ns
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns
Data setup time (reception)	tsu:dat	2.7 V \leq EV _{DD0} \leq 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	1/f _{MCK} + 220 Note2		ns
		2.4 V \leq EV _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 580 Note2		ns
Data hold time (transmission)	thd:dat	2.7 V \leq EV _{DD0} \leq 5.5 V, C _b = 50 pF, R _b = 2.7 kΩ	0	770	ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	1420	ns

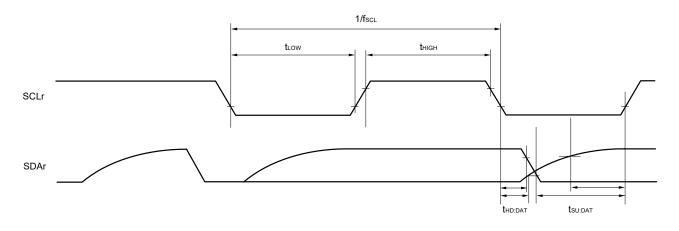
(4) During communication at same potential (simplified l²C mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Parameter	Symbol		Conditio	ns	HS (high-spee	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate	Transfer rate Reception 4.0	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$			fмск/12 ^{Note 1}	bps	
2		m	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps	
	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$		fмск/12 Note 1	bps		
		2.	$2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			fмск/12 Notes 1,2	bps
				Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMCk = fcLk		2.6	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) ($T_A = -40$ to +105°C, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5$ V, Vss = EVss0 = EVss1 = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- The following conditions are required for low voltage interface when EvDD0 < VDD.
 2.4 V ≤ EVDD0 < 2.7 V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)
 - 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(5)	Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter	Symbol		Conditions		Conditions HS (high-speed main		ed main) Mode	Unit
					MIN.	MAX.		
Transfer rate	ransfer rate Transmission 4.0 V	$4.0 V \le EV_{DD0} \le 5.5 V$,			Note 1	bps		
2.7 V ≤ 2.3 V ≤ 2.4 V ≤	$2.7 V \le V_b \le 4.0 V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.6 Note 2	Mbps			
	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$			Note 3	bps			
	2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps			
		$2.4 V \le EV_{DD0} < 3.3 V$,			Note 5	bps		
	1.6 V ≤ V _b ≤ 2.0 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 6	Mbps			

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using f_{MCK}/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

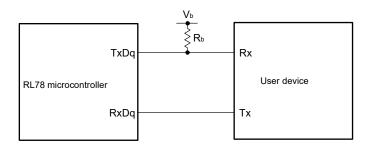
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

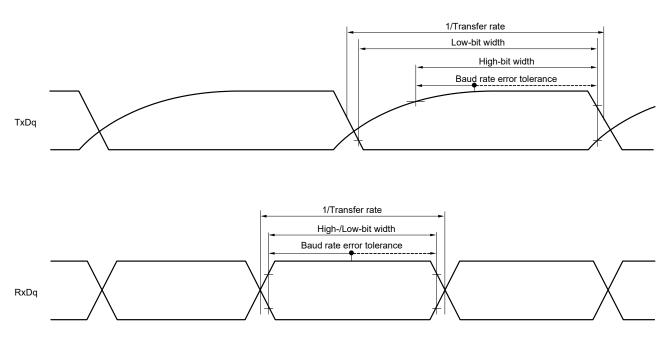
* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Notes 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$ [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. $R_b[\Omega]$:Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	tĸcy1 ≥ 4/fcLĸ	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	600		ns
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	1000		ns
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	2300		ns
		(C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	<u>C</u> 2.	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$		tксү1/2 – 150		ns
		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		tксү1/2 – 340		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 2.7 \text{k}\Omega$				
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		tксү1/2 – 916		ns
		$C_{\rm b}$ = 30 pF, $R_{\rm b}$ = 5.5 k Ω				
SCKp low-level width	t KL1	4.0 V ≤ EV _{DD0}	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$			ns
		C _b = 30 pF, R	R _b = 1.4 kΩ			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tксү1/2 — 36		ns
		C_b = 30 pF, R_b = 2.7 k Ω				
		2.4 V ≤ EVDD	$_{\rm D}$ < 3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 – 100		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	162		ns
(to SCKp↑) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	t _{KSI1}	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	38		ns
(from SCKp↑) Note		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		200	ns
SOp output Note		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		390	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		966	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

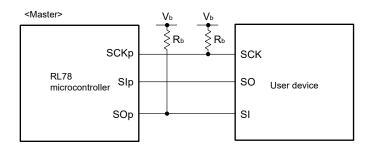
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vbb tolerance (for the 20- to 52-pin products)/EVbb tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (3/3)

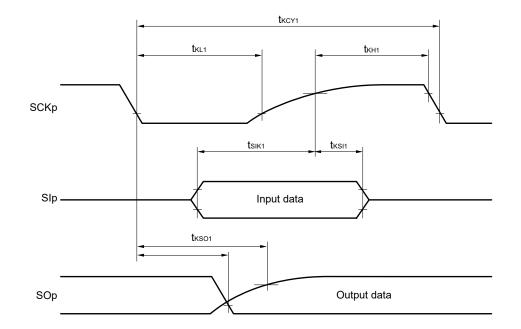
Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	88		ns
(to SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time	tksi1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	38		ns
(from SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↑ to	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$		50	ns
SOp output ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

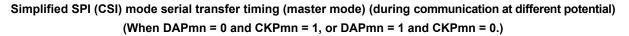

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

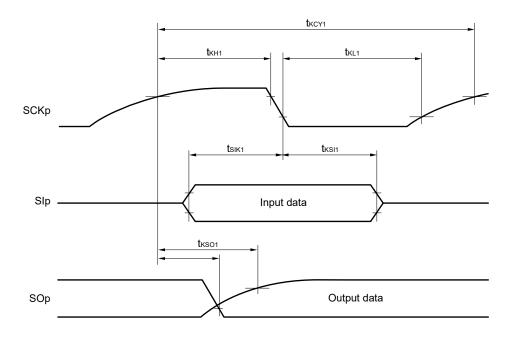
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vbb tolerance (for the 20- to 52-pin products)/EVbb tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



Simplified SPI (CSI) mode connection diagram (during communication at different potential)

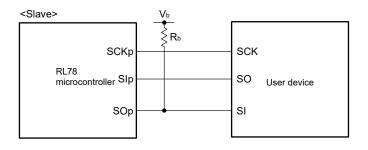



- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

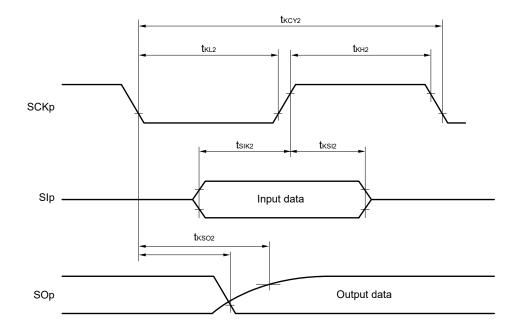
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

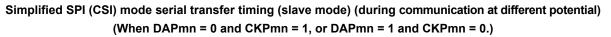

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 1}	t ксү2	$4.0 V \le EV_{DD0} \le 5.5 V$,	24 MHz < fмск	28/f мск		ns
		$2.7 V \le V_b \le 4.0 V$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
			8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7 V \le EV_{DD0} < 4.0 V$,	24 MHz < fмск	40/f мск		ns
		$2.3 V \le V_b \le 2.7 V$	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
			16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			8 MHz < fмск ≤ 16 MHz	24/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		ns
			fмск ≤ 4 MHz	12/f мск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	96/f мск		ns
		$1.6 V \le V_b \le 2.0 V$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
			16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/f мск		ns
			fмск ≤ 4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 V \le EV_{DD0} \le 5.5$ $2.7 V \le V_b \le 4.0 V$	V,	tkcy2/2 - 24		ns
		$2.7 V \le EV_{DD0} < 4.0$ $2.3 V \le V_b \le 2.7 V$	V,	tксү2/2 – 36		ns
		$2.4 V \le EV_{DD0} < 3.3$ $1.6 V \le V_b \le 2.0 V^{N_b}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsık2	$4.0 V \le EV_{DD0} \le 5.5$ $2.7 V \le V_b \le 4.0 V$	V,	1/fмск + 40		ns
		$2.7 V \le EV_{DD0} < 4.0$ $2.3 V \le V_b \le 2.7 V$	V,	1/fмск + 40		ns
		$2.4 V \le EV_{DD0} < 3.3$ $1.6 V \le V_b \le 2.0 V$	V,	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$4.0 V \le EV_{DD0} \le 5.5$ $C_b = 30 \text{ pF}, R_b = 1.4$	V, 2.7 V ≤ V₅ ≤ 4.0 V, 4 kΩ		2/fмск + 240	ns
		$2.7 V \le EV_{DD0} < 4.0$ C _b = 30 pF, R _b = 2.7	V, 2.3 V ≤ V₅ ≤ 2.7 V, 7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5$	V, 1.6 V ≤ V♭ ≤ 2.0 V 5 kΩ		2/fмск + 1146	ns

