
Introduction

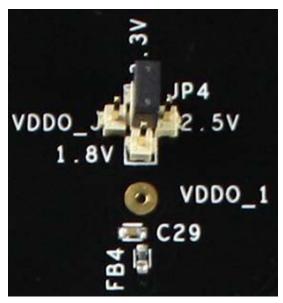
The evaluation board is designed to help the customer evaluate the 5P49V60, 5P49V6965 and 5P49V6975 devices. When the board is connected to a PC running IDT <u>Timing Commander</u>™ software through USB, the device can be configured and programmed to generate different combinations of frequencies. The 5P49V60 and 5P49V6965 use an external crystal, and the 5P49V6975 has an integrated crystal. The devices are pin-compatible and can use the same board.

Board Overview

Use Figure 1 and Table 1 to identify: power supply jacks, USB connector, input and output frequency SMA connectors.

Figure 1. Evaluation Board Overview

Table 1. Evaluation Board Pins and Functions


Label Number	Name	On-board Connector Label	Function
1	Output 0	J3	Single-ended LVCMOS clock output.
2	Output 1	J6, J7	Differential clock output.
3	VDDO_0	JP2	Power supply voltage selector for Output 0.
4	VDDO_1	JP4	Power supply voltage selector for Output 1.
5	Output 2	J9, J10	Differential clock output.
6	CLKIN Sens	J1, J5	Differential input clock, Sens output.
7	VDDO_2	JP6	Power supply voltage selector for Output 2.
8	CLKIN Input	J2, J4	Differential clock output.
9	5P49V60/6965/6975	U1	Evaluation device.
10	VDDO_3	JP13	Power supply voltage selector for Output 3.
11	Ground Jack	J17	Ground jack for external power supply.
12	XIN	J6	Input for overdriving XIN pin.
13	Aardvark Connector	JP1	For Aardvark connection.
14	I ² C Control Jumpers	J18, J19, J20, J21	 4 Jumpers to configure source of I²C: Use on-board USB to I²C bridge. Use Aardvark adapter. Disconnect I²C to allow SEL0/1 switching.
15	VDDA/D	JP3	Power supply selector for VDDA and VDDD.
16	Output 3	J11, J13	Differential clock output.
17	USB Interface	J18	Used for connection with a PC and for interaction with the IDT Timing Commander software.
18	VDD Jacks	J15, J16	VDD jacks for external power supply.
19	DIP Switch	U2	S1: Output Enable (OE/SD). S2: SEL0. S3: SEL1. S8: SEL [1:0]; default: I ² C mode.
20	VDDO_4	JP8	Power supply voltage selector for Output 4.
21	Output 4	J12, J14	Differential clock output.

Board Power Supply

The voltage for each of the four V_{DDO} pins can be selected with jumpers. In the 5-pin configuration, the center pin is connected to the V_{DDO} pin on the device. The four pins around it are connected to different power sources. A jumper connects the V_{DDO} pin to a power source of choice.

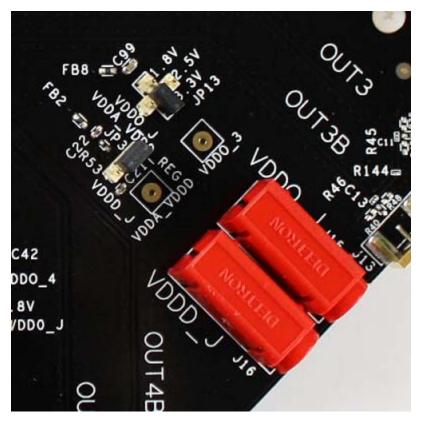
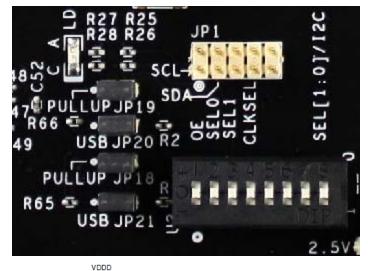


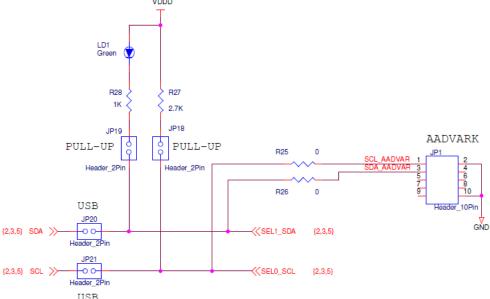
Figure 2. VDDO_1 Voltage Selector

In Figure 2, the voltage for VDDO_1 is chosen to be 3.3V. Move the jumper to the right side to select 2.5V, to the bottom to select 1.8V or to the left to select the VDDO_J Jack. The 3.3V, 2.5V and 1.8V are from on-board regulators that get their power from the USB connector. The VDD jacks are for connecting to a bench power supply.

