

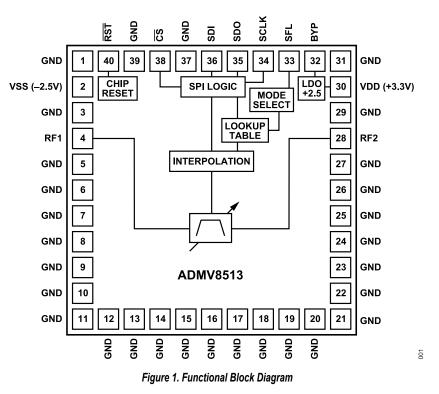
520 MHz to 1300 MHz, Digitally Tunable, Band-Pass Filter

FEATURES

- Digitally tunable, octave, band-pass tuning
- ▶ 3 dB bandwidth: 8.5% ± 2%
- Rejection (20 dB): 17% away from f_{CENTER}
- Single chip replacement for discrete filter banks
- Compact 10.00 mm × 10.00 mm × 2.10 mm LGA package

APPLICATIONS

- Land mobile radios
- Test and measurement equipment
- Military radars and electronic warfare and electronic countermeasures
- Satellite communications
- Industrial and medical equipment


FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADMV8513 is an RF band-pass filter that features a digitally selectable frequency of operation. The filter center frequency ($f_{CEN-TER}$) can be adjusted from 520 MHz to 1300 MHz, using an 8-bit value (256 states) that incorporates a patent pending interpolation technique.

The typical 3 dB bandwidth is 8.5% with narrow-band and wideband options and adjustability is ±2%. Insertion loss is typically 5.5 dB, and the 20 dB rejection is 17% away from f_{CENTER} , which is ideally suited for minimizing system interferers.

This tunable filter can be used as a smaller alternative to large switched filter banks and discrete component-based tunable filters, and this device provides a dynamically adjustable solution in advanced communications applications.

Rev. 0 DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	
Functional Block Diagram	1
Specifications	3
Timing Specifications	4
Absolute Maximum Ratings	5
Electrostatic Discharge (ESD) Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Theory of Operation	10
Chip Architecture	10
RF Connections	10
SPI Configuration	10
Mode Selection	11
SPI Write Mode	
SPI Streaming	

REVISION HISTORY

7/2023—Revision 0: Initial Version

Interpolation Functions	11
Interpolation Equations	12
Interpolation Tables	12
Interpolation Plots	13
Interpolation Coefficient Calibration	13
Filter Code Read Back	14
SPI Fast Latch Mode	14
Chip Reset	14
Applications Information	15
Interpolation Coefficients	15
Printed Circuit Board (PCB) Design	
Guidelines	15
Flow Charts	16
Register Summary	18
Register Details	21
Outline Dimensions	
Ordering Guide	31
Evaluation Boards	31

SPECIFICATIONS

 T_A = 25°C, unless otherwise noted.

Table 1. Specifications

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE (f _{CENTER})	520		1300	MHz	
BANDWIDTH (3 dB)		8.5		%	
BANDWIDTH ADJUSTABILITY		±2		%	
RESOLUTION		1		%	8 bits per filter
REJECTION (20 dB)					
Low-Side		0.84 × f _{CENTER}		MHz	
High-Side		1.17 × f _{CENTER}		MHz	
RE-ENTRY FREQUENCY		>4		GHz	≤30 dB
INSERTION LOSS		5.5		dB	
RETURN LOSS		20		dB	
DYNAMIC PERFORMANCE					
Input Compression (P0.1dB)		25		dBm	
Input Third-Order Intercept (IP3)		46		dBm	Input power (P_{IN}) = 5 dBm, 100 kHz tone separation
Group Delay		9		ns	At f _{CENTER} = 520 MHz
Amplitude Settling Time		4		μs	To within ≤1 dB of static insertion loss
Phase Settling Time		9		μs	To within ≤2° of static phase
Drift Rate					
Amplitude		-0.012		dB/°C	At f _{CENTER} = 927 MHz
Frequency		-66		ppm/°C	At f _{CENTER} = 927 MHz
NOISE FIGURE		5.5		dB	Noise figure = insertion loss
SUPPLY VOLTAGE					
VSS	-2.6	-2.5	-2.4	V	
VDD	+3.2	+3.3	+3.4	V	
SUPPLY CURRENT (STATIC)					
Static					
VSS Current (I _{SS})		2		μA	
VDD Current (I _{DD})		125		μA	
Dynamic					
I _{DD}		f _{SCLK} /4		mA	f _{SCLK} is the SCLK toggle frequency in MHz, for example, continuous serial peripheral interface (SPI) writing at 10 MHz yields 2.5 mA of dynamic supply current
LOGIC (RST, CS, SCLK, SDI, SDO, and SFL)					
Logic Low	-0.3	0	+0.8	V	
Logic High	1.2	3.3	3.6	V	

SPECIFICATIONS

TIMING SPECIFICATIONS

Table 2. Timing Specifications

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
t ₁	10			ns	RST low time to perform reset
	10			ns	SCLK cycle time (write)
t ₂	20			ns	SCLK cycle time (read)
t ₃	2.5			ns	SCLK high time
t ₄	2.5			ns	SCLK low time
t ₅	5			ns	CS falling edge to SCLK rising edge setup time
t ₆	2			ns	SCLK rising edge to hold time
t7	5			ns	Minimum CS high time for latching in data (for multiple SPI transactions)
t ₈	5			ns	CS rising edge to next SCLK rising edge ignore
t ₉	5			ns	SDI data setup time
t ₁₀	2			ns	SDI data hold time
t ₁₁	10			ns	SFL falling edge (exiting SFL mode) to CS falling edge time (start of SPI transaction)
t ₁₂	10			ns	CS rising edge (end of SPI transaction) to SFL rising edge time (entering SFL mode)
t ₁₃	10			ns	SFL rising edge to CS falling edge time
t ₁₄	10			ns	CS cycle time (SFL mode)
t ₁₅	2.5			ns	CS high time (SFL mode)
t ₁₆	2.5			ns	CS low time (SFL mode)
t ₁₇		6		ns	SCLK falling edge to SDO valid (load capacitance (CL) = 10 pF)
t ₁₈		5		ns	SDO rise and fall time ($C_L = 10 \text{ pF}$)
t ₁₉		4		ns	$\overline{\text{CS}}$ rising edge to SDO tristate (C _L = 10 pF)

Timing Diagram

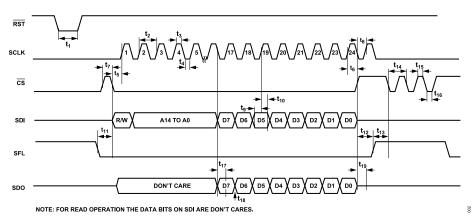


Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 3. Absolute Maximum Ratings

Parameter	Rating
SUPPLY	
VDD	–0.3 V to +3.6 V
VSS	-3.6 V to +0.3 V
Digital Control Inputs	
Voltage	-0.3 V to VDD + 0.3 V
Current	2 mA
Continuous RF Input Power	P0.1dB
Survivability	Maximum 5 minutes over lifetime
Temperature	
Operating Range	-40°C to +85°C
Storage Range	–55°C to +150°C
Junction to Maintain 1 Million Hours Mean Time to Failure (MTTF)	135°C
Nominal Junction (Paddle Temperature (T _{PADDLE}) = 85°C)	90°C
Moisture Sensitivity Level (MSL) Rating	MSL3

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001-2010.

Field induced charged device model (FICDM) per ANSI/ESDA/JE-DEC JS-002.