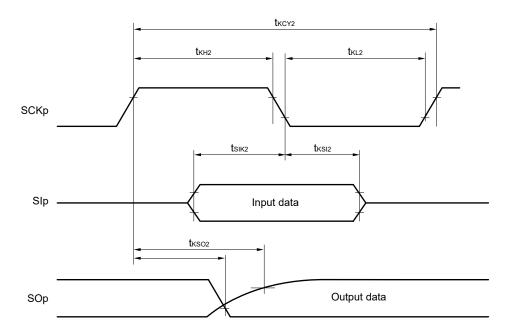
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)


- Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8)	Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)	
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$	

Parameter	Symbol	Conditions		speed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW		1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
			4600		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн		620		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
			2700		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns

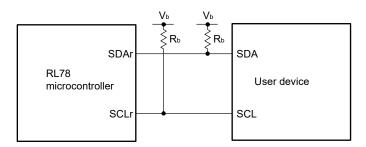
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	HS (high-sp Mo		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/f _{MCK} + 760 Note 2		ns
			1/f _{MCK} + 760 Note 2		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/f _{MCK} + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

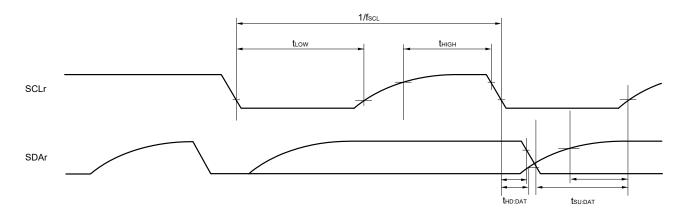
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)

(T_A = -40 to +105°C, 2.4 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

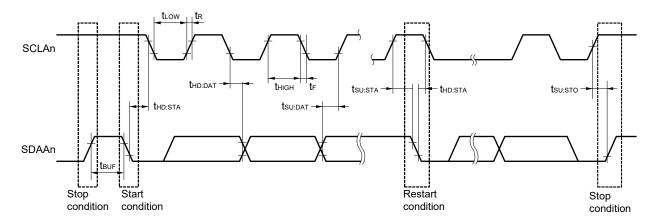
- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)

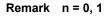
3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode		Unit	
			Standa	rd Mode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fc∟ĸ ≥ 1 MHz	0	100	-	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of the during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ } pF, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3).	Refer to 3.6.1 (4) .
ANI16 to ANI26	Refer to 3.6.1 (2) .		
Internal reference voltage	Refer to 3.6.1 (1) .		-
Temperature sensor output			
voltage			

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (–) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditio	ins	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI2 to ANI14	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
		10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
		Target pin: Internal reference	2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 4		
		Temperature sensor output vol (2.4 V \leq VDD \leq 5.5 V, HS (high-	0	V _{TMPS25} Note 4		4	V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} ^{Notes 3, 4}	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} ^{Notes 3, 4}	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±3.5	LSB
Differential linearity error	DLE	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AV _{REFP} and EVDD0	V

Notes 1. Excludes quantization error (±1/2 LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}.
 Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = (+) = (+) \text{ V}_{\text{DD}}$	
Reference voltage (-) = Vss)	

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1.2	±7.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI0 to ANI14,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
		ANI16 to ANI26	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal reference	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 3			V
		Temperature sensor output volt (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-s	0	V _{TMPS25} Note 3		V	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}} \text{ }^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}} \text{ }^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error (±1/2 LSB).

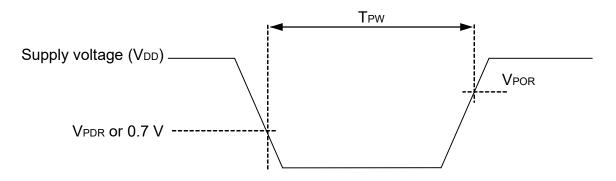
2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	The power supply voltage is rising.	1.45	1.51	1.57	V
	VPDR	The power supply voltage is falling.	1.44	1.50	1.56	V
Minimum pulse width Note	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	The power supply voltage is rising.	3.90	4.06	4.22	V
voltage			The power supply voltage is falling.	3.83	3.98	4.13	V
		VLVD1	The power supply voltage is rising.	3.60	3.75	3.90	V
			The power supply voltage is falling.	3.53	3.67	3.81	V
		VLVD2	The power supply voltage is rising.	3.01	3.13	3.25	V
		The power supply voltage is falling.	2.94	3.06	3.18	V	
		VLVD3	The power supply voltage is rising.	2.90	3.02	3.14	V
			The power supply voltage is falling.	2.85	2.96	3.07	V
		VLVD4	The power supply voltage is rising.	2.81	2.92	3.03	V
			The power supply voltage is falling.	2.75	2.86	2.97	V
		VLVD5	The power supply voltage is rising.	2.70	2.81	2.92	V
			The power supply voltage is falling.	2.64	2.75	2.86	V
		VLVD6	The power supply voltage is rising.	2.61	2.71	2.81	V
			The power supply voltage is falling.	2.55	2.65	2.75	V
		VLVD7	The power supply voltage is rising.	2.51	2.61	2.71	V
			The power supply voltage is falling.	2.45	2.55	2.65	V
Minimum pu	ulse width	tLw		300			μs
Detection d	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

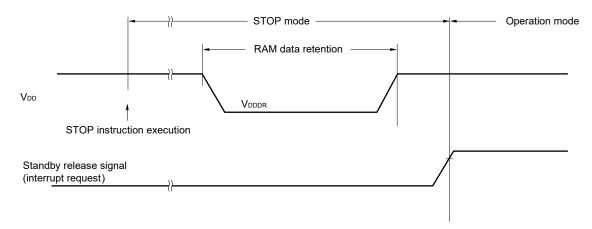
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{V}_{PDR} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

1A +0 to +100 0; 21+ V = V						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclĸ	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = $85^{\circ}C^{Note 4}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = $85^{\circ}C^{Note 4}$	100,000			
		Retained for 20 years $T_A = 85^{\circ}C^{Note 4}$	10,000			

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

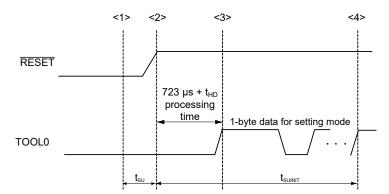
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2. When using flash memory programmer and Renesas Electronics self programming library.

3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

4. This temperature is the average value at which data are retained.

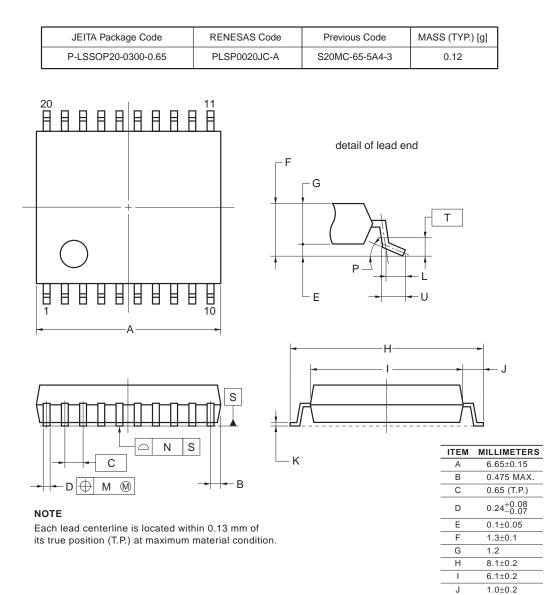
3.9 Dedicated Flash Memory Programmer Communication (UART)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

3.10 Timing of Entry to Flash Memory Programming Modes

($T_A = -40$ to +105°C.	$.2.4 V \leq EV_{DD0} = EV_{T}$	$DD1 \leq VDD \leq 5.5 V. V$	ss = EVsso = EVss1 = 0 V)
		,		


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{SU:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 20-pin Package

© 2012 Renesas Electronics Corporation. All rights reserved.