Figure 3. VDDA/D Power Source Selector

JP3 selects the power source for the V_{DDD} and V_{DDO} pins between an on-board 3.3V regulator and the VDDD_J Jack for a bench power supply. In Figure 3, the source for V_{DDD} and V_{DDO} is chosen to be the on-board 3.3V regulator.


Connecting the Board to a Computer

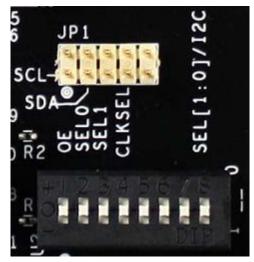

The evaluation board can be connected to a computer with the USB connector. The on-board USB-to- I^2C bridge (FTDI chip) does the data communication and the +5V in the USB bus powers the on-board regulators. Using a bench power supply with the V_{DD} jacks is optional. The board can fully function with just the USB cable to a computer.

IDT's Timing Commander software can control the VersaClock 6E device on the board. Timing Commander is compatible with both the on-board USB-to-I²C bridge and the Aardvark adapter. Timing Commander displays a block diagram where you can enter the configuration. You can then program that configuration into the VersaClock 6E device on the board where Timing Commander defines the proper hex-code sequence to program into the device.

The jumpers J18, J19, J20 and J21 configure the I²C configuration.

Figure 4. Configure I²C Operation

Labels "SDA" and "SCL" to the left in the schematic connect to the USB-to-I²C bridge chip. When using an Aardvark or when operating the SEL0/1 switches, jumpers JP20 and JP21 need to be removed to disconnect the USB-to-I²C bridge. Labels "SEL1_SDA" and "SEL0_SCL" to the right in the schematic are the SEL1/SDA and SEL0/SCL pins on the VersaClock 6E device.


Table 2. Configure I²C Operation

Function	JP18	JP19	JP20	JP21
Uses on-board USB-to-I ² C bridge.	Yes	Yes	Yes	Yes
Uses Aardvark or other adapter connected to JP1. The adapter has its own pull-ups enabled.	No	No	No	No
Uses Aardvark or other adapter connected to JP1. The adapter does not have pull-ups, or, has them disabled.	Yes	Yes	No	No
Operates the SEL0 and SEL1 switches.	No	No	No	No

U2 Switch Operation

The DIP switch block U2 has 8 switches, of which 5 are used.

Figure 5. U2 Switches

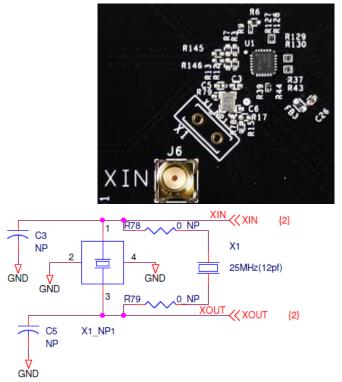
The switches connect to pins on the VersaClock 6E devices. The middle position leaves the pin open. This is the default for each switch. Move to the "+" side to pull the pin high and move to the "-" side to pull the pin low.

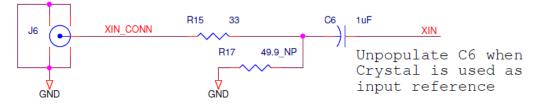
- Switch 1 = OE: Connects to the SD/OE pin for output enable or shut-down operation.
- Switch 2 = SEL0: Connects to the SEL0/SCL pin. The main purpose of this switch is to operate SEL0 when the device has started in hardware select mode. This switch can also be used to add an extra pull-up (10kΩ) on the SCL line for I²C operation.
- **Switch 3 = SEL1**: Connects to the SEL1/SDA pin. The main purpose of this switch is to operate SEL1 when the device has started in hardware select mode. This switch can also be used to add an extra pull-up $(10k\Omega)$ on the SDA line for l^2C operation.
- **Switch 4 = CLKSEL**: Connects to the CLKSEL pin for selecting between crystal input or CLKIN differential clock input.