ESD Ratings for ADMV8513

Table 4. ADMV8513, 40-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	1000	1C
FICDM	500	C2a

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

ADMV8513 BOTTOM VIEW (Not to Scale)									
d L I S S JA 35 36 37 38 39 40									
GND 31] [] [) () ()) () (] []]	1	GND	
VDD 30	\Box	[]	[]	[]	[\	\square	2	VSS	
GND 29	[]]	E10	E11	E12	E1	\square	3	GND	
RF2 28	[]]			}i		[]	4	RF1	
GND 27	[]]	E9	E16	E13	E2	0	5	GND	
GND 26	(\Box)	}i	i	i		\square	6	GND	
GND 25	[]]	E8	E15	E14	E3	\square	7	GND	
GND 24	[]]					[]]	8	GND	
GND 23	(\Box)	E7	E6	E5	E4	\square	9	GND	
GND 22	\square	L	L]	L]	L	\square		GND	
GND 21		00] [] [D (D (C	000] []]	11	GND	
				6 15 14		-			
NOTES 1. E1 TO E16 = EPAD. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RF AND DC GROUND.						103			

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 3, 5 to 27, 29, 31, 37, 39	GND	Ground. Connect the GND pins to the RF and DC ground.
2	VSS	The –2.5 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to VSS.
4	RF1	RF Pin 1. RF1 is DC-coupled and matched to 50 Ω . Do not apply an external voltage to RF1.
28	RF2	RF Pin 2. RF2 is DC-coupled and matched to 50 Ω . Do not apply an external voltage to RF2.
30	VDD	The 3.3 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to VDD.
32	BYP	The 2.5 V LDO Decoupling Bypass Pin. Place 47 µF, 0.1 µF, and 100 pF decoupling capacitors close to BYP.
33	SFL	SPI Fast Latch Enable, 3.3 V Logic. Set SFL high to enable fast latching of filter states on each rising edge of \overline{CS} . While SFL is in this mode, the SCLK, SDO, and SDI pins are not active. The SFL pin is internally pulled low with a 260 k Ω resistor.
34	SCLK	SPI Clock, 3.3 V Logic. The SCLK pin is internally pulled low with a 260 k Ω resistor.
35	SDO	SPI Data Output, 3.3 V Logic. The SDO pin is internally pulled low with a 260 k Ω resistor.
36	SDI	SPI Data Input, 3.3 V Logic. The SDI pin is internally pulled low with a 260 k Ω resistor.
38	CS	SPI Chip Select, 3.3 V Logic. Active low. The \overline{CS} pin is internally pulled low with a 260 k Ω resistor.
40	RST	Chip Reset, 3.3 V Logic. Active low. The \overline{RST} pin is internally pulled high with a 260 k Ω resistor
E1 to E16	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground.

TYPICAL PERFORMANCE CHARACTERISTICS

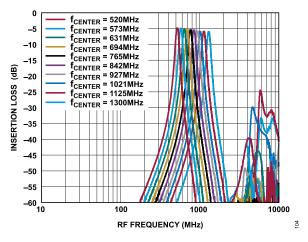


Figure 4. Insertion Loss vs. RF Frequency for Nominal Bandwidth

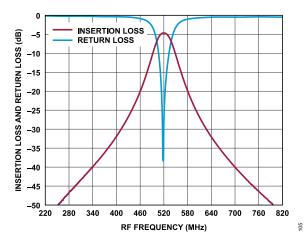


Figure 5. Insertion Loss and Return Loss vs. RF Frequency for Nominal Bandwidth at 520 MHz

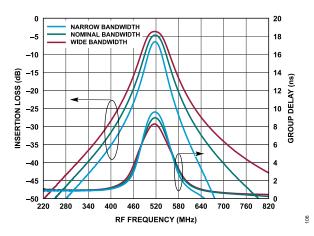


Figure 6. Insertion Loss and Group Delay vs. RF Frequency at 520 MHz

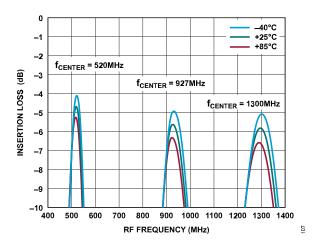


Figure 7. Insertion Loss vs. RF Frequency for Nominal Bandwidth at Various Temperatures and Center Frequencies

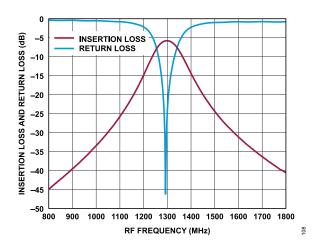


Figure 8. Insertion Loss and Return Loss vs. RF Frequency for Nominal Bandwidth at 1.3 GHz

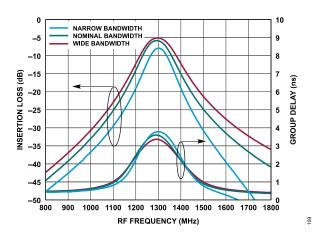


Figure 9. Insertion Loss and Group Delay vs. RF Frequency at 1.3 GHz

TYPICAL PERFORMANCE CHARACTERISTICS

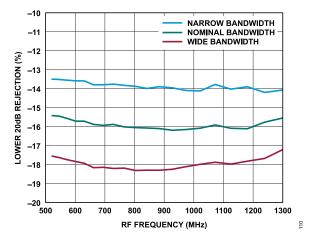


Figure 10. Percentage Away from f_{CENTER} for Lower 20 dB Rejection vs. RF Frequency for Various Bandwidths

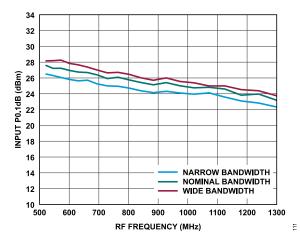


Figure 11. Input P0.1dB vs. RF Frequency for Various Bandwidths

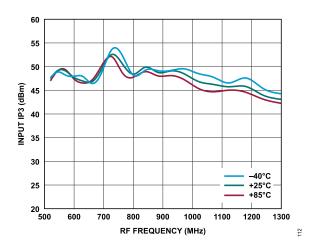


Figure 12. Input IP3 vs. RF Frequency for Nominal Bandwidth and Various Temperatures

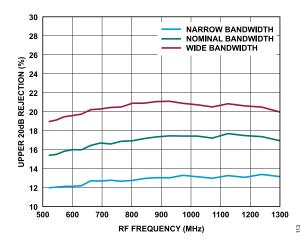


Figure 13. Percentage Away from f_{CENTER} for Upper 20 dB Rejection vs. RF Frequency for Various Bandwidths

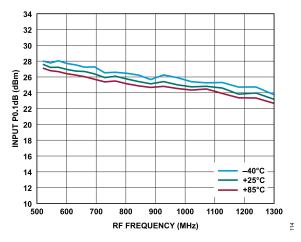


Figure 14. Input P0.1dB vs. RF Frequency for Nominal Bandwidth and Various Temperatures

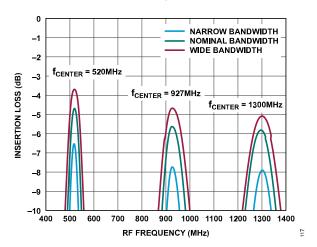


Figure 15. Insertion Loss vs. RF Frequency at Various Bandwidths and Center Frequencies

TYPICAL PERFORMANCE CHARACTERISTICS

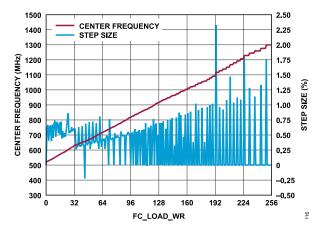


Figure 16. Center Frequency and Step Size vs. FC_LOAD_WR

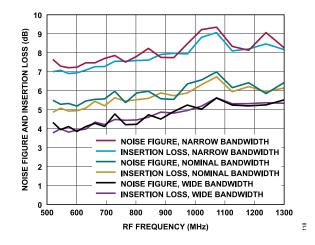


Figure 17. Noise Figure and Insertion Loss vs. RF Frequency for Various Bandwidths

CHIP ARCHITECTURE

The ADMV8513 contains several switched capacitors that allow the RF performance to vary. A simplified diagram of the filter architecture is shown in Figure 18.

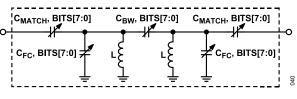


Figure 18. Simplified Filter Architecture Diagram

The two center frequency capacitors (C_{FC}) are configured by the f_{CENTER} load value, which manipulates the f_{CENTER} of the filter. Likewise, the bandwidth capacitor (C_{BW}) is configured by the bandwidth load value, which adjusts the bandwidth response of the filter. Additionally, the two match capacitors (C_{MATCH}) are set by the match load value, which allows adjustments to impedance matching of the filter.

The f_{CENTER} , bandwidth, and match load values each have 256 states (8 bits). In theory, there are over 16 million possible states for f_{CENTER} , bandwidth, and match load values for each band within the ADMV8513. To simplify selection of these values, Analog Devices, Inc., has developed three patent pending interpolation functions to ease implementation.

