PXI-5421 Specifications

Contents

PXI-5421 Specifications	7
NI JTZI JDECINCALIONS	_

PXI-5421 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Nominal** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted:

- Ambient temperature range of 0 °C to 55 °C
- Analog filter enabled
- Interpolation set to maximum allowed factor for a given sample rate
- Signals terminated with 50 Ω
- Direct path set to 1 Vpk-pk
- Low-gain amplifier path set to 2 Vpk-pk
- High-gain amplifier path set to 12 Vpk-pk
- Sample Clock set to 100 MS/s

Typical specifications are valid under the following conditions unless otherwise noted:

Ambient temperature range of 23 ±5 °C

CH 0 Analog Output

Number of channels	1
Connector type	SMB jack

Output Voltage

Full-scale voltage	
Main output path	12.00 V pk-pk to 5.64 mV pk-pk into a 50 Ω load
Direct output path	1.000 V pk-pk to 0.707 V pk-pk
DAC resolution	16 bits

Amplitude and Offset

Table 1. Amplitude Range

Path Load	Amplitude (V pk-pk)		
	Minimum	Maximum	
Direct	50 Ω	0.707	1.00
	1 kΩ	1.35	1.91
	Open	1.41	2.00
Low-gain amplifier	50 Ω	0.00564	2.00
	1 kΩ	0.0107	3.81
	Open	0.0113	4.00
High-gain amplifier	50 Ω	0.0338	12.0
	1 kΩ	0.0644	22.9
	Open	0.0676	24.0

Amplitude resolution	<0.06% (0.004 dB) of Amplitude Range
Offset range	Span of ±25% of Amplitude Range with increments <0.0014% of Amplitude Range

Accuracy

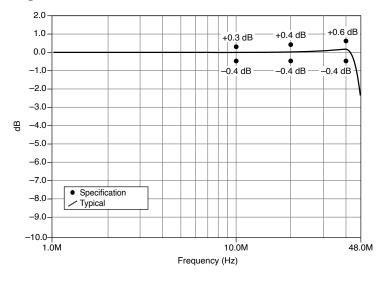
Table 2. DC Accuracy

Path	DC Accuracy	DC Accuracy		
	±10 °C of Self-Ca Temperature	alibration	0 °C to 55 °C	
Low-gain amplifier	±0.2% of Ampli		$\pm 0.4\%$ of Amplitude Range $\pm 0.05\%$ of Offset ± 1 mV	
High-gain amplifier	0.05% of Offset	± 500 μV		
Direct	±0.2% Amplitud	de Range	±0.4% Amplitude Range	
DC offset error		±30 mV		

(+2.0% + 1 mV), (-1.0% - 1 mV) AC amplitude accuracy (+0.8% + 0.5 mV), (-0.2% - 0.5 mV), typical

Output

Output impedance	Software-selectable: 50 Ω or 75 Ω , nominal
Load impedance compensation	Output amplitude is compensated for user- specified load impedances
Output coupling	DC
Output enable	Software-selectable


Maximum output overload	CH 0 can be connected to a 50 Ω , ±12 V (±8 V for the direct path) source without sustaining any damage.
Waveform summing	Supported

Frequency and Transient Response

Bandwidth	43 MHz
Digital interpolation filter	Software-selectable: Finite impulse response (FIR) filter. Available interpolation factors are 2, 4, or 8.
Analog filter	Software-selectable: 7-pole elliptical filter
Passband flatness	
Direct path	-0.4 dB to +0.6 dB, 100 Hz to 40 MHz
Low-gain amplifier path	-1.0 dB to +0.5 dB, 100 Hz to 20 MHz
High-gain amplifier path	-1.2 dB to +0.5 dB, 100 Hz to 20 MHz
Pulse response	
Direct path	
Rise/fall time	<5 ns
	<4.5 ns, typical
Aberration	<10%, typical
Low-gain amplifier path	

Rise/fall time	<8 ns	
	<7 ns	
	<5.5 ns, typical	
Aberration	<5%, typical	
High-gain amplifier path		
Rise/fall time	<10 ns	
Aberration	<5%, typical	

