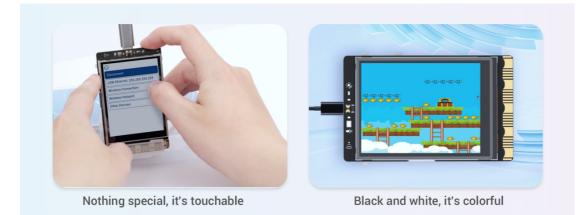
INTRODUCTION

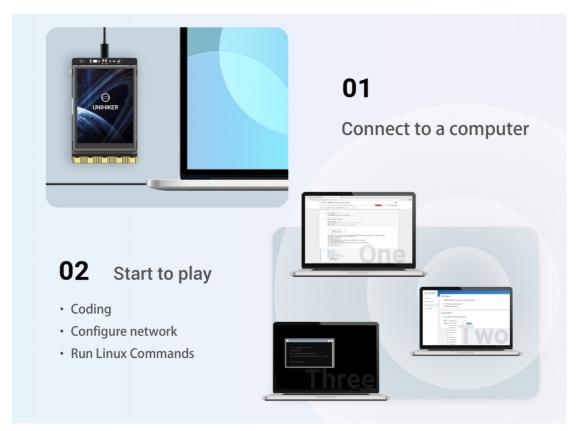
UNIHIKER is a single-board computer that brings you brand new experience. It features a 2.8-inch touchscreen, Wi-Fi and Bluetooth. It is equipped with light sensor, accelerometer, gyroscope and microphone. With built-in co-processor, it is able to communicate with various analog/digital/I2C/UART/SPI sensors and acuators.

UNIHIKER brings a whole new experience for developers with its pre-installed software, allowing for an incredibly fast and easy start. Featuring a built-in Jupyter Notebook (a browser-based programming environment), developers can program the single board computer using a smartphone or tablet.

Of course, just like other single board computers, UNIHIKER supports VS Code, VIM, and Thonny. The integrated PinPong control library allows developers to directly control UNIHIKER's built-in sensors and hundreds of connected sensors and actuators using Python.


The built-in SIoT service on UNIHIKER allows users to store data through the MQTT protocol and provides real-time web data access. The best part is that all data is stored within the device itself.

Compact, feature-rich, and user-friendly, UNIHIKER offers an innovative development experience for learning, coding, and creating. Unleash your imagination and embark on a new journey with UNIHIKER.



Built-in 2.8-inch Touch Screen

Enables you to visualize sensor data in the form of charts, graphs, and even dynamic animations.

Incredibly Fast and Easy Start

Using Python to Sense and Control

Software

The integrated PinPong control library allows developers to directly control hundreds of sensors and actuators using Python.

Hardware

With built-in co-processor, it is able to communicate with various analog/digital/I2C/UART/SPI sensors and acuators.

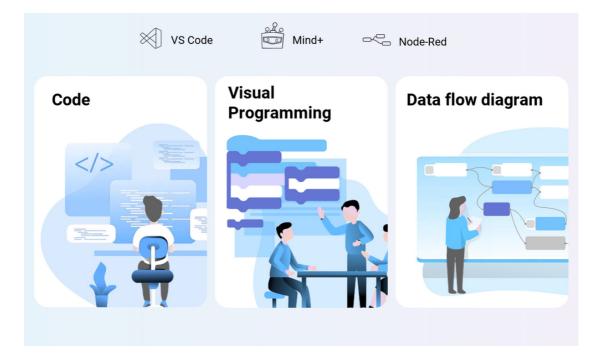
Built-in IoT service

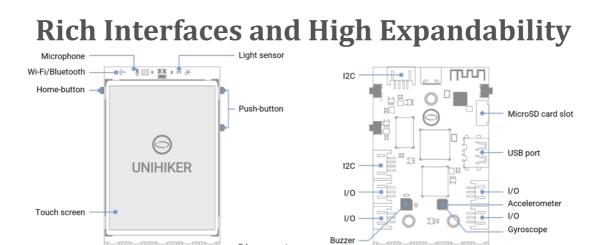
01 IoT Service

The built-in IoT service on UNIHIKER allows users to store data through the MQTT protocol and provides real-time data access via web browser.

All data is stored on-device.

02 On-Device data


Can be Programmed Wirelessly


UNIHIKER can be programmed from a computer, an iPad, even a phone.

It also supports Hotspot, you can play it from anywhere.

Supports Popular Coding Software

Edge connector

APPLICATIONS

AloT

Robot

STEM

SPECIFICATION

- CPU: Quad-Core ARM Cortex-A35, up to 1.2GHz
- RAM: 512MB
- Flash: 16GB
- OS: Debian
- Wi-Fi: 2.4G
- BT: Bluetooth 4.0
- Screen: 2.8inch, 240×320, Touch Screen
- MCU: GD32VF103
- Sensor: Button, Microphone, Light Sensor, Accelerometer Sensor, Gyroscope Sensor
- Actuator: Led, Buzzer
- Port: USB Type-C, USB-A, Gravity 3pin&4pin port, Edge connector

- Power: 5V 2A for USB Type-C
- Size: 51.6mmx83mmx13mm

PROJECTS

1. Project: How to Make a Fruit Classification Project with UNIHIKER

Introduction: UNHIKER supports running machine learning, neural networks, and other AI-related Python libraries. With its ability to process image information, it is perfect for computer vision applications. In this tutorial, we will implement a fruit classification project using UNIHIKER and a USB camera.

2. Project: How to Build an Intelligent Car System with UNIHIKER

Introduction: Equipped with a variety of on-board hardware and expansion interfaces, UNIHIKER can control a wide range of sensors and actuators with ease. In this tutorial, we will demonstrate the implementation of an intelligent car system using UNIHIKER and Gravity modules.

DOCUMENTS

- Getting Started
- Product wiki
- FAQ
- Website
- UNIHIKER Graphical Python Tutorial
- CE Certifications
- FCC Certifications
- RoHS Certifications

SHIPPING LIST

- UNIHIKER Single Board Computer x1
- Type-C USB cable x1
- Double Sided PH2.0-3P white 20cm silicone wire x4
- Double Sided PH2.0-4P white 20cm silicone wire x2