Analog front-end (24-bit $\Delta \Sigma A / D$ converter with programmable gain instrumentation amplifier, Amplifier unit and 12-bit D/A converter), External signal sampler/Sampling output timer detector and Integrated LCD controller/driver.
True Low Power Platform (as low as $70.8 \mu \mathrm{~A} / \mathrm{MHz}$, and $0.68 \mu \mathrm{~A}$ in Halt mode( RTC2 + LVD)), 1.8 V to 5.5 V operation, 64 to 128 Kbyte Flash, 33 DMIPS at 24 MHz , for Healthcare and Flow meter applications.

## 1. OUTLINE

### 1.1 Features

O Ultra-low power consumption technology

- $\mathrm{VDD}=2.4$ to 5.5 V
(10-bit SAR A/D converter: 2.4 to 5.5 V ,
operating voltage of the analog front-end
(AFE): 2.7 to 5.5 V ) Note 1 ,
VDD $=1.8$ to 5.5 VNote 2
- HALT mode
- STOP mode
-SNOOZE mode


## RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed ( $0.04167 \mu \mathrm{~s}$ : @ 24

MHz operation with high-speed on-chip oscillator clock) to ultra-low speed ( $30.5 \mu \mathrm{~s}$ : @ 32.768 kHz operation with subsystem clock)

- Multiply/divide and multiply/accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register $\times 8$ )
$\times 4$ banks
- On-chip RAM: 5.5 KBNote 1,8 KBNote 2

O Code flash memory

- Code flash memory: 64 to 128 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

O Data flash memory

- Data flash memory: 4 KB
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD $=2.4$ to 5.5 V Note 1 , 1.8 to 5.5 V Note 2

O High-speed on-chip oscillator

- Select from $24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}, 8$ $\mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (VDD $=2.4$ to $5.5 \mathrm{~V}, \mathrm{TA}$ $=-20$ to $+85^{\circ} \mathrm{C}^{\text {Note } 1} 1$, $\mathrm{VDD}=1.8$ to $5.5 \mathrm{~V}, \mathrm{TA}=$ -20 to $+85^{\circ} \mathrm{C}^{\text {Note }} 2$ )

O Operating ambient temperature

- TA $=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications ${ }^{\text {Note } 1, ~ D: ~ I n d u s t r i a l ~}$ applicationsNote 2)

O Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from $9^{\text {Note } 1}$ or $12^{\text {Note }} 2$ levels)

O Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources (35 sources).
- Chain transfer function

O Event link controller (ELC)

- Event signals of 18 to 26 types can be linked to the specified peripheral function.

O Serial interfaces

- CSI/CSI (SPI supported): 3 channels
- UART/UART (LIN-bus supported): 3 channels
- ${ }^{2} \mathrm{C} /$ simplified $\mathrm{I}^{2} \mathrm{C}: 4$ channels
- Serial interface UARTMG (9600 bps @ 38.4 kHz): 1 channel (R5F11R only)

Timers
-16-bit timer:
Timer array unit (TAU): 8 channels,
Timer RJ: 2 channels (R5F11R only)

- 8 -bit timer: 2 channels ${ }^{\text {Note } 1,6} 6$ channels ${ }^{\text {Note } 2}$
-12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)
- External signal sampler: 1 channel (R5F11R only)
- Sampling output timer detector (SMOTD): 6 channels for input, 3 channels for output (R5F11R only)


## O LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output: 27 (23) to 36 (32) Note 3
- Common signal output: 4 (8) Note 3

Analog front-end power supply circuit
(R5F11N and R5F11P only)

- AFE reference power supply (ABGR)
- LDO for supplying power to internal circuits (REGA)
- LDO for supplying power to a sensor (SBIAS): 0.5 to 2.2 V

O 24-bit $\Delta \Sigma A / D$ converter with programmable gain instrumentation amplifier (R5F11N and R5F11P only)

- 24-bit second-order $\Delta \Sigma$ A/D converter (AVDD
$=2.7$ to 5.5 V )
- SNDR: 85 dB (TYP.)
- Output data rate: 488 sps to 15.625 ksps in normal mode
61 sps to 1.953 ksps in low power mode
- Programmable gain instrumentation amplifier (PGAO)
- Analog input: 1 to 5 channels (differential input mode or single-ended input mode)
- D/A converter for offset adjustment
- Variable gain: x1 to x64

O Amplifier unit (R5F11N and R5F11P only)

- Programmable gain instrumentation amplifier (PGA1): 1 channel (R5F11NL, R5F11PL, and R5F11NG only)
- Analog input: 1 or 2 channels
- Variable gain: x12, x16, x20, x24
- Rail-to-rail operational amplifier (AMPO): 1 channel
- General-purpose operational amplifier (AMP1, AMP2): 2 channels (R5F11NL, R5F11PL, and R5F11NG only)

O D/A converter (R5F11N and R5F11P only)

- 8-bit resolution R-2R resistor ladder D/A converter (DAC0) (AVDD $=2.7$ to 5.5 V ): 1 channel
- 12-bit resolution $R-2 R$ resistor ladder $D / A$ converter (DAC1) (AVDD $=2.7$ to 5.5 V ): 1 channel (R5F11NL, R5F11PL, and R5F11NG only)

O 10-bit SAR A/D converter
-10-bit resolution A/D converter (VDD $=2.4$ to 5.5 VNote 1, VDD $=1.8$ to 5.5 V Note 2 )

- Analog input: 3 channels
- Internal reference voltage (TYP. 1.45 V) Note 4 and temperature sensor Note 4


## O I/O ports

- I/O ports: 29 to 63 ( N -ch open drain I/O [withstand voltage of 6 V ]: 2)
- Can be set to N -ch open drain, TTL input buffer, and on-chip pull-up resistor
- On-chip clock output/buzzer output controller


## Others

- On-chip BCD (binary-coded decimal) correction circuit

Note 1. In case of R5F11N and R5F11P.
Note 2. In case of R5F11R.
Note 3. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 4. Selectable only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

| Flash ROM | Data Flash | RAM | RL78/H1D |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 5.5 KB | R5F11NMG | R5F11NLG | R5F11PLG |
| 128 KB | 4 KB | R5F11NGG |  |  |  |  |
| 96 KB | 4 KB | 5.5 KB | R5F11NMF | R5F11NLF | R5F11PLF | R5F11NGF |
| 64 KB | 4 KB | 5.5 KB | R5F11NME | - | - | - |
| 128 KB | 4 KB | 8 KB | R5F11RMG | - | - | - |

### 1.2 Ordering Information

| Pin <br> Count | Package | Fields of <br> Application | Orderable Part Number |
| :--- | :--- | :---: | :--- |
| 80 pins | 80 -pin plastic LFQFP <br> $(12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$ | A | R5F11NMGAFB\#30, R5F11NMFAFB\#30, R5F11NMEAFB\#30 <br> R5F11NMGAFB\#50, R5F11NMFAFB\#50, R5F11NMEAFB\#50 |
| 64 pins | $64-$ pin plastic LFQFP <br> $(10 \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$ | A | R5F11NLGAFB\#30, R5F11NLFAFB\#30 <br> R5F11NLGAFB\#50, R5F11NLFAFB\#50 |
| 64 pins | $64-$ pin plastic TFBGA <br> $(4 \times 4 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch $)$ | A | R5F11PLGABG\#U0, R5F11PLFABG\#U0 <br> R5F11PLGABG\#W0, R5F11PLFABG\#W0 |
| 48 pins | $48-$ pin plastic LFQFP <br> $(7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$ | A | R5F11NGGAFB\#30, R5F11NGFAFB\#30 <br> R5F11NGGAFB\#50, R5F11NGFAFB\#50 |
| 80 pins | $80-$-pin plastic LFQFP <br> $(12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$ | D | R5F11RMGDFB\#30, R5F11RMGDFB\#50 |

Remark Products (R5F11PL) in 64-pin TFBGA have the same functionality as those (R5F11NG) in 48-pin LFQFP. The only difference is the package.

Figure 1-1 Part Number, Memory Size, and Package of RL78/H1D
Part No. R 5 F 11 NM GAxxxFB\#30


Caution Orderable part numbers are current as of when this manual was published.
Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

### 1.3 Pin Configuration (Top View)

### 1.3.1 80-pin products (R5F11NM)

- 80-pin plastic LFQFP ( $12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch )


Caution 1. Connect the REGC pin to Vss pin via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ).
Caution 2. Connect the REGA pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).
Caution 3. Make the AVss pin the same potential as the Vss pin.
Caution 4. Make the AVdD pin the same potential as the Vdd pin.
Caution 5. Connect the SBIAS pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).
Remark 3. Set the AMPOP and AMPON functions in the above figure by the amplifier unit 1 input select register (AMPOS).

### 1.3.2 64-pin products (R5F11NL)

- 64-pin plastic LFQFP ( $10 \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$


Caution 1. Connect the REGC pin to Vss pin via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ).
Caution 2. Connect the REGA pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).
Caution 3. Make the AVss pin the same potential as the Vss pin.
Caution 4. Make the AVdD pin the same potential as the Vdd pin.
Caution 5. Connect the SBIAS pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).
Remark 3. Set the AMPOP and AMPON functions in the above figure by the amplifier unit 1 input select register (AMPOS). Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S). Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

### 1.3.3 64-pin products (R5F11PL)

-64-pin plastic TFBGA ( $4 \times 4 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch)

Top View


Bottom View


H G F E D C B A

|  | A | B | C | D | E | F | G | H |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | Vss | $\begin{aligned} & \hline \text { P71/(TI05/ } \\ & \text { TO05) } \end{aligned}$ | $\begin{aligned} & \hline \text { P77/TIO7/ } \\ & \text { TO07 } \end{aligned}$ | $\begin{aligned} & \text { P35/SCK00/ } \\ & \text { SCL00 } \end{aligned}$ | $\begin{aligned} & \hline \text { P36/SI00/ } \\ & \text { RxD0/ } \\ & \text { TOOLRxD/ } \\ & \text { SDA00/ } \\ & \text { PCLBUZ1 } \end{aligned}$ | P61/(INTP4)/ <br> SDAAO | VDD | Vss | 8 |
| 7 | P50/SO10/ <br> TxD1/TI03/ <br> TO03 | P51/SI10/Rx <br> D1/SDA10/ <br> TI04/TO04 | $\begin{aligned} & \text { P76/(TIO6/ } \\ & \text { TO06) } \end{aligned}$ | $\frac{\mathrm{P} 32 / \mathrm{INTP} 4 /}{\mathrm{SSIO0}}$ | $\begin{aligned} & \text { P37/SO00/ } \\ & \text { TxD0/ } \\ & \text { TOOLTxD } \end{aligned}$ | P60/(INTP3)/ SCLA0 | Vss | P121/X1/ <br> INTP1 | 7 |
| 6 | P53/(INTP0) | $\begin{aligned} & \text { P52/SCK10/ } \\ & \text { SCL10/TIO2/ } \\ & \text { TO02 } \end{aligned}$ | P70 | P30/INTP3/ RTC1HZ | Vss | RESET | REGC | $\begin{aligned} & \mathrm{P} 122 / \mathrm{X} 2 / \\ & \text { EXCLK/ } \\ & \text { INTP5 } \end{aligned}$ | 6 |
| 5 | $\begin{aligned} & \text { P02/(SO10/ } \\ & \text { TxD1)/ } \\ & \text { PCLBUZ0 } \end{aligned}$ | P03/ANI8/ <br> (SI10/RxD1/ SDA10)/ TO00 | P04/ANI9/IN <br> TP6/(SCK10/ SCL10) | P01/(INTP5) | Vss | $\begin{aligned} & \text { P40/TOOLO/ } \\ & \text { (INTP1)/TI01 } \\ & \text { /TO01 } \end{aligned}$ | P137/INTP0 | P123/XT1 | 5 |
| 4 | $\begin{aligned} & \text { P05/ANI10/ } \\ & \text { TI06/TO06 } \end{aligned}$ | $\begin{aligned} & \text { P07/SI20/ } \\ & \text { RxD2/ } \\ & \text { SDA20/ } \\ & \text { TI05/TO05 } \end{aligned}$ | $\begin{aligned} & \text { P06/SO20/ } \\ & \text { TxD2/TI00 } \end{aligned}$ | $\begin{aligned} & \text { P10/INTP2/ } \\ & \text { SCK20/ } \\ & \text { SCL20 } \end{aligned}$ | Vss | Vss | Vss | P124/XT2/ <br> EXCLKS | 4 |
| 3 | AMP10 | AVss | AVss | AVss | AVss | AVss | REGA | AVDD | 3 |
| 2 | AMP2O | AMP1N/ AMP1P/ AMP0P | PGA11P/ PGA01P | PGA11N/ PGA01N | AMPON/ AMPOP | AVss | AVss | SBIAS | 2 |
| 1 | AVss | AMP2N/ <br> AMP2P/ <br> AMP1P | PGA1O | AVss | AMP00 | PGA10P/ <br> PGA00P/ <br> AMP1P | PGA10N/ PGA00N/ AMP2P | SBIAS | 1 |
|  | A | B | C | D | E | F | G | H |  |

Caution 1. Connect the REGC pin to Vss pin via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ).
Caution 2. Connect the REGA pin to AVss pin via a capacitor ( $0.22 \boldsymbol{\mu}$ ).
Caution 3. Make the AVss pin the same potential as the Vss pin.
Caution 4. Make the AVdD pin the same potential as the Vdd pin.
Caution 5. Connect an SBIAS pin (either of two) to the AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0,1 , and 3 (PIOR0, PIOR1, and PIOR3).
Remark 3. Set the AMPOP and AMPON functions in the above figure by the amplifier unit 1 input select register (AMP0S). Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S). Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

### 1.3.4 48-pin products (R5F11NG)

- 48-pin plastic LFQFP ( $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)


Caution 1. Connect the REGC pin to Vss pin via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ).
Caution 2. Connect the REGA pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).
Caution 3. Make the AVss pin the same potential as the Vss pin.
Caution 4. Make the AVdd pin the same potential as the Vdd pin.
Caution 5. Connect the SBIAS pin to AVss pin via a capacitor ( $0.22 \mu \mathrm{~F}$ ).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0,1 , and 3 (PIOR0, PIOR1, and PIOR3).
Remark 3. Set the AMPOP and AMPON functions in the above figure by the amplifier unit 1 input select register (AMPOS). Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S). Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

### 1.3.5 80-pin products (R5F11RM)

- 80-pin plastic LFQFP ( $12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)


Caution 1. Connect the REGC pin to Vss pin via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ).
Caution 2. Make the AVss pin the same potential as the Vss pin.
Caution 3. Make the AVdd pin the same potential as the Vdd pin.

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

### 1.4 Pin Identification

| AMPON to AMP2N | :OP AMP Negative Input | REGA | :Regulator Capacitance for |
| :---: | :---: | :---: | :---: |
| AMP0P to AMP2P | :OP AMP Positive Input |  | Analog |
| AMP0O to AMP2O | :OP AMP Output | REGC | :Regulator Capacitance |
| ANI8 to ANI14 | :Analog Input | SBIAS | :Reference Voltage Output |
| AVDD | :Analog Power Supply | RESET | :Reset |
| AVss | :Analog Ground | RTC1HZ | :Real-time Clock Correction |
| CAPH, CAPL | :Capacitor for LCD | RxD0 to RxD2, RxDMG0 | :Receive Data |
| COM0 to COM7 | :LCD Common Output | SCK00, SCK10, SCK20, | :Serial Clock Input/Output |
| EXCLK | :External Clock Input (Main System Clock) | $\begin{aligned} & \text { SCLAO } \\ & \text { SCL00, SCL10, SCL20 } \end{aligned}$ | :Serial Clock Input/Output :Serial Clock Output |
| EXCLKS | :External Clock Input (Sub System Clock) | SDAAO, SDA00, SDA10, SDA20 | :Serial Data Input/Output |
| EXSDIO, EXSDI1 | :External Sampling Input | SEG0 to SEG35 | :LCD Segment Output |
| EXSDOO, EXSDO1 | :External Sampling Clock | SIO0, SI10, SI20 | :Serial Data Input |
|  | Output | SO00, SO10, SO20 | :Serial Data Output |
| INTP0 to INTP7 | :External Interrupt Input | SSIOO | :Slave Select Input |
| P01 to P07 | :Port 0 | SMP0 to SMP5 | :Sampling Input |
| P10 to P17 | Port 1 | SMO0 to SMO2 | :Sampling Clock Output |
| P20 to P27 | Port 2 | TIOO to TIO7 | :Timer Input |
| P30 to P32, | :Port 3 | TO00 to TO07,TRJO0, TRJO1 | :Timer Output |
| P35 to P37 |  | TOOLO | :Data Input/Output for Tool |
| P40, P43, P44 | :Port 4 | TOOLRxD, TOOLTxD | :Data Input/Output for |
| P50 to P53 | :Port 5 |  | External Device |
| P60 to P61 | :Port 6 | TRJIO0, TRJIO1 | :Timer Input/Output |
| P70 to P77 | :Port 7 | TxD0 to TxD2, TxDMG0 | :Transmit Data |
| P80 to P86 | :Port 8 | VDD | :Power Supply |
| P121 to P127 | :Port 12 | VL1 to VL4 | :LCD Power Supply |
| P137 | :Port 13 | Vss | :Ground |
| P150, P151 | :Port 15 | X1, X2 | :Crystal Oscillator |
| PCLBUZ0, PCLBUZ1 | :Programmable Clock Output/ |  | (Main System Clock) |
|  | Buzzer Output | XT1, XT2 | :Crystal Oscillator |
| PGA00N, PGA01N | :PGA Negative Input |  | (Subsystem Clock) |
| PGA10N, PGA11N |  |  |  |
| PGA00P, PGA01P | :PGA Positive Input |  |  |
| PGA10P, PGA11P |  |  |  |
| PGA1O | :PGA Output |  |  |

### 1.5 Block Diagram

### 1.5.1 80-pin products (R5F11NM)



### 1.5.2 64-pin products (R5F11NL)



### 1.5.3 64-pin products (R5F11PL), 48-pin products (R5F11NG)



Remark 64-pin products (R5F11PL) have the same functionality as 48-pin products (R5F11NG). The only difference is the package.

### 1.5.4 80-pin products (R5F11RM)



### 1.6 Outline of Functions

(1/3)

| Item |  | 80-pin LFQFP | 64-pin LFQFP | 64-pin TFBGA 48-pin LFQFP | 80-pin LFQFP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | R5F11NMx (x = E to G) | R5F11NLx $(x=F, G)$ | R5F11PLx, <br> R5F11NGx $(x=F, G)$ | R5F11RMG |
| Code flash memory (KB) |  | 64 to 128 | 96 to 128 | 96 to 128 | 128 |
| Data flash memory (KB) |  | 4 | 4 | 4 | 4 |
| RAM (KB) |  | 5.5 | 5.5 | 5.5 | 8 |
| Memory space |  | 1 MB |  |  |  |
| Main system clock | High-speed system clock | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) |  |  |  |
|  |  | $\begin{aligned} & 1 \text { to } 20 \mathrm{MHz}: \mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V} \text {, } \\ & 1 \text { to } 8 \mathrm{MHz}: \mathrm{VDD}=2.4 \text { to } 2.7 \mathrm{~V} \end{aligned}$ |  |  | $\begin{aligned} & 1 \text { to } 20 \mathrm{MHz}: \mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V} \text {, } \\ & 1 \text { to } 8 \mathrm{MHz}: \mathrm{VDD}=1.8 \text { to } 2.7 \mathrm{~V} \end{aligned}$ |
|  | High-speed on-chip oscillator clock | HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 5.5 V ), <br> HS (high-speed main) operation mode: 1 to 16 MHz ( $\mathrm{VDD}=2.4$ to 5.5 V ) |  |  | HS (high-speed main) operation mode: <br> 1 to 24 MHz (VDD $=2.7$ to 5.5 V ), <br> HS (high-speed main) operation mode: <br> 1 to $16 \mathrm{MHz}(\mathrm{VDD}=2.4$ to 5.5 V$)$, <br> LS (low-speed main) operation mode: <br> 1 to 8 MHz (VDD $=1.8$ to 5.5 V ) |
| Subsystem clock |  | XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) |  |  |  |
|  |  | 32.768 kHz (TYP.): VDD $=2.4$ to 5.5 V |  |  | 32.768 kHz (TYP.): VDD $=1.8$ to 5.5 V <br> 38.4 kHz (TYP.): VdD $=1.8$ to 5.5 V |
| Low-speed on-chip oscillator clock |  | 15 kHz (TYP.): VDD $=2.4$ to 5.5 V |  |  | 15 kHz (TYP.): VDD $=1.8$ to 5.5 V |
| General-purpose register |  | 8 bits $\times 32$ registers ( 8 bits $\times 8$ registers $\times 4$ banks) |  |  |  |
| Minimum instruction execution time |  | $0.04167 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=24 \mathrm{MHz}$ operation) |  |  |  |
|  |  | $0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation) |  |  |  |
|  |  | $30.5 \mu \mathrm{~s}$ (Subsystem clock: fSuB $=32.768 \mathrm{kHz}$ operation) |  |  |  |
| Instruction set |  | - Data transfer (8/16 bits) <br> - Adder and subtractor/logical operation ( $8 / 16$ bits) <br> - Multiplication ( 8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division ( 16 bits $\div 16$ bits, 32 bits $\div 32$ bits) <br> - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) <br> - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. |  |  |  |
| I/O port | Total | 53 | 36 | 29 | 63 |
|  | CMOS I/O | 46 | 29 | 22 | 56 |
|  | CMOS input | 5 | 5 | 5 | 5 |
|  | CMOS output | - | - | - | - |
|  | N-ch open-drain I/O (6 V tolerance) | 2 | 2 | 2 | 2 |