Figure 1. Normalized Passband Flatness, Direct Path

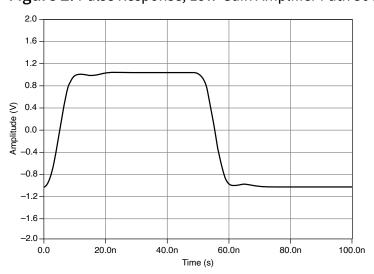


Figure 2. Pulse Response, Low-Gain Amplifier Path 50 Ω Load

Suggested Maximum Frequencies for Common Functions

Suggested maximum frequencies		
Direct path		
43 MHz		
Not recommended		
Not recommended		
Not recommended		
Low-gain amplifier path		
43 MHz		
25 MHz		
5 MHz		
5 MHz		

High-gain amplifier path		
Sine	43 MHz	
Square	12.5 MHz	
Ramp	5 MHz	
Triangle	5 MHz	

Spectral Characteristics

Table 3. Spurious-Free Dynamic Range (SFDR) with Harmonics

Frequency	SFDR with Harmonics (dB), Typical			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
1 MHz	70	65	66	
5 MHz			58	
10 MHz			52	
20 MHz	63	64	49	
30 MHz	57	60	43	
40 MHz	48	53	39	
50 MHz				
60 MHz	47	52		
70 MHz				
80 MHz	41			

Table 4. Spurious-Free Dynamic Range (SFDR) without Harmonics

Frequency	SFDR without Harmonics (dB), Typical			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
1 MHz	84	79	76	
5 MHz				

Frequency	SFDR without Harmonics (dB), Typical		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
10 MHz	79		
20 MHz			
30 MHz	72	70	67
40 MHz	47	57	54
50 MHz		52	_
60 MHz	46	51	
70 MHz			
80 MHz	40		

Table 5. Average Noise Density, Direct Path

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
1.00 V pk-pk	4.0 dBm	19.9	-141	-145

Table 6. Average Noise Density, Low-Gain Amplifier Path

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
0.06 V pk-pk	-20.5 dBm	1.3	-148	-144
0.10 V pk-pk	-16.0 dBm	2.2		
0.40 V pk-pk	-4.0 dBm	8.9		
1.00 V pk-pk	4.0 dBm	22.3	-140	
2.00 V pk-pk	10.0 dBm	44.6	-134	

Table 7. Average Noise Density, High-Gain Amplifier Path

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
4.00 V pk-pk	16.0 dBm	93.8	-128	-144
12.00 V pk-pk	25.6 dBm	281.5	-118	

Figure 3. 10 MHz Single-Tone Spectrum, Direct Path, 200 MS/s, Typical

Figure 4. 10.00001 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 200 MS/s, Typical

Figure 5. Total Harmonic Distortion, Direct Path, Typical

Figure 6. Total Harmonic Distortion, Low-Gain Amplifier Path, Typical

Figure 7. Total Harmonic Distortion, High-Gain Amplifier Path, Typical

Figure 8. Intermodulation Distortion, 200 kHz Separation, Typical

Figure 9. Direct Path, Two-Tone Spectrum, Typical

Signal to Noise and Distortion (SINAD)

All values are typical.

Direct path	
1 MHz	64 dB
10 MHz	61 dB
20 MHz	57 dB
30 MHz	60 dB
40 MHz	60 dB
43 MHz	58 dB
Low-gain amplifier path	<u> </u>
1 MHz	66 dB
10 MHz	60 dB
	T T T T T T T T T T T T T T T T T T T

20 MHz	56 dB
30 MHz	62 dB
40 MHz	62 dB
43 MHz	60 dB
High-gain amplifier path	
1 MHz	63 dB
10 MHz	47 dB
20 MHz	42 dB
30 MHz	62 dB
40 MHz	62 dB
43 MHz	55 dB

Spurious-Free Dynamic Range (SFDR)

All values are typical and include aliased harmonics. Dynamic range is defined as the difference between the carrier level and the largest spur.

