Reflective, Silicon SP8T Switch, 100 MHz to 20 GHz

FEATURES

- Ultrawideband frequency range: 100 MHz to 20 GHz
- Low insertion loss
- 1.3 dB up to 6 GHz
- 1.6 dB up to 12 GHz
- 2.0 dB up to 20 GHz
- High isolation
- 46 dB up to 6 GHz
- 45 dB up to 12 GHz
- 40 dB up to 20 GHz
- High input linearity
- P0.1dB: 33 dBm typical
- IP3: 55 dBm typical
- High RF power handling
- Insertion loss path: 33 dBm
- Hot switching: 30 dBm
- Fast switching on and off time: 55 ns
-0.1 dB settling time ($50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB final $\mathrm{RF}_{\text {out }}$): 100 ns
- Single-supply operation capability
- All off state control
- Logic select control
- No low frequency spurs
- 36-terminal, $5.50 \mathrm{~mm} \times 5.50 \mathrm{~mm}$ LGA package

APPLICATIONS

- Test and instrumentation
- Military radios, radars, and electronic counter measures (ECMs)
- Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5080 is a reflective, SP8T switch manufactured in the silicon process. The ADRF5080 operates from 100 MHz to 20 GHz with an insertion loss of lower than 2.0 dB and an isolation higher than 40 dB . The device has an RF input power handling capability of 30 dBm continuous wave power for the insertion loss path.
The ADRF5080 operates with a dual-supply voltage, +3.3 V and -3.3 V . The device can also operate with a single-supply voltage (VDD) applied while the negative supply pin (VSS) is tied to ground. The single-supply operation condition requires a lower operating power while the excellent small signal performance is maintained See Table 2 for details.

The ADRF5080 employs complementary metal-oxide semiconductor (CMOS)-Ilow voltage transistor to transistor logic (LVTTL)-compatible controls.

The ADRF5080 comes in a 36 -terminal, $5.50 \mathrm{~mm} \times 5.50 \mathrm{~mm}$, RoHS compliant, land grid array (LGA) package and can operate from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description. 1
Specifications 3
Single-Supply Operation Specifications 4
Absolute Maximum Ratings 5
Thermal Resistance. 5
Power Derating Curves 5
Electrostatic Discharge (ESD) Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Interface Schematics. 8
Typical Performance Characteristics 9
Insertion Loss, Return Loss, and Isolation. 9
Input Power Compression and Third-Order Intercept 12
Theory of Operation. 13
RF Input and Output. 13
Power Supply 13
Single-Supply Operation 13
Applications Information. 14
Recommendations for PCB Design 14
Outline Dimensions 15
Ordering Guide. 15
Evaluation Boards 15

REVISION HISTORY

7/2023—Revision 0: Initial Version

SPECIFICATIONS

Positive supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)=3.3 \mathrm{~V}$, negative supply voltage $\left(\mathrm{V}_{S S}\right)=-3.3 \mathrm{~V}$, LS voltage $\left(\mathrm{V}_{\mathrm{LS}}\right)$, EN voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)$, V 1 , V 2 , or $\mathrm{V} 3=0 \mathrm{~V}$ or VDD , and $T_{\text {CASE }}=25^{\circ} \mathrm{C}$, with a 50Ω system, unless otherwise noted. RFx refers to RF1 to RF8, and $V_{\text {CTRL }}$ is the digital control inputs voltage of the $\mathrm{V} 1, \mathrm{~V} 2$, and V 3 pins.