| Item |  | 80-pin LFQFP | 64-pin LFQFP | 64-pin TFBGA 48-pin LFQFP | 80-pin LFQFP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { R5F11NMx } \\ & (x=E \text { to } G) \end{aligned}$ | $\begin{gathered} \text { R5F11NLX } \\ (x=F, G) \end{gathered}$ | R5F11PLx, <br> R5F11NGx $(x=F, G)$ | R5F11RMG |
| Timer | 16-bit timer TAU |  |  |  |  |
|  | 8-bit or 16-bit interval timer | 2 channels ( 8 bits)/1 channel (16 bits) |  |  | 6 channels (8 bits)/3 channels (16 bits) |
|  | Watchdog timer | 1 channel |  |  |  |
|  | 12-bit interval timer | 1 channel |  |  |  |
|  | Real-time clock 2 | 1 channel |  |  |  |
|  | RTC output | $1 \mathrm{~Hz} \text { (subsystem clock: fSUB }=32.768 \mathrm{kHz} \text { ) }$ |  |  |  |
|  | 16-bit timer RJ | - |  |  | 2 channels, timer outputs: 2 |
|  | External signal sampler | - |  |  | 1 channel |
|  | Sampling output timer detector (SMOTD) | - |  |  | Input: 6 channels Output: 3 channels |
| Clock output/buzzer output |  | 2 | 1 | 2 | 2 |
|  |  | - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.77 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ <br> (Main system clock: fMAIN $=20 \mathrm{MHz}$ operation) <br> - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation) |  |  |  |
| 8/10-bit resolution A/D converter | Internal | 3 channels |  |  |  |
|  | External | 2 channels: Internal reference voltage ( 1.45 V ), temperature sensor output voltage (only selectable in HS (high-speed main) mode) |  |  |  |
| 24-bit $\Delta \Sigma A / D$ converter with programmable gain instrumentation amplifier 0 (PGA0) |  | Analog input: 1 channel (differential or single-ended) | Analog input: <br> 1 channel (differential or single-ended), 3 channels (single-ended) | Analog input: 2 channels (differential or single-ended), 3 channels (single-ended) | - |
| D/A converter | 12-bit | - | 1 channel (with an output amplifier but no external output pin) | 1 channel (with an output amplifier but no external output pin) | - |
|  | 8-bit | 1 channel (without an output amplifier and no external output pin) | 1 channel (without an output amplifier and no external output pin) | 1 channel (without an output amplifier and no external output pin) | - |
| Programmable gain instrumentation amplifier 1 (PGA1) |  | - | 1 channel | 1 channel | - |
| Rail-to-rail operational amplifier |  | 1 channel | 1 channel | 1 channel | - |
| General-purpose operational amplifier |  | - | 2 channels | 2 channels | - |
| Serial interface |  | - CSI (SPI supported): 1 channel/UART (LIN-bus supported): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel <br> - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel <br> - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel |  |  |  |
|  | ${ }^{12} \mathrm{C}$ bus | 1 channel |  |  | 1 channel |
|  | Serial interface UARTMG | - |  |  | 1 channel |


| Item |  | 80-pin LFQFP | 64-pin LFQFP | 64-pin TFBGA 48-pin LFQFP | 80-pin LFQFP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | R5F11NMx $\text { ( } \mathrm{x}=\mathrm{E} \text { to } \mathrm{G} \text { ) }$ | R5F11NLx (x = F, G) | R5F11PLx, <br> R5F11NGx (x = F, G) | R5F11RMG |
| LCD controller/driver |  | Internal voltage boosting method, capacitor split method, and external resistance division method are switchable. |  |  |  |
|  | Segment signal output | 36 (32) Note 2 | 27 (23) Note 2 | - | 36 (32) Note 2 |
|  | Common signal output | 4 (8) Note 2 | 4 (8) Note 2 | - | 4 (8) Note 2 |
| Data transfer controller (DTC) |  | 26 sources | 24 sources | 25 sources | 35 sources |
| Event link controller (ELC) |  | Event input: 20, Event trigger output: 7 | Event input: 18, Event trigger output: 10 | Event input: 19, Event trigger output: 10 | Event input: 26, Event trigger output: 5 |
| Vectored interrupt sources | Internal | 29 | 29 | 29 | 43 |
|  | External | 8 | 6 | 7 | 8 |
| Reset |  | - Reset by $\overline{\text { RESET }}$ pin <br> - Internal reset by watchdog timer <br> - Internal reset by power-on-reset <br> - Internal reset by voltage detector <br> - Internal reset by illegal instruction execution Note 3 <br> - Internal reset by RAM parity error <br> - Internal reset by illegal-memory access |  |  |  |
| Power-on-reset circuit |  | - Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}$ <br> - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}$ |  |  |  |
| Voltage detector |  | - Rising edge: 2.50 V to 4.06 V (9 stages) <br> - Falling edge: 2.45 V to 3.98 V ( 9 stages) |  |  | - Rising edge: 1.88 V to 4.06 V (12 stages) <br> - Falling edge: 1.84 V to 3.98 V (12 stages) |
| On-chip debug function |  | Provided |  |  |  |
| Power supply voltage |  | $\text { VDD }=2.4 \text { to } 5.5 \mathrm{~V}$ <br> (10-bit SAR A/D converter: 2.4 to 5.5 V , operating voltage of the analog front-end (AFE): 2.7 to 5.5 V ) |  |  | $\mathrm{V} D \mathrm{D}=1.8$ to 5.5 V |
| Operating ambient temperature |  | TA $=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications) |  |  | $\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}$ <br> (D: Industrial applications) |

Note 1. The number of outputs depends on the setting of channels in use and the number of the master.
Note 2. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 3. The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

## 2. ELECTRICAL SPECIFICATIONS (R5F11N, R5F11P) (A: $\mathrm{TA}^{2}=-40$ to $+85^{\circ} \mathrm{C}$ )

This chapter describes the electrical specifications for the products A: Consumer applications ( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ ).

Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2 Functions other than port pins in the User's Manual: Hardware.

### 2.1 Absolute Maximum Ratings

## Absolute Maximum Ratings

(1/3)

| Parameter | Symbols | Conditions | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage | VDD |  | -0.5 to +6.5 | V |
|  | AVDD | AVDD $=$ VDD | -0.5 to +6.5 | V |
|  | AVss | AVss = Vss | -0.5 to +0.3 | V |
| REGC pin input voltage | VIREGC | REGC | $\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$ | V |
| REGA pin input voltage | VIREGA | REGA | $\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to AVDD }+0.3 \text { Note } 2 \end{gathered}$ | V |
| Input voltage | VI1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P124, P125 to P127, P137, EXCLK, EXCLKS, RESET | -0.3 to VDD +0.3 Note 3 | V |
|  | VI2 | P60, P61 (N-ch open-drain) | -0.3 to +6.5 | V |
| Output voltage | Vo1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127 | -0.3 to VDD + 0.3 Note 3 | V |
| Analog input voltage | VAI1 | ANI8 to ANI11 | -0.3 to VDD + 0.3 Note 3 | V |
|  | VAl2 | ANI12 to ANI14 <br> PGA00P, PGA01P, PGA10P, PGA11P, PGA00N, PGA01N, PGA10N, PGA11N, AMP0P to AMP2P, AMP0N to AMP2N | -0.3 to AVDD + 0.3 Note 3 | V |
| Analog output voltage | VoA | SBIAS, PGA1O, AMP00 to AMP2O | -0.3 to AVDD + 0.3 Note 3 | V |

Note 1. Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Connect the REGA pin to AVss via a capacitor ( $0.22 \mu \mathrm{~F})$. This value regulates the absolute maximum rating of the REGA pin. Do not use this pin with voltage applied to it.
Note 3. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. The reference voltage is Vss (for the VDD systems) = AVss (for the AVDD systems)

Absolute Maximum Ratings
(2/3)

| Parameter | Symbols | Conditions |  | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LCD voltage | VLI1 | VL1 input voltage Note 1 |  | -0.3 to +2.8 | V |
|  | VLI2 | VL2 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLI3 | VL3 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLI4 | VL4 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VL15 | CAPL, CAPH input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLO1 | VL1 output voltage |  | -0.3 to +2.8 | V |
|  | VLO2 | VL2 output voltage |  | -0.3 to +6.5 | V |
|  | VLO3 | VL3 output voltage |  | -0.3 to +6.5 | V |
|  | VLO4 | VL4 output voltage |  | -0.3 to +6.5 | V |
|  | VLO5 | CAPL, CAPH output voltage |  | -0.3 to +6.5 | V |
|  | VLO6 | COM0 to COM7 SEG0 to SEG35 output voltage | External resistance division method | $\begin{gathered} -0.3 \text { to VDD }+0.3 \\ \text { Note } 2 \end{gathered}$ | V |
|  |  |  | Capacitor split method | $\begin{gathered} -0.3 \text { to VDD }+0.3 \\ \text { Note } 2 \end{gathered}$ | V |
|  |  |  | Internal voltage boosting method | $-0.3 \text { to VLI4 }+0.3$ <br> Note 2 | V |

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor ( $0.47 \mu \mathrm{~F} \pm 30 \%$ ) and connect a capacitor ( $0.47 \mu \mathrm{~F} \pm$ $30 \%$ ) between the CAPL and CAPH pins.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

## Absolute Maximum Ratings

| Parameter | Symbols | Conditions |  | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, high | IOH1 | Per pin |  | -40 | mA |
|  |  | Total of all pins -170 mA | P40, P43, P44, P80 to P83 | -70 | mA |
|  |  |  | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P84 to P86, P125 to P127 | -100 | mA |
| Output current, low | IOL1 | Per pin |  | 40 | mA |
|  |  | Total of all pins 170 mA | P40, P43, P44, P80 to P83 | 70 | mA |
|  |  |  | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127 | 100 | mA |
| Operating ambient temperature | TA | In normal operation mode |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
|  |  | In flash memory programming mode |  |  |  |
| Storage temperature | Tstg |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 2.2 Oscillator Characteristics

### 2.2.1 X1 and XT1 oscillator characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Resonator | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Unit |  |  |  |  |  |
| X1 clock oscillation frequency (fx) <br> Note | Ceramic resonator/crystal resonator | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1.0 |  | 20.0 |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 1.0 |  | 16.0 |
| XT1 clock oscillation frequency <br> $(\mathrm{fxT})$ Note | Crystal resonator |  | 32 | 32.768 | 35 |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the User's Manual: Hardware.

### 2.2.2 On-chip oscillator characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\left.\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}\right)$


Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 2.3 DC Characteristics

### 2.3.1 Pin characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, high Note 1 | IOH 1 | Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 |  |  |  | $\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$ | mA |
|  |  | Total of P40, P43, P44, P80 to P83 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -55 | mA |
|  |  | (When duty $\leq 70 \%$ Note 3) | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | -10 | mA |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | -5 | mA |
|  |  | Total of P01 to P07, P10 to P17, | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -69 | mA |
|  |  | P30 to P32, P35 to P37, P50 to P53, | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | -23 | mA |
|  |  | (When duty $\leq 70 \%$ Note 3 ) | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | -12 | mA |
|  |  | Total of all pins (When duty $\leq 70 \%$ Note 3) | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -124 | mA |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, low Note 1 | IOL1 | Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 |  |  |  | $20.0$ <br> Note 2 | mA |
|  |  | Per pin for P60 and P61 |  |  |  | $\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$ | mA |
|  |  | Total of P40, P43, P44, P80 to P83 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 70 | mA |
|  |  | (When duty $\leq 70 \%$ Note 3) | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 15 | mA |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 9 | mA |
|  |  | P01 to P07, P10 to P17, P30 to P32, | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 90 | mA |
|  |  | P35 to P37, P50 to P53, P60, P61, | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 35 | mA |
|  |  | P70 to P77, P84 to P86, P125 to P127 <br> (When duty $\leq 70 \%$ Note 3 ) | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 20 | mA |
|  |  | Total of all pins <br> (When duty $\leq 70 \%$ Note 3 ) |  |  |  | 160 | mA |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin (IOL1).
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $n \%$ ).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \cong 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage, high | VIH1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 | Normal input buffer | 0.8 VDD |  | VDD | V |
|  | VIH2 | For TTL mode supported ports | TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.2 |  | VDD | V |
|  |  |  | TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ | 2.0 |  | VdD | V |
|  |  |  | TTL input buffer $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ | 1.50 |  | VDD | V |
|  | ViH4 | P60, P61 |  | 0.7 Vdd |  | 6.0 | V |
|  | VIH5 | P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$ |  | 0.8 VDD |  | VDD | V |
| Input voltage, low | VIL1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127 | Normal input buffer | 0 |  | 0.2 VDD | V |
|  | VIL2 | For TTL mode supported ports | TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 |  | 0.8 | V |
|  |  |  | TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ | 0 |  | 0.5 | V |
|  |  |  | TTL input buffer <br> $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ | 0 |  | 0.32 | V |
|  | VIL4 | \| P60, P61 |  | 0 |  | 0.3 VDD | V |
|  | VIL5 | P121 to P124, P137, EXCLK, EXCLKS, RESET |  | 0 |  | 0.2 VDD | V |

Caution The maximum value of ViH of pins P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to $\mathbf{P 8 2}$ is VdD, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage, high | Voh1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, <br> P50 to P53, P70 to P77, P80 to P86, P125 to P127 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-10.0 \mathrm{~mA} \end{aligned}$ | VDD - 1.5 |  |  | V |
|  |  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-3.0 \mathrm{~mA} \end{aligned}$ | VDD - 0.7 |  |  | V |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-2.0 \mathrm{~mA} \end{aligned}$ | VDD - 0.6 |  |  | V |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-1.5 \mathrm{~mA} \end{aligned}$ | VDD - 0.5 |  |  | V |
| Output voltage, low | VoL1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=20.0 \mathrm{~mA} \end{aligned}$ |  |  | 1.3 | V |
|  |  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=8.5 \mathrm{~mA} \end{aligned}$ |  |  | 0.7 | V |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$ |  |  | 0.6 | V |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.5 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 | V |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=0.6 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 | V |
|  | VOL3 | P60, P61 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15.0 \mathrm{~mA} \end{aligned}$ |  |  | 2.0 | V |
|  |  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=5.0 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 | V |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 | V |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 | V |

Caution P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input leakage current, high | ILIH1 | P01 to P07, P10 to P17, P30 to P32, <br> P35 to P37, P40, P43, P44, <br> P50 to P53, P60, P61, P70 to P77, <br> P80 to P86, P125 to P127, P137, <br> RESET | V I $=\mathrm{VDD}$ |  |  |  | 1 | $\mu \mathrm{A}$ |
|  | ILIH3 | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS) | V I $=$ VDD | In input port or external clock input |  |  | 1 | $\mu \mathrm{A}$ |
|  |  |  |  | In resonator connection |  |  | 10 | $\mu \mathrm{A}$ |
| Input leakage current, low | ILIL1 | ```P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET``` | V I $=\mathrm{Vss}$ |  |  |  | -1 | $\mu \mathrm{A}$ |
|  | ILIL3 | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS) | V I $=\mathrm{Vss}$ | In input port or external clock input |  |  | -1 | $\mu \mathrm{A}$ |
|  |  |  |  | In resonator connection |  |  | -10 | $\mu \mathrm{A}$ |
| On-chip pull-up resistance | Ru1 | P01 to P07, P10 to P17, P30 to P32, <br> P35 to P37, P40, P43, P44, <br> P50 to P53, P70 to P77, P80 to P86, <br> P125 to P127 | V I $=\mathrm{Vss}$ | or In input port | 10 | 20 | 100 | k $\Omega$ |

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 2.3.2 Supply current characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  |  |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current Notes 1, Note 6 | IDD1 | Operating mode | HS <br> (high-speed main) mode Note 5 | $\mathrm{fIH}=24 \mathrm{MHz}$ Note 3 | Basic operation | $\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$ |  | 1.7 |  | mA |
|  |  |  |  |  |  | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 1.7 |  |  |
|  |  |  |  |  | Normal operation | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 3.7 | 6.2 |  |
|  |  |  |  |  |  | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 3.7 | 6.2 |  |
|  |  |  |  | $\mathrm{fIH}=16 \mathrm{MHz}$ Note 3 | Normal operation | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 2.8 | 4.8 |  |
|  |  |  |  |  |  | VdD $=3.0 \mathrm{~V}$ |  | 2.8 | 4.8 |  |
|  |  |  | HS <br> (high-speed main) mode Note 5 | $\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 3.1 | 5.2 | mA |
|  |  |  |  |  |  | Resonator connection |  | 3.3 | 5.3 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 3.0 | 5.2 |  |
|  |  |  |  |  |  | Resonator connection |  | 3.3 | 5.3 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 2.6 | 4.5 |  |
|  |  |  |  |  |  | Resonator connection |  | 2.8 | 4.6 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 2.6 | 4.5 |  |
|  |  |  |  |  |  | Resonator connection |  | 2.8 | 4.6 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.9 | 3.0 |  |
|  |  |  |  |  |  | Resonator connection |  | 1.9 | 3.0 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.9 | 3.0 |  |
|  |  |  |  |  |  | Resonator connection |  | 1.9 | 3.0 |  |
|  |  |  | Subsystem clock operation | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=-40^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.3 | 5.8 | $\mu \mathrm{A}$ |
|  |  |  |  |  |  | Resonator connection |  | 4.6 | 5.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.3 | 5.8 |  |
|  |  |  |  |  |  | Resonator connection |  | 4.6 | 5.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } ~} 4 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.5 | 7.6 |  |
|  |  |  |  |  |  | Resonator connection |  | 4.5 | 7.6 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.7 | 9.2 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.1 | 9.2 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+85^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.2 | 12.6 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.7 | 12.6 |  |

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. The current flowing into AFE is not included.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Note 6. IDD1 do not include the current flowing to the AFE.
The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and AFE current (AVDD systems) when the AFE operates in the operating mode, HALT mode, or STOP mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: High-speed on-chip oscillator clock frequency
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current Notes 1, Note 9 | IDD2 <br> Note 2 | HALT mode | HS (high-speed main) mode Note 7 | $\mathrm{fiH}=24 \mathrm{MHz}$ Note 4 | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 0.42 | 1.83 | mA |
|  |  |  |  |  | $\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$ |  | 0.42 | 1.83 |  |
|  |  |  |  | $\mathrm{fIH}=16 \mathrm{MHz}$ Note 4 | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 0.39 | 1.38 |  |
|  |  |  |  |  | VDD $=3.0 \mathrm{~V}$ |  | 0.39 | 1.38 |  |
|  |  |  | HS (high-speed main) mode Note 7 | $\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.26 | 1.55 | mA |
|  |  |  |  |  | Resonator connection |  | 0.40 | 1.68 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.25 | 1.55 |  |
|  |  |  |  |  | Resonator connection |  | 0.40 | 1.68 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.23 | 1.22 |  |
|  |  |  |  |  | Resonator connection |  | 0.36 | 1.39 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.22 | 1.22 |  |
|  |  |  |  |  | Resonator connection |  | 0.35 | 1.39 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.19 | 0.82 |  |
|  |  |  |  |  | Resonator connection |  | 0.29 | 0.90 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.18 | 0.82 |  |
|  |  |  |  |  | Resonator connection |  | 0.28 | 0.90 |  |
|  |  |  | Subsystem clock operation | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=-40^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.32 | 0.69 | $\mu \mathrm{A}$ |
|  |  |  |  |  | Resonator connection |  | 0.51 | 0.89 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+25^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.41 | 0.82 |  |
|  |  |  |  |  | Resonator connection |  | 0.62 | 1.00 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.52 | 1.40 |  |
|  |  |  |  |  | Resonator connection |  | 0.75 | 1.60 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.82 | 2.70 |  |
|  |  |  |  |  | Resonator connection |  | 1.08 | 2.90 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+85^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 1.38 | 4.95 |  |
|  |  |  |  |  | Resonator connection |  | 1.62 | 5.15 |  |
|  | IDD3 <br> Note 6 | STOP mode <br> Note 8 | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  |  | 0.20 | 0.59 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  |  | 0.26 | 0.72 |  |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$ |  |  |  | 0.33 | 1.30 |  |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ |  |  |  | 0.53 | 2.60 |  |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  |  | 0.93 | 4.85 |  |

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. The current flowing into AFE is not included.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, 8 -bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
$\begin{array}{ll}\mathrm{HS} \text { (high-speed main) mode: } \quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 24 \mathrm{MHz} \\ & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}\end{array}$
Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
Note 9. IDD2 and IDD3 do not include the current flowing to the AFE.
The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and AFE current (AVDD systems) when the AFE operates in the operating mode, HALT mode, or STOP mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: High-speed on-chip oscillator clock frequency
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is $T A=25^{\circ} \mathrm{C}$.

