FEATURES

- Ultrawideband frequency range: 100 MHz to 20 GHz
- Nonreflective 50Ω design
- Low insertion loss
- 0.9 dB typical to 6 GHz
- 1.00 dB typical to 12 GHz
- 1.20 dB typical to 20 GHz
- High isolation Between RFx and RFx
- 54 dB typical to 6 GHz
- 50 dB typical to 12 GHz
- 47 dB typical to 20 GHz
- High input linearity
- P0.1dB: 34 dBm typical
- IP3: 55 dBm typical
- High RF power handling
- Through path: 33 dBm up to 20 GHz
- Terminated path: 18 dBm up to 20 GHz
- Switching on and off time: 55 ns
-0.1 dB settling time ($50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB final $\mathrm{RF}_{\text {Out }}$): 80 ns
- All off state control
- Logic select control
- Single-supply operation with derated power handling
- No low frequency spurs
- 24-terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, land grid array (LGA) package
- Pin compatible with the ADRF5042 and ADRF5043

APPLICATIONS

- Test instrumentation
- Military radios, radars, and electronic counter measures (ECMs)
- Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5050 is a nonreflective SP4T switch manufactured in a silicon on insulator (SOI) process. The ADRF5050 operates from 100 MHz to 20 GHz with insertion loss less than 1.20 dB and isolation higher than 47 dB . The device has RF input power handling capability of 33 dBm for through paths.
The ADRF5050 operates with a dual-supply voltage +3.3 V and -3.3 V . The device can also operate with a single positive supply voltage (VDD) applied while the negative supply pin (VSS) is tied to ground. The single-supply operation condition requires lower operating power while the excellent small signal performance is maintained (see Table 2).

The ADRF5050 employs complimentary metal-oxide semiconductor (CMOS)- and low voltage transistor to transistor logic (LVTTL)-compatible controls. The device has enable and logic select controls to feature all off state and port mirroring, respectively.
The ADRF5050 is pin compatible with the ADRF5042 and ADRF5043.

The ADRF5050 comes in a 24 -terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS compliant, land grid array (LGA) package and can operate from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description. 1
Specifications 3
Single-Supply Operation Specifications 4
Absolute Maximum Ratings 5
Thermal Resistance. 5
Power Derating Curves 5
Electrostatic Discharge (ESD) Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics. 7
Typical Performance Characteristics 8
Insertion Loss, Return Loss, and Isolation 8
Input Power Compression and Third-Order Intercept 11
Theory of Operation. 12
RF Input and Output 12
Power Supply 12
Single-Supply Operation 12
Applications Information. 13
Recommendations for Printed Circuit Board Design. 13
Outline Dimensions 14
Ordering Guide. 14
Evaluation Boards 14

REVISION HISTORY

2/2023—Revision 0: Initial Version

SPECIFICATIONS

Positive supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)=3.3 \mathrm{~V}$, negative supply voltage $\left(\mathrm{V}_{\mathrm{SS}}\right)=-3.3 \mathrm{~V}$, Control Input 1 voltage $\left(\mathrm{V}_{1}\right)$ and Control Input 2 voltage $\left(\mathrm{V}_{2}\right)=0 \mathrm{~V}$ or $V_{D D}, T_{C A S E}=25^{\circ} \mathrm{C}$, and a 50Ω system, unless otherwise noted. RFx refers to $R F 1$ to $R F 4$. $V_{C T R L}$ is the voltages of the digital control inputs, V_{1} and V_{2}.