RF CONNECTIONS

The RF1 and RF2 pins of the ADMV8513 are dc-coupled to on-chip ESD protection diodes. If a dc voltage is present on the RF1 and RF2 pins from other components within the system, it is recommended to place dc blocking capacitors in series with these pins. The dc blocking capacitors must be selected based on the operating frequency of the filter. Generally, a value greater than 10 nF is sufficient to minimize insertion loss at the lower frequencies of operation. At higher frequencies of operation, it may be necessary to consider the parasitic elements of the selected capacitor. Figure 19 shows a general model of a capacitor with the parasitic elements. The parasitic series inductance (L_{ESI}) is typically of most concern given that its impedance can become dominant. The other parasitic elements, including the leakage resistance (R_L), the dielectric absorption resistance (R_{DA}), the dielectric absorption capacitance (C_{DA}), and electrical series resistance (R_{ESR}) are less critical elements for consideration but are shown in Figure 19 for completeness.

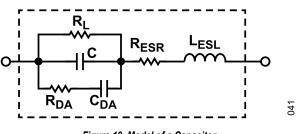


Figure 19. Model of a Capacitor

SPI CONFIGURATION

The SPI of the ADMV8513 allows configuration of the device for specific functions or operations via the 5-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of five control lines: SFL, SCLK, SDI, SDO, and \overline{CS} . For normal SPI operations, keep the SFL pin low.

The SPI protocol consists of an R/W bit followed by 15 register address bits and 8 data bits. The address field and data field are organized MSB first and end with the LSB.

Set the MSB to 0 for a write operation and set the MSB to 1 for a read operation. The write cycle must be sampled on the rising edge of SCLK. The 24 bits of the serial write address and data are shifted in on the SDI control line, MSB to LSB. The ADMV8513 input logic level for the write cycle supports a 3.3 V interface.

For a read cycle, the R/W bit and the 15 register address bits shift in on the rising edge of SCLK on the SDI control line. Then, 8 bits of serial read data shift out on the SDO control line, MSB first, on the falling edge of SCLK. The output logic level for a read cycle is 3.3 V. The output drivers of the SDO are enabled after the last rising edge of SCLK of the instruction cycle and remain active until the end of the read cycle. In a read operation, when \overline{CS} is deasserted, SDO returns to high impedance until the next read transaction. \overline{CS} is active low and must be deasserted at the end of the write or read sequence.

An active low input on \overline{CS} starts and gates a communication cycle. The \overline{CS} pin allows more than one device to be used on the same serial communications lines. The SDO pin goes to a high impedance state when the \overline{CS} input is high. During the communication cycle, \overline{CS} must stay low. The SPI communications protocol follows the Analog Devices SPI standard. For more information, see the ADI-SPI Serial Control Interface Standard (Rev 1.0).

MODE SELECTION

The ADMV8513 has two modes of operation: SPI write and SPI fast latch. SPI write mode is the normal operating mode, whereas SPI fast latch mode is used to sequence through the on-chip lookup table (LUT) using the internal state machine. To select SPI write mode, set the SFL pin low. For operation in SPI fast latch mode, program the on-chip LUT and fast latch parameters with the SFL pin low, and then bring the SFL pin high to enter this mode. Figure 20 shows a simplified representation of the SPI with the register map and internal state machine.

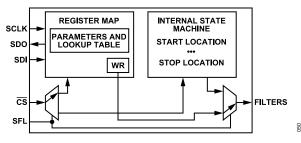


Figure 20. Simplified SPI Diagram

SPI WRITE MODE

SPI write mode has a write grouping (WR) in Register 0x020 through Register 0x022. The grouping consists of the following:

- ▶ f_{CENTER} load value
- Bandwidth load value
- Match load value

See the Register Details section for more information regarding the write grouping.

SPI STREAMING

In general, there are two types of SPI streaming transactions, Endian register ascending order and descending order. The ADMV8513 supports only the ascending order. To enable SPI streaming with Endian register ascending order, program Register 0x000 to value 0x3C.

For SPI streaming to the write grouping, Register 0x020 to Register 0x022 (recommended), the transaction points to Register 0x020 and streams out 3 bytes of data. The transaction is 40 bits in total (R/W bit + 15 bits address + 24 bits data).

For SPI streaming to the LUT, Register 0x100 to Register 0x15F (recommended), the transaction points to Register 0x100 and streams out 96 bytes of data. The transaction is 784 bits in total (R/W bit + 15 bits address + 768 bits data).

INTERPOLATION FUNCTIONS

The ADMV8513 has three interpolation functions that allow the user to specify the f_{CENTER} of the filter only using the f_{CENTER} load value, and then the appropriate capacitor codes are determined automatically. To enable these functions, set the INTERPOLATE bit (Register 0x050) high. Figure 21 shows a simplified diagram of the interpolation functions.

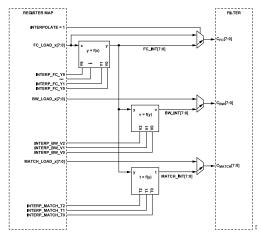


Figure 21. Interpolation Diagram

When the interpolation functions are enabled, the f_{CENTER} load range is 0 to 255, where 0 corresponds to the lowest frequency, and 255 corresponds to the highest frequency. For example, a value of 0 corresponds to approximately 520 MHz, and a value of 255 corresponds to approximately 1300 MHz. The f_{CENTER} load value is used to determine the appropriate capacitor codes based on the on-chip interpolation coefficients.

By default, the recommended interpolation coefficients are set for nominal bandwidth. The interpolation coefficients can be adjusted between $\pm 2\%$ of nominal bandwidth with reasonable insertion loss. Narrower bandwidth down to approximately 5% can also be achieved at the expense of insertion loss.

INTERPOLATION EQUATIONS

The following equations describe the input to the interpolation functions:

 $f_{CMIN} = min(f_{CENTER}) \tag{1}$

 $f_{CMAX} = max(f_{CENTER}) \tag{2}$

$$f_{CSTEP} \approx \frac{f_{CMAX} - f_{CMIN}}{255}$$
 (3)

 $x = FC_LOAD_X, \quad Bits[7:0] \tag{4}$

The anticipated f_{CENTER} of the filter is then computed as follows:

$$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times x \tag{5}$$

The equations for the interpolation function of y = f(x) that determines the capacitor codes (C_{FC}) are shown in Table 6.

Table 6. Equations for y = f(x)

Condition	Logic Shift Form ¹
lf (0 ≤ x < 16)	y = Y1 +(((16 - x)(Y0 - Y1)) >> 4)
lf (16 ≤ x < 32)	y = Y2 + (((32 - x)(Y1 - Y2)) >> 4)
lf (32 ≤ x < 64)	y = Y3 + (((64 - x)(Y2 - Y3)) >> 5)
lf (64 ≤ x < 96)	y = Y4 + (((96 - x)(Y3 - Y4)) >> 5)
lf (96 ≤ x < 128)	y = Y5 +(((128 - x)(Y4 - Y5)) >> 5)
lf (128 ≤ x < 160)	y = Y6 +(((160 - x)(Y5 - Y6)) >> 5)
lf (160 ≤ x < 192)	y = Y7 +(((192 - x)(Y6 - Y7)) >> 5)
lf (192 ≤ x < 224)	y = Y8 +(((224 - x)(Y7 - Y8)) >> 5)
lf (224 ≤ x < 255)	y = Y9 +(((256 - x)(Y8 - Y9)) >> 5)
Else	y = Y9

¹ Y0 to Y9 are the f_{CENTER} coefficients.

The equations for the interpolation function of v = f(y) that determines the bandwidth capacitor codes (C_{BW}) are shown in Table 7.

Table 7. Equations for v = f(y)

Condition	Logic Shift Form ¹
lf (0 ≤ y < 32)	$v = V0 + ((y \times (V1 - V0)) >> 5)$
lf (32 ≤ y < 255)	v = V1 + (((y - 32) (V2 - V1) × 295) >> 16)
Else	v = V2

¹ Y0 to Y2 are the bandwidth coefficients.

The equations for the interpolation function of t = f(Y) that determines the match capacitor codes (C_{MATCH}) are shown in Table 8.

Table 8. Equations for t = f(y)

Condition	Logic Shift Form ¹
lf (0 ≤ y < 32)	t = T0 + ((y × (T1 – T0)) >> 5)
lf (32 ≤ y < 255)	t = T1 + (((y - 32) (T2 - T1) × 295) >> 16)
Else	t = T2

¹ T0 to T2 are the match coefficients.

INTERPOLATION TABLES

Solving the interpolation equations for the lower bounds of each condition in the interpolation function of y = f(x) yields what is detailed in Table 9.