- Peripheral functions
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer operates in STOP mode.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IADREF when the A/D converter operates in the operating mode or the HALT mode.
Note 7. Operation current flowing to the internal reference voltage.
Note 8. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ILVI when the LVD circuit operates in the operating mode, HALT mode, or STOP mode.
Note 9. Current flowing only during self-programming.
Note 10. Current flowing only during data flash rewrite.
Note 11. For shift time to the SNOOZE mode, see 27.3.3 SNOOZE mode in the User's Manual: Hardware.
Note 12. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2, or ILCD3) and the supply current (IDD1 or IDD2) when the LCD controller/driver operates in the operating mode or HALT mode. Not including the current that flows through the LCD panel.
Note 13. Not including the current that flows through the external divider resistor.
Note 14. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fCLK: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

- AFE functions
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24-bit $\Delta \Sigma \mathrm{A} / \mathrm{D}$ converter operating current | IDSAD | Normal mode Notes 1, 2 <br> Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA0, 24-bit $\Delta \Sigma$ <br> A/D converter, and digital filter <br> Differential input mode, OSR $=256$, SBIAS IOUT $=0 \mathrm{~mA}$ |  | 0.94 | 1.46 | mA |
|  |  | Low power mode Notes 1, 2 <br> Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA0, 24-bit $\Delta \Sigma$ <br> A/D converter, and digital filter <br> Differential input mode, OSR $=256$, SBIAS IOUT $=0 \mathrm{~mA}$ |  | 0.60 | 0.91 | mA |
| Amplifier operating current | IPGA1 | Low power mode Notes 1, 2 <br> Circuits that operate: ABGR, PGA1, and DAC1 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.60 | 1.10 | mA |
|  |  | High-speed mode Notes 1, 2 <br> Circuits that operate: ABGR, PGA1, and DAC1 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 1.10 | 1.80 | mA |
|  | IAMP0 | Low power mode Notes 1, 2 <br> Circuits that operate: ABGR and AMP0 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.10 | 0.15 | mA |
|  |  | High-speed mode Notes 1, 2 <br> Circuits that operate: ABGR and AMP0 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.30 | 0.48 | mA |
|  | IAMP1, <br> IAMP2 | Low power mode Notes 1, 2 <br> Circuits that operate: ABGR and AMP1 or AMP2 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.10 | 0.14 | mA |
|  |  | High-speed mode Notes 1, 2 <br> Circuits that operate: ABGR and AMP1 or AMP2 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.23 | 0.35 | mA |
| 8-bit D/A converter operating current | IDAC0 | SBIAS normal mode Notes 1, 2 <br> Circuits that operate: ABGR, REGA, SBIAS, and DAC0 Note 3 $\mathrm{IL}=0 \mathrm{~mA}$, SBIAS IOUT $=0 \mathrm{~mA}$ |  | 1.00 | 1.50 | mA |
|  |  | SBIAS low-power mode Notes 1, 2 <br> Circuits that operate: ABGR, REGA, SBIAS, and DAC0 Note 3 $\mathrm{IL}=0 \mathrm{~mA}$, SBIAS IOUT $=0 \mathrm{~mA}$ |  | 0.85 | 1.30 | mA |
| 12-bit D/A converter operating current | IDAC1 | When AVDD is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR and DAC1 $\mathrm{IL}=0 \mathrm{~mA}$ |  | 0.61 | 0.97 | mA |
|  |  | When SBIAS (normal mode) is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, and DAC1 Note 3 $\mathrm{IL}=0 \mathrm{~mA}$, SBIAS Iout $=0 \mathrm{~mA}$ |  | 1.06 | 1.62 | mA |
|  |  | When SBIAS (low-power mode) is selected as the reference voltage Notes 1, 2 <br> Circuits that operate: ABGR, REGA, SBIAS, and DAC1 Note 3 $\mathrm{IL}=0 \mathrm{~mA}$, SBIAS Iout $=0 \mathrm{~mA}$ |  | 0.91 | 1.42 | mA |

Note 1. Current flowing to AVDD. The typical conditions are the conditions when $T_{A}=25^{\circ} \mathrm{C}$ and $A V D D=3.3 \mathrm{~V}$.
Note 2. Current flowing only into the operating circuit indicated in the column for conditions.
Note 3. Including the static current of VREFAMP, PGA0, and 24-bit $\Delta \Sigma$ A/D converter.

Remark Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

### 2.4 AC Characteristics

### 2.4.1 Basic operation

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Items | Symbol | Conditions |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instruction cycle (minimum instruction execution time) | Tcy | Main system clock (fmAIN) operation | HS (high-speed main) mode | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.0417 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{s}$ |
|  |  | Subsystem clock (fsub) operation | $\mathrm{fxT}=32.768 \mathrm{kHz}$ | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 28.5 | 30.5 | 31.3 | $\mu \mathrm{s}$ |
|  |  | In the selfprogramming mode | HS (high-speed main) mode | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.0417 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{s}$ |
| External main system clock frequency | fex | EXCLK |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1.0 |  | 20.0 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 1.0 |  | 16.0 | MHz |
|  | fExt | EXCLKS |  |  | 32 |  | 35 | kHz |
| External main system clock input high-level width, low-level width | tEXH, | EXCLK |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 24 |  |  | ns |
|  | tEXL |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 30 |  |  | ns |
|  | tEXHS, texLs | EXCLKS |  |  | 13.7 |  |  | $\mu \mathrm{s}$ |
| Timer input high-level width, low-level width | tTIH, tTIL | TIOO to TI07 |  |  | $\begin{gathered} \text { 1/fMCK }+ \\ 10 \end{gathered}$ |  |  | ns |
| Timer output frequency | fto | $\begin{aligned} & \text { TO00 to } \\ & \text { TO07 } \end{aligned}$ | HS (high-speed main) mode | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 12 | MHz |
|  |  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
| Buzzer output frequency | fPCL | $\begin{aligned} & \text { PCLBUZ0, } \\ & \text { PCLBUZ1 } \end{aligned}$ | HS (high-speed main) mode | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 12 | MHz |
|  |  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
| Interrupt input highlevel width, low-level width | tINTH, <br> tINTL | INTP0 to INTP7 |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1 |  |  | $\mu \mathrm{s}$ |
| $\overline{\text { RESET }}$ low-level width | tRSL |  |  |  | 10 |  |  | $\mu \mathrm{s}$ |

Remark fMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number ( $m=0$ ),
n : Channel number ( $\mathrm{n}=0$ to 7 ))

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

TIOO to TIO7


TO00 to TO07


Interrupt Request Input Timing

$\overline{\text { RESET }}$ Input Timing


### 2.5 Peripheral Functions Characteristics

### 2.5.1 Serial array unit

(1) During communication at same potential (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. |  |
| Transfer rate Note 1 |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | fMCK/6 Note 2 | bps |
|  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3 |  | 4.0 | Mbps |

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The following conditions are required for low voltage interface.

$$
2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}: \mathrm{MAX} .2 .6 \mathrm{Mbps}
$$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

## UART mode connection diagram (during communication at same potential)



UART mode bit width (during communication at same potential) (reference)


Remark 1. $\mathrm{q}:$ UART number ( $\mathrm{q}=0$ to 2 ), g : PIM and POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ )
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCKp cycle time | tKCY1 | tKCY1 $\geq$ fcLK/4 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 167 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 250 |  | ns |
| SCKp high-/low-level width | tKH1, <br> tKL1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKcrı $1 / 2-12$ |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY1/2-18 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tkCr1/2-38 |  | ns |
| SIp setup time (to SCKp $\uparrow$ ) ) ${ }^{\text {Note } 1}$ | tSIK1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 44 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 44 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 75 |  | ns |
| SIp hold time (from SCKp $\uparrow$ ) Note 2 | tKSI1 | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 19 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 3 | tKSO1 | $\mathrm{C}=20 \mathrm{pF} \text { Note } 4$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 25 | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 25 | ns |

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$, g : PIM and POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00,02,10$ ) $)$
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock output) (1/2) ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCKp cycle time Note 5 | tKCY2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 20 MHz < fMCK | 8/fмск |  | ns |
|  |  |  | fmCk $\leq 20 \mathrm{MHz}$ | 8/fмск |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | fmCk > 16 MHz | 8/fмск |  | ns |
|  |  |  | fmск $\leq 16 \mathrm{MHz}$ | 6/fmск |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 6/fmck and 500 |  | ns |
| SCKp high-/low-level width | $\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$ | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY2/2-7 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY2/2-8 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY2/2-18 |  | ns |
| SIp setup time (to SCKp $\uparrow$ ) Note 1 | tsIK2 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 20 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 30 |  | ns |
| SIp hold time (from SCKp $\uparrow$ ) Note 2 | tKSI2 | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 31 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 3 | tKSO2 | $\mathrm{C}=30 \mathrm{pF}$ Note 4 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 2/fmCk + 44 | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 2/fmck +75 | ns |

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ C is the load capacitance of the SCKp and SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g ( PIMg ) and port output mode register g ( POMg ).

Remark 1. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$,
g : PIM and POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00,02,10)$ )
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock output) (2/2) ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| $\overline{\mathrm{SSI}} \mathbf{0 0}$ setup time | tssik | DAPmn $=0$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 200 |  | ns |
|  |  | DAPmn $=1$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 200 |  | ns |
| $\overline{\text { SSIOO }}$ hold time | tKssi | DAPmn $=0$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 200 |  | ns |
|  |  | DAPmn = 1 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 200 |  | ns |

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00)$, m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0)$, g : PIM and POM number $(\mathrm{g}=3,4)$

CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential)
(Slave Transmission of slave select input function (CSIOO))


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, m : Unit number $(\mathrm{m}=0,1), \mathrm{n}$ : Channel number $(\mathrm{n}=0,2)$

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(\mathrm{n}=0,2)$
(4) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. |  |
| SCLr clock frequency | fscl | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 1000 Note 1 | kHz |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ |  | 400 Note 1 | kHz |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ |  | 300 Note 1 | kHz |
| Hold time when SCLr = " L " | tıow | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 1550 |  | ns |
| Hold time when SCLr = " H " | tHIGH | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 1550 |  | ns |
| Data setup time (reception) | tsu: DAT | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 1/fmck + 85 Note 2 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 1/fmCK + 145 Note 2 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 1/fmCK + 230 Note 2 |  | ns |
| Data hold time (transmission) | thD: DAT | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 0 | 305 | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 0 | 355 | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 0 | 405 | ns |

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VdD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $h$ (POMh).

## Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SCLr, SDAr) load capacitance
Remark 2. r: IIC number ( $r=00,10,20$ ), $g$ : PIM number ( $g=0,1,3,4,5,8$ ),
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ),
n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10)$
(5) Communication at different potential (1.8 V, 2.5 V, 3 V ) (UART mode) (1/2)
(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVdD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| Transfer rate |  | reception | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V} \end{aligned}$ |  | fmck/6 Note 1 | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4 |  | 4.0 | Mbps |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$ |  | fmCk/6 Note 1 | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4 |  | 4.0 | Mbps |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \end{aligned}$ |  | fMCK/6 Notes 1, 2, 3 | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fcLK Note 4 |  | 4.0 | Mbps |

Note 1. Transfer rate in the SNOOZE mode is $4,800 \mathrm{bps}$ only.
Note 2. Use it with $V D D \geq V_{b}$.
Note 3. The following conditions are required for low voltage interface. $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ : MAX. 2.6 Mbps
Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{D} \leq 5.5 \mathrm{~V})$ $16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance) mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 2 ), $g$ : PIM and POM number ( $g=0,1,3,4,5,8$ )
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ )
(5) Communication at different potential (1.8 V, 2.5 V, 3 V ) (UART mode) (2/2)
(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVdD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| Transfer rate |  | transmission | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$ |  | Note 1 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega, \mathrm{Vb}=2.7 \mathrm{~V}$ |  | 2.8 Note 2 | Mbps |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$ |  | Note 3 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \mathrm{Vb}=2.3 \mathrm{~V}$ |  | 1.2 Note 4 | Mbps |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$ |  | Notes 5, 6 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \mathrm{Vb}_{\mathrm{b}}=1.6 \mathrm{~V}$ |  | 0.43 Note 7 | Mbps |

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using fмCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with $\mathrm{VDD} \geq \mathrm{Vb}$.

Note 6. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$

$$
1
$$


Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times \operatorname{Rb} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\}}{} \times 100$ [\%]

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the $\mathbf{N}$-ch open drain output (VdD tolerance) mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

## UART mode connection diagram (during communication at different potential)



UART mode bit width (during communication at different potential) (reference)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (TxDq) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line ( TxDq ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 2 ), $g$ : PIM and POM number ( $g=0,1,3,4,5,8$ )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ )
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output) (1/2)
(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCKp cycle time | tKCY1 | tKCY1 $\geq$ 4/fCLK | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 300 |  | ns |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | 500 Note |  | ns |
|  |  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 1150 Note |  | ns |
| SCKp high-level width | tKH1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | tKCY1/2-75 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | tксү1/2-170 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | tксү1/2-458 |  | ns |
| SCKp low-level width | tKL1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | tK¢Y1/2-12 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | tксү1/2-18 |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | tKCY1/2-50 |  | ns |

Note Use it with $V_{D D} \geq \mathrm{V}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For $\mathrm{VIH}^{\mathrm{I}}$ and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(6) Communication at different potential (1.8 V, 2.5 V, 3 V ) (CSI mode) (master mode, SCKp... internal clock output) (2/2)
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. |  |
| SIp setup time (to SCKp $\uparrow$ ) Note 1 | tsIK1 | $4.0 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ | 81 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 177 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 479 |  | ns |
| SIp hold time (from SCKp $\uparrow$ ) Note 1 | tKSI1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ | 19 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 19 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VdD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 19 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 1 | tKSO1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ |  | 100 | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ |  | 195 | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ |  | 483 | ns |
| SIp setup time (to SCKp $\downarrow$ ) Note 2 | tsIK1 | $4.0 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ | 44 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 44 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 110 |  | ns |
| Slp hold time (from SCKp $\downarrow$ ) Note 2 | tKSI1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ | 19 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 19 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 19 |  | ns |
| Delay time from SCKp $\uparrow$ to SOp output Note 2 | tKSO1 | $4.0 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega$ |  | 25 | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ |  | 25 | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ |  | 25 | ns |

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $V D D \geq \mathrm{Vb}$.
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## CSI mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line ( $\mathrm{SCKp}, \mathrm{SOp}$ ) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SCKp, SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0,2)$,
g : PIM and POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00,02,10$ )

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0,2)$,
$\mathrm{g}:$ PIM and POM number $(\mathrm{g}=0,1,3,4,5,8)$
(7) Communication at different potential (1.8 V, 2.5 V, 3 V ) (CSI mode) (slave mode, SCKp... external clock input)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCKp cycle time Note 1 | tKCY2 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$ | 20 MHz < fMCK | 12/fмск |  | ns |
|  |  |  | 8 MHz < fmCK $\leq 20 \mathrm{MHz}$ | 10/fмск |  | ns |
|  |  |  | $4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$ | 8/fmск |  | ns |
|  |  |  | fmCk $\leq 4 \mathrm{MHz}$ | 6/fmск |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$ | 20 MHz < fMCK | 16/fмск |  | ns |
|  |  |  | 16 MHz < fMCK $\leq 20 \mathrm{MHz}$ | 14/fıск |  | ns |
|  |  |  | 8 MHz < fMCK $\leq 16 \mathrm{MHz}$ | 12/fmск |  | ns |
|  |  |  | $4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$ | 8/fmск |  | ns |
|  |  |  | fMck $\leq 4 \mathrm{MHz}$ | 6/fmск |  | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb}^{2} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$ | 20 MHz < fMck | 36/fmск |  | ns |
|  |  |  | 16 MHz < fMCK $\leq 20 \mathrm{MHz}$ | 32/fмск |  | ns |
|  |  |  | 8 MHz < fMCK $\leq 16 \mathrm{MHz}$ | 26/fмск |  | ns |
|  |  |  | $4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$ | 16/fмск |  | ns |
|  |  |  | fMCK $\leq 4 \mathrm{MHz}$ | 10/fmск |  | ns |
| SCKp high-/low-level width | $\begin{array}{\|l\|} \hline \text { tKH2, } \\ \text { tKL2 } \end{array}$ | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | tKCY2/2-12 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | tKCY2/2-18 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2 |  | tKCY2/2-50 |  | ns |
| SIp setup time (to SCKp $\uparrow$ ) Note 3 | tsIK2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | 1/fmCK + 20 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | 1/fmCK + 20 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2 |  | 1/fmCk + 30 |  | ns |
| Slp hold time (from SCKp $\uparrow$ ) Note 4 | tKSI2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | 1/fmск + 31 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | 1/fMCK + 31 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2 |  | 1/fmCK + 31 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 5 | tKSO2 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  |  | 2/fmCk + 120 | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  |  | 2/fmCK + 214 | ns |
|  |  | $\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  |  | 2/fmCk + 573 | ns |

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with $V_{D D} \geq \mathrm{V}_{\mathrm{b}}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## CSI mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$ : Communication line ( SOp ) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line ( SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$,
g : PIM and POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00,02,10)$ )

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, $m$ : Unit number $(m=0,1)$,
n : Channel number $(\mathrm{n}=0,2)$, g : PIM and POM number $(\mathrm{g}=0,1,3,4,5,8)$
(8) Communication at different potential (1.8 V, 2.5 V, 3 V ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. |  |
| SCLr clock frequency | fscl | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ |  | 1000 Note 1 | kHz |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ |  | 1000 Note 1 | kHz |
|  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega$ |  | 400 Note 1 | kHz |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ |  | 400 Note 1 | kHz |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ |  | 400 Note 1 | kHz |
| Hold time when SCLr = "L" | tLow | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 475 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 475 |  | ns |
|  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega$ | 1150 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 1150 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VdD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 1550 |  | ns |
| Hold time when SCLr = "H" | thigh | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 245 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 200 |  | ns |
|  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega$ | 675 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 600 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 610 |  | ns |
| Data setup time (reception) | tSu:DAT | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 1/fmck + 135 Note 3 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 1/fmck + 135 Note 3 |  | ns |
|  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega$ | 1/fmck + 190 Note 3 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 1/fmck + 190 Note 3 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 1/fmck + 190 Note 3 |  | ns |
| Data hold time (transmission) | thD: DAT | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 0 | 305 | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 0 | 305 | ns |
|  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega$ | 0 | 355 | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ | 0 | 355 | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note $2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega$ | 0 | 405 | ns |

Note 1. The value must also be equal to or less than $\mathrm{fmCK} / 4$.
Note 2. Use it with $V D D \geq \mathrm{Vb}$.
Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $\mathbf{g}$ (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2}$ C mode serial transfer timing (during communication at different potential)


Remark 1. $R b[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r : IIC number ( $\mathrm{r}=00,10,20$ ), g : PIM, POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 3. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10)$

### 2.5.2 Serial interface IICA

(1) $I^{2} \mathrm{C}$ standard mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCLA0 clock frequency | fscL | Standard mode: fcLk $\geq 1 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 100 | kHz |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 100 | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |
| Hold time Note 1 | thD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "L" | tLow | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "H" | tHIGH | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tsu: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 250 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 250 |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 3.45 | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 |  | $\mu \mathrm{s}$ |
| Setup time of stop condition | tSU: STO | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | $\mu \mathrm{s}$ |
| Bus-free time | tBuF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
(2) $\mathrm{I}^{2} \mathrm{C}$ fast mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCLA0 clock frequency | fscl | Fast mode: fCLK $\geq 3.5 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 400 | kHz |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 400 | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
| Hold time Note 1 | thD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "L" | tLow | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = " H " | thigh | $2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tsu: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 100 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 100 |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 0.9 | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 |  | $\mu \mathrm{s}$ |
| Setup time of stop condition | tsu: STO | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | $\mu \mathrm{s}$ |
| Bus-free time | tBuF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | $\mu \mathrm{s}$ |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $1^{2} \mathrm{C}$ fast mode plus
( T A $=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. |  |
| SCLA0 clock frequency | fscL | Fast mode plus: fCLK $\geq 10 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 1000 | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | $\mu \mathrm{s}$ |
| Hold time Note 1 | thD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 $=$ "L" | tıow | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.5 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "H" | thigh | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tsu: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 50 |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 0.45 | $\mu \mathrm{s}$ |
| Setup time of stop condition | tSU: STO | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | $\mu \mathrm{s}$ |
| Bus-free time | tBUF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.5 |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing


### 2.6 Analog Characteristics

### 2.6.1 A/D converter characteristics

(1) When reference voltage ( + ) = VDD (ADREFP1 = 0, ADREFP0 $=0$ ), reference voltage ( - ) = Vss (ADREFM = 0), target pin: ANI8 to ANI14, internal reference voltage, and temperature sensor output voltage
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$, reference voltage ( + ) = VDD,
reference voltage ( - ) = Vss)

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES |  |  | 8 |  | 10 | bit |
| Overall error Note 1 | AINL | 10-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.2 | $\pm 7.0$ | LSB |
| Conversion time | tconv | 10-bit resolution <br> Target pin: ANI8 to ANI14 | $3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.125 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 3.1875 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
|  |  | 10-bit resolution <br> Target pin: internal reference voltage and temperature sensor output voltage (HS (high-speed main) mode) | $3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.375 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 3.5626 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
| Zero-scale error <br> Notes 1, 2 | Ezs | 10-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 0.60$ | \%FSR |
| Full-scale error <br> Notes 1, 2 | Efs | 10-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 0.60$ | \%FSR |
| Integral linearity error Note 1 | ILE | 10-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 4.0$ | LSB |
| Differential linearity error Note 1 | DLE | 10-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 2.0$ | LSB |
| Analog input voltage | Vain | ANI8 to ANI11 |  | 0 |  | Vdd | V |
|  |  | ANI12 to ANI14 |  | 0 |  | AVdD | V |
|  |  | Internal reference voltage (2.4 V $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode) |  | VBGR Note 3 |  |  | V |
|  |  | Temperature sensor output voltage (2.4 V $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode) |  | VTMPS25 Note 3 |  |  | V |

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. Refer to 2.6.2 Temperature sensor/internal reference voltage output characteristics.
(2) When reference voltage $(+)=$ Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$ ), reference voltage $(-)=$ Vss (ADREFM $=0$ ), target pin: ANI8 to ANI11, ANI12 to ANI14
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{VsS}=0 \mathrm{~V}$, reference voltage $(+)=\mathrm{VBGR}$ Note 3 , reference voltage $(-)=$ Vss $=0 \mathrm{~V}$, HS (high-speed main) mode)

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES |  |  | 8 |  |  | bit |
| Conversion time | tconv | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
| Zero-scale error Notes 1, 2 | Ezs | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(0.60+0.35)$ | \%FSR |
| Integral linearity error Note 1 | ILE | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(2.0+0.5)$ | LSB |
| Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(1.0+0.2)$ | LSB |
| Analog input voltage | VAIN |  |  | 0 |  | VBGR Note 3 | V |

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. Refer to 2.6.2 Temperature sensor/internal reference voltage output characteristics.