Κ

L

Μ

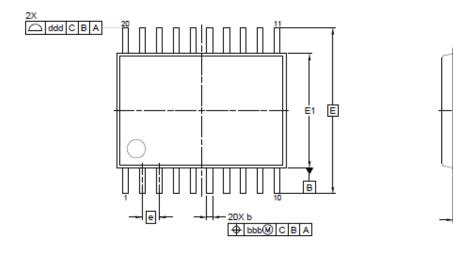
Ν

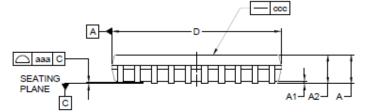
Ρ

T U 0.17±0.03

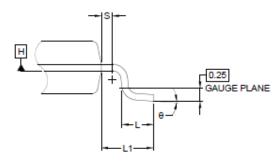
0.5

0.13


0.10 3°+5°


0.25

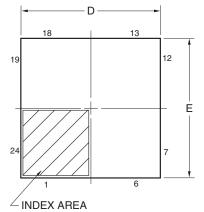
0.6±0.15

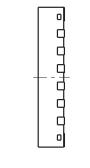


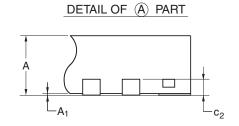
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-TSSOP20-4.40x6.50-0.65	PTSP0020JI-A	0.08

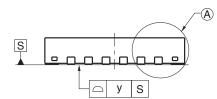
Reference	Dimen	sion in Milli	meters	
Symbol	Min.	Nom.	Max.	
Α	-	-	1.20	
A1	0.05	-	0.15	
A2	0.80	1.00	1.05	
b	0.19	-	0.30	
С	0.09	0.127	0.20	
D	6.40	6.50	6.60	
E1	4.30	4.40	4.50	
E	6.40 BSC			
e		0.65 BSC		
L1		1.00 REF		
L	0.50	0.60	0.75	
S	0.20	-	-	
θ	0°	-	8°	
aaa	0.10			
bbb		0.10		
ccc		0.05		
ddd	0.20			

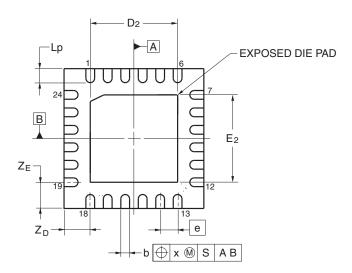
С

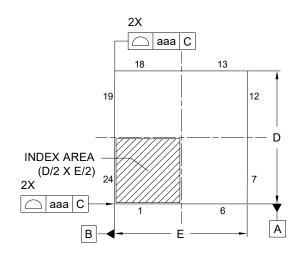

NOTES: 1.DIMENSION 'D' AND 'E1' DOES NOT INCLUDE MOLD FLASH. 2.DIMENSION 'b' DOES NOT INCLUDE TRIM OFFSET. 3.DIMENSION 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE H.




٦


4.2 24-pin Package

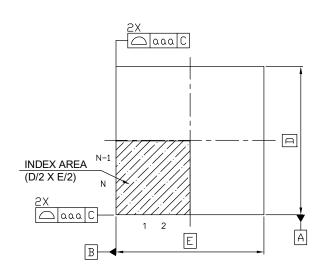

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

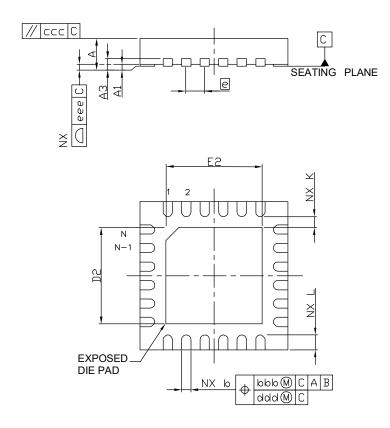




Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
Α			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	—
Z _E		0.75	
C2	0.15	0.20	0.25
D ₂		2.50	
E ₂		2.50	

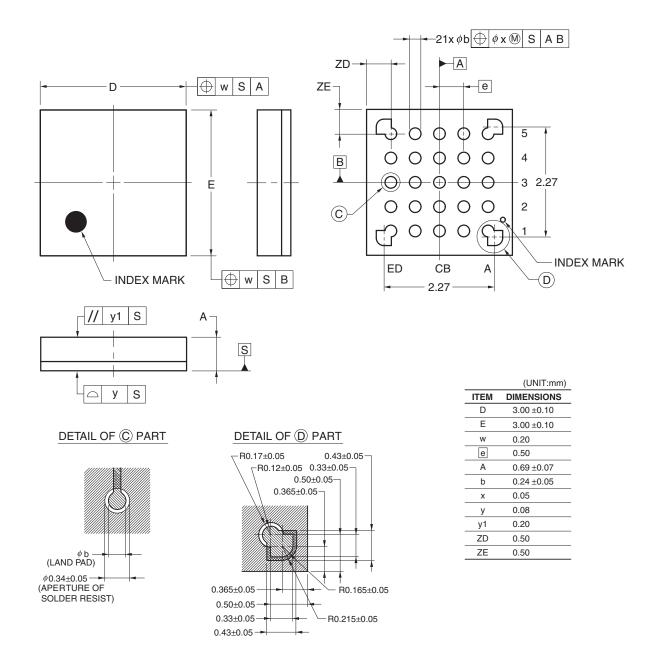
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN024-4x4-0.50	PWQN0024KF-A	0.04





<R>

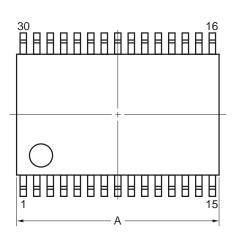
JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWQFN24-4×4-0.50	PWQN0024KH-A	0.04



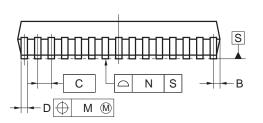
Referenc	Dimens	Dimension in Millimeters				
Symbol	Min.	Nom.	Max.			
A	_	_	0.80			
A ₁	0.00	—	0.05			
A ₃	0	.20 REF	-			
b	0.20	0.25	0.30			
D	_	4.00	_			
E	—	4.00				
е	_	0.50				
N		24				
L	0.30	0.40	0.50			
К	0.20	_	_			
D ₂	2.50	2.60	2.70			
E ₂	2.50	2.60	2.70			
aaa	—	—	0.15			
bbb		_	0.10			
ссс	_	_	0.10			
ddd	—	—	0.05			
eee	_	—	0.08			

4.3 25-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01



O 2012 Renesas Electronics Corporation. All rights reserved .



4.4 30-pin Package

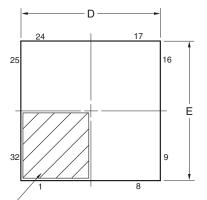
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

detail of lead end

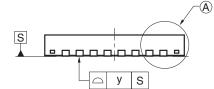
NOTE

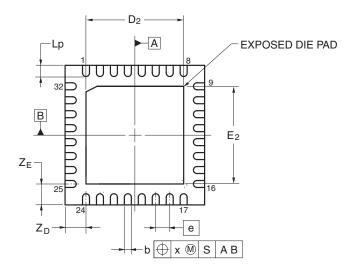
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

		 4 I I		
			ITEM	MILLIMETERS
Lĸ	(А	9.85±0.15
	•		D	0.45 MAX


А	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24\substack{+0.08\\-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	$3^{\circ}^{+5^{\circ}}_{-3^{\circ}}$
Т	0.25
U	0.6±0.15

O 2012 Renesas Electronics Corporation. All rights reserved.




4.5 32-pin Package

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

Deference	Dimens	Dimension in Millimeters		
Referance Symbol	Min Nom Max			
	IVIIN			
D	4.95	5.00	5.05	
E	4.95	5.00	5.05	
Α			0.80	
A ₁	0.00	—		
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
ZD		0.75		
ZE		0.75		
C2	0.15	0.20	0.25	
D ₂		3.50		
E ₂		3.50		

DETAIL OF (\widehat{A}) PART

A1

C₂

©2013 Renesas Electronics Corporation. All rights reserved.

Nom.