SFDR with harmonics		
Direct path		
1 MHz	76 dB	
10 MHz	68 dB	
20 MHz	60 dB	

Direct path		
SFDR without harmonics		
43 MHz	59 dB	
40 MHz	74 dB	
30 MHz	74 dB	
20 MHz	42 dB	
10 MHz	47 dB	
1 MHz	58 dB	
High-gain amplifier path		
43 MHz	75 dB	
40 MHz	73 dB	
30 MHz	73 dB	
20 MHz	57 dB	
10 MHz	64 dB	
1 MHz	71 dB	
Low-gain amplifier path		
43 MHz	78 dB	
40 MHz	76 dB	
30 MHz	73 dB	

1 MHz	87 dB
10 MHz	86 dB
20 MHz	79 dB
30 MHz	72 dB
40 MHz	75 dB
43 MHz	77 dB
Low-gain amplifier path	<u>'</u>
1 MHz	90 dB
10 MHz	88 dB
20 MHz	88 dB
30 MHz	72 dB
40 MHz	72 dB
43 MHz	74 dB
High-gain amplifier path	
1 MHz	90 dB
10 MHz	90 dB
20 MHz	88 dB
30 MHz	73 dB

40 MHz	73 dB
43 MHz	59 dB

Total Harmonic Distortion (THD)

THD (0 °C to 40 °C)	
Direct path	
20 kHz	-77 dBc, typical
1 MHz	-75 dBc, typical
5 MHz	-68 dBc
10 MHz	-65 dBc
	-66 dBc, typical
20 MHz	-55 dBc
	-61 dBc, typical
30 MHz	-50 dBc
	-57 dBc, typical
40 MHz	-47 dBc
	-54 dBc, typical
43 MHz	-46 dBc
	-53 dBc, typical
Low-gain amplifier path	

20 kHz	-77 dBc, typical	
1 MHz	-70 dBc, typical	
5 MHz	-68 dBc	
10 MHz	-61 dBc	
	-66 dBc, typical	
20 MHz	-53 dBc	
	-61 dBc, typical	
30 MHz	-48 dBc	
	-57 dBc, typical	
40 MHz	-46 dBc	
	-54 dBc, typical	
43 MHz	-45 dBc	
	-53 dBc, typical	
High-gain amplifier path		
20 kHz	-77 dBc, typical	
1 MHz	-62 dBc, typical	
5 MHz	-55 dBc	
10 MHz	-46 dBc	

-76 dBc, typical -74 dBc, typical -67 dBc -63 dBc
-74 dBc, typical -67 dBc
-67 dBc
-63 dBc
-54 dBc
-57 dBc
-48 dBc
-52 dBc
-45 dBc
-50 dBc
-44 dBc
-49 dBc
-76 dBc, typical
-69 dBc, typical
-67 dBc
-60 dBc

20 MHz	-52 dBc	
	-55 dBc	
30 MHz	-46 dBc	
	-50 dBc	
40 MHz	-41 dBc	
	-47 dBc	
43 MHz	-41 dBc	
	-46 dBc	
High-gain amplifier path		
20 kHz	-76 dBc, typical	
1 MHz	-61 dBc, typical	
5 MHz	-54 dBc	
10 MHz	-45 dBc	

Average Noise Density

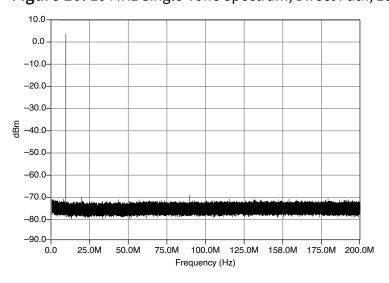
Direct path	
1 Vpk-pk, 4.0 dBm amplitude range	$ \frac{\text{nV}}{\sqrt{\text{Hz}}} $, -142 dBm/Hz, -146.0 dBFS/Hz
Low-gain amplifier path	

0.06 Vpk-pk, -20.4 dBm amplitude range	9
0.1 Vpk-pk, -16.0 dBm amplitude range	9
0.4 Vpk-pk, -4.0 dBm amplitude range	13 <u>nV</u> √Hz , -145 dBm/Hz, -141.0 dBFS/Hz
1 Vpk-pk, 4.0 dBm amplitude range	18 nV √Hz , -142 dBm/Hz, -146.0 dBFS/Hz
2 Vpk-pk, 10.0 dBm amplitude range	35 nV √Hz , -136 dBm/Hz, -146.0 dBFS/Hz
High-gain amplifier path	
4 Vpk-pk, 16.0 dBm amplitude range	71 $\frac{\text{nV}}{\sqrt{\text{Hz}}}$, -130 dBm/Hz, -146.0 dBFS/Hz
12 Vpk-pk, 25.6 dBm amplitude range	213 nV √Hz , -120 dBm/Hz, -145.6 dBFS/Hz

Intermodulation Distortion (IMD)

All values are typical.