Table 1. Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		100		20,000	MHz
INSERTION LOSS Between RFC and RFx (On)		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 0.9 \\ & 1.00 \\ & 1.20 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
ISOLATION Between RFC and RFx Between RFx and RFx		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz 100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 56 \\ & 54 \\ & 47 \\ & 54 \\ & 50 \\ & 47 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC (On) RFx (On) RFx (Off)		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz 100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz 100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 26 \\ & 22 \\ & 22 \\ & 24 \\ & 19 \\ & 18 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
SWITCHING Rise and Fall Time On and Off Time 0.1 dB Settling Time	$\mathrm{t}_{\text {RISE }}, \mathrm{t}_{\text {FALL }}$ ton, toff	10% to 90% of $R F$ output ($\mathrm{RF}_{\text {out }}$) $50 \% \mathrm{~V}_{\text {CTRL }}$ to 90% of $\mathrm{RF}_{\text {OUT }}$ $50 \% V_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$		$\begin{aligned} & 12 \\ & 55 \\ & 80 \\ & \hline \end{aligned}$		ns ns ns
INPUT LINEARITY ${ }^{1}$ 0.1 dB Power Compression Third-Order Intercept Second-Order Intercept	$\begin{aligned} & \text { P0.1dB } \\ & \text { IP3 } \\ & \text { IP2 } \end{aligned}$	$\mathrm{f}=100 \mathrm{MHz}$ to 20 GHz Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=100$ MHz to $20 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$ Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=8$ $\mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 34 \\ & 55 \\ & 110 \end{aligned}$		dBm dBm dBm
VIDEO FEEDTHROUGH ${ }^{2}$				30		$m \vee p-p$
SUPPLY CURRENT Positive Supply Current Negative Supply Current	$\begin{aligned} & \mathrm{IDD}_{\mathrm{DD}} \\ & \mathrm{ISS} \end{aligned}$	VDD and VSS pins		$\begin{aligned} & 155 \\ & 530 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
DIGITAL CONTROL INPUTS Voltage Low High Current Low High	$V_{\text {INL }}$ $V_{\text {INH }}$ IINL INH	V1, V2, EN, and LS pins V1 and V2 pins LS and EN pins	$\begin{array}{\|l} 0 \\ 1.2 \end{array}$	<1 3 40	$\begin{aligned} & 0.8 \\ & 3.3 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
RECOMMENDED OPERATING CONDITONS		$\mathrm{f}=100 \mathrm{MHz}$ to $20 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{4}$				
Supply Voltage						
Positive	$V_{D D}$		3.15		3.45	V
Negative	$V_{\text {SS }}$		-3.45		-3.15	V
Digital Control Voltage	$V_{\text {CTRL }}$		0		$V_{D D}$	V
RF Power Handling ${ }^{3}$						
Through Path					33	dBm
Terminated Path					18	dBm
Hot Switching					30	dBm
Case Temperature	$T_{\text {CASE }}$		-40		+105	${ }^{\circ} \mathrm{C}$

${ }^{1}$ For input linearity performance over frequency, see Figure 22 to Figure 25.
${ }^{2}$ Video feedthrough is the peak transient measured at the RF ports in a 50Ω test setup, without an RF signal present while switching the control voltage.
${ }^{3}$ For power derating over frequency, see Figure 2.
${ }^{4}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

SINGLE-SUPPLY OPERATION SPECIFICATIONS

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{1}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$ or $\mathrm{V}_{D D}, T_{C A S E}=25^{\circ} \mathrm{C}$, and 50Ω system, unless otherwise noted.
The small signal and bias characteristics are maintained for the single-supply operation.