0.02

0.203 REF.

0.25

5.00 BSC

5.00 BSC

0.50 BSC

0.40

3.20

3.20

0.15

0.10

0.10

0.05

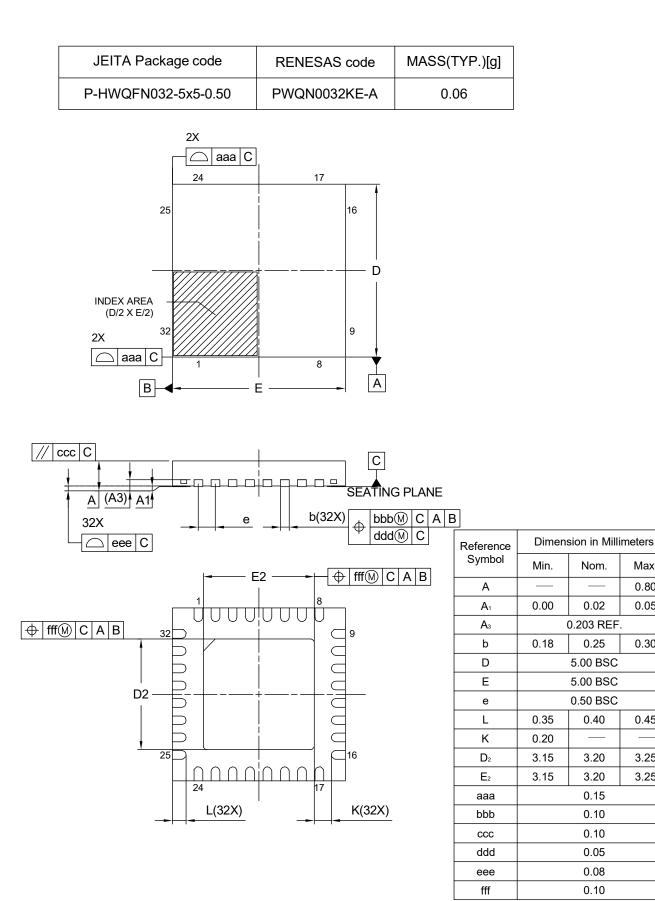
0.08

0.10

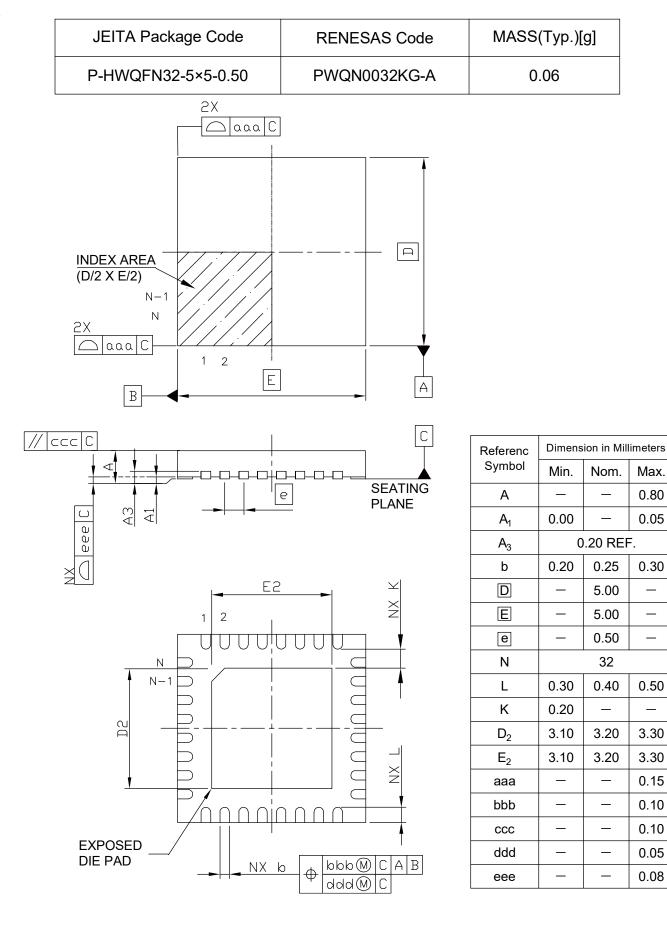
Max.

0.80

0.05


0.30

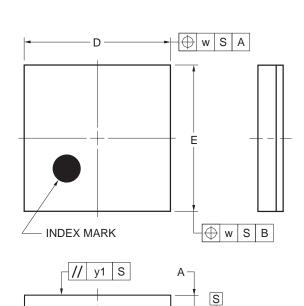
0.45


3.25

3.25

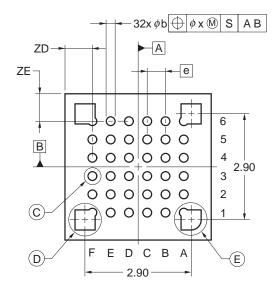
<R>

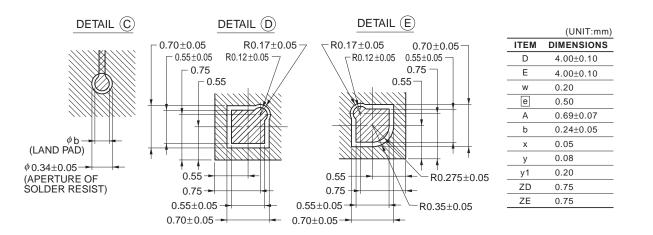
_


_

_

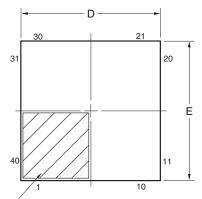
_


4.6 36-pin Package

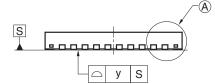

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

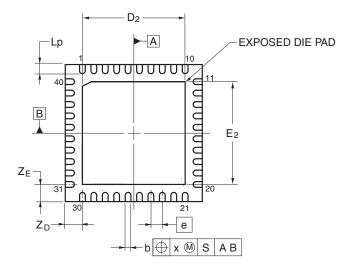
У S

 \bigcirc



© 2012 Renesas Electronics Corporation. All rights reserved.

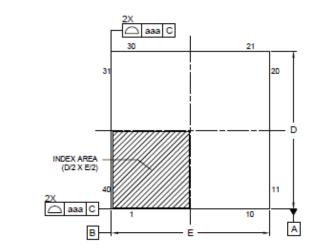


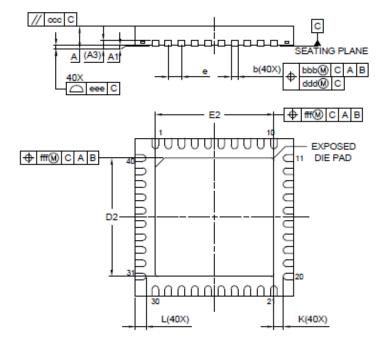

4.7 40-pin Package

JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Referance	Dimens	Dimension in Millimeters		
Symbol	Min	Nom	Max	
D	5.95	6.00	6.05	
E	5.95	6.00	6.05	
A			0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
x			0.05	
у			0.05	
ZD		0.75		
Z _E		0.75		
C2	0.15	0.20	0.25	
D ₂		4.50		
E ₂		4.50		

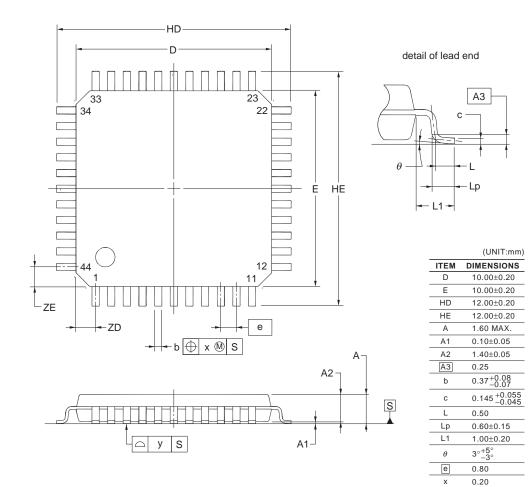
DETAIL OF (A) PART


A1


C₂

©2013 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08



Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	-	0.80
A1	0.00	0.02	0.05
Aa		0.203 REF	-
b	0.18	0.25	0.30
D		6.00 BSC	
E	6.00 BSC		
e	0.50 BSC		
L	0.30	0.40	0.50
К	0.20	_	-
D2	4.45	4.50	4.55
E2	4.45	4.50	4.55
aaa		0.15	
bbb		0.10	
COC	0.10		
ddd	0.05		
eee	0.08		
fff		0.10	

4.8 44-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

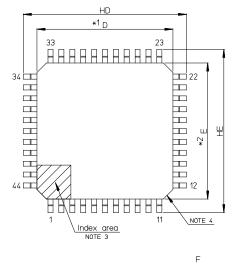
Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

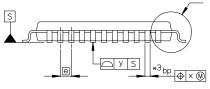
©2012 Renesas Electronics Corporation. All rights reserved.

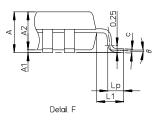
у

ZD

ZE


0.10


1.00


1.00

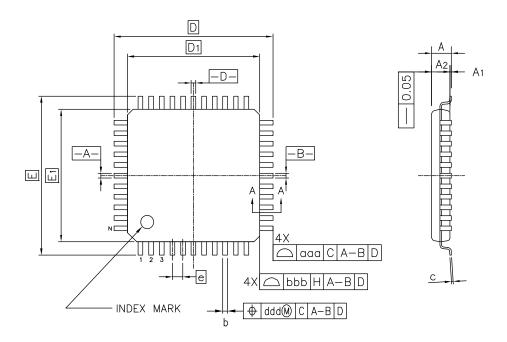
JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LQFP44-10x10-0.80	PLQP0044GC-D		0.36g

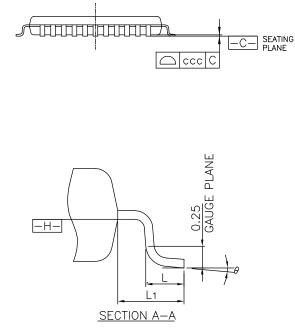
NOTE) 1. 2. 3.
 0TED

 1
 DIMENSIONS **1* AND **2* DO NOT INCLUDE MOLD FLASH.

 2.
 DIMENSION **3* DOES NOT INCLUDE TRIM OFFSET.

 3.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.