Table 1. Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		100		20,000	MHz
INSERTION LOSS Between RFC and RFx (On)		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 1.3 \\ & 1.6 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
ISOLATION Between RFC and RFx Between RFx and RFx		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz 100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 50 \\ & 50 \\ & 44 \\ & 46 \\ & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC (On) $R F x(0 n)$		100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz 100 MHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 20 \\ & 18 \\ & 18 \\ & 20 \\ & 18 \\ & 18 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \hline \end{array}$
SWITCHING CHARACTERISTICS Rise Time and Fall Time On Time and Off Time RF Settling Time 0.1 dB	$\mathrm{t}_{\text {RISE }}, \mathrm{t}_{\text {FALL }}$ ton, toff	10% to 90% of RF output ($\mathrm{RF}_{\text {OUT }}$) $50 \% \mathrm{~V}_{\text {CTRL }}$ to 90% of $\mathrm{RF}_{\text {OUT }}$ $50 \% V_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$		$\begin{aligned} & 15 \\ & 55 \\ & 100 \end{aligned}$		ns ns ns
```INPUT LINEARITY \({ }^{1}\) Compression Point 0.1 dB 1 dB Third-Order Intercept```	$\begin{array}{\|l} \text { P0.1dB } \\ \text { P1dB } \\ \text { IIIP3 } \end{array}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{MHz} \text { to } 20 \mathrm{GHz} \\ & \mathrm{f}=100 \mathrm{MHz} \text { to } 20 \mathrm{GHz} \end{aligned}$   Two tone input power $=15 \mathrm{dBm}$ each tone, $\mathrm{f}=100$ MHz to $20 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 33 \\ & 33.5 \\ & 55 \end{aligned}$		dBm   dBm   dBm
SUPPLY CURRENT   Positive Supply Current Negative Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$	VDD and VSS pins		$\begin{aligned} & 220 \\ & 580 \end{aligned}$		$\mu \mathrm{A}$   $\mu \mathrm{A}$
DIGITAL CONTROL INPUTS   Voltage   Low   High   Current   Low   High	$\mathrm{V}_{\text {INL }}$   $V_{\text {INH }}$   IINL   $I_{\mathrm{NH}}$	LS, EN, V1, V2, and V3 pins   V1, V2, and V3 pins EN and LS pins	$\begin{array}{\|l} 0 \\ 1.2 \end{array}$	$<1$   <1   33	$\begin{aligned} & 0.8 \\ & 3.3 \end{aligned}$	V V   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITONS   Supply Voltage   Positive   Negative	$\begin{aligned} & V_{D D} \\ & V_{S S} \end{aligned}$		$\begin{array}{\|l\|} 3.15 \\ -3.45 \end{array}$		$\begin{aligned} & 3.45 \\ & -3.15 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

## SPECIFICATIONS

Table 1. Specifications (Continued)


1 For input linearity performance over frequency, see the Input Power Compression and Third-Order Intercept section.
2 For power derating over frequency, see Figure 2 and Figure 3.
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling derates from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

## SINGLE-SUPPLY OPERATION SPECIFICATIONS

Positive supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)=3.3 \mathrm{~V}$, negative supply voltage $\left(\mathrm{V}_{S S}\right)=0 \mathrm{~V}$, LS voltage $\left(\mathrm{V}_{\text {LS }}\right)$, EN voltage $\left(\mathrm{V}_{\text {EN }}\right)$, $\mathrm{V} 1, \mathrm{~V} 2$, or $\mathrm{V} 3=0 \mathrm{~V}$ or VDD , and $T_{\text {CASE }}=25^{\circ} \mathrm{C}$, with a $50 \Omega$ system, unless otherwise noted. RFx refers to RF 1 to RF 8 , and $\mathrm{V}_{\text {CTRL }}$ is the digital control inputs voltage of the V 1 , V 2 , and V 3 pins.
The small signal and bias characteristics are maintained for the single-supply operation.
Table 2. Single-Supply Operation Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE			100		20,000	MHz
SWITCHING   Rise Time and Fall Time On Time and Off Time 0.1 dB Settling Time	$\mathrm{t}_{\text {RISE }}, \mathrm{t}_{\text {FALL }}$   ton, toff	$10 \%$ to $90 \%$ of $R F_{\text {out }}$ $50 \% \mathrm{~V}_{\text {CTRL }}$ to $90 \%$ of $\mathrm{RF}_{\text {OUT }}$ $50 \% V_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$		$\begin{aligned} & 50 \\ & 150 \\ & 300 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{array}$
INPUT LINEARITY   0.1 dB Power Compression Third-Order Intercept	$\begin{aligned} & \mathrm{P} 0.1 \mathrm{~dB} \\ & \mathrm{IP} 3 \end{aligned}$	$f=100 \mathrm{MHz} \text { to } 20 \mathrm{GHz}$   Two-tone input power $=20 \mathrm{dBm}$ each tone, $\mathrm{f}=15$ $\mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 18 \\ & 37 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