Table 2. Single-Supply Operation Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE			100		20,000	MHz
SWITCHING Rise and Fall Time On and Off Time 0.1 dB Settling Time	$\mathrm{t}_{\text {RISE }}, \mathrm{t}_{\text {FALL }}$ $\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\text {OFF }}$	10% to 90% of $\mathrm{RF}_{\text {OUT }}$ $50 \% \mathrm{~V}_{\text {CTRL }}$ to 90% of $\mathrm{RF}_{\text {OUT }}$ $50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$		$\begin{aligned} & 85 \\ & 175 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
INPUT LINEARITY 0.1 dB Power Compression Third-Order Intercept Second-Order Intercept	P0.1dB IP3 IP2	$\mathrm{f}=100 \mathrm{MHz} \text { to } 20 \mathrm{GHz}$ Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=100$ MHz to $20 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$ Two-tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=8$ $\mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 17 \\ & 42 \\ & 86 \end{aligned}$		dBm dBm dBm
RECOMMENDED OPERATING CONDITIONS RF Power Handling Through Path Terminated Path Hot Switching Case Temperature	$\mathrm{T}_{\text {Case }}$	$\mathrm{f}=100 \mathrm{MHz}$ to $20 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$	-40		$\begin{aligned} & 22 \\ & 12 \\ & 19 \\ & +105 \end{aligned}$	dBm dBm dBm ${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1 and Table 2.
Table 3. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
$V_{D D}$	-0.3 V to +3.6 V
$V_{S S}$	-3.6 V to +0.3 V
Digital Control Inputs ${ }^{1}$	
Voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Current	3 mA
RF Input Power ${ }^{2}$	
Dual Supply $\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}\right.$, frequency $=100 \mathrm{MHz}$ to $20 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=$ $85^{\circ} \mathrm{C}^{3}$)	
Through Path	33.5 dBm
Terminated Path	18.5 dBm
Hot Switching (RFC)	30.5 dBm
Single Supply $\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\right.$, frequency $=100 \mathrm{MHz}$ to 20 GHz , $\mathrm{T}_{\text {CASE }}=$ $85^{\circ} \mathrm{C}^{3}$)	
Through Path	22.5 dBm
Terminated Path	12.5 dBm
Hot Switching (RFC)	19.5 dBm
Unbiased ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$)	18 dBm
Temperature	
Junction, T_{J}	$135^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow	$260^{\circ} \mathrm{C}$

1 Overvoltages at the digital control inputs are clamped by internal diodes. Current must be limited to the maximum rating given.
${ }^{2}$ For power derating over frequency, see Figure 2
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $T_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θ_{jc} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

Package Type	$\theta_{\mathrm{Jc}}{ }^{1}$	Unit
CC-24-16		
\quad Through Path	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 4. Thermal Resistance (Continued)

Package Type	$\theta_{\mathrm{Jc}}{ }^{1}$	Unit
Terminated Path	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
1	θ_{JC} was determined by simulation under the following conditions: the heat	
transfer is due solely to thermal conduction from the channel through the		
round pad to the PCB , and the ground pad is held constant at the operating		
temperature of $85^{\circ} \mathrm{C}$.		

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Charged device model (CDM) per ANSI/ESDAJJEDEC JS-002.

ESD Ratings for ADRF5050

Table 5. ADRF5050, 24-Terminal LGA

	Withstand Threshold	
ESD Model		Class
HBM	1000	
RFx and RFC Pins	2000	1 C
Supply and Control Pins	500	2
CDM		C2A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PAD MUST BE CONNECTED TO THE RF AND DC GROUND OF THE PCB. 气๊

Figure 3. Pin Configuration (Top View)

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	EN	Enable Input. See Table 7 for the truth table and Figure 6 for the interface schematic.
2	V1	Control Input 1. See Table 7 for the truth table and Figure 5 for the interface schematic.
3, 5, 9, 11 to 13,15 to 17 , 19 to 21, 23	GND	Ground. The GND pins must be connected to the RF and dc ground of the PCB.
4	RFC	RF Common Port. No dc blocking capacitor is required when the $R F$ line potential is equal to 0 Vdc . See Figure 4 for the interface schematic.
6	VSS	Negative Supply Voltage.
7	LS	Logic Select Input. See Table 7 for the truth table and Figure 6 for the interface schematic.
8	VDD	Positive Supply Voltage.
10	RF4	RF Throw Port 4. No dc blocking capacitor is required when the RF line potential is equal to 0 Vdc . See Figure 4 for the interface schematic.
14	RF3	RF Throw Port 3. No dc blocking capacitor is required when the RF line potential is equal to 0 Vdc . See Figure 4 for the interface schematic.
18	RF2	RF Throw Port 2. No dc blocking capacitor is required when the $R F$ line potential is equal to 0 Vdc . See Figure 4 for the interface schematic.
22	RF1	RF Throw Port 1 . No dc blocking capacitor is required when the $R F$ line potential is equal to 0 Vdc . See Figure 4 for the interface schematic.
24	$\begin{aligned} & \text { V2 } \\ & \text { EPAD } \end{aligned}$	Control Input 2. See Table 7 for the truth table and Figure 5 for the interface schematic. Exposed Pad. The exposed pad must be connected to the RF and dc ground.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INTERFACE SCHEMATICS

