High Linearity, Silicon SP4T Switch, 1.8 GHz to 3.8 GHz

FEATURES

- Low insertion loss
- 0.35 dB to 2.8 GHz typical
- 0.42 dB to 3.8 GHz typical
- High input linearity, IP3: 84 dBm typical
- High power handling at $\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$
- Long-term (>10 years) average - Continuous wave power: 39 dBm - LTE signal
- Average power: 39 dBm
- Peak power: 49 dBm
- Fast 0.1 dB settling time : 720 ns typical
- ESD ratings
- HBM: 1000 V, Class 1B
- CDM: 750 V, Class C4
- Positive control, LVCMOS-ILVTTL- compatible
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}, 20$-terminal LGA package

APPLICATIONS

- 5G antenna tilting and beamforming
- Wireless infrastructure
- Military and high reliability applications
- Test equipment
- Pin diode replacement

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5347 is a high linearity, reflective, single-pole, four-throw (SP4T) switch manufactured in the silicon process.
The ADRF5347 operates from 1.8 GHz to 3.8 GHz with a typical insertion loss lower than 0.42 dB and a typical input IP3 of 84 dBm . The device has an RF input power handling capability of 39 dBm for continuous wave signals and 39 dBm average and 49 dBm peak for long-term evolution (LTE) signals.

The ADRF5347 draws a current of 2.5 mA on the positive supply of +5.0 V and 0.4 mA on the negative supply of -3.4 V . The device employs low voltage complementary metal-oxide semiconductor (LVCMOS)-Ilow voltage transistor-to-transistor logic (LVTTL)- compatible controls.

The ADRF5347 comes in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 20-terminal, RoHS-compliant, land grid array (LGA) package and operates between $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Excellent return loss and IP3 enable ADRF5347 to be used in back-to-back configuration for phase shifting architectures. See the Back-to-Back Phase Shifter Reference Design section for more information.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description. 1
Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
Electrostatic Discharge (ESD) Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Insertion Loss, Return Loss, and Isolation 7
Input Third-Order Intercept 10
Theory of Operation. 11
Power Supply 11
RF Input and Output. 11
Timing Specifications 12
Application Information 13
Recommendations for PCB Design 13
Back-to-Back Phase Shifter Reference
Design 14
Outline Dimensions 15
Ordering Guide. 15
Evaluation Boards 15