### 2.6.2 Temperature sensor/internal reference voltage output characteristics

(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V , HS (high-speed main) mode)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Temperature sensor output voltage | VTMPS25 | TA $=+25^{\circ} \mathrm{C}$ |  | 1.05 |  | V |
| Internal reference voltage | VBGR |  | 1.38 | 1.45 | 1.5 | V |
| Temperature coefficient | FVTMPS | Temperature sensor output voltage that <br> depends on the temperature | -3.6 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |  |
| Operation stabilization wait time | tAMP | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 5 |  |  |  |

### 2.6.3 POR circuit characteristics

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Detection voltage | VPOR | Power supply rise time | 1.47 | 1.51 | 1.55 | V |
|  | VPDR | Power supply fall timeNote 1 | 1.46 | 1.50 | 1.54 | V |
| Minimum pulse width Note 2 | TPW1 | Other than STOP/SUB HALT/SUB RUN | 300 |  |  | $\mu \mathrm{~s}$ |
|  | TPW2 | STOP/SUB HALT/SUB RUN | 300 |  | $\mu \mathrm{~s}$ |  |

Note 1. If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 2.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD falls below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 2.6.4 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter |  | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Detection voltage | Supply voltage level | VLVDo | Power supply rise time | 3.98 | 4.06 | 4.14 | V |
|  |  |  | Power supply fall time | 3.90 | 3.98 | 4.06 | V |
|  |  | VLVD1 | Power supply rise time | 3.68 | 3.75 | 3.82 | V |
|  |  |  | Power supply fall time | 3.60 | 3.67 | 3.74 | V |
|  |  | VLVD2 | Power supply rise time | 3.07 | 3.13 | 3.19 | V |
|  |  |  | Power supply fall time | 3.00 | 3.06 | 3.12 | V |
|  |  | VLVD3 | Power supply rise time | 2.96 | 3.02 | 3.08 | V |
|  |  |  | Power supply fall time | 2.90 | 2.96 | 3.02 | V |
|  |  | VLVD4 | Power supply rise time | 2.86 | 2.92 | 2.97 | V |
|  |  |  | Power supply fall time | 2.80 | 2.86 | 2.91 | V |
|  |  | VLVD5 | Power supply rise time | 2.76 | 2.81 | 2.87 | V |
|  |  |  | Power supply fall time | 2.70 | 2.75 | 2.81 | V |
|  |  | VLVD6 | Power supply rise time | 2.66 | 2.71 | 2.76 | V |
|  |  |  | Power supply fall time | 2.60 | 2.65 | 2.70 | V |
|  |  | VLVD7 | Power supply rise time | 2.56 | 2.61 | 2.66 | V |
|  |  |  | Power supply fall time | 2.50 | 2.55 | 2.60 | V |
|  |  | VLVD8 | Power supply rise time | 2.45 | 2.50 | 2.55 | V |
|  |  |  | Power supply fall time | 2.40 | 2.45 | 2.50 | V |
| Minimum pulse width |  | tLW |  | 300 |  |  | $\mu \mathrm{s}$ |
| Detection delay time |  |  |  |  |  | 300 | $\mu \mathrm{s}$ |

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz

VDD $=2.4$ to 5.5 V @ 1 MHz to 16 MHz
(2) LVD Detection Voltage of Interrupt \& Reset Mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interrupt and reset mode | VLVDC0 | VPOC2, VPOC1, VPOC0 $=0,1,0$, falling reset voltage: 2.4 V |  | 2.40 | 2.45 | 2.50 | V |
|  | VLVDC1 |  | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V |
|  |  |  | Falling interrupt voltage | 2.50 | 2.55 | 2.60 | V |
|  | VLVDC2 | LVIS1, LVIS0 $=1,0$ <br> LVIS1, LVIS0 $=0,1$ | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V |
|  |  |  | Falling interrupt voltage | 2.60 | 2.65 | 2.70 | V |
|  | VLVDC3 | LVIS1, LVIS0 $=0,0$ | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V |
|  |  |  | Falling interrupt voltage | 3.60 | 3.67 | 3.74 | V |
|  | VLVDD0 | VPOC2, VPOC1, VPOC0 $=0,1,1$, falling reset voltage: 2.7 V |  | 2.70 | 2.75 | 2.81 | V |
|  | VLVDD1 | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V |
|  |  |  | Falling interrupt voltage | 2.80 | 2.86 | 2.91 | V |
|  | VLVDD2 | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V |
|  |  |  | Falling interrupt voltage | 2.90 | 2.96 | 3.02 | V |
|  | VLVDD3 | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V |
|  |  |  | Falling interrupt voltage | 3.90 | 3.98 | 4.06 | V |

### 2.6.5 Programmable gain instrumentation amplifier and 24-bit $\Delta \Sigma A / D$ converter

(1) Analog input in differential input mode
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$, normal mode: fs1=1 MHz, FDATA1 $=3.90625$ ksps, low-power mode: fs2 $=\mathbf{0 . 1 2 5} \mathrm{MHz}$, FDATA2 $=\mathbf{4 8 8 . 2 8 1 2 5} \mathrm{sps}$, $\mathrm{SBIAS}=2.1 \mathrm{~V}$, doFR $=\mathbf{0} \mathrm{mV}$, Vcom $=1.0 \mathrm{~V}$, external clock input used)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Full-scale differential input voltage range | VID | VID $=(P G A 0 x P-P G A 0 x N)(x=0,1)$ | - | $\pm 800$ /Gtotalo | - | mV |
| Input voltage range | VI |  | 0.2 | - | 1.8 | V |
| Common mode input voltage range | Vcom | doFR $=0 \mathrm{mV}$ | $\begin{aligned} & \text { 0.2+(\|VID\|x } \\ & \text { GsET01)/2 } \end{aligned}$ | - | $\begin{aligned} & \text { 1.8-(\|VID\|X } \\ & \text { GSETO1)/2 } \end{aligned}$ | V |
| Input bias current | IIN | V I $=1.0 \mathrm{~V}$ |  |  | $\pm 50$ | nA |
| Input offset current | IIno | $\mathrm{V}=1.0 \mathrm{~V}$ |  |  | $\pm 20$ | nA |

(2) Analog input in single-ended input mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$, normal mode: fs1=1 MHz, FDATA1 $=3.90625$ ksps, low-power mode: fs2 $=\mathbf{0 . 1 2 5} \mathrm{MHz}$, FDATA2 $=\mathbf{4 8 8 . 2 8 1 2 5} \mathrm{sps}$, $\mathrm{SBIAS}=\mathbf{2 . 1} \mathrm{V}$, dOFR $=\mathbf{0} \mathrm{mV}$, Vcom $=1.0 \mathrm{~V}$, external clock input used)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Input voltage range | $\mathrm{VI}_{1}$ |  | 0.2 | - | 1.8 | V |
| Input bias current | IIN | $\mathrm{V}_{\mathrm{I}}=1.0 \mathrm{~V}$ |  |  | $\pm 50$ | nA |

(3) Programmable gain instrumentation amplifier and 24-bit $\Delta \Sigma A / D$ converter
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$, normal mode: fs1 $=1 \mathrm{MHz}$, FDATA1 $=3.90625$ ksps, low-power mode: fs2 $=\mathbf{0 . 1 2 5} \mathrm{MHz}$, FDATA2 $=\mathbf{4 8 8 . 2 8 1 2 5} \mathrm{sps}$, SBIAS $=\mathbf{2 . 1} \mathrm{V}$, dOFR $=\mathbf{0} \mathrm{mV}$, Vcom $=1.0 \mathrm{~V}$, external clock input used, in differential input mode)
(1/2)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES |  |  |  | 24 | bit |
| Sampling frequency | fs1 | Normal mode |  | 1 |  | MHz |
|  | fs2 | Low-power mode |  | 0.125 |  | MHz |
| Output data rate | fDATA1 | Normal mode | 0.488 |  | 15.625 | ksps |
|  | fData2 | Low-power mode | 61.035 |  | 1953.125 | sps |
| Gain setting range | Gtotalo | GTOTALO = Gseto $\times$ Gset02 | 1 |  | 64 | V/V |
| 1st gain setting range | Gset01 |  |  | 1, 2, 3, 4, 8 |  | V/V |
| 2nd gain setting range | GsEt02 |  |  | 1, 2, 4, 8 |  | V/V |
| Offset adjustment bit range | doffB |  |  | 5 |  | bit |
| Offset adjustment range | dofr | Referred to input | - 164/GsET01 |  | + 164/GseT01 | mV |
| Offset adjustment steps | doFs | Referred to input |  | 11/GsET01 |  | mV |

(TA = -40 to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V , normal mode: fs1 = 1 MHz , FDATA1 = 3.90625 ksps, low-power mode: fs2 = 0.125 MHz , FDATA2 $=488.28125 \mathrm{sps}, \mathrm{SBIAS}=2.1 \mathrm{~V}$, dofr $=0 \mathrm{mV}$, Vcom $=1.0 \mathrm{~V}$, external clock input used, in differential input mode)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gain error | Ego | $\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { GSET01 }=1, \text { GSET02 }=1 \end{aligned}$ <br> Excluding SBIAS error |  | $\pm 0.2$ | $\pm 2.7$ | \% |
|  |  | $\mathrm{TA}=25^{\circ} \mathrm{C}$ <br> GSET01 $=8$, GSET02 $=4$ <br> Excluding SBIAS error |  | $\pm 0.1$ |  | \% |
| Gain drift Note | dEG0 | GSET01 $=1$, GSET02 $=1$ <br> Excluding SBIAS drift |  | (5.6) | (22.0) | ppm/ ${ }^{\circ} \mathrm{C}$ |
|  |  | GsET01 $=8$, GSET02 $=4$ <br> Excluding SBIAS drift |  | (9.1) |  | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Offset error | Eoso | $\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { GsET01 = } 1, \mathrm{GSET02}=1 \\ & \text { Referred to input } \end{aligned}$ |  | $\pm 0.32$ | $\pm 2.90$ | mV |
|  |  | $\mathrm{TA}=25^{\circ} \mathrm{C}$ <br> GseT01 $=8$, GsET02 $=4$ <br> Referred to input |  | $\pm 0.03$ |  | mV |
| Offset drift Note | dEos | GSET01 $=1$, GSET02 $=1$ <br> Referred to input |  | ( $\pm 0.02$ ) | ( $\pm 6.00$ ) | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  |  | GsET01 $=8$, GsET02 $=4$ <br> Referred to input |  | ( $\pm 0.02$ ) |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| SND ratio | SNDR | GSET01 $=1$, GsET02 $=1$, fin $=50 \mathrm{~Hz}$ <br> Normal mode, Pin $=-1 \mathrm{dBFS}$ | (82) | (85) |  | dB |
|  |  | GsET01 $=8$, GsET02 $=4$, fin $=50 \mathrm{~Hz}$ <br> Normal mode, Pin $=-1 \mathrm{dBFS}$ | (73) | (80) |  | dB |
| Noise | Vn | GSET01 $=1, \mathrm{GSET02}=1, \mathrm{OSR}=2048$ |  | (13) |  | $\mu \mathrm{VRms}$ |
|  |  | GsET01 $=8$, GsET02 $=4$, OSR $=2048$ |  | (0.6) |  | $\mu \mathrm{VRms}$ |
| Integral non-linearity error | INL | GSET01 $=1, \mathrm{GSETO2}=1, \mathrm{OSR}=2048$ |  | $( \pm 10)$ |  | ppmFS |
| Common mode rejection ratio | CMRRO | $\begin{aligned} & \text { VCOM }=1.0 \pm 0.8 \mathrm{~V} \text {, fin }=50 \mathrm{~Hz} \\ & \text { GsET01 }=1, \text { GsET02 }=1 \end{aligned}$ | (72) | (90) |  | dB |
| Power supply rejection ratio | PSRR0 | $\begin{aligned} & \text { AVDD }=2.7 \text { to } 5.5 \mathrm{~V}, \\ & \text { GSET01 }=1, \text { GSET02 }=1 \end{aligned}$ | (60) | (85) |  | dB |
| $\Delta \Sigma \mathrm{A} / \mathrm{D}$ converter input clock frequency | fadc |  | 3.8 | 4.0 | 4.2 | MHz |

Note Calculate the gain drift and offset drift by using the following expression (for $85^{\circ} \mathrm{C}$ products):
For gain drift: (MAX(EG(T(-40) to $\mathrm{T}(85)))$ - MIN(EG(T(-40) to $\mathrm{T}(85)))) /\left(85^{\circ} \mathrm{C}-\left(-40^{\circ} \mathrm{C}\right)\right)$
For offset drift: (MAX(EOS(T(-40) to $\mathrm{T}(85)))$ - $\operatorname{MIN}(E O S(T(-40)$ to $\mathrm{T}(85)))) /\left(85^{\circ} \mathrm{C}-\left(-40^{\circ} \mathrm{C}\right)\right)$
$\operatorname{MAX}(E G(T(-40)$ to $T(85)))$ : The maximum value of gain error when the temperature range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$\operatorname{MIN}(E G(T(-40)$ to $T(85)))$ : The minimum value of gain error when the temperature range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $\operatorname{MAX}(\operatorname{EOS}(T(-40)$ to $T(85)))$ : The maximum value of offset error when the temperature range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $\operatorname{MIN}(\operatorname{EOS}(T(-40)$ to $T(85)))$ :The minimum value of offset error when the temperature range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The typical conditions are the conditions when $\mathrm{TA}^{2} 25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.

### 2.6.6 Sensor power supply (SBIAS)

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$, Cout $=0.22 \mu \mathrm{~F}$, Vout $=1.0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage range | Vout |  | 0.5 |  | 2.2 | V |
| Output voltage adjustment steps | Vstep |  |  | 0.1 |  | V |
| Output voltage precision | VA | IOUT $=1 \mathrm{~mA}$ | (-3) |  | (+3) | \% |
| Maximum output current | Iout |  | 5 |  |  | mA |
| Short circuit current | ISHORT | Vout $=0 \mathrm{~V}$ |  | 40 | 65 | mA |
| Load regulation | LR | $1 \mathrm{~mA} \leq$ IOUT $\leq 5 \mathrm{~mA}$ |  |  | (15) | mV |
| Power supply rejection ratio | PSRR | $\begin{aligned} & \mathrm{AVDD}=5.0 \mathrm{~V}+0.1 \mathrm{Vpp} \text { ripple } \\ & \mathrm{f}=100 \mathrm{~Hz}, \text { Iout }=2.5 \mathrm{~mA}, \\ & \text { Vout }=2.1 \mathrm{~V} \end{aligned}$ | (45) | (70) |  | dB |

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The typical conditions are the conditions when $\mathrm{TA}^{2}=25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.

### 2.6.7 Internal BIAS power supply

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| Output voltage | VBIAS |  | 0.95 | 1.00 | 1.05 | V |

Remark The typical conditions are the conditions when $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.

### 2.6.8 Programmable gain instrumentation amplifier (PGA1)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )
(1/2)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential input voltage range | VID | $\begin{aligned} & \text { VID }=(\text { PGA1xP }- \text { PGA1xN }) \\ & (x=0,1) \end{aligned}$ |  | $\begin{gathered} \pm 800 \\ \text { /GToTAL1 } \end{gathered}$ |  | mV |
| Input voltage range | VIN |  | 0.3 |  | AVDD - 0.6 | V |
| Common mode input voltage range | Vcom |  | $\begin{gathered} 0.3+ \\ ((\|\operatorname{VID}\|+\mid \text { EoS } \mid) \\ \times \text { GSET111/2 } \end{gathered}$ |  | $\begin{gathered} \text { AVDD-0.6+ } \\ ((\|\operatorname{VID}\|+\mid \text { Eos } \mid) \\ \times \text { GSET11 } / 2 \end{gathered}$ | V |
| Output voltage range | Vout |  | 0.1 |  | AVdD - 0.1 | V |
| Maximum output current | Iout |  | -0.1 |  | +0.1 | mA |
| Input bias current | IIN |  |  |  | $\pm 50$ | nA |
| Input bias offset current | Ios |  |  |  | $\pm 20$ | nA |
| Gain setting range | Gtotal1 |  |  | GsET11 $\times$ Gset12 |  | V/V |
| 1st gain setting range | Gset11 |  |  | $\begin{aligned} & 12,16, \\ & 20,24 \end{aligned}$ |  | V/V |
| 2nd gain setting range | GsET12 |  |  | Note |  | V/V |
| Gain error | EG1 | $\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { GSET11 }=24, \text { GSET12 }=1 \end{aligned}$ |  |  | $\pm 2.7$ | \% |
| Gain drift | dEG1 | GSET11 $=24$, GsET12 $=1$ |  | (5.6) | (22.0) | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Offset error | Eos1 | $\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { GSET11 }=24, \text { GSET12 }=1 \\ & \text { Referred to input } \end{aligned}$ | -10 |  | +10 | mV |
| Bandwidth | BW11 | Low-power mode GseT11 $=24$, GseT12 $=1$ |  | (1.5) |  | kHz |
|  | BW12 | High-speed mode GSET11 $=24$, GsET12 $=1$ |  | (67) |  | kHz |
| Slew rate | SR11 | Low-power mode |  | (6) |  | $\mathrm{mV} / \mathrm{\mu s}$ |
|  | SR12 | High-speed mode |  | (220) |  | $\mathrm{mV} / \mu \mathrm{s}$ |
| Peak-to-peak voltage noise | Enb11 | 0.1 Hz to 10 Hz Low-power mode |  | (3.0) |  | $\mu \mathrm{Vrms}$ |
|  | Enb12 | 0.1 Hz to 10 Hz High-speed mode |  | (2.6) |  | $\mu \mathrm{Vrms}$ |

Note See the setting of PGA1GC3 to PGA1GC0.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVSS}=\mathrm{VSS}=0 \mathrm{~V}\right)$
(2/2)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input-referred noise | En11 | $\mathrm{f}=1 \mathrm{kHz}$ <br> Low-power mode |  | (210) |  | $\begin{aligned} & \hline \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$ |
|  | En12 | $\mathrm{f}=1 \mathrm{kHz}$ <br> High-speed mode |  | (110) |  | $\begin{aligned} & \hline \mathrm{nV/} \\ & \mathrm{~V} \mathrm{~Hz} \end{aligned}$ |
|  | En13 | $\mathrm{f}=10 \mathrm{~Hz}$ <br> Low-power mode |  | (460) |  | $\begin{aligned} & \hline \mathrm{nV/} \\ & \mathrm{VHz} \end{aligned}$ |
|  | En14 | $\mathrm{f}=10 \mathrm{~Hz}$ <br> High-speed mode |  | (410) |  | $\begin{aligned} & \hline \mathrm{nV/} \\ & \mathrm{VHz} \end{aligned}$ |
| Common mode rejection ratio | CMRR1 | $\begin{aligned} & \text { GSET11 }=24, \text { GSET12 }=1 \\ & \mathrm{f}=50 \mathrm{~Hz} \end{aligned}$ |  | (100) |  | dB |
| Power supply rejection ratio | PSRR1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{f}=50 \mathrm{~Hz} \end{aligned}$ <br> When SBIAS is selected as the reference voltage of the 12 -bit D/A converter. |  | (80) |  | dB |

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The typical conditions are the conditions when $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.
Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

### 2.6.9 Operational amplifier 0 (AMPO)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Common mode input voltage range | Vcm |  | 0.1 |  | AVDD - 0.1 | V |
| Output voltage range | Vout | IOUT $= \pm 1 \mathrm{~mA}$ | 0.07 |  | AVDD - 0.15 | V |
| Maximum output current | Iout |  | (-2) |  | (+2) | mA |
| Input bias current | IIN |  |  |  | $\pm 50$ | nA |
| Input offset voltage | Vos1 | Low-power mode | -10 |  | +10 | mV |
|  | Vos2 | High-speed mode | -7 |  | +7 | mV |
| Slew rate | SR1 | Low-power mode |  | (0.04) |  | $\mathrm{V} / \mu \mathrm{s}$ |
|  | SR2 | High-speed mode |  | (0.7) |  | $\mathrm{V} / \mu \mathrm{s}$ |
| Gain bandwidth | GBW1 | Low-power mode |  | (0.06) |  | MHz |
|  | GBW2 | High-speed mode |  | (1) |  | MHz |
| Phase margin | PM1 | Low-power mode |  | (70) |  | deg |
|  | PM2 | High-speed mode |  | (60) |  | deg |
| Settling time | Tset1 | Low-power mode $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (300) | $\mu \mathrm{s}$ |
|  | Tset2 | High-speed mode $C L=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (14) | $\mu \mathrm{s}$ |
| Stabilization wait time | Tstaw1 | $\text { AMPEn }=0 \rightarrow 1$ <br> Low-power mode $C L=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (300) | $\mu \mathrm{s}$ |
|  | Tstaw2 | $\text { AMPEn }=0 \rightarrow 1 \text {, }$ <br> High-speed mode $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (14) | $\mu \mathrm{s}$ |
| Input-referred noise | En1 | $\mathrm{f}=1 \mathrm{kHz}$ <br> Low-power mode |  | (200) |  | $\begin{aligned} & \hline \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$ |
|  | En2 | $\mathrm{f}=1 \mathrm{kHz}$ <br> High-speed mode |  | (80) |  | $\begin{aligned} & \hline \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$ |
| Common mode rejection ratio | CMRR | DC |  | (70) |  | dB |
| Power supply rejection ratio | PSRR | DC |  | (90) |  | dB |

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The typical conditions are the conditions when $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.
Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

### 2.6.10 Operational amplifiers 1 and 2 (AMP1, AMP2)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Common mode input voltage range | Vcm1 | Low-power mode | 0.2 |  | AVDD - 0.5 | V |
|  | Vcm2 | High-speed mode | 0.3 |  | AVDD - 0.6 | V |
| Output voltage range | Vout |  | 0.1 |  | AVdD - 0.1 | V |
| Maximum output current | Iout | $2.7 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ | -100 |  | +100 | $\mu \mathrm{A}$ |
| Input bias current | IIN |  |  |  | $\pm 50$ | nA |
| Input offset voltage | Vos1 | Low-power mode | -10 |  | +10 | mV |
|  | Vos2 | High-speed mode | -10 |  | +10 | mV |
| Slew rate | SR1 | Low-power mode |  | (0.02) |  | $\mathrm{V} / \mu \mathrm{s}$ |
|  | SR2 | High-speed mode |  | (1.1) |  | $\mathrm{V} / \mu \mathrm{s}$ |
| Gain bandwidth | GBW1 | Low-power mode |  | (0.04) |  | MHz |
|  | GBW2 | High-speed mode |  | (1.7) |  | MHz |
| Phase margin | PM1 | Low-power mode |  | (70) |  | deg |
|  | PM2 | High-speed mode |  | (60) |  | deg |
| Settling time | Tset1 | Low-power mode $C L=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (750) | $\mu \mathrm{s}$ |
|  | Tset2 | High-speed mode $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (13) | $\mu \mathrm{s}$ |
| Stabilization wait time | Tstaw1 | AMPEn $=0 \rightarrow 1$, <br> Low-power mode $C L=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (800) | $\mu \mathrm{s}$ |
|  | Tstaw2 | AMPEn $=0 \rightarrow 1$, <br> High-speed mode $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  |  | (13) | $\mu \mathrm{s}$ |
| Input-referred noise | En1 | $\mathrm{f}=1 \mathrm{kHz}$ <br> Low-power mode |  | (230) |  | $\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$ |
|  | En2 | $\mathrm{f}=1 \mathrm{kHz}$ <br> High-speed mode |  | (90) |  | $\begin{aligned} & \hline \mathrm{nV} / \\ & \mathrm{V} \mathrm{~Hz} \end{aligned}$ |
| Common mode rejection ratio | CMRR | DC |  | (90) |  | dB |
| Power supply rejection ratio | PSRR | DC |  | (90) |  | dB |

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The typical conditions are the conditions when $\mathrm{TA}=25^{\circ} \mathrm{C}$ and $\mathrm{AVDD}=3.3 \mathrm{~V}$.
Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

### 2.6.11 8-bit D/A converter (DAC0)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$, reference voltage (+) = 2.1 V (SBIAS))

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Resolution | DARES0 |  |  |  | 8 | bit |
| Absolute accuracy | LE | Note |  |  | $\pm 2.5$ | LSB |
| Differential non-linearity error | DADLE0 |  |  | $\pm 2.0$ | LSB |  |
| Settling time | DAtset0 | CL $=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  | $(6)$ | $\mu \mathrm{s}$ |  |

Note Errors of the SBIAS output voltage are not included.