RECOMMENDED OPERATING CONDITIONS   RF Power Handling Insertion Loss Path   Hot Switching   Case Temperature	$\mathrm{T}_{\text {CASE }}$	$\mathrm{f}=100 \mathrm{MHz} \text { to } 20 \mathrm{GHz}, \mathrm{~T}_{\text {CASE }}=85^{\circ} \mathrm{C}$   RF signal is applied to RFC or through connected RFx   RF signal is applied to RFC or through connected RFx	-40		15   9 $+105$	dBm   dBm   ${ }^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1 and Table 2.
Table 3. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
VDD	-0.3 V to +3.6 V
VSS	-3.6 V to +0.3 V
Digital Control Input ${ }^{1}$	
Voltage	-0.3 V to VDD +0.3 V
Current	3 mA
RF Input Power ${ }^{2}$	
$\begin{aligned} & \text { Dual Supply (VDD }=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz} \\ & \text { to } 20 \mathrm{GHz}, \mathrm{~T}_{\mathrm{CASE}}=85^{\circ} \mathrm{C}^{3} \text { ) } \end{aligned}$	
Through Path	33.5 dBm
Hot Switching	30.5 dBm
Single Supply (VDD $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$ to $20 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{3}$ )	
Through Path	15.5 dBm
Hot Switching	9.5 dBm
Unbiased (VDD, VSS = OV )	10.5 dBm
Temperature	
Junction ( $\mathrm{T}_{\mathrm{J}}$ )	$135^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow	$260^{\circ} \mathrm{C}$
1 Overvoltages at digital control inputs are clamped by internal diodes. Current must be limited to the maximum rating given.	
2 For power derating over frequency, see Figure 2 and Figure 3.	
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $T_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. $\theta_{\mathrm{Jc}}$ is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance


## POWER DERATING CURVES



Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$


Figure 3. Power Derating vs. Frequency, High Frequency Detail, $T_{C A S E}=85^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS

## ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

## ESD Ratings for ADRF5080

Table 5. ADRF5080, 36-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM		
$\quad$ RFx and RFC Pins	2000	2
$\quad$ Supply and Control Pins	2000	2
CDM	500	C2A

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi-   ces and circuit boards can discharge without detection. Although   this product features patented or proprietary protection circuitry,   damage may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to avoid   performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



## NOTES

1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RF AND DC GROUND OF THE PCB.

Figure 4. Pin Configuration (Top View)

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF6	RF Throw Port 6. The RF6 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to $0 \mathrm{~V} D C$. See Figure 5 for the interface schematic.
$\begin{aligned} & 2,3,5,6,8,12,13,15,20,22,23,25, \\ & 26,28,29,31 \text { to } 33,35,36 \end{aligned}$	GND	Ground. The GND pins must be connected to the RF and DC ground of the PCB.
4	RF7	RF Throw Port 7. The RF7 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
7	RF8	RF Throw Port 8. The RF8 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
9	LS	Logic Select. See Table 7 for the truth table. See Figure 7 for the interface schematic.
10	VDD	Positive Supply Voltage.
11	VSS	Negative Supply Voltage.
14	RFC	RF Common Port. The RFC pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
16	V3	Digital Input 3. See Table 7 for the truth table. See Figure 6 for the interface schematic.
17	V2	Digital Input 2. See Table 7 for the truth table. See Figure 6 for the interface schematic.
18	V1	Digital Input 1. See Table 7 for the truth table. See Figure 6 for the interface schematic.
19	EN	Enable Input. See Table 7 for the truth table. See Figure 7 for the interface schematic.
21	RF1	RF Throw Port 1. The RF1 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
24	RF2	RF Throw Port 2. This pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
27	RF3	RF Throw Port 3. The RF3 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
30	RF4	RF Throw Port 4. The RF4 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
34	RF5	RF Throw Port 5 . The RF5 pin is DC-coupled to 0 V and AC matched to $50 \Omega$. No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 5 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