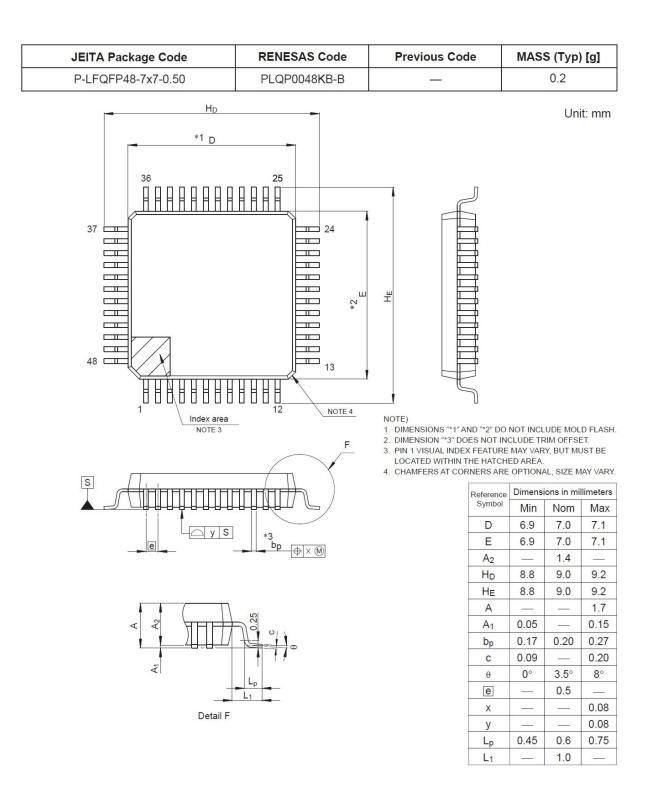

 4.
 CHAMFERS AT CORNERS ARE OPTIONAL; SIZE MAY VARY.


Reference	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	9.8	10.0	10.2
E	9.8	10.0	10.2
A2		1.4	—
HD	11.8	12.0	12.2
HE	11.8	12.0	12.2
А	_		1.6
A1	0.05	—	0.15
bp	0.22	0.37	0.45
с	0.09		0.20
θ	0°	3.5°	8°
е	—	0.80	
×			0.20
У			0.10
Lp	0.45	0.6	0.75
L1		1.0	

<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LQFP044-10x10-0.80	PLQP0044GE-A	0.34

Reference	Dimension in Millimeters			
Symbol	Min.	Nom.	Max.	
А	-	-	1.60	
A ₁	0.05	_	0.15	
A ₂	1.35	1.40	1.45	
D	—	12.00	_	
D ₁	—	10.00		
E	—	- 12.00		
E1	—	10.00	-	
N	—	44	-	
е	—	0.80	-	
b	0.30	0.37	0.45	
с	0.09	-	0.20	
θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
Ц	- 1.00		-	
aaa	-	-	0.20	
bbb	_	-	0.20	
ссс	_	_	0.10	
ddd	_	_	0.20	

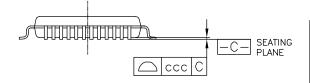

4.9 48-pin Package

	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.)	[g]
	P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16	
	P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	detail of lo	C C C L L L L L D
+	48	13			(UNIT:mm)
		12.		D	DIMENSIONS 7.00±0.20
Lze				E	7.00±0.20
ZE		ΙΨΨ⊔υ	<u> </u>	HD	9.00±0.20
	ZD				9.00±0.20
		→ + + e		A A1	1.60 MAX. 0.10±0.05
		x 🕅 S	А¬	A2	1.40±0.05
				A3	0.25
			A2 -	b	0.22±0.05
			¥_¥	c	$0.145 \substack{+0.055 \\ -0.045}$
				L	0.50
,	// \	/ \\	+	S Lp	0.60±0.15
				<u>L1</u>	1.00±0.20
	□ y s		A1	θ	3°+5° -3°
				e x	0.50
				y	0.08
	TE .			ZD	0.75
	DTE ch lead centerline is located withi	n 0.08 mm of		ZE	0.75

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

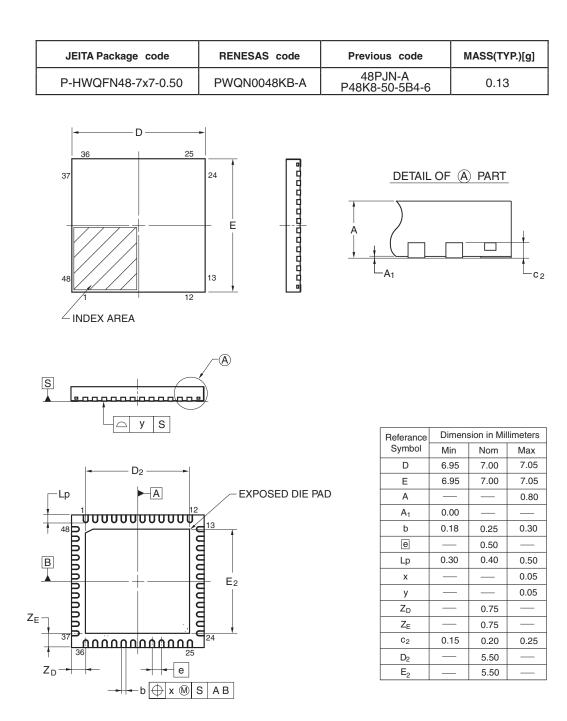
©2012 Renesas Electronics Corporation. All rights reserved.




© 2015 Renesas Electronics Corporation. All rights reserved.

<R>

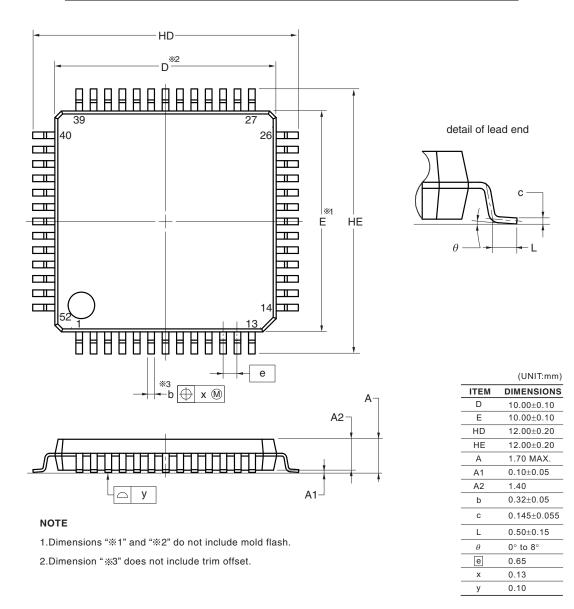
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP48-7x7-0.50	PLQP0048KL-A	0.18



Reference	Dimensi	limeters	
Symbol	Min.	Nom.	Max.
A	-	_	1.60
A ₁	0.05	—	0.15
A ₂	1.35	1.40	1.45
D	—	9.00	
D ₁	_	7.00	
E	—	9.00	
E1	—	7.00	-
N	—	48	
е	—	0.50	-
b	0.17	0.22	0.27
с	0.09	-	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
Ц	—	1.00	_
aaa	-	_	0.20
bbb	-	_	0.20
ссс	—	—	0.08
ddd	_	_	0.08

©2013 Renesas Electronics Corporation. All rights reserved.

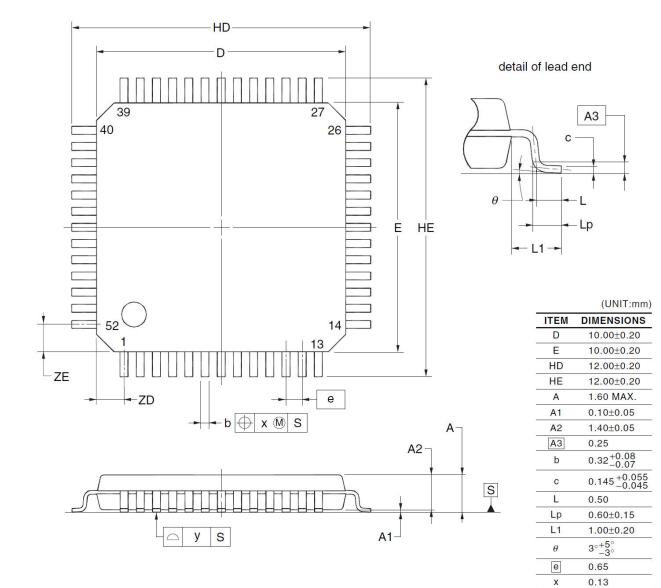
0.10


Γ	JEITA Package code	RENESAS code	MASS(TYP.)	[g]			
	P-HWQFN048-7x7-0.50	PWQN0048KE-A	0.13				
	2X aaa C 36 37	25					
	INDEX AREA (D/2 X E/2) 48 2X asa C 1 B	D	l				
		b(48X) bbb() (rence	Dimen	sion in Mill	imeters
		E2		nbol	Min.	Nom.	Max.
	1	12		4	_	_	0.80
	Γψυυυυυ		POSED A	41	0.00	0.02	0.05
⊕ ∰			E PAD A	a		0.203 REF	
	ГБГ	L IA	t	b	0.20	0.25	0.30
			C	0		7.00 BSC	
	I BI	i la	E			7.00 BSC	
		t		9		0.50 BSC	
			L		0.30	0.40	0.50
	I BI	13		(0.20	-	-
		j d)2	5.50	5.55	5.60
				2	5.50	5.55	5.60
	36	իսոսով		aa		0.15	
	L(48X)	K(48X	\	ob oc		0.10	
		-+ - -		dd		0.10	
				ee		0.08	
				_	L		

fff

4.10 52-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3



© 2012 Renesas Electronics Corporation. All rights reserved.