Switch 8: Pulls on the OUT0_SELB_I2C pin on the device to select the operation mode at power-up. The state of the OUT0_SELB_I2C pin is latched at power-up. The operation mode effectively sets the function of the SEL0/SCL and SEL1/SDA pins. The OUT0_SELB_I2C pin has an on-chip pull-down so switch 8 in the center or "-" position has the same effect and results in startup with the I²C mode. In I²C mode, the two pins have the SDA and SCL function for I²C operation. With the switch in the "+" position, the device will start in Hardware Select mode. In Hardware Select mode, the two pins have the SEL0 and SEL1 function for selecting a preprogrammed configuration.

Operating Modes

As explained above at switch 8, the VersaClock 6E device can start up in two different operating modes: I²C mode or Hardware Select mode. The evaluation board is shipped with a "blank" VersaClock 6E device, without configurations pre-programmed into OTP. Without configurations pre-programmed, the Hardware Select mode cannot be used. The "blank" device will start with a default or "test" configuration where output 0 and output 1 are enabled. Output 0 will be 25MHz and output 1 will be 100MHz with LVCMOSD logic. You can then program a configuration into the device into volatile registers with Timing Commander to test a configuration. This works without "burning" the permanent OTP memory and most users of this evaluation board will never burn OTP. This way the board can be used again and again to test configurations. Burning configurations into OTP is only useful when studying the Hardware Select mode and the transition from one configuration to another.


Note: Burning configurations into OTP is permanent and cannot be undone.



On-board Crystal

A 25MHz crystal is installed on the board with the 5P49V60 and 5P49V6965. If the evaluation board is assembled with a 5P49V6975, no crystal is assembled because the crystal is integrated in the device. The crystal pins on the 5P49V6975 are NC (no connect).

Figure 6. Crystal Circuit

The board is shipped with a small 25MHz SMD crystal installed. The crystal can be replaced with a different frequency if needed. Note that Output 1 with the default or "test" mode will only work when using a 25MHz crystal.

A thru-hole crystal can be assembled in the X1 position. Remove the small 25MHz crystal and also assemble the resistors R78 and R79 to connect the thru-hole crystal.

Another useful modification can be to remove the 25MHz crystal and assemble C6 to connect the SMA connector J6. Now a clock from a generator or other source can be used to drive the XIN pin. Also assemble R17 when termination of the external clock is needed. Please look up the requirements for the XIN amplitude in the device datasheet. Essentially, the amplitude on XIN should not exceed 1.2Vpp and we recommend using 1.0Vpp for most tests. When doing phase noise measurements of the output clocks, use a very low noise clock for XIN. The best phase noise at the outputs is achieved when using a crystal. Only the very best of low noise RF signal generators connected to XIN can result in the same phase noise performance.

Configuration and Setup

- 1. Set SEL pin (pin 8) of DIP switch (U2) to "O" to select I²C mode.
- 2. Connect J18 to a USB port of the PC, using the supplied I^2C cable.
- 3. Launch VersaClock 6E Timing Commander software (refer to VersaClock 6E Timing Commander User Guide).
- 4. Following the Getting Started steps in the Timing Commander software, an I²C connection is established between the GUI software and the VersaClock 6E chip.
- 5. Select "Open Settings File" if you have existing settings or "New Settings File" and select the VersaClock 6E device depending on your evaluation board. In the same screen, browse for a personality file, by clicking on the button at the bottom right, to be used with the evaluation board.
- 6. Connect to the EVB by clicking on the microchip icon located at the top right of the Timing Commander screen.

7. Once connected, new options will be available on a green background indicating that the EVB has successfully connected with the board. Write settings to the chip by clicking on the write all registers to the chip option.

8. All intended outputs should now be available for measurement.

Schematics

Evaluation board schematics are shown on the following pages.