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The 8-bit D/A converter characteristics are the values obtained with the amplifier unit connected.

### 2.6.12 12-bit D/A converter (DAC1)

(1) When reference voltage ( + ) $=2.1 \mathrm{~V}$ (SBIAS)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V , reference voltage (+) = 2.1 V (SBIAS))

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Resolution | DARES1 |  |  | $(12)$ | bit |  |
| Output voltage range | DAOUT | 12-bit resolution | 0.35 |  | SBIAS | V |
| Integral non-linearity error | DAILE | 12-bit resolution |  | $\pm 4.0$ | LSB |  |
| Differential non-linearity error | DADLE1 | 12-bit resolution |  | $\pm 1.0$ | LSB |  |
| Offset error | DAErr | 12-bit resolution |  | $\pm 30$ | mV |  |
| Gain error | DAEG | 12-bit resolution Note |  | $\pm 20$ | mV |  |
| Settling time | DAtset1 | 12 -bit resolution <br> $C L=50 ~ p F, R L=10 ~ k ~$ |  | $(60)$ | $\mu \mathrm{s}$ |  |

Note Errors of the SBIAS output voltage are not included.

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The 12-bit D/A converter characteristics are the values obtained with the amplifier unit connected.
(2) When reference voltage ( + ) = AVDD
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V , reference voltage ( + ) = AVDD)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Resolution | DARES1 |  |  | $(12)$ | bit |  |
| Output voltage range | DAOUT | 12-bit resolution | 0.35 |  | AVDD -0.47 | V |
| Integral non-linearity error | DAILE | 12 -bit resolution |  | $\pm 4.0$ | LSB |  |
| Differential non-linearity error | DADLE1 | 12 -bit resolution |  | $\pm 1.0$ | LSB |  |
| Offset error | DAErr | 12 -bit resolution |  | $\pm 30$ | mV |  |
| Gain error | DAEG | 12 -bit resolution |  | $\pm 20$ | mV |  |
| Settling time | DAtset1 | 12 -bit resolution <br> $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega$ |  | $(60)$ | $\mu \mathrm{s}$ |  |

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.
Remark 2. The 12-bit D/A converter characteristics are the values obtained with the amplifier unit connected.

### 2.7 Power supply voltage rising slope characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Power supply voltage rising slope | SVDD |  |  | 54 | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

### 2.8 LCD Characteristics

### 2.8.1 Resistance division method

(1) Static display mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq \mathrm{AVDD}=.\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.0 |  | VDD | V |

(2) 1/2 bias method, $1 / 4$ bias method
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq \mathrm{AVDD}=.\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.7 |  | VDD | V |

(3) $1 / 3$ bias method
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq \mathrm{AVDD}=.\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss $\left.=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.5 |  | VDD | V |

### 2.8.2 Internal voltage boosting method

(1) $1 / 3$ bias method
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD output voltage variation range | VL1 | $\begin{aligned} & \text { C1 to C4 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$ | VLCD $=04 \mathrm{H}$ | 0.90 | 1.00 | 1.08 | V |
|  |  |  | VLCD $=05 \mathrm{H}$ | 0.95 | 1.05 | 1.13 | V |
|  |  |  | VLCD $=06 \mathrm{H}$ | 1.00 | 1.10 | 1.18 | V |
|  |  |  | VLCD $=07 \mathrm{H}$ | 1.05 | 1.15 | 1.23 | V |
|  |  |  | VLCD $=08 \mathrm{H}$ | 1.10 | 1.20 | 1.28 | V |
|  |  |  | VLCD $=09 \mathrm{H}$ | 1.15 | 1.25 | 1.33 | V |
|  |  |  | VLCD $=0 \mathrm{AH}$ | 1.20 | 1.30 | 1.38 | V |
|  |  |  | VLCD $=0 \mathrm{OBH}$ | 1.25 | 1.35 | 1.43 | V |
|  |  |  | VLCD $=0 \mathrm{OH}$ | 1.30 | 1.40 | 1.48 | V |
|  |  |  | VLCD $=0 \mathrm{DH}$ | 1.35 | 1.45 | 1.53 | V |
|  |  |  | VLCD $=0 \mathrm{EH}$ | 1.40 | 1.50 | 1.58 | V |
|  |  |  | VLCD $=0 \mathrm{FH}$ | 1.45 | 1.55 | 1.63 | V |
|  |  |  | VLCD $=10 \mathrm{H}$ | 1.50 | 1.60 | 1.68 | V |
|  |  |  | VLCD $=11 \mathrm{H}$ | 1.55 | 1.65 | 1.73 | V |
|  |  |  | VLCD $=12 \mathrm{H}$ | 1.60 | 1.70 | 1.78 | V |
|  |  |  | VLCD $=13 \mathrm{H}$ | 1.65 | 1.75 | 1.83 | V |
| Doubler output voltage | VL2 | C1 to C4 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $2 \mathrm{VL1}-0.1$ | $2 \mathrm{VL1}$ | $2 \mathrm{VL1}$ | V |
| Tripler output voltage | VL4 | C1 to C4 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 3 VL1- 0.15 | 3 VL1 | 3 VL1 | V |
| Reference voltage setup time Note 2 | tvWAIT1 |  |  | 5 |  |  | ms |
| Voltage boost wait time Note 3 | tvWAIT2 | C1 to C4 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 500 |  |  | ms |

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).
(2) 1/4 bias method
( $\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD output voltage variation range | VL1 | C1 to C5 Note 1 $=0.47 \mu \mathrm{~F}$ Note 2 | VLCD $=04 \mathrm{H}$ | 0.90 | 1.00 | 1.08 | V |
|  |  |  | VLCD $=05 \mathrm{H}$ | 0.95 | 1.05 | 1.13 | V |
|  |  |  | VLCD $=06 \mathrm{H}$ | 1.00 | 1.10 | 1.18 | V |
|  |  |  | VLCD $=07 \mathrm{H}$ | 1.05 | 1.15 | 1.23 | V |
|  |  |  | VLCD $=08 \mathrm{H}$ | 1.10 | 1.20 | 1.28 | V |
|  |  |  | VLCD $=09 \mathrm{H}$ | 1.15 | 1.25 | 1.33 | V |
|  |  |  | VLCD $=0 \mathrm{AH}$ | 1.20 | 1.30 | 1.38 | V |
| Doubler output voltage | VL2 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 2 VL1-0.08 | $2 \mathrm{VL1}$ | 2 V L1 | V |
| Tripler output voltage | VL3 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $3 \mathrm{VL1}-0.12$ | 3 VL1 | 3 VL1 | V |
| Quadruply output voltage | VL4 | C1 to C5 ${ }^{\text {Note }} 1=$ | $0.47 \mu \mathrm{~F}$ | $4 \mathrm{VL1}-0.16$ | 4 V L1 | 4 VL1 | V |
| Reference voltage setup time Note 2 | tVWAIT1 |  |  | 5 |  |  | ms |
| Voltage boost wait time Note 3 | tVWAIT2 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 500 |  |  | ms |

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

### 2.8.3 Capacitor split method

(1) $1 / 3$ bias method
( $\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VL4 voltage | VL4 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 |  | VDD |  | V |
| VL2 voltage | VL2 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 | 2/3 VL4-0.1 | 2/3 VL4 | 2/3 VL4 + 0.1 | V |
| VL1 voltage | VL1 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 | 1/3 VL4-0.1 | 1/3 VL4 | $1 / 3 \mathrm{VL4}+0.1$ | V |
| Capacitor split wait time Note 1 | tVWAIT |  | 100 |  |  | ms |

Note 1. This is the wait time from when voltage bucking is started (VLCON =1) until display is enabled (LCDON = 1).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL4 and GND $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$

### 2.9 RAM data retention characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data retention supply voltage | VDDDR |  | 1.46 Note |  | 5.5 | V |

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.


### 2.10 Flash Memory Programming Characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System clock frequency | fCLK | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1 |  | 24 | MHz |
| Number of code flash rewrites Notes 1, 2, 3 | Cerwr | Retained for 20 years | $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ | 1,000 |  |  | Times |
| Number of data flash rewrites Notes 1, 2, 3 |  | Retained for 1 year | $\mathrm{TA}=25^{\circ} \mathrm{C}$ |  | 1,000,000 |  |  |
|  |  | Retained for 5 years | $\mathrm{TA}=85^{\circ} \mathrm{C}$ | 100,000 |  |  |  |
|  |  | Retained for 20 years | $\mathrm{TA}=85^{\circ} \mathrm{C}$ | 10,000 |  |  |  |

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

### 2.11 Dedicated Flash Memory Programmer Communication (UART)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| Transfer rate |  | During serial programming | 115,200 |  | $1,000,000$ | bps |

### 2.12 Timing of Entry to Flash Memory Programming Modes

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| How long from when an external reset ends until the initial communication settings are specified | tSUINIT | POR and LVD reset must end before the external reset ends. |  |  | 100 | ms |
| How long from when the TOOLO pin is placed at the low level until an external reset ends | tsu | POR and LVD reset must end before the external reset ends. | 10 |  |  | $\mu \mathrm{s}$ |
| Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory) | tHD | POR and LVD reset must end before the external reset ends. | 1 |  |  | ms |


$<1>$ The low level is input to the TOOL0 pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until an external reset ends
tHD: $\quad$ Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)

## 3. ELECTRICAL SPECIFICATIONS (R5F11R) (D: TA $=-40$ to $+85^{\circ} \mathrm{C}$ )

This chapter describes the electrical specifications for the products " $D$ : Industrial applications ( $T A=-40$ to $+85^{\circ} \mathrm{C}$ )".

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2 Functions other than port pins in the User's Manual: Hardware.

### 3.1 Absolute Maximum Ratings

## Absolute Maximum Ratings

(1/3)

| Parameter | Symbol | Conditions | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage | Vdd |  | -0.5 to +6.5 | V |
|  | AVDD | AVDD $=$ VDD | -0.5 to +6.5 | V |
|  | AVss | AVss = Vss | -0.5 to +0.3 | V |
| REGC pin input voltage | Viregc | REGC | $\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$ | V |
| Input voltage | VI1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P124, P125 to P127, P137, EXCLK, EXCLKS, RESET | -0.3 to VDD +0.3 Note 2 | V |
|  | $\mathrm{V}_{12}$ | P60, P61 (N-ch open-drain) | -0.3 to +6.5 | V |
|  | VI3 | P20 to P27, P150, P151 | -0.3 to AVDD + 0.3 Note 2 | V |
| Output voltage | Vo1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127 | -0.3 to VDD + 0.3 Note 2 | V |
|  | Vo2 | P20 to P27, P150, P151 | -0.3 to AVDD + 0.3 Note 2 | V |
| Analog input voltage | VAI1 | ANI8 to ANI10 | -0.3 to VDD + 0.3 Note 2 | V |

Note 1. Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. The reference voltage is Vss (for the VDD systems) = AVss (for the AVDD systems).

| Absolute Maximum Ratings |  |  |  |  | $\frac{(2 / 3)}{\text { Unit }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Conditions |  | Ratings |  |
| LCD voltage | VLI1 | VL1 input voltage Note 1 |  | -0.3 to +2.8 | V |
|  | VLI2 | VL2 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLI3 | VL3 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLI4 | VL4 input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLI5 | CAPL, CAPH input voltage Note 1 |  | -0.3 to +6.5 | V |
|  | VLO1 | VL1 output voltage |  | -0.3 to +2.8 | V |
|  | VLO2 | VL2 output voltage |  | -0.3 to +6.5 | V |
|  | VLO3 | VL3 output voltage |  | -0.3 to +6.5 | V |
|  | VLO4 | VL4 output voltage |  | -0.3 to +6.5 | V |
|  | VLO5 | CAPL, CAPH output voltage |  | -0.3 to +6.5 | V |
|  | VLO6 | COM0 to COM7 SEG0 to SEG35 output voltage | External resistance division method | -0.3 to VDD + 0.3 Note 2 | V |
|  |  |  | Capacitor split method | -0.3 to VDD + 0.3 Note 2 | V |
|  |  |  | Internal voltage boosting method | -0.3 to VLI4 + 0.3 Note 2 | V |

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor ( $0.47 \mu \mathrm{~F} \pm 30 \%$ ) and connect a capacitor ( $0.47 \mu \mathrm{~F} \pm$ $30 \%)$ between the CAPL and CAPH pins.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings
(3/3)

| Parameter | Symbol | Conditions |  | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, high | IOH1 | Per pin |  | -40 | mA |
|  |  | Total of all pins -170 mA | P40, P43, P44, P80 to P83 | -70 | mA |
|  |  |  | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P84 to P86, P125 to P127 | -100 | mA |
|  | IOH 2 | Per pin |  | -40 | mA |
|  |  | Total of all pins$-140 \mathrm{~mA}$ | P21 to P27 | -70 | mA |
|  |  |  | P20, P150, P151 | -70 | mA |
| Output current, low | IOL1 | Per pin |  | 40 | mA |
|  |  | Total of all pins 170 mA | P40, P43, P44, P80 to P83 | 70 | mA |
|  |  |  | ```P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127``` | 100 | mA |
|  | IOL2 | Per pin |  | 40 | mA |
|  |  | Total of all pins 140 mA | P21 to P27 | 70 | mA |
|  |  |  | P20, P150, P151 | 70 | mA |
| Operating ambient temperature | TA | In normal operation mode |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
|  |  | In flash memory programming mode |  |  |  |
| Storage temperature | Tstg |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.2 Oscillator Characteristics

### 3.2.1 X1 and XT1 characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Resonator | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X1 clock oscillation frequency ( fx ) Note | Ceramic resonator/ crystal resonator | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1.0 |  | 20.0 | MHz |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 1.0 |  | 16.0 |  |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$ | 1.0 |  | 8.0 |  |
| X1 clock oscillation frequency (fxt) Note | Crystal resonator |  | 32 | 32.768 | 35 | kHz |
|  |  |  | 31 | 38.4 | 39 |  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the User's Manual: Hardware.

### 3.2.2 On-chip oscillator characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-speed on-chip oscillator clock frequency <br> Notes 1, 2 | flH | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1 |  | 24 | MHz |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  | 1 |  | 16 | MHz |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$ |  | 1 |  | 8 | MHz |
| High-speed on-chip oscillator clock frequency accuracy |  | -20 to $+85^{\circ} \mathrm{C}$ | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | -1.0 |  | +1.0 | \% |
|  |  | -40 to $-20^{\circ} \mathrm{C}$ | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | -1.5 |  | +1.5 | \% |
| Low-speed on-chip oscillator clock frequency | fil |  |  |  | 15 |  | kHz |
| Low-speed on-chip oscillator clock frequency accuracy |  |  |  | -15 |  | +15 | \% |

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 3.3 DC Characteristics

### 3.3.1 Pin characteristics

(TA = $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Item | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, high Note 1 | IOH 1 | Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 |  |  |  | $\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$ | mA |
|  |  | Total of P40, P43, P44, P80 to P83 <br> (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -55 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$ |  |  | -10 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | -5 | mA |
|  |  | Total of P01 to P07, P10 to P17,P30 to P32, P35 to P37,P50 to P53, P70 to P77,P84 to P86, P125 to P127(When duty $\leq 70 \%$ Note 3) | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -69 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | -23 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | -12 | mA |
|  |  | Total of all pins <br> (When duty $\leq 70 \%$ Note 3 ) | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | -124 | mA |
|  | IOH2 | Per pin for P20 to P27, P150, P151 | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | $\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$ | mA |
|  |  | Total of P21 to P27 <br> (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | -50 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD}<4.0 \mathrm{~V}$ |  |  | -10 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD}<2.7 \mathrm{~V}$ |  |  | -5 | mA |
|  |  | Total of P20, P150, P151 <br> (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | -21 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD}<4.0 \mathrm{~V}$ |  |  | -5 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD}<2.7 \mathrm{~V}$ |  |  | -3 | mA |
|  |  | Total of all pins (When duty $\leq 70 \%$ Note 3 ) | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | -71 | mA |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) and AVDD pin (IOH2) to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$
(2/5)

| Item | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output current, low Note 1 | IOL1 | Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P127 |  |  |  | $\begin{gathered} 20.0 \\ \text { Note } 2 \end{gathered}$ | mA |
|  |  | Per pin for P60, P61 |  |  |  | $15.0$ <br> Note 2 | mA |
|  |  | Total of P40, P43, P44, P80 to P83 (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 70 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 15 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 9 | mA |
|  |  | ```Total of P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127 (When duty \leq 70% Note 3)``` | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 90 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 35 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 20 | mA |
|  |  | Total of all pins <br> (When duty $\leq 70 \%$ Note 3 ) | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 160 | mA |
|  | IOL2 | Per pin for P20 to P27, P150, P151 | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | 20 | mA |
|  |  | Total of P21 to P27 <br> (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | 60 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD}<4.0 \mathrm{~V}$ |  |  | 10 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD}<2.7 \mathrm{~V}$ |  |  | 5 | mA |
|  |  | Total of P20, P150, P151 (When duty $\leq 70 \%$ Note 3 ) | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | 25 | mA |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD}<4.0 \mathrm{~V}$ |  |  | 8 | mA |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD}<2.7 \mathrm{~V}$ |  |  | 5 | mA |
|  |  | Total of all pins (When duty $\leq 70 \%$ Note 3 ) | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ |  |  | 85 | mA |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the Vss pin (IoL1) and AVss pin (IOL2) to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$

$$
\text { Total output current of pins }=(10.0 \times 0.7) /(80 \times 0.01) \cong 8.7 \mathrm{~mA}
$$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}\right)$
(3/5)

| Item | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage, high | VIH1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 | Normal input buffer | 0.8 VDD |  | VDD | V |
|  | VIH2 | For TTL mode supported ports | TTL input buffer, $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.2 |  | VDD | V |
|  |  |  | TTL input buffer, $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ | 2.0 |  | VDD | V |
|  |  |  | TTL input buffer, $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ | 1.5 |  | VDD | V |
|  | VIH3 | P20 to P27, P150, P151 |  | 0.8 AVdd |  | AVDD | V |
|  | VIH4 | P60, P61 |  | 0.7 VDD |  | 6.0 | V |
|  | VIH5 | P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$ |  | 0.8 VDD |  | VDD | V |
| Input voltage, low | VIL1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 | Normal input buffer | 0 |  | 0.2 VDD | V |
|  | VIL2 | For TTL mode supported ports | TTL input buffer, $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 |  | 0.8 | V |
|  |  |  | TTL input buffer, $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ | 0 |  | 0.5 | V |
|  |  |  | TTL input buffer, $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ | 0 |  | 0.32 | V |
|  | VIL3 | P20 to P27, P150, P151 |  | 0 |  | 0.2 AVdd | V |
|  | VIL4 | P60, P61 |  | 0 |  | 0.3 VDD | V |
|  | VIL5 | P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$ |  | 0 |  | 0.2 VDD | V |

Caution The maximum Vit value on P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 is VDD, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVSS}=\mathrm{VsS}=0 \mathrm{~V}\right)$
(4/5)

| Item | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage, high | VoH1 | $\begin{aligned} & \text { P01 to P07, P10 } \\ & \text { to P17, P30 to } \\ & \text { P32, P35 to } \\ & \text { P37, P40, P43, } \\ & \text { P44, P50 to } \\ & \text { P53, P70 to } \\ & \text { P77, P80 to } \\ & \text { P86, P125 to } \\ & \text { P127 } \end{aligned}$ | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-10.0 \mathrm{~mA}$ | VDD - 1.5 |  |  | V |
|  |  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-3.0 \mathrm{~mA}$ | VDD - 0.7 |  |  | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-2.0 \mathrm{~mA}$ | VDD - 0.6 |  |  | V |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-1.5 \mathrm{~mA}$ | VDD - 0.5 |  |  | V |
|  | VoH2 | $\begin{aligned} & \text { P20 to P27, } \\ & \text { P150, P151 } \end{aligned}$ | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-10.0 \mathrm{~mA}$ | AVdD - 1.5 |  |  | V |
|  |  |  | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-3.0 \mathrm{~mA}$ | AVdD - 0.7 |  |  | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-2.0 \mathrm{~mA}$ | AVdD - 0.6 |  |  | V |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOH}=-1.5 \mathrm{~mA}$ | AVDD - 0.5 |  |  | V |
| Output voltage, low | Vol1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, <br> P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=20.0 \mathrm{~mA}$ |  |  | 1.3 | V |
|  |  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=8.5 \mathrm{~mA}$ |  |  | 0.7 | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=3.0 \mathrm{~mA}$ |  |  | 0.6 | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=1.5 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=0.6 \mathrm{~mA}$ |  |  | 0.4 | V |
|  | Vol2 | $\begin{aligned} & \text { P20 to P27, } \\ & \text { P150, P151 } \end{aligned}$ | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=20.0 \mathrm{~mA}$ |  |  | 1.3 | V |
|  |  |  | $4.0 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=8.5 \mathrm{~mA}$ |  |  | 0.7 | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=3.0 \mathrm{~mA}$ |  |  | 0.6 | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=1.5 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=0.6 \mathrm{~mA}$ |  |  | 0.4 | V |
|  | Vol3 | P60, P61 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=15.0 \mathrm{~mA}$ |  |  | 2.0 | V |
|  |  |  | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{IOL}=5.0 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, IOL $=3.0 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, IOL $=2.0 \mathrm{~mA}$ |  |  | 0.4 | V |