Table 9. Equations for Anticip	ated forward for Each	Significant x Value
Table 3. Equations for Anticip	aleu ICENTER IUI Laun	Significant x value

x	f _{center}	y = f(x)
0	f _{CENTER} ≈ f _{CMIN}	Y0
16	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 16$	Y1
32	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 32$	Y2
64	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 64$	Y3
96	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 96$	Y4
128	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 128$	Y5
160	f _{CENTER} ≈ f _{CMIN} + f _{CSTEP} × 160	Y6
192	$f_{CENTER} \approx f_{CMIN} + f_{CSTEP} \times 192$	Y7
224	f _{CENTER} ≈ f _{CMIN} + f _{CSTEP} × 224	Y8
255	$f_{CENTER} \approx f_{CMAX}$	Y9

Similarly, solving the equations for the lower bounds of each condition in the interpolation functions of v = f(y) and t = f(y) yields what is detailed in Table 10.

Table 10. Equations for v = f(y) and t = f(y) for Each Significant y Value

у	v = f(y)	t = f(y)
0	V0	ТО
32	V1	T1
255	V2	T2

INTERPOLATION PLOTS

To garner a visual representation of the interpolation functions, the interpolation coefficients vs. their input (from the interpolation tables) can be plotted on a scatter plot. Figure 22, Figure 23, and Figure 24 are the interpolation functions of y, v, and t using the interpolation coefficients.

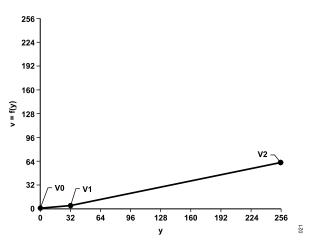
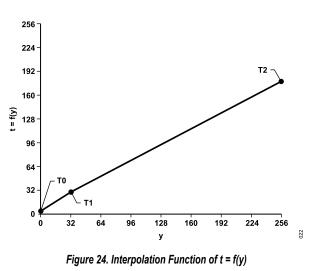



Figure 23. Interpolation Function of v = f(y)

INTERPOLATION COEFFICIENT CALIBRATION

Two primary reasons for the need to calibrate the interpolation coefficients include accounting for chip process variation and when a different operating bandwidth is required. The calibration of interpolation coefficients normally follows a four phase process (see Figure 26).

In the first calibration phase, the bandwidth and match coefficients, V1 and T1, are determined for a desired bandwidth. To perform this calibration phase, the f_{CENTER} load value must be set to 32, and then the bandwidth and match load values are adjusted. When satisfied with the results, the V1 and T1 coefficients can be set to the bandwidth and match load values, respectively.

For the second calibration phase, the bandwidth and match coefficients, V2 and T2, are determined for a desired bandwidth. To perform this calibration phase, the f_{CENTER} load value must be set to a high value (180 is recommended), and then the bandwidth and match load values are adjusted. When satisfied with the results, the V2 coefficient can be adjusted so that the computed result of v = f(y) = f(180) is equal to the bandwidth load value. Similarly, the T2 coefficient can be adjusted so that the computed result of t = f(y) = f(180) is equal to the match load value.

For the third calibration phase, the bandwidth and match coefficients, V0 and T0, are determined for a desired bandwidth. To perform this calibration phase, the f_{CENTER} load value must be set to a low value (18 is recommended), and then the bandwidth and match load values are adjusted. When satisfied with the results, the V0 coefficient can be adjusted so that the computed result of v = f(y) = f(18) is equal to the bandwidth load value. Similarly, the T0 coefficient can be adjusted so that the computed result of t = f(y) = f(18) is equal to the match load value.

For the fourth calibration phase, adjustments are made to all of the y coefficients to ensure the operating f_{CENTER} is as close as possible to the anticipated f_{CENTER} . To perform this calibration phase, use Table 9 as a reference for determining the target frequency for each y coefficient. For each x value listed in Table 9, compute the y, v,

and t functions, and then set the f_{CENTER}, bandwidth, and match load values, respectively.

FILTER CODE READ BACK

The capacitor codes that are applied to the filter can be read back from the chip using Register 0x060 to Register 0x062. These registers represent the actual state of the capacitors on chip. This information can be useful for debugging purposes or during interpolation coefficient calibration.

SPI FAST LATCH MODE

The ADMV8513 has a 32 state LUT and an internal state machine that is useful for quickly changing filter states in SPI fast latch mode. When the SFL pin is high, SPI fast latch mode enables, and the internal state machine sequences on each rising edge of the $\overline{\text{CS}}$ pin.

The LUT has 32 groupings, LUT0 through LUT31, in Register 0x100 through Register 0x15F. Each grouping consists of the same type of parameters as those for SPI write mode.

The functionality of the internal state machine is such that on each rising edge of the \overline{CS} pin, the internal state machine sequences a pointer based on the programmed direction.

The internal state machine has the following parameters:

- ▶ FAST_LATCH_STOP (Register 0x011)
- FAST_LATCH_START (Register 0x012)
- ▶ FAST_LATCH_DIRECTION (Register 0x013)
- FAST_LATCH_STATE (Register 0x014)

The FAST_LATCH_STATE is the next LUT grouping that is selected on the next rising edge of the \overline{CS} pin. The FAST_LATCH_STATE is considered the internal pointer location.

When the FAST_LATCH_DIRECTION bit is set to 0, the sequencing direction is incremental. When the FAST_LATCH_DIRECTION bit is set to 1, the sequencing direction is decremental.

The FAST_LATCH_START and FAST_LATCH_STOP bits are used to set the start and stop location, respectively. For incremental direction, the internal state machine sequences from the start location to the stop location and then rolls over to the start location. For the decremental direction, the sequence is from the stop location to the start location and then rolls over to the stop location.

The FAST_LATCH_STATE internal pointer is set to the values stored in FAST_LATCH_START for the incremental direction. For the decremental direction, the internal pointer is set to the values stored in FAST_LATCH_STOP. For this transaction to occur, one rising edge of the CS pin is necessary. By nature, this occurs during a SPI transaction in SPI write mode. However, when exiting SPI fast latch mode (SFL pin brought low), be sure to toggle the CS pin low then high or perform a SPI transaction so that the FAST_LATCH_STATE refreshes to either the start or stop location accordingly.

CHIP RESET

Two methods are available to reset the ADMV8513 registers to their default power-on state, a hard reset and a soft reset. The hard reset uses the $\overline{\text{RST}}$ pin, and the soft reset uses Register 0x000.

To perform a hard reset, momentarily bring the $\overline{\text{RST}}$ pin low and then high. See Figure 2 for the minimum required duration time for the $\overline{\text{RST}}$ pin to be low.

To perform a soft reset, set Register 0x000 to 0x81. This action sets the SOFTRESET and SOFTRESET_bits high to initiate the reset. The SOFTRESET and SOFTRESET_bits are self resetting once the reset operation completes.

Regardless of the reset method used, it is recommended to perform the following after the chip resets:

- Set Register 0x000 to 0x3C to enable the SDO pin and allow SPI streaming with Endian ascending order.
- Read back all registers on the chip.

APPLICATIONS INFORMATION

INTERPOLATION COEFFICIENTS

For reference, the ADMV8513 interpolation coefficients that were used for device characterization are listed in Table 11. These interpolation coefficients are provided as a good starting point for use in a system. Depending upon the system requirements and allowable process tolerance, some minor adjustments may be needed to the interpolation coefficients. For most applications, the device process tolerance within a particular lot of material allows for one set of interpolation coefficients, such that interpolation coefficient calibration only needs to be performed once per lot. Refer to the Interpolation Coefficient Calibration section for more information on how to adjust the interpolation coefficients.