Figure 7. VersaClock 6E Evaluation Board Schematics - page 1

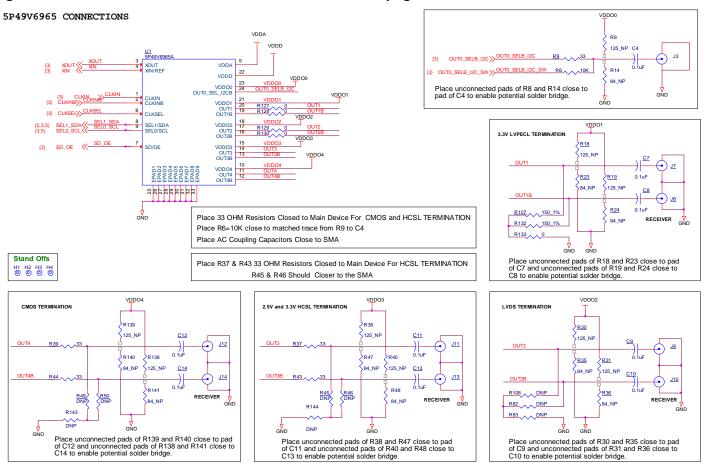


Figure 8. VersaClock 6E Evaluation Board Schematics - page 2

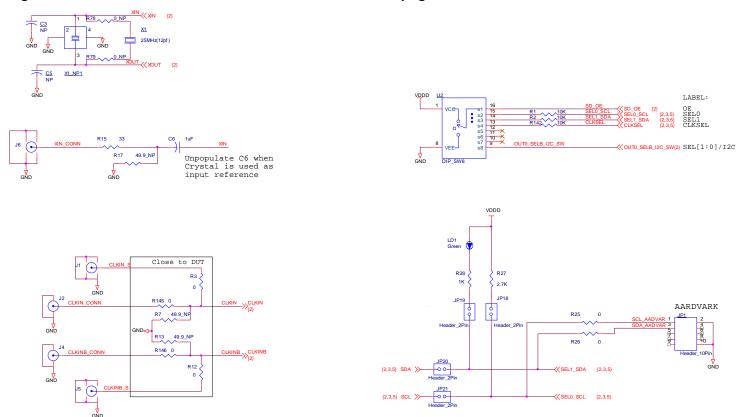


Figure 9. VersaClock 6E Evaluation Board Schematics - page 3

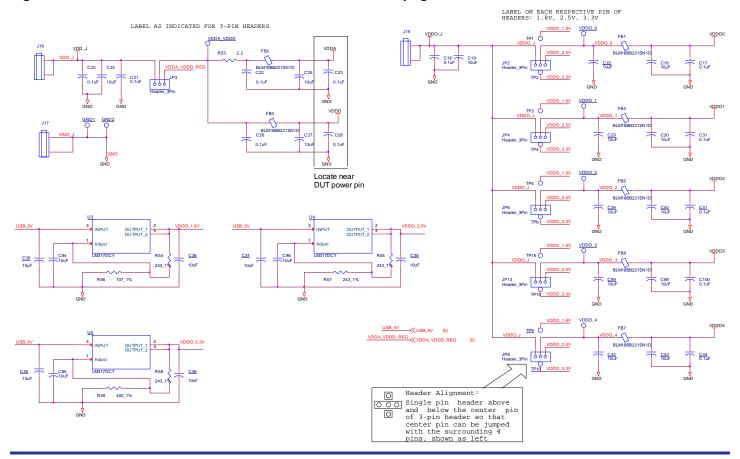
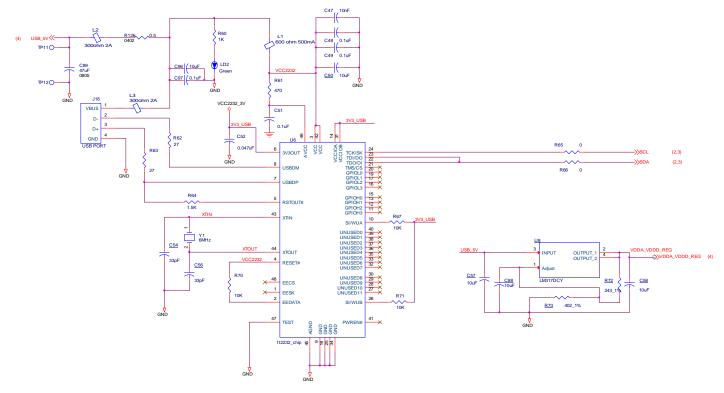
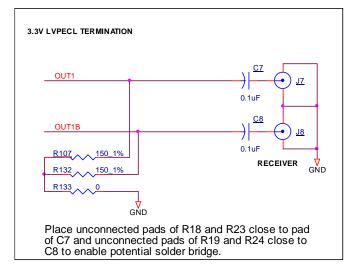
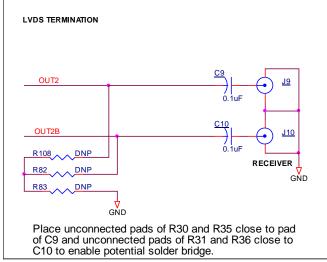
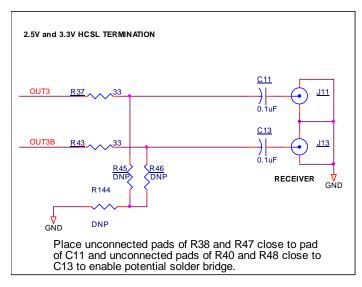