Caution The maximum ViH value on P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 is VDD, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$
(5/5)

| Item | Symbol | Conditions |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input leakage current, high | ILIH1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET | $\mathrm{VI}=\mathrm{VDD}$ |  |  |  | 1 | $\mu \mathrm{A}$ |
|  | ILIH2 | P20 to P27, P150, P151 | V I $=$ AVDD |  |  |  | 1 | $\mu \mathrm{A}$ |
|  | ILIH3 | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS) | $\mathrm{VI}=\mathrm{VDD}$ | In input port mode or when using external clock input |  |  | 1 | $\mu \mathrm{A}$ |
|  |  |  |  | When a resonator is connected |  |  | 10 | $\mu \mathrm{A}$ |
| Input leakage current, low | ILIL1 | P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET | V I $=\mathrm{Vss}$ |  |  |  | -1 | $\mu \mathrm{A}$ |
|  | ILIL2 | P20 to P27, P150, P151 | $\mathrm{VI}=\mathrm{AVss}$ |  |  |  | -1 | $\mu \mathrm{A}$ |
|  | ILIL3 | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS) | $\mathrm{VI}=\mathrm{Vss}$ | In input port mode or when using external clock input |  |  | -1 | $\mu \mathrm{A}$ |
|  |  |  |  | When a resonator is connected |  |  | -10 | $\mu \mathrm{A}$ |
| On-chip pull-up resistance | RU1 | P01 to P07, P10 to P16, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P125 to P127 | $\mathrm{V}=\mathrm{Vss},$ <br> in input <br> port <br> mode | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 10 | 20 | 100 | $\mathrm{k} \Omega$ |
|  |  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$ | 10 | 30 | 100 | $\mathrm{k} \Omega$ |
|  | Ru2 | P17, P40, P43, P44, P80 to P86, | $\mathrm{VI}=\mathrm{Vss}$, in input port mode |  | 10 | 20 | 100 | k $\Omega$ |
|  | RU3 | P20 to P27, P150 and P151 | V = AVss, in input port mode |  | 10 | 20 | 100 | $\mathrm{k} \Omega$ |

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.3.2 Supply current characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}\right)$
(1/2)

| Parameter | Symbol |  |  | Conditions |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current Note 1 | IDD1 | Operating mode | HS (high-speed main) Mode Note 5 | $\mathrm{fIH}=24 \mathrm{MHz}$ Note 3 | Basic operation | $\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$ |  | 1.7 |  | mA |
|  |  |  |  |  |  | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 1.7 |  |  |
|  |  |  |  |  | Normal operation | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 3.7 | 6.4 |  |
|  |  |  |  |  |  | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 3.7 | 6.4 |  |
|  |  |  |  | $\mathrm{fIH}=16 \mathrm{MHz}$ Note 3 | Normal operation | VDD $=5.0 \mathrm{~V}$ |  | 2.8 | 5.0 |  |
|  |  |  |  |  |  | $\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$ |  | 2.8 | 5.0 |  |
|  |  |  | LS (low-speed main) Mode Note 5 | $\mathrm{fiH}=8 \mathrm{MHz}$ Note 3 | Normal operation | VDD $=3.0 \mathrm{~V}$ |  | 1.2 | 2.1 | mA |
|  |  |  |  |  |  | VDD $=2.0 \mathrm{~V}$ |  | 1.2 | 2.1 |  |
|  |  |  | HS (high-speed main) Mode Note 5 | $\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 3.1 | 5.4 | mA |
|  |  |  |  |  |  | Resonator connection |  | 3.3 | 5.5 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 3.0 | 5.4 |  |
|  |  |  |  |  |  | Resonator connection |  | 3.3 | 5.5 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 2.6 | 4.7 |  |
|  |  |  |  |  |  | Resonator connection |  | 2.8 | 4.8 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmX}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 2.6 | 4.7 |  |
|  |  |  |  |  |  | Resonator connection |  | 2.8 | 4.8 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.9 | 3.1 |  |
|  |  |  |  |  |  | Resonator connection |  | 1.9 | 3.1 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.9 | 3.1 |  |
|  |  |  |  |  |  | Resonator connection |  | 1.9 | 3.1 |  |
|  |  |  | LS (low-speed main) Mode Note 5 | $\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.1 | 2.1 | mA |
|  |  |  |  |  |  | Resonator connection |  | 1.1 | 2.1 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=8 \mathrm{MH} \text { Note } 2, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$ | Normal operation | Square wave input |  | 1.1 | 2.1 |  |
|  |  |  |  |  |  | Resonator connection |  | 1.1 | 2.1 |  |
|  |  |  | Subsystem clock operation | $\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.3 | 5.8 | $\mu \mathrm{A}$ |
|  |  |  |  |  |  | Resonator connection |  | 4.6 | 5.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+25^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.3 | 5.8 |  |
|  |  |  |  |  |  | Resonator connection |  | 4.6 | 5.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.5 | 7.6 |  |
|  |  |  |  |  |  | Resonator connection |  | 4.5 | 7.6 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 4.7 | 9.2 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.1 | 9.2 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+85^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.2 | 12.6 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.7 | 12.6 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=38.4 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=-40^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.0 | 6.8 | $\mu \mathrm{A}$ |
|  |  |  |  |  |  | Resonator connection |  | 5.4 | 6.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=38.4 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.0 | 6.8 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.4 | 6.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=38.4 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+50^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.3 | 8.9 |  |
|  |  |  |  |  |  | Resonator connection |  | 5.3 | 8.9 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=38.4 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+70^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 5.5 | 10.8 |  |
|  |  |  |  |  |  | Resonator connection |  | 6.0 | 10.8 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=38.4 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$ | Normal operation | Square wave input |  | 6.1 | 14.8 |  |
|  |  |  |  |  |  | Resonator connection |  | 6.7 | 14.8 |  |

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and $A V D D$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O ports, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU, and operation mode is as below.

$$
\begin{array}{ll}
\text { HS (high-speed main) mode: } 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 24 \mathrm{MHz} \\
& 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz} \\
\text { LS (low-speed main) mode: } & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 8 \mathrm{MHz}
\end{array}
$$

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: High-speed on-chip oscillator clock frequency
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition for the TYP. value is $\mathrm{TA}^{2}=25^{\circ} \mathrm{C}$.
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$
(2/2)

| Parameter | Symbol | Conditions |  |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current Note 1 | $\begin{array}{\|l\|} \hline \text { IDD2 } \\ \text { Note } 2 \end{array}$ | HALT mode | HS (high-speed main) Mode Note 7 | $\mathrm{fIH}=24 \mathrm{MHz}$ Note 4 | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 0.42 | 2.03 | mA |
|  |  |  |  |  | $\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$ |  | 0.42 | 2.03 |  |
|  |  |  |  | $\mathrm{fIH}=16 \mathrm{MHz}$ Note 4 | $\mathrm{VDD}=5.0 \mathrm{~V}$ |  | 0.39 | 1.58 |  |
|  |  |  |  |  | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 0.39 | 1.58 |  |
|  |  |  | LS (low-speed main) Mode Note 7 | $\mathrm{fiH}=8 \mathrm{MHz}$ Note 4 | $\mathrm{VDD}=3.0 \mathrm{~V}$ |  | 0.25 | 0.81 | mA |
|  |  |  |  |  | $\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$ |  | 0.25 | 0.81 |  |
|  |  |  | HS (high-speed main) Mode Note 7 | $\begin{aligned} & \text { fmx }=20 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.26 | 1.75 | mA |
|  |  |  |  |  | Resonator connection |  | 0.40 | 1.88 |  |
|  |  |  |  | $\begin{aligned} & \text { fmx }=20 \mathrm{MHz} \text { Note } 3 \\ & \text { VDD }=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.25 | 1.75 |  |
|  |  |  |  |  | Resonator connection |  | 0.40 | 1.88 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fMX}=16 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.23 | 1.42 |  |
|  |  |  |  |  | Resonator connection |  | 0.36 | 1.59 |  |
|  |  |  |  | $\begin{aligned} & \text { fMX }=16 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.22 | 1.42 |  |
|  |  |  |  |  | Resonator connection |  | 0.35 | 1.59 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.19 | 0.92 |  |
|  |  |  |  |  | Resonator connection |  | 0.29 | 1.00 |  |
|  |  |  |  | $\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 3 \\ & \text { VDD }=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.18 | 0.92 |  |
|  |  |  |  |  | Resonator connection |  | 0.28 | 1.00 |  |
|  |  |  | LS (low-speed main) Mode Note 7 | $\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.09 | 0.61 | mA |
|  |  |  |  |  | Resonator connection |  | 0.15 | 0.66 |  |
|  |  |  |  | $\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$ | Square wave input |  | 0.10 | 0.62 |  |
|  |  |  |  |  | Resonator connection |  | 0.15 | 0.67 |  |
|  |  |  | Subsystem clock operation | $\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.32 | 0.69 | $\mu \mathrm{A}$ |
|  |  |  |  |  | Resonator connection |  | 0.51 | 0.89 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.41 | 0.82 |  |
|  |  |  |  |  | Resonator connection |  | 0.62 | 1.00 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.52 | 1.40 |  |
|  |  |  |  |  | Resonator connection |  | 0.75 | 1.60 |  |
|  |  |  |  | $\begin{aligned} & \text { SUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.82 | 2.70 |  |
|  |  |  |  |  | Resonator connection |  | 1.08 | 2.90 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 1.38 | 4.95 |  |
|  |  |  |  |  | Resonator connection |  | 1.62 | 5.15 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=38.4 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.38 | 0.81 | $\mu \mathrm{A}$ |
|  |  |  |  |  | Resonator connection |  | 0.60 | 1.04 |  |
|  |  |  |  | $\begin{aligned} & \text { fsuB }=38.4 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.48 | 0.96 |  |
|  |  |  |  |  | Resonator connection |  | 0.73 | 1.17 |  |
|  |  |  |  | $\begin{aligned} & \text { fsub }=38.4 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.61 | 1.64 |  |
|  |  |  |  |  | Resonator connection |  | 0.88 | 1.88 |  |
|  |  |  |  | $\begin{aligned} & \text { SUB }=38.4 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=+70^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 0.96 | 3.16 |  |
|  |  |  |  |  | Resonator connection |  | 1.27 | 3.40 |  |
|  |  |  |  | $\begin{aligned} & \text { fSUB }=38.4 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$ | Square wave input |  | 1.62 | 5.80 |  |
|  |  |  |  |  | Resonator connection |  | 1.90 | 6.04 |  |
|  | IDD3 <br> Note 6 | STOP mode <br> Note 8 | $\mathrm{TA}=-40^{\circ} \mathrm{C}$ |  |  |  | 0.20 | 0.59 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  |  | 0.26 | 0.72 |  |
|  |  |  | $\mathrm{TA}=+50^{\circ} \mathrm{C}$ |  |  |  | 0.33 | 1.30 |  |
|  |  |  | $\mathrm{TA}=+70^{\circ} \mathrm{C}$ |  |  |  | 0.53 | 2.60 |  |
|  |  |  | $\mathrm{TA}=+85^{\circ} \mathrm{C}$ |  |  |  | 0.93 | 4.85 |  |

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and $A V D D$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O ports, and on-chip pull-up/pull-down resistors and the current flowing during writing to the data flash.
Note 2. During HALT instruction execution from flash memory
Note 3. When the high-speed on-chip oscillator and the subsystem clock are stopped
Note 4. When the high-speed system clock and the subsystem clock are stopped
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, 8 -bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU, and operation mode is as below.

| HS (high-speed main) Mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz |  |
| ---: | :--- |
|  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz |
| LS (low-speed main) Mode: $\quad 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz |  |

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: High-speed on-chip oscillator clock frequency
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is $T A=25^{\circ} \mathrm{C}$.

- Peripheral functions
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low-speed on-chip oscillator operating current | IFIL Note 1 |  |  |  | 0.20 |  | $\mu \mathrm{A}$ |
| RTC2 operating current | IRTC Notes 1, 3 | fsub $=32.768 \mathrm{kHz}$ |  |  | 0.02 |  | $\mu \mathrm{A}$ |
| 12-bit Interval timer | ITMKA | fsub $=38.4 \mathrm{kHz}$, fmain stopped |  |  | 0.02 |  | $\mu \mathrm{A}$ |
| operating current | Notes | fsub $=32.768 \mathrm{kHz}$, fmaln stopped |  |  | 0.02 |  | $\mu \mathrm{A}$ |
| 8-bit Interval timer operating current | ITMRT <br> Notes 1, 14 | fSUB $=38.4$ <br> kHz, fmain <br> stopped, <br> per unit | 8 -bit counter mode $\times 2$-channel operation |  | 0.14 |  | $\mu \mathrm{A}$ |
|  |  |  | 16-bit counter mode operation |  | 0.12 |  | $\mu \mathrm{A}$ |
|  |  | fSUB = 32.768 kHz , fMAIN stopped, per unit | 8 -bit counter mode $\times 2$-channel operation |  | 0.12 |  | $\mu \mathrm{A}$ |
|  |  |  | 16-bit counter mode operation |  | 0.10 |  | $\mu \mathrm{A}$ |
| Watchdog timer operating current | IWDT Notes 1,5 | $\mathrm{flL}=15 \mathrm{kHz}$ |  |  | 0.22 |  | $\mu \mathrm{A}$ |
| 10-bit A/D converter operating current | IADC Notes 1, 6 | When conversion at maximum speed | Normal mode, VDD $=5.0 \mathrm{~V}$ |  | 1.3 | 1.7 | mA |
|  |  |  | Low-voltage mode, VDD $=3.0 \mathrm{~V}$ |  | 0.5 | 0.7 | mA |
| Internal reference voltage ( 1.45 V ) current | IADREF Notes 1,7 |  |  |  | 85 |  | $\mu \mathrm{A}$ |
| Temperature sensor operating current | ITMPS Note 1 |  |  |  | 85 |  | $\mu \mathrm{A}$ |
| LVD operating current | ILVI Notes 1, 8 |  |  |  | 0.06 |  | $\mu \mathrm{A}$ |
| Self-programming operating current | IFSP Notes 1,9 |  |  |  | 2.0 | 12.2 | mA |
| BGO operating current | Ibgo Notes 1, 10 |  |  |  | 2.0 | 12.2 | mA |
| SNOOZE operating current | ISNOZ Notes 1, 11 | A/D converter operation | The mode is performed |  | 0.50 | 0.60 | mA |
|  |  |  | During A/D conversion, low-voltage mode, $V D D=3.0 \mathrm{~V}$ |  | 1.20 | 1.44 |  |
|  |  | CSI/UART operation |  |  | 0.70 | 0.84 |  |
|  |  | DTC operation |  |  | 3.1 |  |  |

(Notes and Remarks are listed on the page after the next page.)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )
(2/2)

| Parameter | Symbol | Conditions |  |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD operating current | ILCD1 <br> Notes 12, 13 | External resistance division method | $\begin{array}{\|l} \hline \text { fLCD }=\text { fSUB } \\ (32.768 \mathrm{kHz}) \\ \text { LCD clock }= \\ 128 \mathrm{~Hz} \\ \hline \text { fLCD }=\text { fSUB } \\ (38.4 \mathrm{kHz}) \\ \text { LCD clock }= \\ 75 \mathrm{~Hz} \end{array}$ | $1 / 3$ bias <br> 4-time slice | $\begin{aligned} & \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{~V} \mathrm{~L} 4=5.0 \mathrm{~V} \end{aligned}$ |  | 0.04 | 0.20 <br> 0.40 | $\mu \mathrm{A}$ |
|  | ILCD2 Note 12 | Internal voltage boosting method | fLCD = fsub <br> $(32.768 \mathrm{kHz})$ <br> LCD clock $=$ <br> 128 Hz <br> $\mathrm{fLCD}=$ fsub <br> $(38.4 \mathrm{kHz})$ <br> LCD clock $=$ <br> 75 Hz | 1/3 bias <br> 4-time slice | $\begin{aligned} & \hline \mathrm{VDD}=3.0 \mathrm{~V} \\ & \mathrm{VL4}=3.0 \mathrm{~V} \\ & (\mathrm{VLCD}=04 \mathrm{H}) \end{aligned}$ |  | 0.85 0.50 | 2.20 | $\mu \mathrm{A}$ |
|  |  |  | fLCD $=$ fSUB <br> $(32.768 \mathrm{kHz})$ <br> LCD clock $=$ <br> 128 Hz <br> fLCD $=$ fsub <br> $(38.4 \mathrm{kHz})$ <br> LCD clock = <br> 75 Hz |  | $\begin{aligned} & \hline \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{VL4}=5.1 \mathrm{~V} \\ & (\mathrm{VLCD}=12 \mathrm{H}) \end{aligned}$ |  | 1.55 0.91 | 3.70 <br>  <br> 3.70 | $\mu \mathrm{A}$ |
|  | ILCD3 Note 12 | Capacitor split method | $\begin{aligned} & \hline \text { fLCD = fSUB } \\ & (32.768 \mathrm{kHz}) \\ & \mathrm{LCD} \text { clock }= \\ & 128 \mathrm{~Hz} \\ & \hline \text { fLCD }=\text { fSUB } \\ & (38.4 \mathrm{kHz}) \\ & \mathrm{LCD} \mathrm{clock}= \\ & 75 \mathrm{~Hz} \end{aligned}$ | 1/3 bias <br> 4-time slice | $\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V} \\ & \mathrm{~V} \mathrm{~L} 4=3.0 \mathrm{~V} \end{aligned}$ |  | 0.20 0.13 | 0.50 <br> 0.50 | $\mu \mathrm{A}$ |
| Operating currents of the meter-dedicated macro | ItmRJ Note 15 | fSUB $=38.4 \mathrm{kHz}$, fMAIN stopped, per unit |  |  |  |  | 0.10 |  | $\mu \mathrm{A}$ |
|  | IUARTMG Note 15 | fSUB $=38.4 \mathrm{kHz}$, fMAIN stopped |  |  |  |  | 0.12 |  | $\mu \mathrm{A}$ |
|  | ISMOTD Note 15 | fsub $=38.4 \mathrm{kHz}$, fmAIN stopped |  |  |  |  | 0.10 |  | $\mu \mathrm{A}$ |
|  | IEXSD Note 15 | fsuB $=38.4 \mathrm{kHz}$, fmain stopped |  |  |  |  | 0.02 |  | $\mu \mathrm{A}$ |

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 is operating in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, IADC, and IADREF when the A/D converter operates in the operating mode or the HALT mode.
Note 7. Operation current flowing to the internal reference voltage.
Note 8. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ILVI when the LVD circuit operates in the operating mode, HALT mode, or STOP mode.
Note 9. Current flowing during self-programming
Note 10. Current flowing during writing to the data flash
Note 11. For time required to shift to the SNOOZE mode, see 27.3.3 SNOOZE mode in the User's Manual: Hardware.
Note 12. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2, or ILCD3) and the supply current (IDD1 or IDD2) when the LCD controller/driver operates in the operating mode or HALT mode. Not including the current that flows through the LCD panel.
Note 13. Not including the current that flows through the external divider resistor.
Note 14. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 15. The current value of the RL78 microcontrollers is the sum of IDD2 or IDD3 and ItMRJ, IUARTMG, IsmOtd, or IEXSD when each module operates in the sub-HALT mode or STOP mode.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fCLK: CPU/peripheral hardware clock frequency
Remark 4. The temperature condition for the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

### 3.4 AC Characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )
(1/2)

| Items | Symbol | Conditions |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instruction cycle (minimum instruction execution time) | TCY | Main system clock (fmain) operation | HS (high-speed main) Mode | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.0417 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  | LS (low-speed main) Mode | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.125 |  | 1 | $\mu \mathrm{s}$ |
|  |  | Subsystem clock (fsub) operation | $\mathrm{fXT}=38.4 \mathrm{kHz}$ | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 26.04 |  | $\mu \mathrm{s}$ |
|  |  |  | $\mathrm{fXT}=32.768 \mathrm{kHz}$ | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 28.5 | 30.5 | 31.3 | $\mu \mathrm{s}$ |
|  |  | In the selfprogramming mode | HS (high-speed main) | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.0417 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  | Mode | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  | LS (low-speed main) Mode | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0.125 |  | 1 | $\mu \mathrm{s}$ |
| External system clock frequency | fex | EXCLK |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1.0 |  | 20.0 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 1.0 |  | 16.0 | MHz |
|  |  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$ | 1.0 |  | 8.0 | MHz |
|  | fext | EXCLKS |  |  | 32 |  | 35 | kHz |
| External system clock input high-level width, low-level width | tEXH, tEXL | EXCLK |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 24 |  |  | ns |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 30 |  |  | ns |
|  |  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$ | 60 |  |  | ns |
|  | texhs, tEXLS | EXCLKS |  |  | 13.7 |  |  | $\mu \mathrm{s}$ |
| Timer input high-level width, low-level width | tTIH, tTIL | TIOO to TIO7 |  |  | $\begin{gathered} \text { 1/fMCK + } \\ 10 \end{gathered}$ |  |  | ns |
| Timer RJ input cycle | tc | TRJIO0, TRJIO1 |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 100 |  |  | ns |
|  |  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 300 |  |  | ns |
| Timer RJ input highlevel width, low-level width | tTJIH, tTJIL | TRJIO0, TRJIO1 |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 40 |  |  | ns |
|  |  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ | 120 |  |  | ns |
| Timer output frequency | fтo | TOOO to TO07 <br> TRJIOO, TRJIO1, TRJOO, TRJO1 | HS (high-speed main) Mode | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 12 | MHz |
|  |  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  | LS (low-speed main) Mode | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 4 | MHz |
| Buzzer output frequency | fPCL | PCLBUZO, PCLBUZ1 | HS (high-speed main) Mode | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 12 | MHz |
|  |  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  | LS (low-speed main) Mode | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | 4 | MHz |

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Items | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interrupt input highlevel width, low-level width | tinth, tINTL | INTP0 to INTP7 <br> (when the pin on which the function is in use is multiplexed with pin functions other than P27 to P22) | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1 |  |  | $\mu \mathrm{s}$ |
|  |  | INTP2 to INTP7 <br> (when the pin on which the function is in use is multiplexed with a pin function from among P27 to P22) | $1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 5.5 \mathrm{~V}$ | 1 |  |  | $\mu \mathrm{s}$ |
| RESET low-level width | tRSL |  |  | 10 |  |  | $\mu \mathrm{s}$ |

Remark fMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number ( $m=0$ ), n : Channel number ( $\mathrm{n}=0$ to 7 ))

Minimum Instruction Execution Time During Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)


TCY vs VDD (LS (low-speed main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

TIOO to TIO7


TO00 to TO07, TRJIOO, TRJIO1, TRJOO, TRJO1


TRJIOO, TRJIO1


Interrupt Request Input Timing

INTP0 to INTP7

$\overline{\text { RESET }}$ Input Timing

RESET


### 3.5 Peripheral Functions Characteristics

### 3.5.1 Serial array unit

(1) During communication at same potential (UART mode)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| Transfer rate Note 1 |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | fMCK/6 <br> Note 2 |  | fMCK/6 <br> Note 2 | bps |
|  |  | Theoretical value of the maximum transfer rate $\mathrm{fMCK}=\mathrm{fCLK}$ Note 3 |  | 4.0 |  | 1.3 | Mbps |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ <br> Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3 |  |  |  | fmCK/6 | bps |
|  |  |  |  |  |  | 1.3 | Mbps |

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The following conditions are required for low voltage interface.

$$
\begin{aligned}
& 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V} \text { : MAX. 2.6 Mbps } \\
& 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{~L} \text { < } 2.4 \mathrm{~V} \text { : MAX. 1.3 Mbps }
\end{aligned}
$$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remark 1. $\mathrm{q}:$ UART number ( $\mathrm{q}=0$ to 2 ), g : PIM or POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ )
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time | tKCY1 | tKCY1 $\geq$ 4/fCLK | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 167 |  | 500 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 250 |  | 500 |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ | - |  | 500 |  | ns |
| SCKp high-/low-level width | tKH1, <br> tKL1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | $\begin{gathered} \text { tKCY1/2 } \\ -12 \end{gathered}$ |  | tKCY1/2 $-50$ |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY1/2 $-18$ |  | tKCY1/2 $-50$ |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | $\begin{gathered} \text { tKCY } 1 / 2- \\ 38 \end{gathered}$ |  | tKCY1/2 $-50$ |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | tKCY1/2 <br> - 50 |  | ns |
| Slp setup time (to SCKp $\uparrow$ ) Note 1 | tSIK1 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 44 |  | 110 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 44 |  | 110 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 75 |  | 110 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 110 |  | ns |
| SIp hold time (from SCKp $\uparrow$ ) Note 2 | tKSI1 | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 19 |  | 19 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 19 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 3 | tKSO1 | $\begin{aligned} & \mathrm{C}=30 \mathrm{pF} \\ & \text { Note } 4 \end{aligned}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 25 |  | 50 | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 25 |  | 50 | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 50 | ns |

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ).