SPECIFICATIONS

Supply voltages $\left(\mathrm{V}_{\mathrm{DD}}\right)=5 \mathrm{~V}$, $\left(\mathrm{V}_{S S}\right)=-3.4 \mathrm{~V}$, control voltage $\left(\mathrm{V}_{\mathrm{CLL}}\right)=0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and it is a 50Ω system, unless otherwise noted.
Table 1. Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE		1.8		3.8	GHz
INSERTION LOSS Between RFC and RF1 to RF4 (On)	$\begin{aligned} & \text { 2.3 GHz to } 2.8 \mathrm{GHz} \\ & 3.3 \mathrm{GHz} \text { to } 3.8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.42 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ISOLATION Between RFC and RF1 to RF4 (Off)	$\begin{aligned} & 2.3 \mathrm{GHz} \text { to } 2.8 \mathrm{GHz} \\ & 3.3 \mathrm{GHz} \text { to } 3.8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 30 \\ & 27 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC and RF1 to RF4 (On)	$\begin{aligned} & 2.3 \mathrm{GHz} \text { to } 2.8 \mathrm{GHz} \\ & 3.3 \mathrm{GHz} \text { to } 3.8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
TRANSMISSION PHASE ${ }^{1}$ RFC to RF1/RF4 RFC to RF2/RF3	$\begin{aligned} & \text { at } 3.8 \mathrm{GHz} \\ & \text { at } 3.8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & -63 \\ & -66 \end{aligned}$		Degrees Degrees
RELATIVE PHASE VARIANCE	$\mathrm{T}_{\text {CASE }}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			2	Degrees
SWITCHING Rise and Fall Time (trise, $\mathrm{t}_{\text {FALL }}$) On and Off Time ($\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$) 0.1 dB Settling Time	$\begin{aligned} & 90 \% \text { to } 10 \% \text { of } R \text { F output (} \mathrm{RF}_{\text {out }} \text {) } \\ & 50 \% \mathrm{~V}_{\text {CTL }} \text { to } 10 \% \text { to } 90 \% \text { of } \mathrm{RF}_{\text {out }}{ }^{2} \\ & 50 \% \mathrm{~V} \text { CTL } \text { to } 0.1 \mathrm{~dB} \text { of final } \mathrm{RF}_{\text {OUU }}{ }^{2} \end{aligned}$		$\begin{aligned} & 300 \\ & 650 \\ & 720 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
INPUT LINEARITY 0.1 dB Power Compression (P0.1dB) Third-Order Intercept (IP3) Continuous Wave LTE Signal Harmonic Distortion Second Harmonic Third Harmonic	LTE (10 dB peak average ratio (PAR)) Two-tone input power $=30 \mathrm{dBm}$ continuous wave per tone Two LTE 10 MHz E-TM 1.1 carriers, each having 34 dBm Single LTE 10 MHz E-TM 1.1 carrier having 37dBm Single LTE 10 MHz E-TM 1.1 carrier having 37dBm		$\begin{aligned} & >50 \\ & 84 \\ & 96 \\ & \\ & 100 \\ & 87 \end{aligned}$		dBm dBm dBC dBC dBc
SUPPLY CURRENT	$V_{D D}$ and $V_{S S}$				
Positive Supply Current (ldo)			2.4		mA
Negative Supply Current ($\mathrm{lss}^{\text {s }}$)			0.4		mA
DIGITAL CONTROL INPUTS Voltage Low Voltage (VIL) High Voltage ($\mathrm{V}_{\mathbb{H}}$) Current Low (I_{NL}) High ($\left(\mathrm{INH}_{\mathrm{NH}}\right)$	LS V1 and V2 LS V1 and V2	0 1.07	<1 <1 6.6 6.6	0.7	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITIONS Positive Supply Voltage (V_{DD}) Negative Supply Voltage (VSS) Control Voltage (VCTL) RF Input Power Through Power Continuous Wave LTE Signal	$T_{\text {CASE }}=105^{\circ} \mathrm{C}$, life time $10 \mathrm{~dB} \text { PAR }$	$\begin{array}{\|l\|} 4.75 \\ -3.6 \\ 0 \end{array}$	$\begin{aligned} & 5.0 \\ & -3.4 \end{aligned}$	$\begin{aligned} & 5.25 \\ & -3.2 \\ & 3.45 \\ & \\ & 39 \end{aligned}$	

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Average				39	dBm
Peak				49	dBm
Reflected Power	$\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$, life time				
Continuous Wave				27	dBm
LTE Signal	Input signal is 37 dBm LTE $10 \mathrm{MHz} \mathrm{E-TM} 1.1$ carrier with 8 dB PAR				
Average				27	dBm
Peak				35	dBm
Hot Switching Power	$\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$, life time				
Continuous Wave				37	dBm
LTE Signal					
Average				37	dBm
Peak				47	dBm
Through Power	$\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$, single event ($<10 \mathrm{sec}$)				
Continuous Wave				40	dBm
LTE Signal	10 dB PAR				
Average				40	dBm
Peak				50	dBm
Reflected Power	$\mathrm{T}_{\text {CASE }}=105^{\circ} \mathrm{C}$, single event ($<10 \mathrm{sec}$)				
Continuous Wave				32	dBm
LTE Signal	Input signal is 37 dBm LTE 10 MHz E-TM 1.1 carrier with 8 dB PAR				
Average				32	dBm
Peak				40	dBm
Case Temperature ($\mathrm{T}_{\text {CASE }}$)		-40		+105	${ }^{\circ} \mathrm{C}$

${ }^{1}$ See Figure 7 and Figure 10 for frequency behavior.
$250 \% V_{\text {CTL }}$ to gain settled to IL $+/-0.1 \mathrm{~dB}$ for an LTE signal of 37 dBm (avg.)/45 dBm(peak).