Figure 4. RFC and RF1 to RF4 Pin Interface Schematic

Figure 5. V1 and V2 Pin Interface Schematic

Figure 6. EN and LS Pin Interface Schematic

Figure 7. VDD Pin Interface Schematic

Figure 8. VSS Pin Interface Schematic

ADRF5050

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}, \mathrm{LS}, E N, \mathrm{~V}_{1}$, or $\mathrm{V}_{2}=0 \mathrm{~V}$ or V_{DD}, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted.

Figure 9. Insertion Loss for RFC to RFx On vs. Frequency

Figure 10. Insertion Loss for RFC to RF1 On vs. Frequency over Temperatures

Figure 11. Return Loss for RFC to RFx Path On vs. Frequency

Figure 12. Return Loss for RFC to RFx Path On vs. Frequency

Figure 13. Return Loss for RFx Off vs. Frequency, RFC to RFx Path Off

Figure 14. Isolation for RFC to RFx Off vs. Frequency, RFC to RF1 Path On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Isolation for RFC to RFx Off vs. Frequency, RFC to RF2 Path On

Figure 16. Isolation for RFC to RFx Off vs. Frequency, RFC to RF3 Path On

Figure 17. Isolation for RFC to RFx Off vs. Frequency, RFC to R4 Path On

Figure 18. Channel to Channel Isolation vs. Frequency, RFC to RF1 Path On

Figure 19. Channel to Channel Isolation vs. Frequency, RFC to RF2 Path On

Figure 20. Channel to Channel Isolation vs. Frequency, RFC to RF3 Path On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 21. Channel to Channel Isolation vs. Frequency, RFC to RF4 Path On

ADRF5050

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}, \mathrm{LS}, E N, \mathrm{~V}_{1}$, or $\mathrm{V}_{2}=0 \mathrm{~V}$ or V_{DD}, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted.

Figure 22. Input P0.1dB vs. Frequency

Figure 23. Input IP3 vs. Frequency

Figure 24. Input P0.1dB vs. Frequency, Low Frequency Detail

Figure 25. Input IP3 vs. Frequency, Low Frequency Detail

ADRF5050

THEORY OF OPERATION

The ADRF5050 integrates a driver to perform logic functions internally and to provide the user with the advantage of a simplified CMOS-ILVTTL-compatible control interface. The driver features four digital control input pins (EN, LS, V1, and V2) that control the state of the RFx paths. See Table 7.
The LS input allows the user to define the control input logic sequence for the RF path selections. The logic level applied to the V1 and V2 pins determines which RF port is in the insertion loss state while the other three paths are in the isolation state.

When the EN pin is logic high, all four RF paths are in isolation state regardless of the logic state of $\mathrm{LS}, \mathrm{V} 1$, and V 2 . The RF ports are terminated to internal 50Ω resistors, and RFC becomes reflective.

RF INPUT AND OUTPUT

All of the RF ports (RFC, RF1 to RF4) are dc-coupled to 0 V , and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V . The RF ports are internally matched to 50 Ω. Therefore, external matching networks are not required.

The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The switch design is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RF throw port. The isolation paths provide high loss between the insertion loss path and the unselected RF throw ports that are terminated to internal 50Ω resistors.