Direct path


19.9 MHz and 20.1 MHz	-78 dBc	
34.0 MHz and 35.0 MHz	-75 dBc	
34.8 MHz and 35.0 MHz	-75 dBc	
42.0 MHz and 43.0 MHz	-75 dBc	
42.8 MHz and 43.0 MHz	-75 dBc	
Low-gain amplifier path		
10.2 MHz and 11.2 MHz	-80 dBc	
10.6 MHz and 10.8 MHz	-79 dBc	
19.5 MHz and 20.5 MHz	-66 dBc	
19.9 MHz and 20.1 MHz	-65 dBc	
34.0 MHz and 35.0 MHz	-58 dBc	
34.8 MHz and 35.0 MHz	-58 dBc	
42.0 MHz and 43.0 MHz	-55 dBc	
42.8 MHz and 43.0 MHz	-55 dBc	

10.2 MHz and 11.2 MHz	-62 dBc
10.6 MHz and 10.8 MHz	-61 dBc
19.5 MHz and 20.5 MHz	-54 dBc
19.9 MHz and 20.1 MHz	-50 dBc
34.0 MHz and 35.0 MHz	-51 dBc
34.8 MHz and 35.0 MHz	-51 dBc
42.0 MHz and 43.0 MHz	-51 dBc
42.8 MHz and 43.0 MHz	-50 dBc

Spectrum Performance

The noise floor in the following figures is limited by the measurement device. Refer to Average Noise Density for more information about this limit.

Figure 10. 10 MHz Single-Tone Spectrum, Direct Path, 100 MS/s, Interpolation Factor Set to 4

Figure 11. 10 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 100 MS/s, Interpolation Factor Set to 4

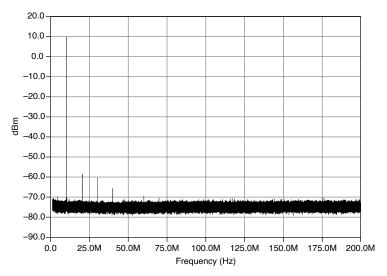
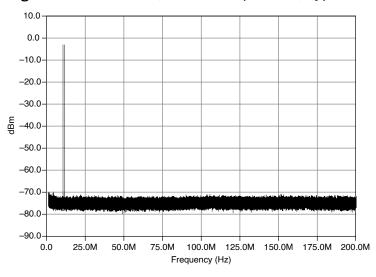



Figure 12. Direct Path, Two-Tone Spectrum, Typical

Sample Clock

Sources	
Internal	Divide-by-N (N ≥ 1)
	DDS-based, High-Resolution

External	CLK IN (SMB front panel connector)
	DDC CLK IN (DIGITAL DATA & CONTROL front panel connector)
	PXI Star Trigger (backplane connector)
	PXI_Trig <07> (backplane connector)

Sample Rate Range and Resolution

Table 8. Sample Rate Range

Sample Clock Source	Sample Rate Range
Divide-by-N	23.84 S/s to 100 MS/s
High-Resolution	10 S/s to 100 MS/s
CLKIN	200 kS/s to 105 MS/s
DDC CLK IN	10 S/s to 105 MS/s
PXI Star Trigger	10 S/s to 105 MS/s
PXI_Trig<07>	10 S/s to 20 MS/s

Table 9. Sample Rate Resolution

Sample Clock Source	Sample Rate Resolution
Divide-by-N	Configurable to $(100 \text{ MS/s})/N(1 \le N \le 4,194,304)$
High-Resolution	1.06 μHz
CLKIN	Resolution determined by external clock source.
DDC CLK IN	External Sample Clock duty cycle tolerance 40% to 60%.
PXI Star Trigger	10 0070.
PXI_Trig<07>	