<r></r>	>
---------	---

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JD-B	P52GB-65-UET-2	0.36

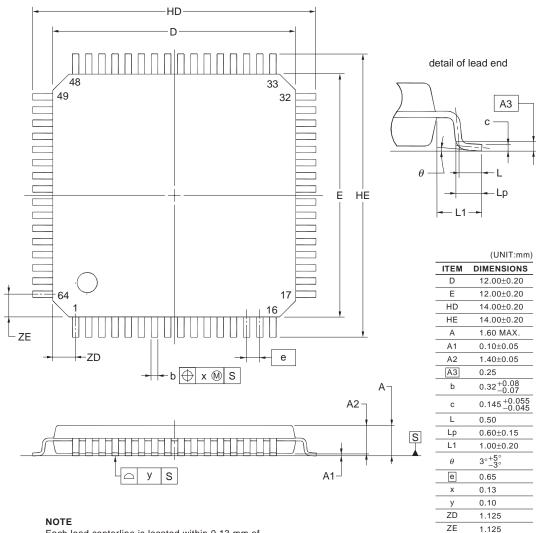
NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

0.10

1.10

1.10

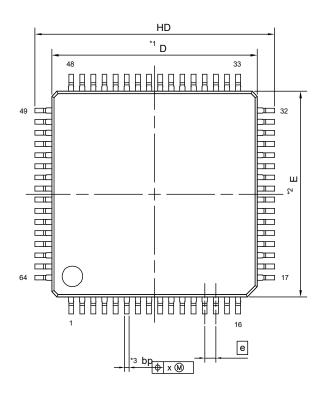

у

ZD

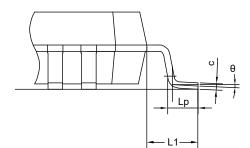
ZE

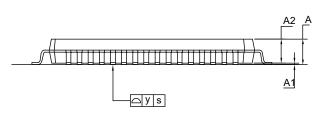
4.11 64-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51


Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

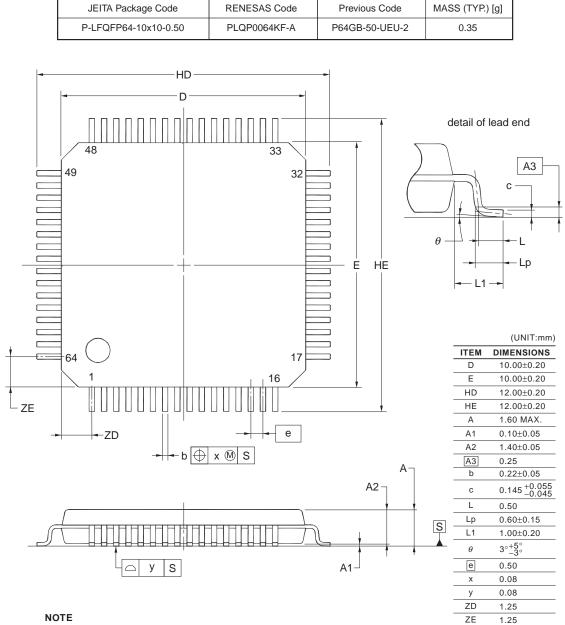
©2012 Renesas Electronics Corporation. All rights reserved.


1.125



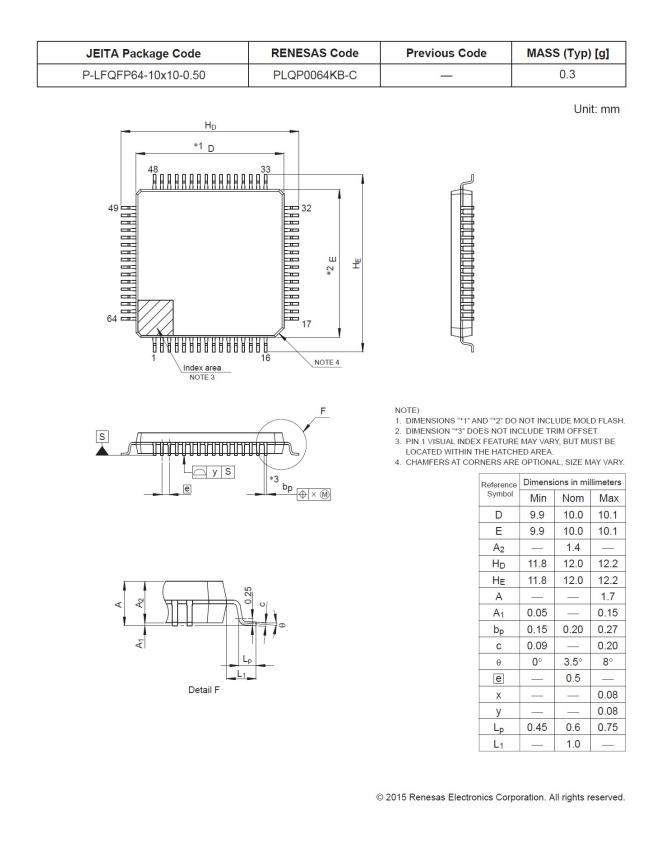
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LQFP64-12x12-0.65	PLQP0064JB-A	0.50

detail of lead end



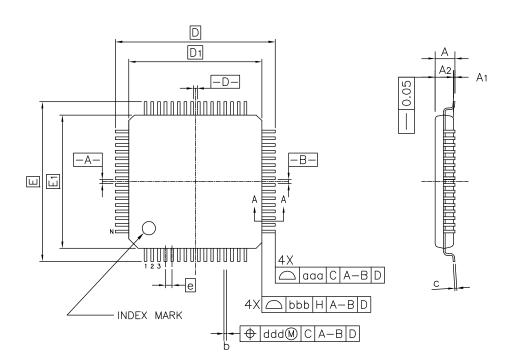
Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
E	11.90	12.00	12.10
D	11.90	12.00	12.10
A ₂	—	1.40	—
H _D	13.80	14.00	14.20
H _E	13.80	14.00	14.20
Α	—	—	1.70
A ₁	0.05	—	0.15
Lp	0.45	0.60	0.75
L1	—	1.00	—
b _p	0.27	0.32	0.37
с	0.09	—	0.20
е	_	0.65	_
θ	0.00	3.50	8.00
x	—	_	0.08
у	_	_	0.08

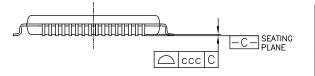
NOTE 1.DIMENSIONS "*1" AND "*2"DO NOT INCLUDE MOLD FLASH. 2.DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

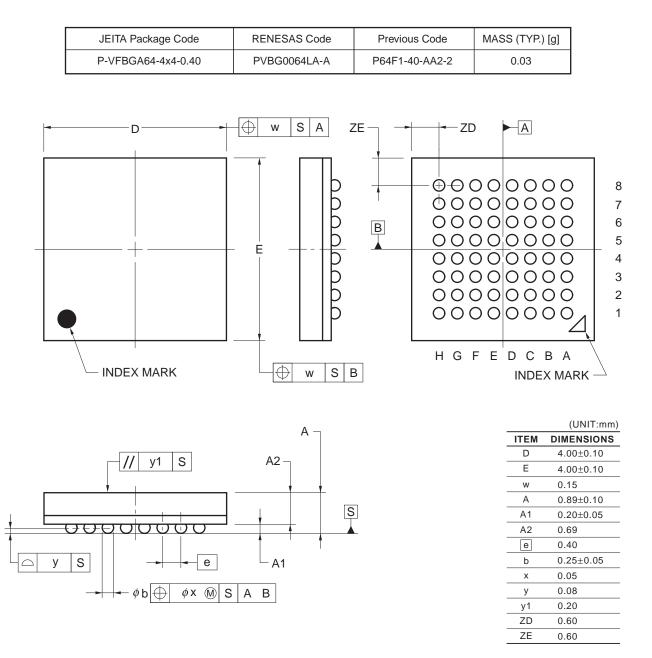
© 2012 Renesas Electronics Corporation. All rights reserved.