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
$V_{D D}$	-0.3 V to +5.5 V
$V_{S S}$	-3.8 V to +0.3 V
$V_{\text {CTL }}$	-0.3 V to +3.6 V
RFC, RF1, RF2, RF3, RF4	-2.0 V to +2.0 V
RF Input Power ${ }^{1}\left(\mathrm{~T}_{\text {CASE }}=105^{\circ} \mathrm{C}\right)$	
Through Power	
Average	40.5 dBm
Peak	50.5 dBm
Reflected Power	
Average	32.5 dBm
Peak	40.5 dBm
Hot Switching Power	
Average	39.5 dBm
Peak	49.5 dBm
Temperature	
Junction to Maintain 0.6 Million Hours Mean Time to Failure ${ }^{2}$ (MTTF)	$135^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow	$260^{\circ} \mathrm{C}$

1 For recommended operating conditions, see Table 1.
${ }^{2}$ For $55^{\circ} \mathrm{C}$ paddle temperature and incident RF power of $37 \mathrm{dBm}($ avg $) / 47$ dBm (peak) LTE, FIT rate is 17.7. This FIT rate is not degraded under 7.88 e 9 hot switching at 10 years lifetime.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 3. Thermal Resistance

Package Type	$\theta_{\mathrm{Jc}}{ }^{1}$	Unit
CC-20-14	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]
ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Charged device model (CDM) per ANSI/ESDAJJEDEC JS-002.
ESD Ratings for the ADRF5347
Table 4. ADRF5347, 20-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	1000	1 B
CDM	750	C4

ESD CAUTION

| ESD (electrostatic discharge) sensitive device. Charged devi- |
| :--- | :--- |
| ces and circuit boards can discharge without detection. Although |
| this product features patented or proprietary protection circuitry, |
| damage may occur on devices subjected to high energy ESD. |
| Therefore, proper ESD precautions should be taken to avoid |
| performance degradation or loss of functionality. |

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,4,5,7,8,10,16,18,19$	GND	Ground.
3	RFC	RF Common Port. The RFC Pin is AC Matched to 50Ω.
6	RF1	RF Throw Port 1. The RF1 Pin is AC Matched to 50Ω.
9	RF2	RF Throw Port 2. The RF2 Pin is AC Matched to 50Ω.
11	V1	Control Input 1. See Table 6.
12	V2	Control Input 2. See Table 6.
13	LS	Logic Select. See Table 6.
14	VSS	Negative Supply Voltage.
15	VDD	Positive Supply Voltage.
17	RF3	RF Throw Port 3. The RF3 Pin is AC Matched to 50Ω.
20	RF4	RF Throw Port 4. The RF4 Pin is AC Matched to 50Ω.

INTERFACE SCHEMATICS

Figure 4. V1, V2, and LS Control Interface Schematic $\%$

Figure 3. RF Interface Schematic

ADRF5347

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-3.4 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=0 \mathrm{~V}$ or 3.3 V , and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted.

Figure 5. Insertion Loss for RFC to RFx Selected vs. Frequency

Figure 6. Return Loss for RFC when RFx Selected vs. Frequency

Figure 7. Insertion Phase RFC - RFx Selected vs. Frequency

Figure 8. Insertion Loss for RFC to RF1 vs. Frequency over Temperature

Figure 9. Return Loss for RFx Unselected and Selected

Figure 10. Relative Phase RFC - RFx Normalized to RFC - RF1

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. RFC to RF2, RF3, and RF4 Isolation vs. Frequency, RF1 Selected

Figure 12. RFC to RF1, RF3, and RF4 Isolation vs. Frequency, RF2 Selected

Figure 13. RFC to RF1, RF2, and RF4 Isolation vs. Frequency, RF3 Selected

Figure 14. RFC to RF1, RF2, RF3 Isolation vs. Frequency, RF4 Selected

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Channel-to-Channel Isolation vs. Frequency, RFC to RF1 Path Selected

Figure 16. Channel-to-Channel Isolation vs. Frequency, RFC to RF2 Path Selected

Figure 17. Channel-to-Channel Isolation vs. Frequency, RFC to RF3 Path Selected

Figure 18. Channel-to-Channel Isolation vs. Frequency, RFC to RF4 Path Selected

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT THIRD-ORDER INTERCEPT

$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-3.4 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=0 \mathrm{~V}$ or 3.3 V , and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ on a 50Ω system, unless otherwise noted.