Effective Sample Rate

(Interpolation factor) * (Sample rate) = Effective sample rate		
Interpolation factor	Sample rate	Effective sample rate
1 (Off)	10 S/s to 105 MS/s	10 S/s to 105 MS/s
2	12.5 MS/s to 105 MS/s	25 MS/s to 210 MS/s
4	10 MS/s to 100 MS/s	40 MS/s to 400 MS/s
8	10 MS/s to 50 MS/s	80 MS/s to 400 MS/s

Sample Clock Delay Range and Resolution

Table 10. Delay Adjustment Range

Sample Clock Source	Delay Adjustment Range
Divide-by-N	±1 Sample Clock period
High-Resolution	
CLKIN	0 ns to 7.6 ns
DDC CLK IN	
PXI Star Trigger	
PXI_Trig <07>	

Table 11. Delay Adjustment Resolution

Sample Clock Source	Delay Adjustment Resolution
Divide-by-N	<10 ps
High-Resolution	Sample Clock period/16,384
CLKIN	<15 ps
DDC CLK IN	
PXI Star Trigger	
PXI_Trig <07>	

System Phase Noise and Jitter (10 MHz Carrier)

System phase noise density offset	

Divide-by-N		
100 Hz	-107 dBc/Hz	
1 kHz	-121 dBc/Hz	
10 kHz	-137 dBc/Hz	
High-Resolution	'	
100 Hz	-109 dBc/Hz	
1 kHz	-121 dBc/Hz	
10 kHz	-123 dBc/Hz	
CLK IN	<u>'</u>	
100 Hz	-111 dBc/Hz	
1 kHz	-122 dBc/Hz	
10 kHz	-135 dBc/Hz	
PXI Star Trigger		
100 Hz	-115 dBc/Hz	
1 kHz	-118 dBc/Hz	
10 kHz	-130 dBc/Hz	
System output jitter (integrated from 100 Hz to 100 kHz)		
Divide-by-N	<1.2 ps rms	
High-Resolution	<4.2 ps rms	

CLK IN	<1.2 ps rms	
PXI Star Trigger	<3.0 ps rms	
External Sample Clock input jitter tolerance		
Cycle-cycle jitter	±300 ps	
Period jitter	±1 ns	

Sample Clock Exporting

Destinations	PFI <01> (SMB front panel connectors)
	DDC CLK OUT (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig <06> (backplane connector)
Maximum frequency	
PFI <01>	105 MHz
DDC CLK OUT	105 MHz
PXI_Trig <06>	20 MHz
Jitter	
PFI 0	6 ps rms, typical
PFI 1	12 ps rms, typical
DDC CLK OUT	40 ps rms, typical
Duty cycle	

PFI <01>	25% to 65%
DDC CLK OUT	40% to 60%

Onboard Clock (Internal VCXO)

Source	Internal Sample Clocks can either be locked to a Reference Clock using a phase-locked loop or derived from the onboard VCXO frequency reference.
Frequency accuracy	±25 ppm

Phase-Locked Loop (PLL) Reference Clock

Sources	PXI_CLK10 (backplane connector) CLK IN (SMB front panel connector)
Frequency accuracy	When using the PLL, the frequency accuracy of the PXI-5421 is solely dependent on the frequency accuracy of the PLL Reference Clock source.
Lock time	200 ms, maximum 70 ms, typical
Frequency range	5 MHz to 20 MHz in increments of 1 MHz
Duty cycle range	40% to 60%
Destinations	PFI <01> (SMB front panel connectors)

PXI_Trig <06> (backplane connector)	

CLK IN

Connector type	SMB jack
Direction	Input
Destinations	Sample Clock
	PLL Reference Clock
Frequency range	
Sample Clock destination and sine waves	1 MHz to 105 MHz
Sample Clock destination and square waves	200 kHz to 105 MHz
PLL Reference Clock destination	5 MHz to 20 MHz
Input voltage range into 50 Ω	
Sine wave	0.65 V pk-pk to 2.8 V pk-pk (0 dBm to +13 dBm)
Square wave	0.2 V pk-pk to 2.8 V pk-pk
Maximum input overload	±10 V
Input impedance	50 Ω
Input coupling	AC

