## IP68 Protected DC Fan with PWM and Tach Output

## **17250VE-48R (0-Type)**



### **General Specifications**

**Motor Type:** 

DC Brushless Motor

**Motor Protection:** 

Auto Restart / Polarity Protection (Motor withstands reverse connection for positive and negative leads.)

**Insulation Resistance:** 

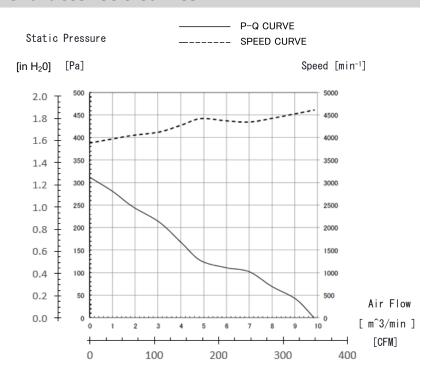
 $10M\Omega$  or over with a DC 500V Megger

**Dielectric Withstand Voltage:** 

AC 500V 1min or AC 700V 1sec

**Allowable Ambient Temperature Range:** 

 $-10^{\circ}$ C  $\sim + 70^{\circ}$ C (Operating)


 $-40^{\circ}$ C  $\sim + 70^{\circ}$ C (Storage)

(non-condensing environment)



\*For reference only. Please see fan outline for details

#### **Characteristic Curves**



#### **Features**

- DC axial fan with outstanding P-Q performance, IP68 protection, PWM speed control, and tach output
- Vertically integrated manufacturing, with key components made in-house
- IP68 with highest level of protection from water/dust ingress and GR-487 salt fog compliant
- Outfitted with NMB precision machined stainless steel ball bearings for long life
- Ideal for applications such as EV chargers, PV inverters, telecom cabinets, small cell 5G network and many other outdoor applications

### **Life Expectancy L10**

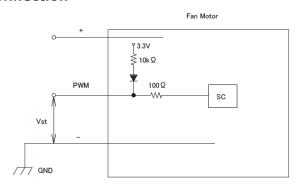
100,000 Hours at 25 Celsius

\*Fan life expectation is based on free air operation at 25°C, rated voltage, and indoor benign lab environment

\*1: Values in Free Air

## **Specifications**

| Rating<br>Voltage | Operating<br>Voltage | Current                 |                                                            | Input<br>Power                       |                               | Speed                  | Max. Air Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | Max. Static                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Noise                                                                                                                                                                                                                                                                                                                                                     | Mass                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|----------------------|-------------------------|------------------------------------------------------------|--------------------------------------|-------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                      | Avg                     | Max                                                        | Avg                                  | Max                           | opeca.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    |
| (V)               | (V)                  | (A)*1                   | (A)*1                                                      | (W)*1                                | (W)*1                         | (min <sup>-1</sup> )*1 | (CFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (m³/min)                         | (in H <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                                                                                                                                | (Pa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (dB)*1                                                                                                                                                                                                                                                                                                                                                    | (g)                                                                                                                                                                                                                                                                                                                                                                                                |
| 48                | 38.0 to 52.8         | 0.90                    | 1.10                                                       | 43.20                                | 52.80                         | 4,600                  | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.8                              | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62                                                                                                                                                                                                                                                                                                                                                        | 950                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | /oltage<br>(V)       | Voltage Voltage (V) (V) | Voltage ${}$ Voltage ${}$ Avg ${}$ (V) ${}$ (V) ${}$ (A)*1 | VoltageVoltageAvgMax(V)(V)(A)*1(A)*1 | Rating Operating Current Pool | Current   Power        | Current   Power   Speed   Current   Power   Power | Rating Operating Voltage Voltage | Rating Operating Voltage Voltage $ \frac{\text{Current}}{\text{Avg}} \frac{\text{Power}}{\text{Max}} \frac{\text{Speed}}{\text{Max. Air Flow}} $ $ \frac{\text{Max. Air Flow}}{\text{(V)}} $ $ \frac{\text{(V)}}{\text{(V)}} \frac{\text{(V)}}{\text{(A)}^{*1}} \frac{\text{(A)}^{*1}}{\text{(W)}^{*1}} \frac{\text{(W)}^{*1}}{\text{(W)}^{*1}} \frac{\text{(min}^{-1})^{*1}}{\text{(CFM)}} \frac{\text{(min}^{-3})^{min}}{\text{(min}^{-1})^{*1}} $ | Rating Operating Voltage Voltage Voltage $\frac{\text{Current}}{\text{Avg}} \frac{\text{Power}}{\text{Max}} \frac{\text{Speed}}{\text{Max. Air Flow}} \frac{\text{Max}}{Plots of the properties of th$ | Rating Operating Voltage Voltage Voltage $\frac{\text{Current}}{\text{Avg}} \frac{\text{Power}}{\text{Max}} \frac{\text{Speed}}{\text{Speed}} \frac{\text{Max. Air Flow}}{\text{Max. Air Flow}} \frac{\text{Max. Static}}{\text{Pressure}}$ (V) (V) (A)*1 (A)*1 (W)*1 (W)*1 (min <sup>-1</sup> )*1 (CFM) (m <sup>3</sup> /min) (in H <sub>2</sub> O) (Pa) | Rating Operating Voltage Voltage Voltage $\frac{\text{Current}}{\text{Avg}} \frac{\text{Power}}{\text{Max}} \frac{\text{Speed}}{\text{Speed}} \frac{\text{Max. Air Flow}}{\text{Max. Air Flow}} \frac{\text{Max. Static}}{\text{Pressure}} \frac{\text{Noise}}{\text{Noise}}$ (V) (V) (A)*1 (A)*1 (W)*1 (W)*1 (min <sup>-1</sup> )*1 (CFM) (m <sup>3</sup> /min) (in H <sub>2</sub> O) (Pa) (dB)*1 |