Figure 10. VersaClock 6E Evaluation Board Schematics - page 4


Signal Termination Options


Termination options for OUT1–4 for the VersaClock 6E evaluation board are displayed in Figure 11. The termination circuits are designed to optionally terminate the output clocks in LVPECL, LVDS, LVCMOS and HCSL signal types by populating (or not populating) some resistors. DC or AC coupling of these outputs is also supported.


Table 3 through Table 6 tabulate component installations to support LVPECL, HCSL, LVCMOS and LVDS signal types for OUT1–4 on the VersaClock 6E evaluation board. Note that by doing so, the output signals will be measured and terminated by test equipment with a 50Ω internal termination.

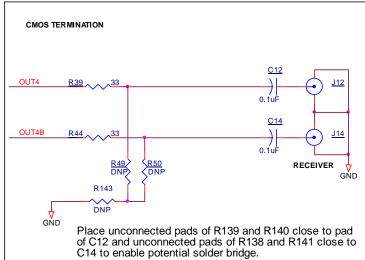


Figure 11. VersaClock 6E Output Termination Options

Table 3. Termination Options for Output 1

Signal Type	Series Resistors: R127, R128	150Ω Pull-down: R107, R132, R133	Series Capacitor: C7, C8
LVPECL	ΟΩ	Installed (see Figure 11)	0.1µF
HCSL ¹	33Ω	Not installed	0Ω (short)
LVCMOS	33Ω	Not installed	0.1µF
LVDS	0Ω	Not installed	0.1µF

Table 4. Termination Options for Output 2

Signal Type	Series Resistors: R129, R130	150Ω Pull-down: R108, R82, R83	Series Capacitor: C9, C10
LVPECL	ΟΩ	Installed (see Figure 11)	0.1µF
HCSL ¹	33Ω	Not installed	0Ω (short)
LVCMOS	33Ω	Not installed	0.1µF
LVDS	Ω0	Not installed	0.1µF

Table 5. Termination Options for Output 3

Signal Type	Series Resistors: R37, R43	150Ω Pull-down: R45, R46, R144	Series Capacitor: C11, C13
LVPECL	Ω0	Installed (see Figure 11)	0.1µF
HCSL ¹	33Ω	Not installed	0Ω (short)
LVCMOS	33Ω	Not installed	0.1µF
LVDS	0Ω	Not installed	0.1µF

Table 6. Termination Options for Output 4

Signal Type	Series Resistors: R39, R44	150Ω Pull-down: R49, R50, R143	Series Capacitor: C12, C14
LVPECL	ΟΩ	Installed (see Figure 11)	0.1µF
HCSL ¹	33Ω	Not installed	0Ω (short)
LVCMOS	33Ω	Not installed	0.1µF
LVDS	0Ω	Not installed	0.1µF

^{1.} The default configuration of the evaluation board is the HCSL termination scheme. This scheme allows for quick measurements of every logic type without modification of the evaluation board. When using the unmodified board with equipment that has AC coupled inputs, like a spectrum analyzer or phase noise test set, use a 3dB or 6dB attenuator to facilitate a DC path to ground and to allow the output driver to toggle. This is only needed with LVPECL and HCSL logic.

Ordering Information

Orderable Part Number	Description
5P49V60-EVK	5P49V60 evaluation board.
5P49V6965-EVK	5P49V6965 evaluation board.
5P49V6975-EVK	5P49V6975 evaluation board.

Revision History

Revision Date	Description of Change
February 12, 2018	Added references to 5P49V60.
December 15, 2017	Initial release.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/