PFI 0 and PFI 1

Connector type	SMB jack (x2)
Direction	Bidirectional
Frequency range	DC to 105 MHz
As an input (trigger)	
Destinations	Start Trigger
Maximum input overload	-2 V to +7 V
VIH	2.0 V
VIL	0.8 V
Input impedance	1 kΩ
As an output (event)	
Sources	Sample Clock divided by integer K (1 ≤ K ≤ 4,194,304) Sample Clock Timebase (100 MHz) divided by integer M (2 ≤ M ≤ 4,194,304) PLL Reference Clock Marker Exported Start Trigger (Out Start Trigger)
Output impedance	50 Ω

Maximum output overload	-2 V to +7 V	
Minimum V OH		
Open load	2.9 V	
50 Ω load	1.4 V	
Maximum V OL		
Open load	0.2 V	
50 Ω load	0.2 V	
Rise/fall time (20% to 80%)	≤2.0 ns	

TClk Synchronization

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

National Instruments TClk synchronization method and the NI-TClk instrument driver are used to align the Sample Clocks on any number of SMC-based modules in a chassis.

- Specifications are valid for any number of PXI modules installed in one PXI-1042 chassis
- All parameters are set to identical values for each SMC-based module
- Sample Clock is set to 100 MS/s, Divide-by-N, and all filters are disabled
- For other configurations, including multichassis systems, contact NI Technical Support at <u>ni.com/support</u>

Skew	500 ps, typical

Average skew after manual adjustment	<10 ps, typical
Sample Clock delay/adjustment resolution	≤10 ps, typical

Note Although you can use NI-TClk to synchronize nonidentical modules, these specifications apply only to synchronizing identical modules.

DIGITAL DATA & CONTROL (DDC)

Connector type	68-pin VHDCI female receptacle
Number of data output signals	16
Control signals	DDC CLK OUT (clock output)
	DDC CLK IN (clock input)
	PFI 2 (input)
	PFI 3 (input)
	PFI 4 (output)
	PFI 5 (output)
Ground	23 pins

Output Signals (Data Outputs, DDC CLK OUT, and PFI <4..5>)

Low-voltage differential signal (LVDS)	
V OH	1.3 V, typical

	1.7 V, maximum
V OL	0.8 V, minimum
	1.0 V, typical
Differential output voltage	0.25 V, minimum
	0.45 V, maximum
Output common-mode voltage	1.125 V, minimum
	1.375 V, maximum
Rise/fall time (20% to 80%)	0.8 ns, typical
	1.6 ns, maximum
Output skew	1 ns, typical
	2 ns, maximum
Output enable/disable	Controlled through the software on all data output signals and control signals collectively. When disabled, the output signals go to a high-impedance state.
Maximum output overload	-0.3 V to +3.9 V

Input Signals (DDC CLK IN and PFI <2..3>)

Signal type	Low-voltage differential signal (LVDS)
Input differential impedance	100 Ω

Maximum output overload	-0.3 V to +3.9 V
Differential input voltage	0.1 V, minimum
	0.5 V, maximum
Input common mode voltage	0.2 V, minimum
	2.2 V, maximum

DDC CLK OUT

Clocking format	Data outputs and markers change on the falling edge of DDC CLK OUT.
Frequency range	Refer to the <u>Sample Clock</u> section for more information.
Duty cycle	40% to 60%
Jitter	40 ps rms

DDC CLK IN

Clocking format	DDC data output signals change on the rising edge of DDC CLK IN.
Frequency range	10 Hz to 105 MHz
Input duty cycle tolerance	40% to 60%
Input jitter tolerances	300 ps pk-pk of cycle-cycle jitter

1 ns rms of period jitter

Start Trigger

PFI<01> (SMB front panel connectors)
PFI<23> (DIGITAL DATA & CONTROL front panel connector)
PXI_Trig<07> (backplane connector)
PXI Star Trigger (backplane connector)
Software (use node or function call)
Immediate (does not wait for a trigger). The default is Immediate.
Single
Continuous
Stepped
Burst
Rising
25 ns
t
43 Sample Clock periods + 110 ns, typical
57 Sample Clock periods + 110 ns, typical