## IP68 Protected DC Fan with PWM and Tach Output

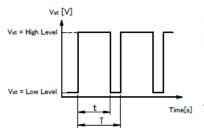
# 17250VE-48R (0-Type)

## **NMB**

#### **PWM** Specifications

#### Connection




#### 1. PWM Control

 $Vst = Low Level (0V \sim 0.4V) \rightarrow Stop (On Duty 0\%)$ 

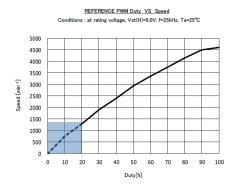
Vst = High Level  $(4.0V\sim5.0V) \rightarrow Full Speed (On Duty 100%)$ 

Vst = Open → Full Speed

#### 2. PWM Duty & PWM Input Pulse



PWM Duty means that a ratio of high level time (t)/PWM Input Pulse(T).


 $(t/T) \times 100 : On Duty 0\% \sim 100\%$ 

PWM Frequency f = 25[kHz]

#### 3. The condition for PWM control are as follows

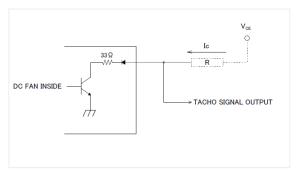
- When you use this under PWM control, always be sure the motor's operation under practical mounting state. Fan motor may not start up caused by PWM control at very low speed condition.
- · To run at Rating Voltage
- Please use the start with Duty 20% or more at 25kHz.[At rated voltage input, Ambient temperature 25°C]

#### **PWM Characteristic Curve**

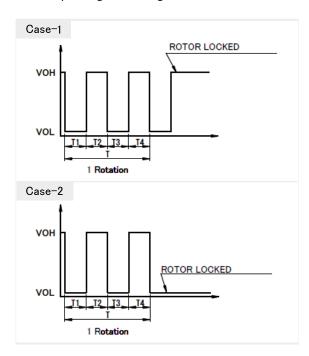


### **TACHO** Specifications

#### **Tachometer Signal**


1. Output Circuit: Open Collector

2. Specification


Absolute Maximum Ratings at Ta=25°C

V<sub>CE</sub>max: +52.8V

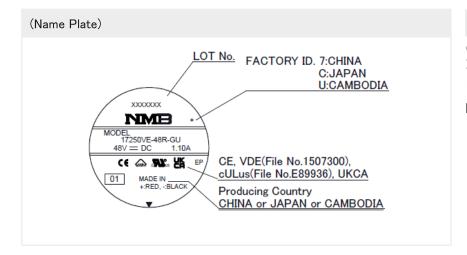
 $I_{C}max: 5mA[V_{CE}(sat)max=2V]$ 



3. Output Waveform: At Rated Voltage Output Signal Voltage



- 1) When the rotor is locked at VOH position of signal, signal keeps VOH position.
- 2) When the rotor is locked at VOL position of signal, signal keeps VOL position.
- 3) T=T1+T2+T3+T4=60/m=1 rotation


m: Fan Speed (min-1)

Tacho Duty Cycle=50%±10%

## 17250VE-48R (0-Type)

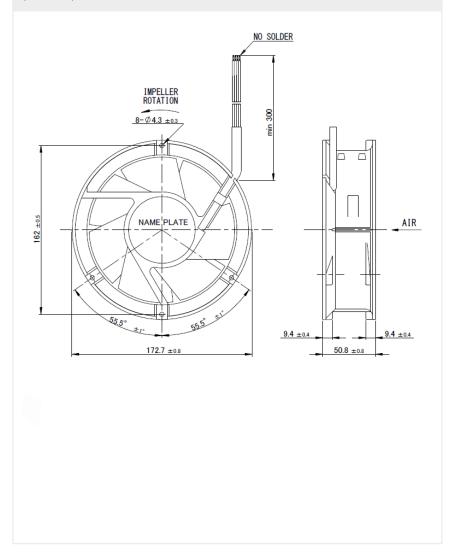


#### **Outlines**

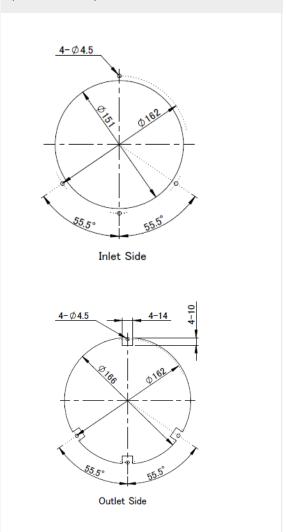


#### **Materials**

**Casing:** Aluminum (Black) **Impeller:** Plastic (Black)


**Bearing:** Stainless Steel Ball Bearing **Lead Wire:** UL10368 or UL3443

AWG22 for


Red (+) Black (-) AWG24 for

White (Tach) Brown (PWM)

#### (Outline)



#### (Panel Out-line)