Figure 19. Input IP3 for RFC to RFx Selected vs. Frequency

Figure 20. Input IP3 for RF1 vs. Frequency over Various Temperatures

Figure 21. Input IP3 for RF2 vs. Frequency over Various Temperatures

Figure 22. Input IP3 for RF3 vs. Frequency over Various Temperatures

Figure 23. Input IP3 for RF4 vs. Frequency over Various Temperatures

THEORY OF OPERATION

The ADRF5347 integrates a driver to perform logic functions internally and to provide the advantage of a simplified LVCMOS-ILVTTLcompatible control interface. The driver features three digital control input pins (LS, V1, and V2) that control the state of the RFx paths. See Table 6.

POWER SUPPLY

The ADRF5347 requires a positive supply voltage applied to the $V_{D D}$ pin and a negative voltage applied to the $V_{S S}$ pin. Bypass capacitors are recommended on the supply and control lines to minimize RF coupling.
The ideal power-up sequence is as follows:

1. Connect GND.
2. Power up $\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$ voltages. Power up $\mathrm{V}_{S S}$ after $\mathrm{V}_{D D}$ to avoid current transients on $V_{D D}$ during ramp up.
3. Apply the digital control inputs: LS, V1, and V2. Applying digital control inputs before the $V_{D D}$ supply can inadvertently forward bias and damage the internal ESD protection structures. A series $1 \mathrm{k} \Omega$ resistor can be used to limit the current flowing into the control pin in such cases. If the control pins are not driven to a valid logic state (that is, controller output is in high impedance state) after $V_{D D}$ is powered up, it is recommended to use pull-up and power-down resistors.

4. Apply an RF input signal.

The ideal power-down sequence is the reverse order of the powerup sequence.

RF INPUT AND OUTPUT

All of the RF ports (RFC and RF1 to RF4) are DC-coupled to 0 V , and no $D C$ blocking is required at the $R F$ ports when the $R F$ line potential is equal to 0 V . The RF ports are internally matched to 50Ω. Therefore, external matching networks are not required.

The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The switch design is bidirectional with equal power handling. The RF input signal can be applied to the RFC port or the selected RF throw port. The isolation paths provide high loss between the insertion loss path and the unselected RF throw ports.

The logic select (LS) input allows to define the control input logic sequence for the RF path selections. The logic levels applied to the V1 and V2 pins determine which RFx port is in the insertion loss state while the other three paths are in the isolation state.

Table 6. Control Voltage Truth Table

| Digital Control Inputs | | | | | RFx Paths | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LS | V1 | V2 | RF1 to RFC | RF2 to RFC | RF3 to RFC | RF4 to RFC |
| Low | Low | Low | Insertion loss (on) | Isolation (off) | Isolation (off) | Isolation (off) |
| Low | High | Low | Isolation (off) | Insertion loss (on) | Isolation (off) | Isolation (off) |
| Low | Low | High | Isolation (off) | Isolation (off) | Insertion loss (on) | Isolation (off) |
| Low | High | High | Isolation (off) | Isolation (off) | Isolation (off) | Insertion loss (on) |
| High | Low | Low | Isolation (off) | Isolation (off) | Isolation (off) | Insertion loss (on) |
| High | High | Low | Isolation (off) | Isolation (off) | Insertion loss (on) | Isolation (off) |
| High | Low | High | Isolation (off) | Insertion loss (on) | Isolation (off) | Isolation (off) |
| High | High | High | Insertion loss (on) | Isolation (off) | Isolation (off) | Isolation (off) |

THEORY OF OPERATION

TIMING SPECIFICATIONS

ADRF5347's integrated control circuitry is triggered whenever any control inputs (V1, V2, and LS) are changed and switching is initiated. After the trigger instance, the control inputs must settle their final values within tprog and hold for thold. Switching completes after $\mathrm{t}_{\text {ONOFF }}$ and full RF power can be applied afterwards.
The switch state is defined after trROG and any further change on the control inputs is not processed by the control circuitry until $t_{\text {DEAD }}$ elapses. Within the $t_{\text {DEAD }}$ duration, control inputs can still be programmed and the control circuitry is triggered once the switch is ready for a new state if the programmed state is different than the existing state.