Table 11. Interpolation Coefficients

	Interpolat	tion Coefficien	ts	
Coefficient	Bit Field	Narrow Bandwidth	Nominal Bandwidth	Wide Bandwidth
Y0	INTERP_FC_Y0	214	218	224
Y1	INTERP_FC_Y1	172	176	180
Y2	INTERP_FC_Y2	139	142	146
Y3	INTERP_FC_Y3	100	102	104
Y4	INTERP_FC_Y4	73	75	76
Y5	INTERP_FC_Y5	54	55	56
Y6	INTERP_FC_Y6	41	42	43
Y7	INTERP_FC_Y7	31	32	32
Y8	INTERP_FC_Y8	24	24	24
Y9	INTERP_FC_Y9	18	19	19
V0	INTERP_BW_V0	2	1	0
V1	INTERP_BW_V1	13	5	0
V2	INTERP_BW_V2	75	39	0
ТО	INTERP_MATCH_T0	4	5	5
T1	INTERP_MATCH_T1	20	25	30
T2	INTERP_MATCH_T2	109	138	175

PRINTED CIRCUIT BOARD (PCB) DESIGN GUIDELINES

The PCB used to implement the ADMV8513 can use standard quality dielectric materials between the top metallization layer and internal ground layer, such as the Isola 370HR. Rogers 4003 or the Rogers 4350 do not have to be used. The characteristic impedance of the transmission lines to the RF1 and RF2 pins of the ADMV8513 must be controlled to 50 Ω to ensure optimal RF performance. Connect the GND pins and exposed pads of the ADMV8513 directly to the ground plane of the PCB. Use a sufficient number of via holes to connect the top and bottom ground planes of the PCB.

FLOW CHARTS

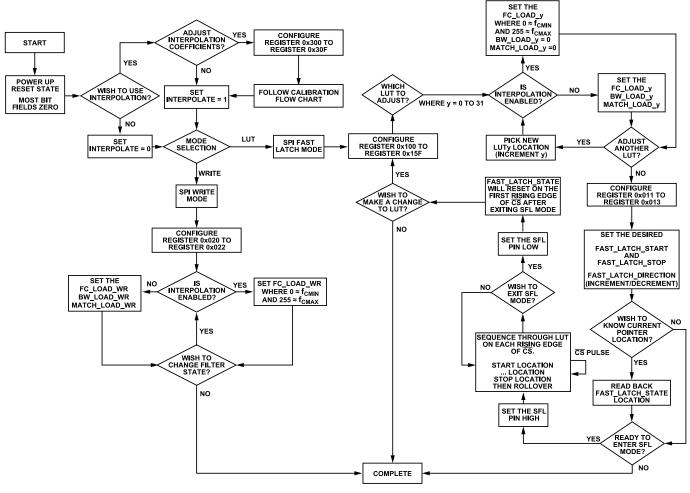


Figure 25. Programming Flow Chart

023

FLOW CHARTS

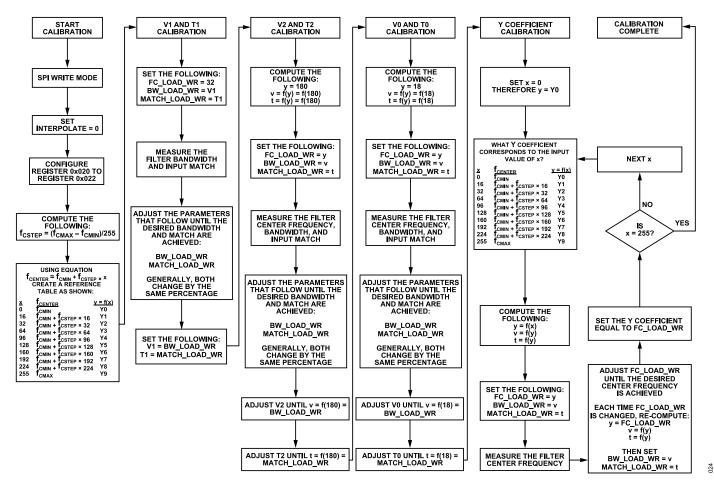


Figure 26. Interpolation Coefficient Calibration Flow Chart

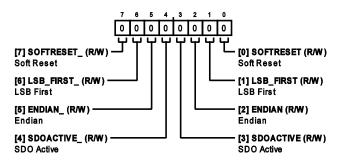
REGISTER SUMMARY

Table 12. ADMV8513 Register Summary

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x000	ADI_SPI_CONFIG_A	[7:0]	SOFTRES ET_	LSB_FIRS T_	ENDIAN_	SDOACTI VE_	SDOACTI VE	ENDIAN	LSB_FIRS T	SOFTRES ET	0x00	R/W
0x001	ADI_SPI_CONFIG_B	[7:0]	SINGLE_I NSTRUCT ION	CSB_STA LL	CONTROL LER_TAR GET_RB		RES	ERVED		CONTROL LER_TAR GET_TRA NSFER	0x00	R/W
0x003	CHIPTYPE	[7:0]				CHI	PTYPE				0x01	R
0x004	PRODUCT_ID_L	[7:0]				PRODU	JCT_ID_L				0x13	R
0x005	PRODUCT_ID_H	[7:0]				PRODU	JCT_ID_H				0x85	R
0x00C	VARIANT	[7:0]		RESE	RVED			VA	RIANT		0x01	R
0x011	FAST_LATCH_STOP	[7:0]	RESERVE D		FAST_LATCH_STOP							R/W
0x012	FAST_LATCH_START	[7:0]	RESERVE D			FAS	ST_LATCH_S	TART			0x00	R/W
0x013	FAST_LATCH_DIRECTIO	[7:0]		1		RESERVED)			FAST_LAT CH_DIRE CTION	0x00	R/W
0x014	FAST_LATCH_STATE	[7:0]	RESERVE D			FAS	ST_LATCH_S	TATE		1	0x00	R
0x020	WR_FC	[7:0]				FC_LC	DAD_WR				0x00	R/W
0x021	WR_BW	[7:0]				BW_LC	DAD_WR				0x00	R/W
0x022	WR_MATCH	[7:0]				MATCH	LOAD_WR				0x00	R/W
0x050	FILTER_CONFIG	[7:0]		RESERVED INTERPO LATE					0x00	R/W		
0x060	FC_READBACK	[7:0]		FC READBACK					0x00	R		
0x061	BW_READBACK	[7:0]				BW_RE	ADBACK				0x00	R
0x062	MATCH_READBACK	[7:0]				MATCH_F	READBACK				0x00	R
0x100	LUT0_FC	[7:0]				FC_L	.OAD_0				0x00	R/W
0x101	LUT0_BW	[7:0]				BW_L	OAD_0				0x00	R/W
0x102	LUT0_MATCH	[7:0]				MATCH	_LOAD_0				0x00	R/W
0x103	LUT1_FC	[7:0]				FC_L	.OAD_1				0x00	R/W
0x104	LUT1_BW	[7:0]				BW_L	OAD_1				0x00	R/W
0x105	LUT1_MATCH	[7:0]				MATCH	LOAD_1				0x00	R/W
0x106	LUT2_FC	[7:0]				FC_L	.OAD_2				0x00	R/W
0x107	LUT2_BW	[7:0]				BW_L	OAD_2				0x00	R/W
0x108	LUT2_MATCH	[7:0]				MATCH	_LOAD_2				0x00	R/W
0x109	LUT3_FC	[7:0]				FC_L	.OAD_3				0x00	R/W
0x10A	LUT3_BW	[7:0]				BW_L	_OAD_3				0x00	R/W
0x10B	LUT3_MATCH	[7:0]				MATCH	_LOAD_3				0x00	R/W
0x10C	LUT4_FC	[7:0]				FC_L	.OAD_4				0x00	R/W
0x10D	LUT4_BW	[7:0]				BW_L	_OAD_4				0x00	R/W
0x10E	LUT4_MATCH	[7:0]				MATCH	_LOAD_4				0x00	R/W
0x10F	LUT5_FC	[7:0]				FC_L	.OAD_5				0x00	R/W
0x110	LUT5_BW	[7:0]				BW_L	OAD_5				0x00	R/W
0x111	LUT5_MATCH	[7:0]				MATCH	LOAD_5				0x00	R/W
0x112	LUT6_FC	[7:0]				FC_L	.OAD_6				0x00	R/W
0x113	LUT6_BW	[7:0]				BW_L	OAD_6				0x00	R/W
0x114	LUT6_MATCH	[7:0]				MATCH	_LOAD_6				0x00	R/W
0x115	LUT7_FC	[7:0]				FC_L	.OAD_7				0x00	R/W

REGISTER SUMMARY

Table 12. ADMV8513 Register Summary (Continued)


Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x116	LUT7_BW	[7:0]				BW	LOAD_7				0x00	R/W
0x117	LUT7_MATCH	[7:0]				MATO	CH_LOAD_7				0x00	R/W
0x118	LUT8_FC	[7:0]				FC	LOAD_8				0x00	R/W
0x119	LUT8_BW	[7:0]				BW	LOAD_8				0x00	R/W
0x11A	LUT8_MATCH	[7:0]				MATO	CH_LOAD_8				0x00	R/W
0x11B	LUT9_FC	[7:0]				FC	LOAD_9				0x00	R/W
0x11C	LUT9_BW	[7:0]				BW	LOAD_9				0x00	R/W
0x11D	LUT9_MATCH	[7:0]				MATO	CH_LOAD_9				0x00	R/W
0x11E	LUT10_FC	[7:0]				FC	LOAD_10				0x00	R/W
0x11F	LUT10_BW	[7:0]				BW	LOAD_10				0x00	R/W
0x120	LUT10_MATCH	[7:0]				MATC	H_LOAD_10				0x00	R/W
0x121	LUT11_FC	[7:0]				FC	LOAD_11				0x00	R/W
0x122	LUT11_BW	[7:0]				BW	LOAD_11				0x00	R/W
0x123	LUT11_MATCH	[7:0]					H_LOAD_11				0x00	R/W
0x124	LUT12_FC	[7:0]				FC	LOAD_12				0x00	R/W
0x125	LUT12_BW	[7:0]				BW	LOAD_12				0x00	R/W
0x126	LUT12_MATCH	[7:0]					 H_LOAD_12				0x00	R/W
0x127	LUT13_FC	[7:0]					LOAD_13				0x00	R/W
0x128	LUT13_BW	[7:0]				-	LOAD 13				0x00	R/W
0x129	LUT13_MATCH	[7:0]					 H_LOAD_13				0x00	R/W
0x12A	LUT14_FC	[7:0]					 LOAD_14				0x00	R/W
0x12B	LUT14_BW	[7:0]					 _LOAD_14				0x00	R/W
0x12C	LUT14_MATCH	[7:0]					 H_LOAD_14				0x00	R/W
0x12D	LUT15_FC	[7:0]					LOAD_15				0x00	R/W
0x12E	LUT15_BW	[7:0]				-	 _LOAD_15				0x00	R/W
0x12F	LUT15_MATCH	[7:0]					 H_LOAD_15				0x00	R/W
0x130	LUT16_FC	[7:0]					LOAD_16				0x00	R/W
0x131	LUT16_BW	[7:0]					 _LOAD_16				0x00	R/W
0x132	LUT16_MATCH	[7:0]					H_LOAD_16				0x00	R/W
0x133	LUT17_FC	[7:0]					 LOAD_17				0x00	R/W
0x134	LUT17_BW	[7:0]					LOAD_17				0x00	R/W
0x135	LUT17 MATCH	[7:0]					H LOAD 17				0x00	R/W
0x136	LUT18_FC	[7:0]					LOAD_18				0x00	R/W
0x137	LUT18_BW	[7:0]					 _LOAD_18				0x00	R/W
0x138	LUT18_MATCH	[7:0]					H_LOAD_18				0x00	R/W
0x139	LUT19_FC	[7:0]					LOAD_19				0x00	R/W
0x13A	LUT19_BW	[7:0]					_LOAD_19				0x00	R/W
0x13B	LUT19_MATCH	[7:0]					H LOAD 19				0x00	R/W
0x10D	LUT20_FC	[7:0]					LOAD_20				0x00	R/W
0x13D	LUT20_BW	[7:0]					LOAD_20				0x00	R/W
0x13E	LUT20_MATCH	[7:0]					H_LOAD_20				0x00	R/W
0x10E	LUT21_FC	[7:0]					LOAD_21				0x00	R/W
0x140	LUT21_BW	[7:0]					_LOAD_21				0x00	R/W
0x140	LUT21_MATCH	[7:0]					H_LOAD_21				0x00	R/W
0x142	LUT22_FC	[7:0]					LOAD_22				0x00	R/W
0x142	LUT22_BW	[7:0]					LOAD_22 LOAD_22				0x00	R/W
0x143	LUT22_MATCH	[7:0]					H_LOAD_22				0x00	R/W

REGISTER SUMMARY

Table 12. ADMV8513 Register Summary (Continued)

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x145	LUT23_FC	[7:0]				FC	LOAD_23				0x00	R/W
0x146	LUT23_BW	[7:0]				BW	LOAD_23				0x00	R/W
0x147	LUT23_MATCH	[7:0]				MATC	H_LOAD_23				0x00	R/W
0x148	LUT24_FC	[7:0]				FC	LOAD_24				0x00	R/W
0x149	LUT24_BW	[7:0]				BW	LOAD_24				0x00	R/W
0x14A	LUT24_MATCH	[7:0]				MATC	H_LOAD_24				0x00	R/W
0x14B	LUT25_FC	[7:0]				FC	LOAD_25				0x00	R/W
0x14C	LUT25_BW	[7:0]				BW	LOAD_25				0x00	R/W
0x14D	LUT25_MATCH	[7:0]				MATC	H_LOAD_25				0x00	R/W
0x14E	LUT26_FC	[7:0]				FC	LOAD_26				0x00	R/W
0x14F	LUT26_BW	[7:0]				BW	LOAD_26				0x00	R/W
0x150	LUT26_MATCH	[7:0]				MATC	H_LOAD_26				0x00	R/W
0x151	LUT27_FC	[7:0]				FC	LOAD_27				0x00	R/W
0x152	LUT27_BW	[7:0]				BW	LOAD_27				0x00	R/W
0x153	LUT27_MATCH	[7:0]				MATC	H_LOAD_27				0x00	R/W
0x154	LUT28_FC	[7:0]				FC	LOAD_28				0x00	R/W
0x155	LUT28_BW	[7:0]				BW	LOAD_28				0x00	R/W
0x156	LUT28_MATCH	[7:0]				MATC	H_LOAD_28				0x00	R/W
0x157	LUT29_FC	[7:0]				FC	LOAD_29				0x00	R/W
0x158	LUT29_BW	[7:0]				BW	LOAD_29				0x00	R/W
0x159	LUT29_MATCH	[7:0]				MATC	H_LOAD_29				0x00	R/W
0x15A	LUT30_FC	[7:0]				FC	LOAD_30				0x00	R/W
0x15B	LUT30_BW	[7:0]				BW	LOAD_30				0x00	R/W
0x15C	LUT30_MATCH	[7:0]				MATC	H_LOAD_30				0x00	R/W
0x15D	LUT31_FC	[7:0]				FC	LOAD_31				0x00	R/W
0x15E	LUT31_BW	[7:0]				BW	LOAD_31				0x00	R/W
0x15F	LUT31_MATCH	[7:0]				MATC	H_LOAD_31				0x00	R/W
0x300	INTERP_FC_Y0	[7:0]				INTE	RP_FC_Y0				0xDA	R/W
0x301	INTERP_FC_Y1	[7:0]				INTE	RP_FC_Y1				0xB0	R/W
0x302	INTERP_FC_Y2	[7:0]				INTE	RP_FC_Y2				0x8E	R/W
0x303	INTERP_FC_Y3	[7:0]				INTE	RP_FC_Y3				0x66	R/W
0x304	INTERP_FC_Y4	[7:0]				INTE	RP_FC_Y4				0x4B	R/W
0x305	INTERP_FC_Y5	[7:0]				INTE	RP_FC_Y5				0x37	R/W
0x306	INTERP_FC_Y6	[7:0]				INTE	RP_FC_Y6				0x2A	R/W
0x307	INTERP_FC_Y7	[7:0]				INTE	RP_FC_Y7				0x20	R/W
0x308	INTERP_FC_Y8	[7:0]				INTE	RP_FC_Y8				0x18	R/W
0x309	INTERP_FC_Y9	[7:0]				INTE	RP_FC_Y9				0x13	R/W
0x30A	INTERP_BW_V0	[7:0]					RP_BW_V0				0x01	R/W
0x30B	INTERP_BW_V1	[7:0]					 RP_BW_V1				0x05	R/W
0x30C	INTERP_BW_V2	[7:0]					 RP_BW_V2				0x27	R/W
0x30D	INTERP_MATCH_T0	[7:0]					P_MATCH_TO				0x05	R/W
0x30E	INTERP_MATCH_T1	[7:0]					P_MATCH_T1				0x19	R/W
0x30F	INTERP_MATCH_T2	[7:0]					P_MATCH_T2				0x8A	R/W

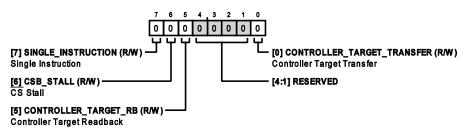

Address: 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG_A

Table 13. Bit Descriptions for ADI_SPI_CONFIG_A

Bits	Bit Name	Description	Reset	Access
7	SOFTRESET_	Soft Reset.	0x0	R/W
		0: Reset Not Asserted.		
		1: Reset Asserted.		
6	LSB_FIRST_	LSB First.	0x0	R/W
		0: MSB First.		
		1: LSB First.		
5	ENDIAN_	Endian.	0x0	R/W
		0: Little Endian.		
		1: Big Endian.		
4	SDOACTIVE_	SDO Active.	0x0	R/W
		0: SDO Inactive.		
		1: SDO Active.		
3	SDOACTIVE	SDO Active.	0x0	R/W
		0: SDO Inactive.		
		1: SDO Active.		
2	ENDIAN	Endian.	0x0	R/W
		0: Little Endian.		
		1: Big Endian.		
1	LSB_FIRST	LSB First.	0x0	R/W
		0: MSB First.		
		1: LSB First.		
0	SOFTRESET	Soft Reset.	0x0	R/W
		0: Reset Not Asserted.		
		1: Reset Asserted.		