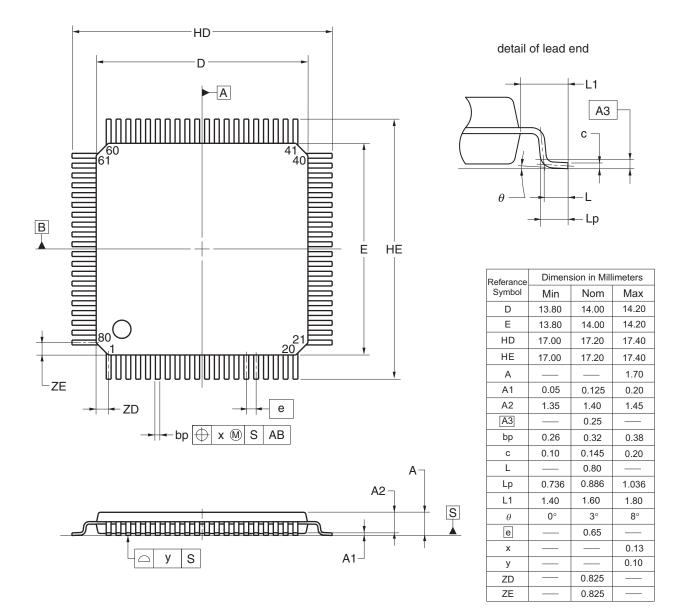
<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP064-10x10-0.50	PLQP0064KL-A	0.36



	GAUGE PLANE
<u>SECTI</u>	<u>on a-a</u>

Reference	Dimensi	on in Mil	limeters
Symbol	Min.	Nom.	Max.
А	-	-	1.60
A ₁	0.05	-	0.15
A ₂	1.35	1.40	1.45
D	—	12.00	—
D ₁	—	10.00	—
E	—	12.00	—
Eı	—	10.00	—
Ν	—	64	_
е	-	0.50	-
b	0.17	0.22	0.27
С	0.09	-	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
L	-	1.00	-
aaa	-	-	0.20
bbb	-	_	0.20
ссс	—	_	0.08
ddd	—	_	0.08

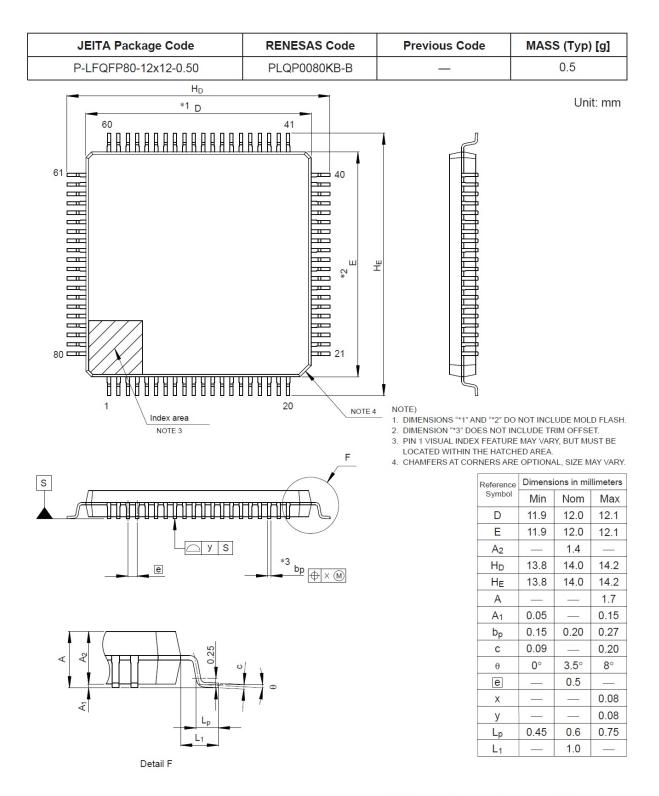


©2012 Renesas Electronics Corporation. All rights reserved.

4.12 80-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

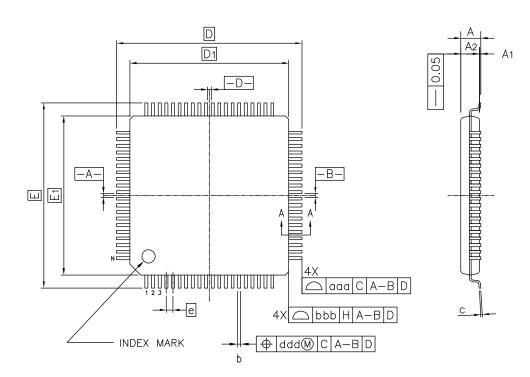
© 2012 Renesas ElectronicsCorporation. All rights reserved.

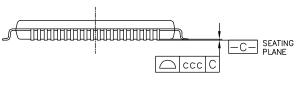

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53	
HD		- E HE	detail of lead end A3 θ θ θ L L L L L L L L	
80 1 	21 20 e x @ S		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 20
		A2 A2 A2 A1 A1	$ \begin{array}{c cccc} L & 0.50 \\ \hline Lp & 0.60\pm0.1 \\ \hline L1 & 1.00\pm0.2 \\ \theta & 3^{\circ} + 5^{\circ} \\ \hline \theta & 0.50 \\ \hline x & 0.08 \\ \hline y & 0.08 \\ \hline ZD & 1.25 \\ \hline ZE & 1.25 \\ \end{array} $	

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

O 2012 Renesas Electronics Corporation. All rights reserved.

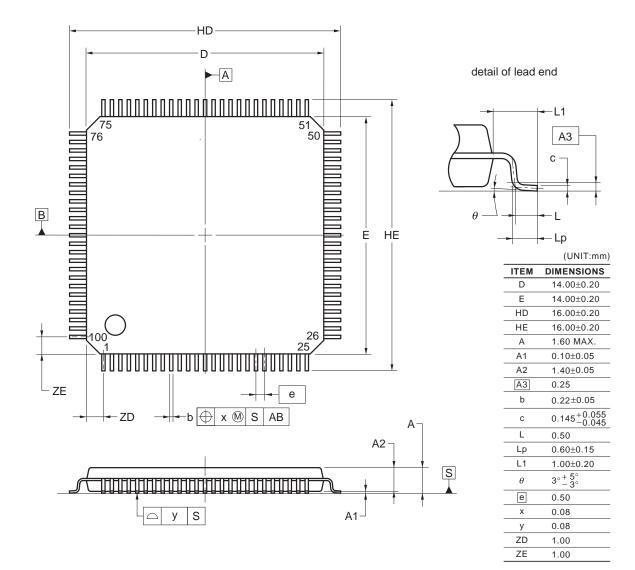



© 2017 Renesas Electronics Corporation. All rights reserved.

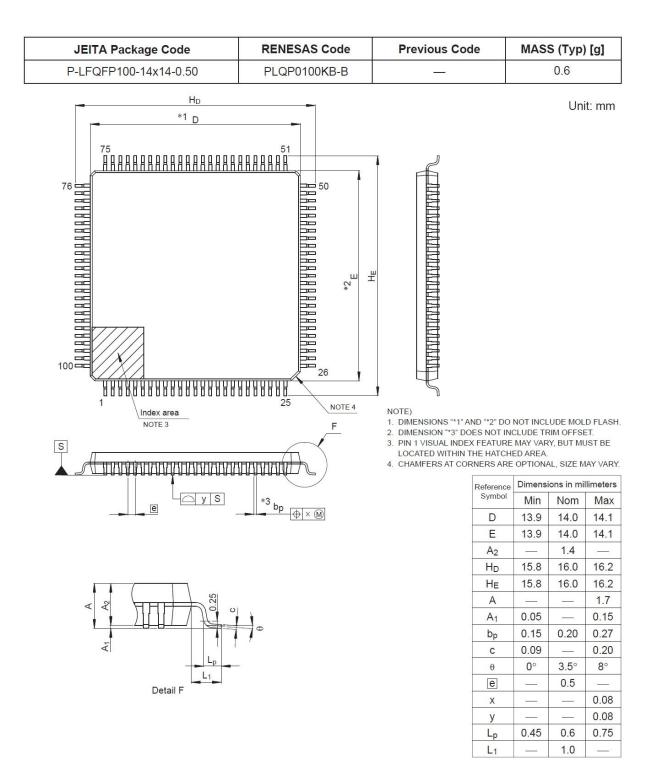
<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP80-12x12-0.50	PLQP0080KJ-A	0.49

	GAUGE PLANE
<u>SEC</u>	TION A-A


Reference	Dimensi	ion in Mil	limeters
Symbol	Min.	Nom.	Max.
A	_	-	1.60
A ₁	0.05	_	0.15
A ₂	1.35	1.40	1.45
D	—	14.00	—
D ₁	—	12.00	—
E	—	14.00	—
E1	_	12.00	—
N	_	80	—
е	—	0.50	—
b	0.17	0.22	0.27
с	0.09	_	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
L	_	1.00	—
aaa	_	_	0.20
bbb	_	-	0.20
ссс	_	_	0.08
ddd	_	_	0.08

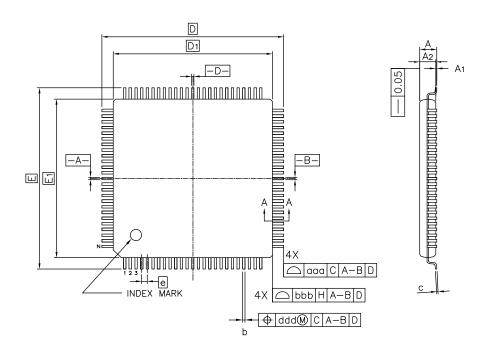
RL78/G13

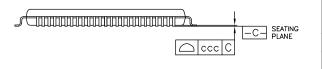

4.13 100-pin Package

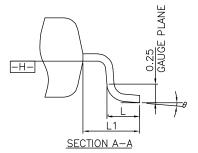
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

O 2012 Renesas Electronics Corporation. All rights reserved.