## INTERFACE SCHEMATICS

RFC, RF1 TO RF8 O 포 등
Figure 5. RFx (RFC, RF1 to RF8) Interface Schematic


Figure 6. V1 to V3 Interface Schematic


Figure 7. LS and EN Interface Schematic

## TYPICAL PERFORMANCE CHARACTERISTICS

## INSERTION LOSS, RETURN LOSS, AND ISOLATION

$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LS}}, \mathrm{V}_{E N}, \mathrm{~V} 1, \mathrm{~V} 2$, or $\mathrm{V} 3=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$, and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ in a $50 \Omega$ system, unless otherwise noted.


Figure 8. Insertion Loss for RFC to RFx (On) vs. Frequency


Figure 9. Return Loss for RFC to RFx Path (On) vs. Frequency


Figure 10. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF1 Path On


Figure 11. Insertion Loss for RFC to RF1 (On) vs. Frequency over Temperature


Figure 12. Return Loss for RFC to RFx Path (On) vs. Frequency


Figure 13. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF2 Path On

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 14. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF3 Path On


Figure 15. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF5 Path On


Figure 16. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF7 Path On


Figure 17. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF4 Path On


Figure 18. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF6 Path On


Figure 19. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF8 Path On

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 20. Worst-Case Channel-to-Channel Isolation vs. Frequency, RFC to RFx Path On


Figure 21. Best-Case Channel-to-Channel Isolation vs. Frequency, RFC to RFx Path On


Figure 22. Port-to-Port Insertion Loss Phase Difference, RFC to RFx Path (On), vs. Frequency, Normalized to RF1

ADRF5080

## TYPICAL PERFORMANCE CHARACTERISTICS

## INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$V D D=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LS}}, \mathrm{V}_{E N}, \mathrm{~V} 1, \mathrm{~V} 2$, or $\mathrm{V} 3=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ on a $50 \Omega$ system, unless otherwise noted.


Figure 23. Input P0.1dB vs. Frequency


Figure 24. Input IP3 vs. Frequency


Figure 25. Input P0.1dB vs. Frequency, Low Frequency Detail


Figure 26. Input IP3 vs. Frequency, Low Frequency Detail

## THEORY OF OPERATION

The ADRF5080 integrates a driver to perform logic function internally and to provide the advantage of a simplified CMOS-ILVTTLcompatible control interface. The driver features five digital control input pins (LS, EN, V1, V2, and V3) that control the state of the RFx paths (see Table 7).
The LS input allows the user to define the control input logic sequence for the RF path selections. The logic level applied to the V1, V2, and V3 pins determine which RF port is in the insertion loss state while the other three paths are in the isolation state.

When the EN pin is logic low, the logic level applied to the CMOS control input pin determines which RF port is in the insertion loss state and which RF port is in the isolation state. The insertion loss path conducts the RF signal between the selected $R F$ throw port and the RF common port. The isolation path provides high loss between the insertion loss path and the unselected RF throw port. The unselected RF port of the ADRF5080 is reflective.
When the EN pin is logic high, the switch is in an all off state regardless of the logic state of the LS, V1, V2 and V3 pins, and all of the RFx to RFC path is in an isolation state.

## RF INPUT AND OUTPUT

All of the RF ports (RFC, RF1 to RF8) are DC-coupled to 0 V, and no DC blocking is required at the RF ports when the RF line potential is equal to 0 V . The RF ports are internally matched to 50 $\Omega$. Therefore, external matching networks are not required.
The switch design is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RF throw port.

## POWER SUPPLY

The ADRF5080 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.
The ideal power-up sequence is as follows:

1. Connect GND to ground.
2. Power up VDD and VSS. Powering up VSS after VDD avoids current transients on VDD during ramp up.