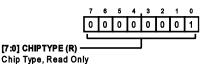

Address: 0x001, Reset: 0x00, Name: ADI_SPI_CONFIG_B

Table 14. Bit Descriptions for ADI_SPI_CONFIG_B

Bits	Bit Name	Description	Reset	Access
7	SINGLE_INSTRUCTION	Single Instruction.	0x0	R/W
		0: Enable Streaming.		
		1: Disable Streaming Regardless of CSB.		
6	CSB_STALL	CS Stall.	0x0	R/W
5	CONTROLLER_TARGET_RB	Controller Target Readback.	0x0	R/W
[4:1]	RESERVED	Reserved.	0x0	R
0	CONTROLLER_TARGET_TRANSFER	Controller Target Transfer.	0x0	R/W

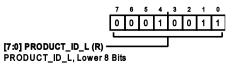
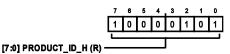

Address: 0x003, Reset: 0x01, Name: CHIPTYPE

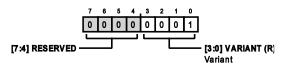
Table 15. Bit Descriptions for CHIPTYPE


Bits	Bit Name	Description	Reset	Access
[7:0]	CHIPTYPE	Chip Type, Read Only.	0x1	R

Address: 0x004, Reset: 0x13, Name: PRODUCT_ID_L

Table 16.	Bit Descriptions for PR	ODUCT_ID_L		
Bits	Bit Name	Description	Reset	Access
[7:0]	PRODUCT_ID_L	PRODUCT_ID_L, Lower 8 Bits.	0x13	R

Address: 0x005, Reset: 0x85, Name: PRODUCT_ID_H



PRODUCT_ID_H, Higher 8 Bits

Table 17. Bit Descriptions for PRODUCT_ID_H

Bits	Bit Name	Description	Reset	Access
[7:0]	PRODUCT_ID_H	PRODUCT_ID_H, Higher 8 Bits.	0x85	R

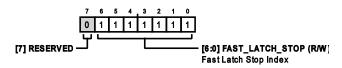

Address: 0x00C, Reset: 0x01, Name: VARIANT

Table 18. Bit Descriptions for VARIANT

Bits	Bit Name	Description	Reset	Access
[7:4]	RESERVED	Reserved.	0x0	R
[3:0]	VARIANT	Variant.	0x1	R

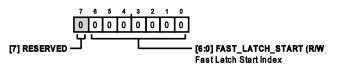

Address: 0x011, Reset: 0x7F, Name: FAST_LATCH_STOP

Table 19. Bit Descriptions for FAST_LATCH_STOP

Bits	Bit Name	Description F		Access
7	RESERVED	Reserved.	0x0	R
[6:0]	FAST_LATCH_STOP	Fast Latch Stop Index. This sets the stop index within the fast latch LUT.	0x7F	R/W

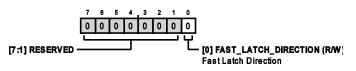

Address: 0x012, Reset: 0x00, Name: FAST_LATCH_START

Table 20. Bit Descriptions for FAST_LATCH_START

Bits	Bit Name	Description	Reset	Access
7	RESERVED	Reserved.	0x0	R
[6:0]	FAST_LATCH_START	Fast Latch Start Index. This sets the start index within the fast latch LUT.	0x0	R/W

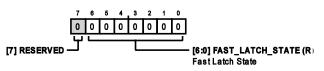

Address: 0x013, Reset: 0x00, Name: FAST_LATCH_DIRECTION

Table 21. Bit Descriptions for FAST_LATCH_DIRECTION

Bits	Bit Name	Description	Reset	Access
[7:1]	RESERVED	Reserved.	0x0	R
0 FAST_LATCH_DIRECTION		Fast Latch Direction. This bit determines which direction to sequence within the fast latch LUT. When the direction is set to increment, the internal state machine is set to the start index. When the direction is set to decrement, the internal state machine is set to the stop index.0: Increment.1: Decrement.	0x0	R/W

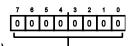

Address: 0x014, Reset: 0x00, Name: FAST_LATCH_STATE

Table 22. Bit Descriptions for FAST_LATCH_STATE

Bits	Bit Name	Description	Reset	Access
7	RESERVED	Reserved.	0x0	R
[6:0]	FAST_LATCH_STATE	Fast Latch State. Reads back the internal state machine index for the fast latch LUT (SFL mode). This index is the next location the internal state machine advances to, on the next \overline{CS} rising edge. The internal state machine index is set to the start index if the direction is set to increment, and the internal state machine index is set to the stop index if the direction is set to decrement. Upon changes to the start index, stop index, and direction, the index updates accordingly.	0x0	R

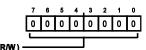
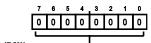

Address: 0x020, Reset: 0x00, Name: WR_FC

Table 23. Bit Descriptions for WR_FC

Bits	Bit Name	Description	Reset	Access
[7:0]	FC_LOAD_WR	Write Group: Center Frequency.	0x0	R/W

Address: 0x021, Reset: 0x00, Name: WR_BW

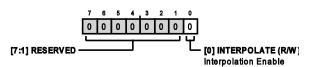


[7:0] BW_LOAD_WR (R/W) Write Group: Bandwidth

Table 24. Bit Descriptions for WR BW

Bits	Bit Name	Description	Reset	Access
[7:0]	BW_LOAD_WR	Write Group: Bandwidth.	0x0	R/W

Address: 0x022, Reset: 0x00, Name: WR_MATCH



[7:0] MATCH_LOAD_WR (R/W) — Write Group: Match

Table 25. Bit Descriptions for WR MATCH

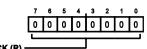
Bits	Bit Name	Description	Reset	Access
[7:0]	MATCH_LOAD_WR	Write Group: Match.	0x0	R/W

Address: 0x050, Reset: 0x00, Name: FILTER_CONFIG

Table 26. Bit Descriptions for FILTER_CONFIG

Bits	Bit Name	Description F		Access
[7:1]	RESERVED	Reserved.	0x0	R
0	INTERPOLATE	Interpolation Enable. When this bit is set to zero, program the center frequency, bandwidth, and match. When this bit is set to one, determine interpolation by the capacitors for the center frequency, bandwidth, and match.	0x0	R/W

Address: 0x060, Reset: 0x00, Name: FC_READBACK


0 0 0 0 0 0 0 0	7	76	5	4	3	2	1	0
	0	0 0	0	0	0	0	0	0

[7:0] FC_READBACK (R) — Center Frequency Read Back

Table 27. Bit Descriptions for FC READBACK

Bits	Bit Name	Description	Reset	Access
[7:0]	FC_READBACK	Center Frequency Read Back.	0x0	R

Address: 0x061, Reset: 0x00, Name: BW_READBACK

[7:0] BW_READBACK (R) Bandwidth Read Back

Table 28. Bit Descriptions for BW READBACK

Bits	Bit Name	Description	Reset	Access
[7:0]	BW_READBACK	Bandwidth Read Back.	0x0	R

Address: 0x062, Reset: 0x00, Name: MATCH_READBACK

[7:0] MATCH_READBACK (R) – Match Read Back

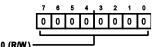
Table 29. Bit Descriptions for MATCH READBACK

Bits	Bit Name	Description	Reset	Access
[7:0]	MATCH_READBACK	Match Read Back.	0x0	R

Address: 0x100, Reset: 0x00, Name: LUT0_FC

[7:0] FC_LOAD_0 (R/W) —— LUT 000: Center Frequency

Table 30.	Table 30. Bit Descriptions for LUT0_FC					
Bits	Bit Name	Description	Reset	Access		
[7:0]	FC_LOAD_0	LUT 000: Center Frequency.	0x0	R/W		


Address: 0x101, Reset: 0x00, Name: LUT0_BW

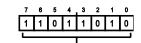
0 0 0 0 0 0 0 0	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0

[7:0] BW_LOAD_0 (R/W) — LUT 000: Bandwidth

Table 31.	Table 31. Bit Descriptions for LUT0_BW					
Bits	Bit Name	Description	Reset	Access		
[7:0]	BW_LOAD_0	LUT 000: Bandwidth.	0x0	R/W		

Address: 0x102, Reset: 0x00, Name: LUT0_MATCH

[7:0] MATCH_LOAD_0 (R/W) LUT 000: Match

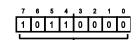

Table 32. Bit Descriptions for LUT0_MATCH

Bits	Bit Name	Description	Reset	Access
[7:0]	MATCH_LOAD_0	LUT 000: Match.	0x0	R/W

Address: 0x103 to 0x15F, Reset: 0x00

The LUT1 to LUT31 bit field functionality (Register 0x103 through Register 0x15F) is similar to LUT0 (Register 0x100 through Register 0x102), see Table 12 for the register address information.