Interpolation factor of 4	63 Sample Clock periods + 110 ns, typical
Interpolation factor of 8	64 Sample Clock periods + 110 ns, typical
Delay from Start Trigger to DDC output	40 Sample Clock periods + 110 ns
Exported trigger destinations	A signal used as a trigger can be routed out to any destination listed in the Destinations specification of the <u>Markers</u> section
Exported trigger delay	65 ns, typical
Exported trigger pulse width	>150 ns

Markers

Destinations	PFI <01> (SMB front panel connectors) PFI <45> (DIGITAL DATA & CONTROL front panel connector) PXI_Trig <06> (backpane connector)
Quantity	One marker per segment
Quantum	Marker position must be placed at an integer multiple of four samples.
Width	>150 ns
Skew with respect to analog output	
PFI <01>	±2 Sample Clock periods

PXI_Trig <06>	±2 Sample Clock periods
Skew with respect to digital data output	
PFI <45>	<2 ns
Jitter	20 ps rms

Arbitrary Waveform Generation Mode

Memory usage	The PXI-5421 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters—such as number of segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage—are flexible and user-defined.
Onboard memory size	
8 MB standard	8,388,608 bytes
32 MB option	33,554,432 bytes
256 MB option	268,435,456 bytes
512 MB option	536,870,912 bytes
Output modes	Arbitrary waveform Arbitrary sequence

Table 12. Minimum Waveform Size

Trigger Mode	Minimum Waveform S	Minimum Waveform Size (Samples)	
	Arbitrary Waveform	Arbitrary Sequence Mod	de
	Mode	At >50 MS/s	At ≤50 MS/s
Single	16		
Continuous	16 samples	96 samples at >50 MS/s	32 samples at ≤50 MS/s
Stepped			
Burst			
Loop count		1 to 16,777,215	
		Burst trigger: Unlimited	
Quantum		Waveform size must be four samples.	an integer multiple of

Memory Limits

Table 13. Maximum Waveform Memory

Onboard Memory	Maximum Waveform Memory (Samples)	
	Arbitrary Waveform Mode	Arbitrary Sequence Mode
8 MB standard	4,194,176	4,194,120
32 MB option	16,777,088	16,777,008
256 MB option	134,217,600	134,217,520
512 MB option	268,435,328	268,435,200

Table 14. Maximum Waveforms in Arbitrary Sequence Mode

Onboard Memory	Maximum Waveforms
	65,000
	Burst trigger: 8,000
32 MB option	262,000
	Burst trigger: 32,000

Onboard Memory	Maximum Waveforms
·	2,097,000
	Burst trigger: 262,000
512 MB option	4,194,000
	Burst trigger: 524,000

 Table 15. Maximum Segments in a Sequence in Arbitrary Sequence Mode

Onboard Memory	Maximum Segments in a Sequence
8 MB standard	104,000
	Burst trigger: 65,000
32 MB option	418,000
	Burst trigger: 262,000
256 MB option	3,354,000
	Burst trigger: 2,090,000
512 MB option	6,708,000
	Burst trigger: 4,180,000

Calibration

Self-calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 75 seconds to complete.
External calibration	External calibration calibrates the VCXO, voltage reference, DC gain, and offset. Appropriate constants are stored in nonvolatile memory.
Calibration interval	Specifications valid within two years of external calibration.
Warm-up time	15 minutes

Power

All values are typical. Overload operation occurs when CH 0 is shorted to ground.

+3.3 VDC		
Typical operation	1.9 A	
Overload operation	2.7 A	
+5 VDC		
Typical operation	2.0 A	
Overload operation	2.2 A	
+12 VDC	1	
Typical operation	0.46 A	
Overload operation	0.5 A	
-12 VDC		
Typical operation	0.01 A	
Overload operation	0.01 A	
Total power		
Typical operation	21.9 W	
Overload operation	26.0 W	

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)

Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
	0 °C to 45 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) when installed in a PXI-101x or PXI-1000B chassis
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-25 °C to 85 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Shock	
Operating	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)

Storage	50 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Physical

Dimensions	3U, one-slot, PXI/cPCI module
	21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.)
Weight	345 g (12.1 oz)

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> Certifications and Declarations section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/product-certifications, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• 🕱 Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国 RoHS)

• ◎ ◎ ● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质 指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/ rohs_china。 (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)