POWER SUPPLY

The ADRF5050 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin.

Bypassing capacitors are recommended on the supply lines to minimize RF coupling.
The ideal power-up sequence is as follows:

1. Connect GND to ground.
2. Power up VDD and VSS. Powering up VSS after VDD avoids current transients on VDD during ramp up.
3. Apply a control voltage to the digital control inputs ($\mathrm{EN}, \mathrm{LS}, \mathrm{V} 1$, and V2). Applying a control voltage to the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. Use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the control pin in such cases. If the control pins are not driven to a valid logic state (that is, the controller output is in a high impedance state) after VDD is powered up, it is recommended to use a pull-up or pull-down resistor.
4. Apply an RF input signal.

The ideal power-down sequence is the reverse order of the powerup sequence.

SINGLE-SUPPLY OPERATION

The ADRF5050 can operate with a single positive supply voltage applied to the VDD pin and VSS pin connected to ground. However, some performance degradations can occur in the input compression and input third-order intercept.

Table 7. Control Voltage Truth Table

Digital Control Inputs									RFx Paths
EN	LS	V1	V2	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4		
Low	Low	Low	Low	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)		
Low	Low	High	Low	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)		
Low	Low	Low	High	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)		
Low	Low	High	High	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)		
Low	High	Low	Low	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)		
Low	High	High	Low	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)		
Low	High	Low	High	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)		
Low	High	High	High	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)		
High	Low or high	Low or high	Low or high	Isolation (off)	Isolation (off)	Isolation (off)	Isolation (off)		

APPLICATIONS INFORMATION

The ADRF5050 has two power supply pins (VDD and VSS) and four control pins (LS, EN, V1, and V2). Figure 26 shows the external components and connections for the supply and control pins. The supply and control pins are decoupled with 100 pF multilayer ceramic capacitor. Place the decoupling capacitors as close as possible to the ADRF5050. The device pinout allows the placement of the decoupling capacitors close to the ADRF5050. No other external components are needed for bias and operation, except DC blocking capacitors on the RFx pins when the RF lines are biased at a voltage different than 0 V . Refer to Pin Configuration and Function Descriptions section for details.

Figure 26. Recommended Schematic

RECOMMENDATIONS FOR PRINTED CIRCUIT BOARD DESIGN

The RF ports are matched to 50Ω internally and the pinout is designed to mate a coplanar waveguide (CPWG) with a 50Ω characteristic impedance on the PCB. Figure 27 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003 dielectric material. RF trace with 14 mil width and 7 mil clearance is recommended for 1.5 mil finished copper thickness.

Figure 27. Example PCB Stack Up
Figure 28 shows the routing of the RF traces, supply, and control signals from the ADRF5050. The ground planes are connected with as many filled, through vias as allowed for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.

Figure 28. PCB Routings
Figure 29 shows the recommended layout from the device $R F$ pins to the 50Ω CPWG on the referenced stack-up. PCB pads are drawn 1:1 to device pads. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width by 2 mils and tapered to RF trace with 45° angle. The paste mask is also designed to match the pad without any aperture reduction. The paste is divided into multiple openings for the paddle.

Figure 29. Recommended RF Pin Transitions
For alternate PCB stack-ups with different dielectric thickness and CPWG design, contact Analog Devices, Inc., Technical Support Request for further recommendations.

OUTLINE DIMENSIONS

Figure 30. 24-Terminal Land Grid Array [LGA]
(CC-24-16)
Dimensions shown in millimeters
Updated: February 04, 2023
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Packing Quantity	Package Option
ADRF5050BCCZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24 -Terminal Land Grid Array [LGA]	Reel, 500	CC-24-16 ADRF5050BCCZN-R7
	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24 -Terminal Land Grid Array [LGA]	Reel, 500	CC-24-16

1 Z = RoHS Compliant Part.

EVALUATION BOARDS

Model 1	Description
ADR5050-EVALZ	Evaluation Board
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.	