RENESAS

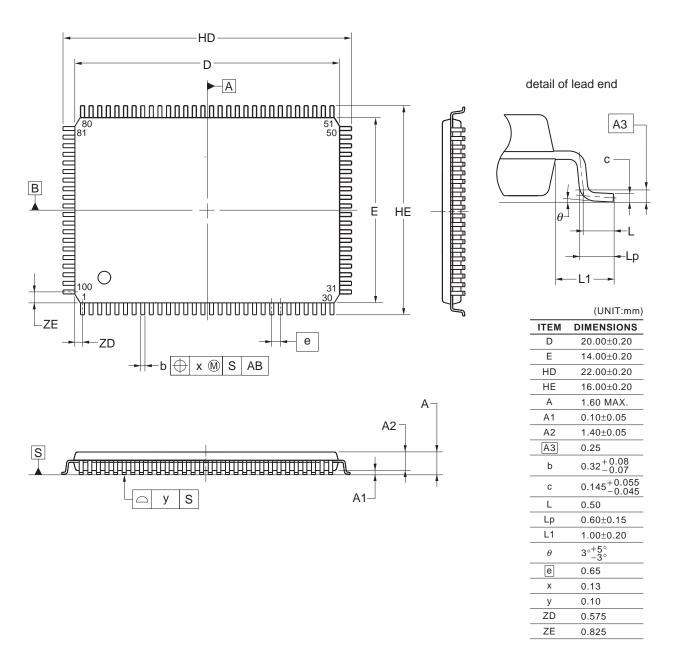



© 2015 Renesas Electronics Corporation. All rights reserved.



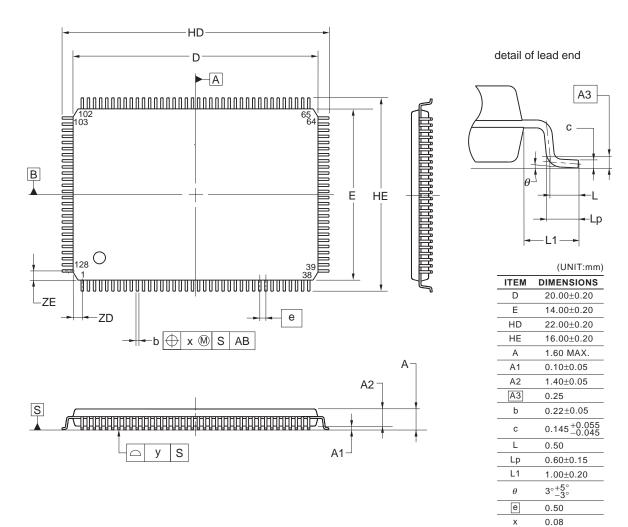
<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP100-14x14-0.50	PLQP0100KP-A	0.67



Reference	Dimensi	ion in Mill	limeters
Symbol	Min.	Nom.	Max.
A	-	-	1.60
A ₁	0.05	-	0.15
A ₂	1.35	1.40	1.45
D	-	16.00	-
D ₁	_	14.00	-
E		16.00	-
Eı	-	14.00	-
N	-	100	-
е	_	0.50	_
b	0.17	0.22	0.27
С	0.09	-	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
Ц	-	1.00	-
aaa	_	-	0.20
bbb	-	-	0.20
ссс	_	_	0.08
ddd	_	-	0.08

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92



© 2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP128-14x20-0.50	PLQP0128KD-A	P128GF-50-GBP-1	0.92

O 2012 Renesas Electronics Corporation. All rights reserved.

y

ZD

ZE

0.08

0.75

0.75

Revision History

RL78/G13 Datasheet

Description		Description	
Rev.	Date	Page	Summary
1.00	Feb 29, 2012	-	First Edition issued
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.
		59, 63, 67	Descriptions of Note 8 in a table corrected.
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.
3.00	Aug 02, 2013	1	Modification of 1.1 Features
		3	Modification of 1.2 List of Part Numbers
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution
		16 to 32	Modification of package type in 1.3.1 to 1.3.14
		33	Modification of description in 1.4 Pin Identification
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics
		57	Modification of table in 2.2.2 On-chip oscillator characteristics
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products
		75	Modification of (4) Peripheral Functions (Common to all products)
		77	Modification of table in 2.4 AC Characteristics
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		80	Modification of figures of AC Timing Test Points and External System Clock Timing

			Description
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
		83	Modification of description in (2) During communication at same potential (CSI mode)
		84	Modification of description in (3) During communication at same potential (CSI mode)
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
		112	Addition of (3) I ² C fast mode plus
		112	Modification of IICA serial transfer timing
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		118	Modification of table and note in 2.6.3 POR circuit characteristics	
		119	Modification of table in 2.6.4 LVD circuit characteristics	
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics	
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes	
		123	Modification of caution 1 and description	
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics	
		126	Modification of table in 3.2.2 On-chip oscillator characteristics	
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)	
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)	
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)	
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)	
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)	
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (2/2)	
		140	Modification of (3) Peripheral Functions (Common to all products)	
		142	Modification of table in 3.4 AC Characteristics	
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		143	Modification of figure of AC Timing Test Points	
		143	Modification of figure of External System Clock Timing	
		145	Modification of figure of AC Timing Test Points	
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)	
		146	Modification of description in (2) During communication at same potential (CSI mode)	
		147	Modification of description in (3) During communication at same potential (CSI mode)	
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)	
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)	

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016	18	Modification of the position of the index mark in 25-pin plastic WFLGA (3×3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
		49	Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24- pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
		51	Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44- pin, 48-pin, 52-pin, 64-pin products]	
		53	Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100- pin, 128-pin products]	
		110 to 112, 167	ACK corrected to ACK	
3.40	May 31, 2018	172	Addition of note in 3.6.3 POR circuit characteristics	
3.41	Jan 31, 2020	3	Addition of packaging specifications in Figure 1-1 Part Number, Memory Size,	
			and Package of RL78/G13	
		4 to 28	Addition of ordering part numbers and RENESAS codes in Table 1-1 List of Ordering Part Numbers	
		189, 190,	Modification of the titles of the subchapters and deletion of product names in	
		192 to 194,	Chapter 4	
		196 to 198,		
		200,		
		202 to 205,		
		207 to 209,		
		211, 213, 214		
			Addition of figure in 4.2.24-pin Package	
		191 195	Addition of figure in 4.2 24-pin Package Addition of figure in 4.3 32-pin Package	

Rev.	Date	Description	
		Page	Summary
3.41	Jan 31, 2020	201	Addition of figure in 4.9 48-pin Package
		206	Addition of figure in 4.11 64-pin Package
		210	Addition of figure in 4.12 80-pin Package
		212	Addition of figure in 4.13 100-pin Package
3.50	Jun 30, 2020	1	Modification of description in 1.1 Features
		3	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G13
		4 to 11	Modification of Table 1-1 List of Ordering Part Numbers
		12	Addition of packaging specifications in 1.3.1 20-pin products
		173	Addition of package drawing in 4.1 20-pin Package
		182	Addition of package drawing in 4.7 40-pin Package
		188	Addition of package drawing in 4.9 48-pin Package
3.51	Dec 20, 2022	All	The module name for CSI was changed to Simplified SPI (CSI)
		All	"wait" for IIC was modified to "clock stretch"
		4 to 11	Modification of description in Table 1-1. (1/8) to (8/8)
		176	Addition of package drawing in 4.2 24-pin Package
		181	Addition of package drawing in 4.5 32-pin Package
		187	Addition of package drawing in 4.8 44-pin Package
		190	Addition of package drawing in 4.9 48-pin Package
		194	Addition of package drawing in 4.10 52-pin Package
		196, 199	Addition of package drawing in 4.11 64-pin Package
		204	Addition of package drawing in 4.12 80-pin Package
		207	Addition of package drawing in 4.13 100-pin Package

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABLITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.