Remark 1. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$,
g : PIMand POM number $(\mathrm{g}=0,1,3,4,5,8)$
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00,02,10)$ )
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time Note 5 | tKCY2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 20 MHz < fMCK | 8/fmck |  | - |  | ns |
|  |  |  | fMck $\leq 20 \mathrm{MHz}$ | 8/fmск |  | 6/fmck |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | $16 \mathrm{MHz} \mathrm{>} \mathrm{fMCK}$ | 8/fmск |  | - |  | ns |
|  |  |  | fMCK $\leq 16 \mathrm{MHz}$ | 6/fmск |  | 6/fmск |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 6/fMCK and 500 |  | 6/fmCK and 500 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 6/fMCK and 750 |  | ns |
| SCKp high-Ilow-level width | $\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$ | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKСY2/2-7 |  | tKCY2/2-7 |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY2/2-8 |  | tKCY2/2-8 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | tKCY2/2-18 |  | tKCY2/2-18 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | tKCY2/2-18 |  | ns |
| SIp setup time (to SCKp $\uparrow$ ) Note 1 | tSIK2 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 20 |  | 1/fmсK + 30 |  | ns |
|  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 30 |  | 1/fмск + 30 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 1/fmск + 30 |  | ns |
| Slp hold time (from SCKp $\uparrow$ ) Note 2 | tKSI2 | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1/fmCK + 31 |  | 1/fMCK + 31 |  | ns |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | 1/fmck + 31 |  | ns |
| Delay time from SCKp $\downarrow$ to SOp output Note 3 | tKSO2 | $\mathrm{C}=30 \mathrm{pF}$ Note 4 | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | $\begin{gathered} 2 / \mathrm{fmCK} \\ +44 \end{gathered}$ |  | $\begin{gathered} 2 / \mathrm{fmCK} \\ +110 \end{gathered}$ | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | $\begin{gathered} \text { 2/fMCK } \\ +75 \end{gathered}$ |  | $\begin{gathered} \hline 2 / \mathrm{fMCK} \\ +110 \end{gathered}$ | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | - |  | $\begin{gathered} \hline \text { 2/fmCK } \\ +110 \end{gathered}$ | ns |

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn = 1. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register g ( PIMg ) and port output mode register g ( POMg ).

Remark 1. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$, $g$ : PIM number $(g=0,1,3,4,5$, 8)

Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00,02,10$ )
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| $\overline{\text { SSIOO }}$ setup time | tssik | DAPmn $=0$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 120 |  | 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 200 |  | 200 |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | - |  | 200 |  | ns |
|  |  | DAPmn $=1$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 120 |  | 1/fмск + 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 200 |  | 1/fмск + 200 |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | - |  | 1/fmск + 200 |  | ns |
| $\overline{\mathrm{SSIOO}}$ hold time | tKssı | DAPmn $=0$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 120 |  | 1/fмск + 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 1/fmск + 200 |  | 1/fмск + 200 |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | - |  | 1/fмск + 200 |  | ns |
|  |  | DAPmn $=1$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 120 |  | 120 |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 200 |  | 200 |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | - |  | 200 |  | ns |

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g ( POMg ).

Remark $p$ : CSI number $(p=00)$, $m$ : Unit number $(m=0)$, $n$ : Channel number $(n=0), g$ : PIM number $(g=3,4)$

## CSI mode connection diagram (during communication at same potential)



CSI mode connection diagram (during communication at same potential) (Slave transmission of slave select input function (CSIOO))

| SCK00SLOORL78 microcontroller |  |
| :---: | :---: |
|  | So |
|  | Sı User's device |
| SO00 |  |
|  |  |
| $\overline{\text { SSIOO}}$ | $\overline{\text { SSO }}$ |

Remark $\quad$ : $\operatorname{CSI}$ number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1 , or DAPmn = 1 and CKPmn = 0 .)


Remark $p$ : CSI number $(p=00,10,20), m$ : Unit number $(m=0,1), n$ : Channel number $(n=0,2)$
(4) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCLr clock frequency | fSCL | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{aligned} & 1000 \\ & \text { Note } 1 \end{aligned}$ |  | $400$ <br> Note 1 | kHz |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ |  | $400$ <br> Note 1 |  | $400$ <br> Note 1 | kHz |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ |  | $300$ <br> Note 1 |  | $300$ <br> Note 1 | kHz |
| Hold time when SCLr = "L" | tLow | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | 1150 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | 1150 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 1550 |  | 1550 |  | ns |
| Hold time when SCLr = "H" | tHIGH | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | 1150 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | 1150 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 1550 |  | 1550 |  | ns |
| Data setup time (reception) | tSU: DAT | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 1/fMCK + 85 Note 2 |  | 1/fMCK + <br> 145 Note 2 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | $\begin{gathered} \hline \text { 1/fMCK + } \\ 145 \text { Note } 2 \end{gathered}$ |  | 1/fMCK + <br> 145 Note 2 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | $\begin{gathered} \text { 1/fMCK + } \\ 230 \text { Note } 2 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 230 \text { Note } 2 \end{gathered}$ |  | ns |
| Data hold time (transmission) | tHD: DAT | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 0 | 305 | 0 | 305 | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$ | 0 | 355 | 0 | 355 | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$ | 0 | 405 | 0 | 405 | ns |

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Set the fMCK value to keep the hold time of $\operatorname{SCLr}=$ " L " and $\mathrm{SCLr}=$ " H ".
Note 3. Condition in the HS (high-speed main) mode

Caution Select the normal input buffer and the N-ch open drain output (VdD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g ( PlMg ) and port output mode register $h$ (POMh).
(Remarks are listed on the next page.)

## Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ( $\mathrm{r}=00,10,20$ ), g : PIM number $(\mathrm{g}=0,1,3,4,5,8)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ),
n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10)$
(5) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| Transfer rate |  | Reception | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | fMCK/6 <br> Note 1 |  | fмск/6 <br> Note 1 | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4 |  | 4.0 |  | 1.3 | Mbps |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | fMCK/6 <br> Note 1 |  | $\begin{gathered} \text { fMck/6 } \\ \text { Note } 1 \end{gathered}$ | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4 |  | 4.0 |  | 1.3 | Mbps |
|  |  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 5) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$ |  | fMCK/6 Notes 1, 2, 3 |  | fмск/6 Notes 1 , 2, 3 | bps |
|  |  |  | Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4 |  | 4.0 |  | 1.3 | Mbps |

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. Use it with $V_{D D} \geq \mathrm{V}_{\mathrm{b}}$
Note 3. The following conditions are required for low voltage interface.

$$
\begin{aligned}
& 2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}: \mathrm{MAX} .2 .6 \mathrm{Mbps} \\
& 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}: \text { MAX. 1.3 Mbps }
\end{aligned}
$$

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

$$
\begin{array}{ll}
\text { HS (high-speed main) Mode: } & 24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}) \\
& 16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}) \\
\text { LS (low-speed main) Mode: } & 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})
\end{array}
$$

Note 5. Condition in the HS (high-speed main) mode
Caution Select the TTL input buffer for the RxDq pin and the N -ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}_{\mathrm{b}}$ [V]: Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 2 ), $g$ : PIM or POM number ( $g=0,1,3,4,5,8$ )
Remark 3. fMcK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ ))
(5) Communication at different potential (1.8 V, 2.5 V, 3 V ) (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| Transfer rate |  | Transmission | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | Note 1 |  | Note 1 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega, \mathrm{Vb}=2.7 \mathrm{~V}$ |  | $2.8$ <br> Note 2 |  | $2.8$ <br> Note 2 | Mbps |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | Note 3 |  | Note 3 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \mathrm{Vb}=2.3 \mathrm{~V}$ |  | $1.2$ <br> Note 4 |  | $1.2$ <br> Note 4 | Mbps |
|  |  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 8) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$ |  | Notes 5, 6 |  | Notes 5, 6 | bps |
|  |  |  | Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \mathrm{Vb}=1.6 \mathrm{~V}$ |  | $0.43$ <br> Note 7 |  | $0.43$ <br> Note 7 | Mbps |

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$


( $\left.\frac{1}{\text { Transfer rate }}\right) \times$ Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{} \times 100$ [\%]

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with $\mathrm{VDD} \geq \mathrm{Vb}$

Note 6. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$

$$
\begin{aligned}
& \text { Maximum transfer rate }=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\} \times 3}[b p s] \\
& \text { Baud rate error (theoretical value) }=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} 100[\%]
\end{aligned}
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
Note 8. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VdD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

## UART mode connection diagram (during communication at different potential)


(Remarks are listed on the next page.)

## UART mode bit width (during communication at different potential) (reference)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line ( TxDq ) pull-up resistance,
$\mathrm{Cb}[\mathrm{F}]$ : Communication line $(\mathrm{TxDq})$ load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 2 ), $g$ : PIM or POM number ( $g=0,1,3,4,5,8$ )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to $03,10,11$ ) )
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time | tKCY1 | tKCY1 $\geq$ 4/fCLK | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 300 |  | 1150 |  | ns |
|  |  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | $500$ <br> Note 1 |  | 1150 |  | ns |
|  |  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{~V} \text { Note } 2) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & \text { 1.6 } \mathrm{V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | $1150$ <br> Note 1 |  | 1150 |  | ns |
| SCKp highlevel width | tKH1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{gathered} \text { tKCY1/2 } \\ -75 \end{gathered}$ |  | $\begin{gathered} \text { tKCY1/2 } \\ -75 \end{gathered}$ |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | tKCY1/2 $-170$ |  | tKCY1/2 $-170$ |  | ns |
|  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{~V} \text { Note } 2) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | tKCY1/2 $-458$ |  | tKCY1/2 $-458$ |  | ns |
| SCKp lowlevel width | tKL1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{gathered} \text { tKCY1/2 } \\ -12 \end{gathered}$ |  | tKCY1/2 <br> - 50 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{gathered} \mathrm{tKCY} 1 / 2 \\ -18 \end{gathered}$ |  | tKCY1/2 $-50$ |  | ns |
|  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{~V} \text { Note } 2) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | tKCY1/2 $-50$ |  | tKCY1/2 $-50$ |  | ns |

Note 1. Use it with $V D D \geq V_{b}$
Note 2. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register g ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed two pages after the next page.)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )
(2/2)

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SIp setup time (to SCKp $\downarrow$ ) Note 1 | tSIK1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 81 |  | 479 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 177 |  | 479 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 479 |  | 479 |  | ns |
| Slp hold time (from SCKp $\downarrow$ ) Note 1 | tKSI1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
|  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V} \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
| Delay time from SCKp $\uparrow$ to SOp output Note 1 | tKSO1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | 100 |  | 100 | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 195 |  | 195 | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | 483 |  | 483 | ns |
| SIp setup time (to SCKp $\downarrow$ ) Note 2 | tSIK1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 44 |  | 110 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 44 |  | 110 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 110 |  | 110 |  | ns |
| SIp hold time (from SCKp $\downarrow$ ) Note 2 | tKSI1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 19 |  | 19 |  | ns |
| Delay time from SCKp $\uparrow$ to SOp output Note 2 | tKSO1 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | 25 |  | 25 | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 25 |  | 25 | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V} \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | 25 |  | 25 | ns |

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $V D D \geq \mathrm{Vb}$
Note 4. Condition in the HS (high-speed main) mode
(Caution and remarks are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance) mode for the SOp pin and SCKp pin by using port input mode register g ( PIMg ) and port output mode register g ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,10,20)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0,2)$, g : PIM or POM number ( $\mathrm{g}=0$, $1,3,4,5,8)$
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00,02,10$ )

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0,2)$, $\mathrm{g}:$ PIM or POM number $(\mathrm{g}=0,1,3,4,5,8)$
(7) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (slave mode, SCKp... external clock input)
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time Note 1 | tKCY2 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$ | 20 MHz < fMCK | 12/fmCK |  | - |  | ns |
|  |  |  | $8 \mathrm{MHz}<\mathrm{fMCK} \leq 20 \mathrm{MHz}$ | 10/fmCK |  | - |  | ns |
|  |  |  | $4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$ | 8/fmск |  | - |  | ns |
|  |  |  | fMCK $\leq 4 \mathrm{MHz}$ | 6/fmск |  | - |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$ | 20 MHz < fMCK | 16/fmCk |  | - |  | ns |
|  |  |  | $\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fMCK} \leq 20 \\ & \mathrm{MHz} \end{aligned}$ | 14/fmCK |  | - |  | ns |
|  |  |  | $8 \mathrm{MHz}<\mathrm{fMCK} \leq 16 \mathrm{MHz}$ | 12/fmCK |  | - |  | ns |
|  |  |  | $4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$ | 8/fmск |  | 16/fmCK |  | ns |
|  |  |  | fMCK $\leq 4 \mathrm{MHz}$ | 6/fмск |  | 10/fmск |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 6) \leq \\ & \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$ <br> Note 2 | 20 MHz < fMCK | 36/fmCK |  | - |  | ns |
|  |  |  | $\begin{aligned} & 16 \mathrm{MHz}<\mathrm{fMCK} \leq 20 \\ & \mathrm{MHz} \end{aligned}$ | 32/fmCK |  | - |  | ns |
|  |  |  | $8 \mathrm{MHz}<\mathrm{fMCK} \leq 16 \mathrm{MHz}$ | 26/fmCK |  | - |  | ns |
|  |  |  | $4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$ | 16/fmCk |  | 16/fmск |  | ns |
|  |  |  | fMCK $\leq 4 \mathrm{MHz}$ | 10/fmCk |  | 10/fmск |  | ns |
| SCKp high-/ low-level width | tKH2, <br> tKL2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | $\begin{gathered} \mathrm{tKCY} / 2- \\ 12 \end{gathered}$ |  | $\begin{gathered} \mathrm{tKCY} 2 / 2- \\ 50 \end{gathered}$ |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | $\begin{gathered} \mathrm{tKCY} / 2 \\ 18 \end{gathered}$ |  | $\begin{gathered} \text { tKCY2/2 } \\ 50 \end{gathered}$ |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 6) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$ |  | $\begin{gathered} \mathrm{tKCY} 2 / 2- \\ 50 \end{gathered}$ |  | $\begin{gathered} \mathrm{tKCY} 2 / 2 \\ 50 \end{gathered}$ |  | ns |
| SIp setup time (to SCKp $\uparrow$ ) Note 3 | tsIK2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | $\begin{gathered} 1 / \mathrm{fMCK}+ \\ 20 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 30 \end{gathered}$ |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | $\begin{gathered} \text { 1/fMCK }+ \\ 20 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 30 \end{gathered}$ |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 6) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$ |  | $\begin{gathered} 1 / \mathrm{fMCK}+ \\ 30 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 30 \end{gathered}$ |  | ns |
| SIp hold time (from SCKp $\uparrow$ ) Note 4 | tKSI2 | $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$ |  | $\begin{gathered} \text { 1/fmCK + } \\ 31 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 31 \end{gathered}$ |  | ns |
|  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 31 \end{gathered}$ |  | $\begin{gathered} \text { 1/fMCK + } \\ 31 \end{gathered}$ |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 6) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$ |  | $\begin{gathered} 1 / \mathrm{fMCK}+ \\ 31 \end{gathered}$ |  | $\begin{gathered} 1 / \mathrm{fMCK}+ \\ 31 \end{gathered}$ |  | ns |
| Delay time from SCKp $\downarrow$ to $S O p$ output Note 5 | tKSO2 | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$ |  |  | $\begin{gathered} \text { 2/fMCK + } \\ 120 \end{gathered}$ |  | $\begin{gathered} \hline \text { 2/fмск }+ \\ 573 \end{gathered}$ | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  |  | $\begin{gathered} \hline \text { 2/fMCK + } \\ 214 \end{gathered}$ |  | $\begin{gathered} \hline \text { 2/fMCK + } \\ 573 \end{gathered}$ | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 6) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  |  | $\begin{gathered} \hline \text { 2/fMCK + } \\ 573 \end{gathered}$ |  | $\begin{gathered} \hline \text { 2/fmck + } \\ 573 \end{gathered}$ | ns |

(Notes, Cautions, and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with $V D D \geq \mathrm{Vb}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 6. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the SIp and SCKp pins, and the N-ch open drain output (Vdd tolerance) mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

## CSI mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
Remark 2. $p$ : CSI number $(p=00,10,20)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0,2)$, g : PIM or POM number $(\mathrm{g}=0,1,3,4,5,8)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number $(\mathrm{mn}=00,02,10)$ )

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0,2)$, $\mathrm{g}:$ PIM or POM number $(\mathrm{g}=0,1,3,4,5,8)$
(8) Communication at different potential (1.8 V, 2.5 V, 3 V ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (highspeed main) Mode |  | LS (lowspeed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCLr clock frequency | fSCL | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $1000$ <br> Note 1 |  | $\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$ | kHz |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $1000$ <br> Note 1 |  | $\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$ | kHz |
|  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$ |  | $400$ <br> Note 1 |  | $\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$ | kHz |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $400$ <br> Note 1 |  | $300$ <br> Note 1 | kHz |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & \text { 1.6 } \mathrm{V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ |  | $400$ <br> Note 1 |  | $\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$ | kHz |
| Hold time when SCLr = "L" | tLow | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | 1550 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 475 |  | 1550 |  | ns |
|  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | 1550 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 1150 |  | 1550 |  | ns |
|  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & \text { 1.6 } \mathrm{V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 1550 |  | 1550 |  | ns |
| Hold time when SCLr = "H" | tHIGH | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 245 |  | 610 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 200 |  | 610 |  | ns |
|  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$ | 675 |  | 610 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 600 |  | 610 |  | ns |
|  |  | $\begin{aligned} & \text { 1.8 } \mathrm{V}(2.4 \mathrm{VNote} 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & \text { 1.6 } \mathrm{V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 610 |  | 610 |  | ns |

(8) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| Data setup time (reception) | tsu:DAT | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | $\begin{gathered} \text { 1/fMCK + } \\ 135 \text { Note } 3 \end{gathered}$ |  | 1/fmск + <br> 190 Note 2 |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 1/fMCK + 135 Note 3 |  | 1/fMCK + $190 \text { Note } 2$ |  | ns |
|  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$ | 1/fmck + 190 Note 3 |  | $\begin{gathered} \hline \text { 1/fmck + } \\ 190 \text { Note } 3 \end{gathered}$ |  | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 1/fmck + 190 Note 3 |  | 1/fmск + <br> 190 Note 3 |  | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$ | 1/fmCK + 190 Note 3 |  | 1/fMCK + $190 \text { Note } 3$ |  | ns |
| Data hold time (transmission) | thD: DAT | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 0 | 305 | 0 | 305 | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 0 | 305 | 0 | 305 | ns |
|  |  | $\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$ | 0 | 355 | 0 | 355 | ns |
|  |  | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$ | 0 | 355 | 0 | 355 | ns |
|  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 4) \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$ | 0 | 405 | 0 | 405 | ns |

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Use it with $V_{D D} \geq \mathrm{Vb}$
Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
Note 4. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer and the $\mathbf{N}$-ch open drain output (VdD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register $g$ (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)


Remark 1. Rb [ $\Omega$ ]: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r : IIC number ( $\mathrm{r}=00,10,20$ ), g : PIM, POM number ( $\mathrm{g}=0,1,3,4,5,8$ )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0$ ),
n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10)$

### 3.5.2 Serial Interface UARTMG

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Transfer rate |  | fsuB $=38.4 \mathrm{kHz}$ | 200 |  | 9600 | bps |
|  |  | fsub $=38.4 \mathrm{kHz}$ <br> (when the clock doubler is in use) | 200 |  | 19200 | bps |