3. Apply a control voltage to the digital control inputs ( $\mathrm{EN}, \mathrm{LS}, \mathrm{V} 1$, V2, and V3). Applying a control voltage to the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. Use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the control pin in such cases. If the control pins are not driven to a valid logic state (that is, controller output is in high impedance state) after VDD is powered up, it is recommended to use a pull-up or pull-down resistor.
4. Apply an RF input signal.

The ideal power-down sequence is the reverse order of the powerup sequence.

## SINGLE-SUPPLY OPERATION

The ADRF5080 can operate with a single positive supply voltage applied to the VDD pin and VSS pin connected to ground. However, some performance degradations can occur in the input compression and input third-order intercept.

Table 7. Control Voltage Truth Table

Digital Control Inputs					RFx Paths							
EN	LS	V3	V2	V1	RF1 to RFC	RF2 to RFC	RF3 to RFC	RF4 to RFC	RF5 to RFC	RF6 to RFC	RF7 to RFC	RF8 to RFC
Low	Low	Low	Low	Low	On	Off						
Low	Low	Low	Low	High	Off	On	Off	Off	Off	Off	Off	Off
Low	Low	Low	High	Low	Off	Off	On	Off	Off	Off	Off	Off
Low	Low	Low	High	High	Off	Off	Off	On	Off	Off	Off	Off
Low	Low	High	Low	Low	Off	Off	Off	Off	On	Off	Off	Off
Low	Low	High	Low	High	Off	Off	Off	Off	Off	On	Off	Off
Low	Low	High	High	Low	Off	Off	Off	Off	Off	Off	On	Off
Low	Low	High	High	High	Off	On						
Low	High	Low	Low	Low	Off	On						
Low	High	Low	Low	High	Off	Off	Off	Off	Off	Off	On	Off
Low	High	Low	High	Low	Off	Off	Off	Off	Off	On	Off	Off
Low	High	Low	High	High	Off	Off	Off	Off	On	Off	Off	Off
Low	High	High	Low	Low	Off	Off	Off	On	Off	Off	Off	Off
Low	High	High	Low	High	Off	Off	On	Off	Off	Off	Off	Off
Low	High	High	High	Low	Off	On	Off	Off	Off	Off	Off	Off
Low	High	High	High	High	On	Off						
High	Low or high	Low or high	Low or high	Low or high	Off							

## APPLICATIONS INFORMATION

The ADRF5080 has two power supply pins (VDD and VSS) and five digital control pins (LS, EN, V1, V2, and V3). Figure 27 shows the external components and connections for the supply and control pins. Supply and control pins are decoupled with a 10 pF or 100 pF multilayer ceramic capacitor. The device pinout allows the placement of the decoupling capacitors close to the device. No other external components are needed for bias and operation, except DC blocking capacitors on the RFx pins when the RF lines are biased at a voltage different than 0 V . Refer to Pin Configuration and Function Descriptions section for further details.


Figure 27. Recommended Schematic

## RECOMMENDATIONS FOR PCB DESIGN

The RF ports are matched to $50 \Omega$ internally and the pinout is designed to mate a coplanar waveguide (CPWG) with $50 \Omega$ characteristic impedance on the PCB. Figure 28 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003 dielectric material. The RF trace with a 14 mil width and a 7 mil clearance is recommended for 2.8 mil finished copper thickness.


Figure 28. Example PCB Stackup
Figure 29 shows the routing of the RF traces, supply, and control signals from the device. The ground planes are connected with as many filled through vias as allowed for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.


ฐั
Figure 29. PCB Routings
Figure 30 shows the recommended layout from the device RFx pins to the $50 \Omega$ CPWG on the referenced stackup. PCB pads are drawn 1:1 to device pads. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width by 2 mils and tapered to an RF trace with $45^{\circ}$ angle. The paste mask is also designed to match the pad without any aperture reduction. The paste is divided into multiple openings for the paddle.


Figure 30. Recommended RFx Pin Transitions
For alternate PCB stackups with different dielectric thickness and CPWG design, contact Analog Devices, Inc., Technical Support Request for further recommendations.

## OUTLINE DIMENSIONS



Figure 31. 36-Terminal Land Grid Array [LGA]
(CC-36-2)
Dimensions shown in millimeters
Updated: June 30, 2023
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Packing Quantity	Package   Option
ADRF5080BCCZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	LGA/CASON/CH ARRY SO NO LD		CC-36-2
ADRF5080BCCZN-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	LGA/CASON/CH ARRY SO NO LD	Reel, 500	CC-36-2

1 Z = RoHS Compliant Part.

## EVALUATION BOARDS

Model 1	Description
ADRF5080-EVALZ	Evaluation Board
1 Z $=$ RoHS-Compliant Part.	