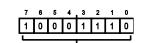
Address: 0x300, Reset: 0xDA, Name: INTERP_FC_Y0



[7:0] INTERP_FC_Y0 (R/W) Center Frequency Interpolation Point Y0

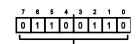
Table 33. Bit Descriptions for INTERP_FC_Y0

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y0	Center Frequency Interpolation Point Y0.	0xDA	R/W


Address: 0x301, Reset: 0xB0, Name: INTERP_FC_Y1

[7:0] INTERP_FC_Y1 (R/W) Center Frequency Interpolation Point Y1

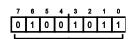
Table 34	. Bit Descriptions for II	ITERP_FC_Y1		
Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y1	Center Frequency Interpolation Point Y1.	0xB0	R/W


Address: 0x302, Reset: 0x8E, Name: INTERP_FC_Y2

[7:0] INTERP_FC_Y2 (R/W) Center Frequency Interpolation Point Y2

Table 35. Bit Descriptions for INTERP_FC_Y2				
Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y2	Center Frequency Interpolation Point Y2.	0x8E	R/W

Address: 0x303, Reset: 0x66, Name: INTERP_FC_Y3

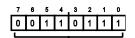


[7:0] INTERP_FC_Y3 (R/W) Center Frequency Interpolation Point Y3

Table 36. Bit Descriptions for INTERP_FC_Y3

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y3	Center Frequency Interpolation Point Y3.	0x66	R/W

Address: 0x304, Reset: 0x4B, Name: INTERP_FC_Y4

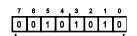


[7:0] INTERP_FC_Y4 (R/W) Center Frequency Interpolation Point Y4

Table 37. Bit Descriptions for INTERP FC Y4

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y4	Center Frequency Interpolation Point Y4.	0x4B	R/W

Address: 0x305, Reset: 0x37, Name: INTERP_FC_Y5

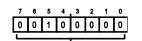


[7:0] INTERP_FC_Y5 (R/W) Center Frequency Interpolation Point Y5

Table 38. Bit Descriptions for INTERP FC Y5

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y5	Center Frequency Interpolation Point Y5.	0x37	R/W

Address: 0x306, Reset: 0x2A, Name: INTERP_FC_Y6

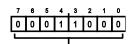


[7:0] INTERP_FC_Y6 (R/W) Center Frequency Interpolation Point Y6

Table 39. Bit Descriptions for INTERP_I	FC	Y6	
Table 33. Dit Descriptions for intrent _i	· •_		

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y6	Center Frequency Interpolation Point Y6.	0x2A	R/W

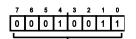
Address: 0x307, Reset: 0x20, Name: INTERP_FC_Y7



[7:0] INTERP_FC_Y7 (R/W) Center Frequency Interpolation Point Y7

Table 40. Bit Descriptions for INTERP FC Y7

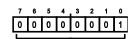
Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y7	Center Frequency Interpolation Point Y7.	0x20	R/W


Address: 0x308, Reset: 0x18, Name: INTERP_FC_Y8

[7:0] INTERP_FC_Y8 (R/W) Center Frequency Interpolation Point Y8

Table 41	. Bit Descriptions for IN	ITERP_FC_Y8		
Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y8	Center Frequency Interpolation Point Y8.	0x18	R/W

Address: 0x309, Reset: 0x13, Name: INTERP_FC_Y9

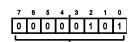


[7:0] INTERP_FC_Y9 (R/W) Center Frequency Interpolation Point Y9

Table 42. Bit Descriptions for INTERP FC Y9

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_FC_Y9	INTERP FC 19 Center Frequency Interpolation Point 19.		R/W

Address: 0x30A, Reset: 0x01, Name: INTERP_BW_V0

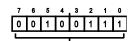


[7:0] INTERP_BW_V0 (R/W)

Bandwidth Interpolation Point V0

Table 43.	Bit Descriptions for IN1	ERP_BW_V0		
Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_BW_V0	Bandwidth Interpolation Point V0.	0x1	R/W

Address: 0x30B, Reset: 0x05, Name: INTERP_BW_V1


[7:0] INTERP_BW_V1 (R/W)

Bandwidth Interpolation Point V1

Table 44. Bit Descr	iptions for INTERP	BW V1

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_BW_V1	Bandwidth Interpolation Point V1.	0x5	R/W

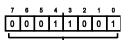
Address: 0x30C, Reset: 0x27, Name: INTERP_BW_V2

[7:0] INTERP_BW_V2 (R/W) —— Bandwidth Interpolation Point V2

Table 45. Bit Descriptions for INTERP_BW_V2

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_BW_V2	Bandwidth Interpolation Point V2.	0x27	R/W

Address: 0x30D, Reset: 0x05, Name: INTERP_MATCH_T0

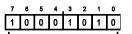

[7:0] INTERP_MATCH_T0 (R/W) -

Match Interpolation Point T0

Table 46. Bit Descriptions for INTERP_MATCH_T0

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_MATCH_T0	Match Interpolation Point T0.	0x5	R/W

Address: 0x30E, Reset: 0x19, Name: INTERP_MATCH_T1

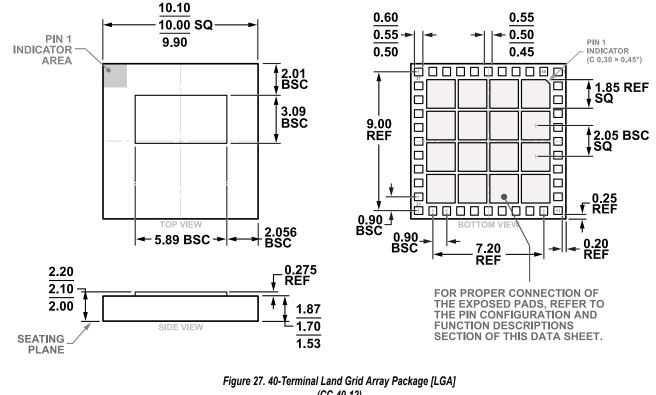

[7:0] INTERP_MATCH_T1 (R/W) —

Match Interpolation Point T1

Table 47. Bit Descriptions for INTERP MATCH T1

Bits	Bit Name	Description	Reset	Access
[7:0]	INTERP_MATCH_T1	Match Interpolation Point T1.	0x19	R/W

Address: 0x30F, Reset: 0x8A, Name: INTERP_MATCH_T2



[7:0] INTERP_MATCH_T2 (R/W) — Match Interpolation Point T2

Table 48. Bit Descriptions for INTERP_MATCH_T2

Bits	Bit Name	Description F		Access
[7:0]	INTERP_MATCH_T2	Match Interpolation Point T2.	0x8A	R/W

OUTLINE DIMENSIONS

(CC-40-12) Dimensions shown in millimeters

Updated: May 31, 2023

12-21-2020-A

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADMV8513ACCZ	-40°C to +85°C	40-Terminal Land Grid Array Package [LGA]		CC-40-12
ADMV8513ACCZ-R7	-40°C to +85°C	40-Terminal Land Grid Array Package [LGA]	Reel, 300	CC-40-12

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Model ¹	Description
ADMV8513-EVALZ	Evaluation Board

¹ Z = RoHS Compliant Part.