Figure 24. Timing Diagram
Table 7. Timing Specifications

Parameter	Description	Min	Typ	Max
Unit $_{\text {PROG }}$	Programming time		10	ns
thold	Hold time	20		ns
t DEAD	Dead time	1.3	2	us

APPLICATION INFORMATION

The ADRF5347 has two power-supply pins ($\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$) and three control pins (V1, V2, and LS). Figure 25 shows the external components and connections for the supply and control pins. The $V_{D D}$ and $V_{S S}$ pins are decoupled with a 100 pF and $4.7 \mu \mathrm{~F}$ multilayer ceramic capacitors. The control pins V1 and V2 are decoupled with 100 pF multilayer ceramic capacitors, while the LS control pin can be left floating or tied to ground. The device pinout allows to place the decoupling capacitors close to the device. No other external components are needed for bias and operation, except DC blocking capacitors on the RF pins when the RF lines are biased at a voltage different than 0 V . For more details, see the Table 5 section.

品
Figure 25. Recommended Schematic

RECOMMENDATIONS FOR PCB DESIGN

The RF ports are matched to 50Ω internally and the pinout is designed to mate a coplanar waveguide (CPWG) with 50Ω characteristic impedance on the PCB. Figure 26 shows the referenced CPWG RF trace design for an RF substrate with 10 mil thick Rogers RO4350 dielectric material. An RF trace with 18 mil width and 13 mil clearance is recommended for the 2.7 mil finished copper thickness.

Figure 26. Example PCB Stack-Up

Figure 27 shows the routing of the RF traces, supply, and control signals from the device. The ground planes are connected with as many filled, through vias as allowed for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.

Figure 27. PCB Routings
Figure 28 shows the recommended layout from the device RF pins to the 50Ω CPWG on the referenced stack-up. The ground pads are drawn as solder mask defined and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width and tapered to the RF trace with a 45° angle. The paste mask is also designed to match the pad without any aperture reduction. The paste is divided into multiple openings for the paddle.

Figure 28. Recommended RF Pin Transitions
For alternate PCB stack-ups with different dielectric thickness and CPWG design, contact Analog Devices Technical Support for further recommendations.

APPLICATION INFORMATION

BACK-TO-BACK PHASE SHIFTER REFERENCE DESIGN

Figure 29. Back-to-Back Configuration Schematic

A typical application of the ADRF5347 is a four-step phase shifter achieved by connecting the SP4T switches back to back. Each RF arm may have a different delay line (Figure 29).
The switch control inputs, V1 and V2, can be connected together to configure the back-to-back phase shifter, which is achieved by applying inverted logic to the LS pin of SW1 and SW2. The LS pins do not require additional routing due to the internal pull-up. Therefore, the LS pin of ADRF5347 can be directly tied to ground or left floating.

Figure 30, Figure 31 and Figure 32 show a reference four-step phase shifter design with $0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90° phases at 3.6 GHz . The plots represent the performance from the first switch's RFC terminal to the second switch's RF terminal, with reference planes at the package boundary. The design is implemented on a low loss, low passive intermodulation substrate Aerowave-300. Contact Analog Devices Technical Support for design files and further recommendations.

Figure 30. Back-to-Back Insertion Loss vs. Frequency

Figure 31. Back-to-Back Normalized Phase vs. Frequency

Figure 32. Input and Output Return Loss vs. Frequency

OUTLINE DIMENSIONS

Figure 33. 20-Terminal Land Grid Array [LGA]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.78 mm Package Height (CC-20-14)
Dimensions shown in millimeters
Updated: June 15, 2023
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Packing Quantity	Package Option
ADRF5347BCCZN	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20-Terminal Land Grid Array (LGA)	Cut Tape, 1	CC-20-14
ADRF5347BCCZN-R7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20-Terminal Land Grid Array (LGA)	7" Tape and Reel, 750	CC-20-14
ADRF5347BCCZN-RL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20-Terminal Land Grid Array (LGA)	13" Tape and Reel, 5000	CC-20-14

1 Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 8. Evaluation Boards

Model 1	Description
ADRF5347-EVALZ	Evaluation Board
${ }^{1}$ Z $=$ RoHS-Compliant Part.	

[^0]: ${ }^{1} \theta_{\mathrm{Jc}}$ is the junction to case bottom (channel to package bottom) thermal resistance. θ_{Jc} is determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the ground pad to the $P C B$, and the ground pad is held constant at the operating temperature of $105^{\circ} \mathrm{C}$.