### 3.5.3 Serial interface IICA

(1) $I^{2} \mathrm{C}$ standard mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN . | MAX. | MIN. | MAX. |  |
| SCLA0 clock frequency | fSCL | Standard mode: <br> fCLK $\geq 1 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 100 | 0 | 100 | kHz |
|  |  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \text { VNote } 3) \leq \\ & \text { VDD } \leq 5.5 \mathrm{~V} \end{aligned}$ | 0 | 100 | 0 | 100 | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | 1.8 V $(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu s$ |
| Hold time Note 1 | thD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "L" | tLOW | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = " H " | tHIGH | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tSU: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 250 |  | 250 |  | ns |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 250 |  | 250 |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 3.45 | 0 | 3.45 | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 |  | 0 | 3.45 | $\mu \mathrm{s}$ |
| Setup time of stop condition | tSU: STO | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}\left(2.4 \mathrm{~V}^{\text {Note }} 3\right) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.0 |  | 4.0 |  | $\mu \mathrm{s}$ |
| Bus-free time | tBuF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 4.7 |  | 4.7 |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
Note 3. Condition in the HS (high-speed main) mode

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$

## (2) $\mathrm{I}^{2} \mathrm{C}$ fast mode

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCLA0 clock frequency | fscL | Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 400 | 0 | 400 | kHz |
|  |  |  | $\begin{aligned} & 1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \\ & \mathrm{VDD} \leq 5.5 \mathrm{~V} \end{aligned}$ | 0 | 400 | 0 | 400 | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}\left(2.4 \mathrm{VNote}^{3}\right) \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
| Hold time Note 1 | tHD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{VNote} 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "L" | tLow | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | 1.3 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{VNote} 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | 1.3 |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "H" | thigh | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V}$ Note 3$) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tSU: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 100 |  | 100 |  | ns |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{VNote} 3) \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  | 100 |  | 100 |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 0.9 | 0 | 0.9 | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{~V} \text { Note } 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 |  | 0 | 0.9 | $\mu \mathrm{s}$ |
| Setup time of stop condition | tsu: sto | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{VNote} 3) \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  | 0.6 |  | 0.6 |  | $\mu \mathrm{s}$ |
| Bus-free time | tBuF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | 1.3 |  | $\mu \mathrm{s}$ |
|  |  | $1.8 \mathrm{~V}(2.4 \mathrm{VNote} 3) \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.3 |  | 1.3 |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
Note 3. Condition in the HS (high-speed main) mode

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $I^{2} C$ fast mode plus
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS (high-speed main) Mode |  | LS (low-speed main) Mode |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. |  |
| SCLA0 clock frequency | fscl | Fast mode plus: fCLK $\geq 10 \mathrm{MHz}$ | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 0 | 1000 | - |  | kHz |
| Setup time of restart condition | tSU: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | - |  | $\mu \mathrm{s}$ |
| Hold time Note 1 | thD: STA | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | - |  | $\mu \mathrm{s}$ |
| Hold time when SCLA0 = "L" | tLow | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.5 |  | - |  | $\mu \mathrm{s}$ |
| Hold time when SCLAO = "H" | tHIGH | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | - |  | $\mu \mathrm{s}$ |
| Data setup time (reception) | tSU: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 50 |  | - |  | ns |
| Data hold time (transmission) Note 2 | thD: DAT | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0 | 0.45 | - |  | $\mu \mathrm{s}$ |
| Setup time of stop condition | tSU: STO | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.26 |  | - |  | $\mu \mathrm{s}$ |
| Bus-free time | tBuF | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 0.5 |  | - |  | $\mu \mathrm{s}$ |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing


### 3.6 Analog Characteristics

### 3.6.1 A/D converter Characteristics

(1) When reference voltage (+) = VdD (ADREFP1 = 0, ADREFP0 = 0), reference voltage ( - ) = Vss (ADREFM = 0 ), target pin: ANI8 to ANI10, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$, reference voltage $(+)=\mathrm{VDD}$, reference voltage $(-)=$ Vss)

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES |  |  | 8 |  | 10 | bit |
| Overall error Note 1 | AINL | 10-bit resolution | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  | 1.2 | $\pm 7.0$ | LSB |
| Conversion time | tconv | 10-bit resolution <br> Target pin: ANI8 to ANI10 | $3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.125 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 3.1875 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
|  |  | 10-bit resolution <br> Target pin: internal reference voltage and temperature sensor output voltage (HS (high-speed main) mode) | $3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 2.375 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 3.5626 |  | 39 | $\mu \mathrm{s}$ |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
| Zero-scale error <br> Notes 1, 2 | Ezs | 10-bit resolution | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 0.60$ | \%FSR |
| Full-scale error <br> Notes 1, 2 | Efs | 10-bit resolution | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 0.60$ | \%FSR |
| Integral linearity error <br> Note 1 | ILE | 10-bit resolution | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 4.0$ | LSB |
| Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm 2.0$ | LSB |
| Analog input voltage | Vain | ANI8 to ANI10 |  | 0 |  | VDD | V |
|  |  | Internal reference voltage <br> ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode) |  | VBGR Note 3 |  |  | V |
|  |  | Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq 5.5 \mathrm{~V}$, HS (high-speed main) mode) |  | VTMPS25 Note 3 |  |  | V |

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor/internal reference voltage output characteristics.
(2) When reference voltage $(+)=$ Internal reference voltage (ADREFP1 $=1$, $\operatorname{ADREFPO}=0$ ), reference voltage $(-)=$ Vss (ADREFM $=0$ ), target pin: ANI8 to ANI10
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVSS $=\mathrm{VSS}=0 \mathrm{~V}$, reference voltage $(+)=\mathrm{VBGR}$ Note ${ }^{3}$, reference voltage (-) = Vss = 0 V, HS (high-speed main) mode)

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES |  |  | 8 |  |  | bit |
| Conversion time | tconv | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ | 17 |  | 39 | $\mu \mathrm{s}$ |
| Zero-scale error Notes 1, 2, | Ezs | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(0.60+0.35)$ | \%FSR |
| Integral linearity error Note 1 | ILE | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(2.0+0.5)$ | LSB |
| Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ |  |  | $\pm(1.0+0.2)$ | LSB |
| Analog input voltage | Vain |  |  | 0 |  | VBGR Note 3 | V |

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor/internal reference voltage output characteristics.

### 3.6.2 Temperature sensor/internal reference voltage output characteristics

(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V , HS (high-speed main) Mode)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Temperature sensor output <br> voltage | VTEMP | TA $=+25^{\circ} \mathrm{C}$ |  | 1.05 |  | V |
| Internal reference voltage | VBGR |  | 1.38 | 1.45 | 1.5 | V |
| Temperature coefficient | FVTMPS | Temperature sensor output voltage <br> that depends on the temperature |  | -3.6 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Operation stabilization wait time | tAMP | $2.4 \mathrm{~V} \leq$ VDD $\leq 5.5 \mathrm{~V}$ | 5 |  |  |  |

### 3.6.3 POR circuit characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Detection voltage | VPor | Power supply rise time | 1.47 | 1.51 | 1.55 | V |
|  | VPDR | Power supply fall time Note 1 | 1.46 | 1.50 | 1.54 | V |
| Minimum pulse width Note 2 | TPW1 | Other than STOP/SUB HALT/SUB <br> RUN | 300 |  |  | $\mu \mathrm{~s}$ |
|  |  | RUW2 | STOP/SUB HALT/SUB RUN | 300 |  |  |
|  | TPW |  |  |  |  |  |

Note 1. If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 3.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD falls below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 3.6.4 LVD circuit characteristics

(1) LVD detection voltage in reset mode and interrupt mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter |  | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Detection voltage | Supply voltage level | VLVDo | Rising edge | 3.98 | 4.06 | 4.14 | V |
|  |  |  | Falling edge | 3.90 | 3.98 | 4.06 | V |
|  |  | VLVD1 | Rising edge | 3.68 | 3.75 | 3.82 | V |
|  |  |  | Falling edge | 3.60 | 3.67 | 3.74 | V |
|  |  | VLVD2 | Rising edge | 3.07 | 3.13 | 3.19 | V |
|  |  |  | Falling edge | 3.00 | 3.06 | 3.12 | V |
|  |  | VLVD3 | Rising edge | 2.96 | 3.02 | 3.08 | V |
|  |  |  | Falling edge | 2.90 | 2.96 | 3.02 | V |
|  |  | VLVD4 | Rising edge | 2.86 | 2.92 | 2.97 | V |
|  |  |  | Falling edge | 2.80 | 2.86 | 2.91 | V |
|  |  | VLVD5 | Rising edge | 2.76 | 2.81 | 2.87 | V |
|  |  |  | Falling edge | 2.70 | 2.75 | 2.81 | V |
|  |  | VLVD6 | Rising edge | 2.66 | 2.71 | 2.76 | V |
|  |  |  | Falling edge | 2.60 | 2.65 | 2.70 | V |
|  |  | VLVD7 | Rising edge | 2.56 | 2.61 | 2.66 | V |
|  |  |  | Falling edge | 2.50 | 2.55 | 2.60 | V |
|  |  | VLVD8 | Rising edge | 2.45 | 2.50 | 2.55 | V |
|  |  |  | Falling edge | 2.40 | 2.45 | 2.50 | V |
|  |  | VLVD9 | Rising edge | 2.05 | 2.09 | 2.13 | V |
|  |  |  | Falling edge | 2.00 | 2.04 | 2.08 | V |
|  |  | VLVD10 | Rising edge | 1.94 | 1.98 | 2.02 | V |
|  |  |  | Falling edge | 1.90 | 1.94 | 1.98 | V |
|  |  | VLVD11 | Rising edge | 1.84 | 1.88 | 1.91 | V |
|  |  |  | Falling edge | 1.80 | 1.84 | 1.87 | V |
| Minimum pulse width |  | tLw |  | 300 |  |  | $\mu \mathrm{s}$ |
| Detection delay time |  |  |  |  |  | 300 | $\mu \mathrm{s}$ |

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range.
HS (high-speed main) mode: VdD = 2.7 to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VDD $=2.4$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: VDD = 1.8 to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
(2) LVD Detection Voltage of Interrupt \& Reset Mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interrupt and reset mode | VLVdbo | VPOC2, VPOC1, VPOC0 $=0,0$, 1, falling reset voltage: 1.8 V |  | 1.80 | 1.84 | 1.87 | V |
|  | VLVDB1 | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V |
|  |  |  | Falling interrupt voltage | 1.90 | 1.94 | 1.98 | V |
|  | VLVDB2 | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V |
|  |  |  | Falling interrupt voltage | 2.00 | 2.04 | 2.08 | V |
|  | VLVDB3 | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.07 | 3.13 | 3.19 | V |
|  |  |  | Falling interrupt voltage | 3.00 | 3.06 | 3.12 | V |
|  | VLVDC0 | VPOC2, VPOC1, VPOCO $=0,1,0$, falling reset voltage: 2.4 V |  | 2.40 | 2.45 | 2.50 | V |
|  | VLVDC1 | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V |
|  |  |  | Falling interrupt voltage | 2.50 | 2.55 | 2.60 | V |
|  | VLVDC2 | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V |
|  |  |  | Falling interrupt voltage | 2.60 | 2.65 | 2.70 | V |
|  | VLVDC3 | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V |
|  |  |  | Falling interrupt voltage | 3.60 | 3.67 | 3.74 | V |
|  | VLVDD0 | VPOC2, VPOC1, VPOC0 $=0,1$, 1, falling reset voltage: 2.7 V |  | 2.70 | 2.75 | 2.81 | V |
|  | VLVDD1 | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V |
|  |  |  | Falling interrupt voltage | 2.80 | 2.86 | 2.91 | V |
|  | VLVDD2 | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V |
|  |  |  | Falling interrupt voltage | 2.90 | 2.96 | 3.02 | V |
|  | VLVDC3 | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V |
|  |  |  | Falling interrupt voltage | 3.90 | 3.98 | 4.06 | V |

### 3.7 Power supply voltage rising slope characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| Power supply voltage rising slope | SVDD |  |  |  | 54 | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

### 3.8 LCD Characteristics

### 3.8.1 Resistance division method

(1) Static display mode
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq \mathrm{AVDD}=.\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.0 |  | VDD | V |

(2) $1 / 2$ bias method, $1 / 4$ bias method
( $\mathrm{TA}=-40$ to $\mathbf{+ 8 5 ^ { \circ }} \mathrm{C}$, $\mathrm{VL4}(\mathrm{MIN}) \leq \mathrm{AVDD}=.\mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.7 |  | VDD | V |

(3) $1 / 3$ bias method
(TA = -40 to $+85^{\circ} \mathrm{C}$, VL4 (MIN.) $\leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | VL4 |  | 2.5 |  | VDD | V |

### 3.8.2 Internal voltage boosting method

(1) $1 / 3$ bias method
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD output voltage variation range | VL1 | $\begin{aligned} & \text { C1 to C4 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$ | $\mathrm{VLCD}=04 \mathrm{H}$ | 0.90 | 1.00 | 1.08 | V |
|  |  |  | VLCD $=05 \mathrm{H}$ | 0.95 | 1.05 | 1.13 | V |
|  |  |  | VLCD $=06 \mathrm{H}$ | 1.00 | 1.10 | 1.18 | V |
|  |  |  | VLCD $=07 \mathrm{H}$ | 1.05 | 1.15 | 1.23 | V |
|  |  |  | VLCD $=08 \mathrm{H}$ | 1.10 | 1.20 | 1.28 | V |
|  |  |  | VLCD $=09 \mathrm{H}$ | 1.15 | 1.25 | 1.33 | V |
|  |  |  | VLCD $=0$ AH | 1.20 | 1.30 | 1.38 | V |
|  |  |  | VLCD $=0 \mathrm{BH}$ | 1.25 | 1.35 | 1.43 | V |
|  |  |  | VLCD $=0 \mathrm{CH}$ | 1.30 | 1.40 | 1.48 | V |
|  |  |  | VLCD $=0 \mathrm{DH}$ | 1.35 | 1.45 | 1.53 | V |
|  |  |  | VLCD $=0 \mathrm{EH}$ | 1.40 | 1.50 | 1.58 | V |
|  |  |  | VLCD $=0 \mathrm{FH}$ | 1.45 | 1.55 | 1.63 | V |
|  |  |  | VLCD $=10 \mathrm{H}$ | 1.50 | 1.60 | 1.68 | V |
|  |  |  | VLCD $=11 \mathrm{H}$ | 1.55 | 1.65 | 1.73 | V |
|  |  |  | VLCD $=12 \mathrm{H}$ | 1.60 | 1.70 | 1.78 | V |
|  |  |  | VLCD $=13 \mathrm{H}$ | 1.65 | 1.75 | 1.83 | V |
| Doubler output voltage | VL2 | C1 to C4 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $2 \mathrm{VL1}-0.1$ | $2 \mathrm{VL1}$ | $2 \mathrm{VL1}$ | V |
| Tripler output voltage | VL4 | C1 to C4 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 3 VL1- 0.15 | $3 \mathrm{VL1}$ | $3 \mathrm{VL1}$ | V |
| Reference voltage setup time Note 2 | tvWAIT1 |  |  | 5 |  |  | ms |
| Voltage boost wait time Note 3 | tvWAIT2 | C1 to C4 Note $1=$ | 0.47 $\mu \mathrm{F}$ | 500 |  |  | ms |

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON $=1$ ) until display is enabled ( $\mathrm{LCDON}=1$ ).

## (2) 1/4 bias method

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD output voltage variation range | VL1 | C1 to C5 Note 1 $=0.47 \mu \mathrm{~F}$ Note 2 | $\mathrm{VLCD}=04 \mathrm{H}$ | 0.90 | 1.00 | 1.08 | V |
|  |  |  | VLCD $=05 \mathrm{H}$ | 0.95 | 1.05 | 1.13 | V |
|  |  |  | VLCD $=06 \mathrm{H}$ | 1.00 | 1.10 | 1.18 | V |
|  |  |  | VLCD $=07 \mathrm{H}$ | 1.05 | 1.15 | 1.23 | V |
|  |  |  | VLCD $=08 \mathrm{H}$ | 1.10 | 1.20 | 1.28 | V |
|  |  |  | VLCD $=09 \mathrm{H}$ | 1.15 | 1.25 | 1.33 | V |
|  |  |  | VLCD $=0 \mathrm{AH}$ | 1.20 | 1.30 | 1.38 | V |
| Doubler output voltage | VL2 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $2 \mathrm{VL1}-0.08$ | $2 \mathrm{VL1}$ | 2 V L1 | V |
| Tripler output voltage | VL3 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $3 \mathrm{VL1}-0.12$ | $3 \mathrm{VL1}$ | 3 VL1 | V |
| Quadruply output voltage | VL4 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | $4 \mathrm{VL1}-0.16$ | $4 \mathrm{VL1}$ | 4 VL1 | V |
| Reference voltage setup time Note 2 | tVWAIT1 |  |  | 5 |  |  | ms |
| Voltage boost wait time Note 3 | tVWAIT2 | C1 to C5 Note $1=$ | $0.47 \mu \mathrm{~F}$ | 500 |  |  | ms |

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

### 3.8.3 Capacitor split method

(1) $1 / 3$ bias method
(TA = $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 2.2 \mathrm{~V} \leq \mathrm{AVdD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, AVss = Vss = 0 V )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VL4 voltage | VL4 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 |  | VDD |  | V |
| VL2 voltage | VL2 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 | 2/3 VL4-0.1 | 2/3 VL4 | $2 / 3 \mathrm{VL4}+0.1$ | V |
| VL1 voltage | VL1 | C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2 | 1/3 VL4-0.1 | 1/3 VL4 | $1 / 3 \mathrm{VL4}+0.1$ | V |
| Capacitor split wait time Note 1 | tVWAIT |  | 100 |  |  | ms |

Note 1. This is the wait time from when voltage bucking is started (VLCON =1) until display is enabled (LCDON = 1).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL4 and GND $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$

### 3.9 RAM Data Retention Characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data retention supply voltage | VDDDR |  | 1.46 Note |  | 5.5 | V |

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.


### 3.10 Flash Memory Programming Characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System clock frequency | fCLK | $1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$ |  | 1 |  | 24 | MHz |
| Number of code flash rewrites Notes 1, 2, 3 | Cerwr | Retained for 20 years | $\mathrm{TA}=85^{\circ} \mathrm{C}$ | 1,000 |  |  | Times |
| Number of data flash rewrites Notes 1, 2, 3 |  | Retained for 1 year | $\mathrm{TA}^{\prime}=25^{\circ} \mathrm{C}$ |  | 1,000,000 |  |  |
|  |  | Retained for 5 years | $\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$ | 100,000 |  |  |  |
|  |  | Retained for 20 years | $\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$ | 10,000 |  |  |  |

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self-programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

### 3.11 Dedicated Flash Memory Programmer Communication (UART)

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $\left.=\mathrm{Vss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Transfer rate |  | During serial programming | 115,200 |  | $1,000,000$ | bps |

### 3.12 Timing of Entry to Flash Memory Programming Modes

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :--- | :--- | :---: | Unit | (SUINIT |
| :--- |
| How long from when an external reset ends until the <br> initial communication settings are specified |
| How long from when the TOOLO pin is placed at the <br> low level until an external reset ends <br> before the external reset ends. |
| How long the TOOLO pin must be kept at the low <br> level after an external reset ends <br> (excluding the processing time of the firmware to <br> control the flash memory) |


$<1>$ The low level is input to the TOOLO pin.
$<2>$ The external reset ends (POR and LVD reset must end before the external reset ends).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuInit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

## Remark

## 4. PACKAGE DRAWINGS

### 4.1 48-pin products

R5F11NGGAFB, R5F11NGFAFB

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## $4.2 \quad$ 64-pin products

R5F11NLGAFB, R5F11NLFAFB


R5F11PLGABG, R5F11PLFABG


### 4.3 80-pin products

R5F11NMGAFB, R5F11NMFAFB, R5F11NMEAFB
R5F11RMGDFB


| REVISION HISTORY | RL78/H1D Datasheet |
| :---: | :---: |


| Rev. | Date | Description |  |  |
| :---: | :---: | :---: | :--- | :---: |
|  |  | Page | Summary |  |
| 1.00 | Apr 13 2018 | - | First Edition issued |  |

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.
All trademarks and registered trademarks are the property of their respective owners.

## NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

## Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

## Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com

[^0]
[^0]:    Refer to "http://www.renesas.com/" for the latest and detailed information.
    Renesas Electronics America Inc.
    Renesas Electronics America Inc.
    1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
    Tel: $+1-408-432-8888$, Fax: +1-408-434-5351
    Renesas Electronics Canada Limited
    Renesas Electronics Canada Limited
    9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
    Tel: +1-905-237-2004
    Renesas Electronics Europe Limited
    Renesas Electronics Europe Limited
    Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
    Tel: +44-1628-651-700, Fax: +44-1628-651-804
    Renesas Electronics Europe GmbH
    Arcadiastrasse 10, 40472 Düsseldorf, Germany
    Tel: $+49-211-6503-0$, Fax: $+49-211-6503-1327$
    Tel: +49-211-6503-0, Fax: +49-211-6503-1327
    Renesas Electronics (China) Co., Ltd.
    Room 1709 Quantum Plaza, No. 27 Z ZhichunLu, Haidian District, Beijing, 100191 P. R. China
    Tel: $+86-10-8235-1155$, Fax: $+86-10-8235-7679$
    Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
    Renesas Electronics (Shanghai) Co., Ltd.
    Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
    Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
    Renesas Electronics Hong Kong Limited
    Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
    Tel: +852-2265-6688, Fax: +852 2886-9022
    Tel: +852-2265-6688, Fax: +852 2886-9022
    Renesas Electronics Taiwan Co., Ltd.
    13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
    Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
    Renesas Electronics Singapore Pte. Ltd.
    80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
    Tel: +65-6213-0200, Fax: +65-6213-0300
    Renesas Electronics Malaysia Sdn.Bhd.
    Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
    Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
    Renesas Electronics India Pvt. Ltd.
    No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
    Tel: +91-80-67208700, Fax: +91-80-67208777
    Renesas Electronics Korea Co., Ltd.
    17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
    Tel: +82-2-558-3737, Fax: +82-2-558-5338

